References

1. References#

[1]

Colin Bernet. L’intelligence artificielle: introduction et applications en physique. 2021. URL: https://culturesciencesphysique.ens-lyon.fr/ressource/IA-Bernet-3.xml.

[2]

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[3]

Steven L. Brunton and J. Nathan Kutz. Chapter 6: Neural Networks and Deep Learning. Cambridge University Press, 2019.

[4]

Marc Buffat. Inpros: introduction à la programmation scientifique. 2018. URL: https://perso.univ-lyon1.fr/marc.buffat/2022/BOOK_INPROS/index.html.

[5]

Dominique Cardon, Jean-Philippe Cointet, and Antoine Mazières. La revanche des neurones: l’invention des machines inductives et la controverse de l’intelligence artificielle. Réseaux, n° 211(5):173–220, November 2018. doi:10.3917/res.211.0173.

[6]

Sébastien Charnoz and Adrian Daerr. Algorithmes de minimisation. 2010. URL: https://irfu.cea.fr/Projets/COAST/methodes_numeriques_MINI.pdf.

[7]

Brian M. de Silva, David M. Higdon, Steven L. Brunton, and J. Nathan Kutz. Discovery of physics from data: universal laws and discrepancies. Frontiers in Artificial Intelligence, April 2020. doi:10.3389/frai.2020.00025.

[8]

Allen B. Downey. How to think like a computer scientist. 2016. URL: https://www.greenteapress.com/wp/think-python-2e/.

[9]

Megan R. Ebers, Katherine M. Steele, and J. Nathan Kutz. Discrepancy modeling framework: learning missing physics, modeling systematic residuals, and disambiguating: between deterministic and random effects. In arXiv. 2023.

[10]

Andries P. Engelbrecht. Computational Intelligence: An Introduction (Second Edition). John Wiley and Sons, 2007.

[11]

FranceCulture. Apprentissage autosupervisé : ia, au tableau ! 2022. URL: https://www.radiofrance.fr/franceculture/podcasts/la-methode-scientifique/apprentissage-autosupervise-ia-au-tableau-8790358.

[12]

Thomas Groensfelder, Fabian Giebeler, Marco Geupel, David Schneider, and Rebecca Jaeger. Application of machine learning procedures for mechanical system modeling: capabilities and caveats to prediction-accuracy. Advanced Modeling and Simulation in Engineering Sciences, June 2020. doi:10.1186/s40323-020-00163-4.

[13]

Thomas Groensfelder, Fabian Giebeler, Marco Geupel, David Schneider, and Rebecca Jaeger. Application of machine learning procedures for mechanical system modelling: capabilities and caveats to prediction-accuracy. In Advanced Modeling and Simulation in Engineering Sciences. 2020.

[14]

Patrick Hairy. Physics-informed neural networks. 2022. URL: https://metalblog.ctif.com/2022/01/17/physics-informed-neural-networks/.

[15]

Mykel J. Kochenderfer and Tim A. Wheeler. Algorithms for Optimization. MIT press, 2019.

[16]

J. Ling, K. Zhang, Lu, L., and G. E. Karniadakis. Deep learning of dynamics from data: a neural network approach to understanding chaotic systems. journal of computational physics. Journal of Computational Physics, 2021.

[17]

Lu Lu, Xuhui Meng, Zhiping Mao, and and George Em Karniadakis. Deepxde: a deep learning library for solving differential equations. In arXiv. 2020.

[18]

MétéoFrance. Initiation au machine learning. 2018. URL: meteofrance/formation-machine-learning.

[19]

Andrei Popescu, Seda Polat-Erdeniz, Alexander Felfernig, Mathias Uta, Müslüm Atas, Viet-Man Le, Klaus Pilsl, Martin Enzelsberger, and Thi Ngoc Trang Tran. An overview of machine learning techniques in constraint solving. Journal of Intelligent Information Systems, 58(1):91–118, August 2021. doi:10.1007/s10844-021-00666-5.

[20]

M. Raissi, Perdikaris, P., and G. E. Karniadakis. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019.

[21]

Samuel H. Rudy, J. Nathan Kutz, and Steven L. Brunton. Deep learning of dynamics and signal-noise decomposition with time-stepping constraints. In ArXiv. 2018.

[22]

Philippe Spalart. An old-fashioned framework for machine learning in turbulence and modeling. In arXiv. 2022.

[23]

Sophie Steger, Franz M. Rohrhofer, and Bernhard C. Geiger. How pinns cheat: predicting chaotic motion of a double pendulum. In 36th Conference on Neural Information Processing Systems. 2022.

[24]

Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization methods a machine and learning perspective. In arXiv. 2019.

[25]

Franciszek Szewczyk, Michal Tesnar, Wojciech Trejter, and Wojciech Anyszka. Discovering dynamics, conservation laws and symmetries underlying the double pendulum system: a neural and networks approach. In ArXiv. 2020. doi:ng.

[26]

wikipedia. Optimisation (mathématiques). 2024. URL: https://fr.wikipedia.org/wiki/Optimisation_(mathématiques).