2. Practical work: Multi-dimensional minimization#

Marc Buffat Dpt mécanique, UCB Lyon 1 Minimisation 2D

%matplotlib inline
#algèbre linéaire
import numpy as np
import sympy as sp
import time
#représentation des résultats
import matplotlib.pyplot as plt
from IPython.display import display,Markdown
def printmd(text):
    display(Markdown(text))
plt.rc('font', family='serif', size='18')
from validation.validation import info_etudiant
def printmd(string):
    display(Markdown(string))
# test si numero étudiant spécifier
try: NUMERO_ETUDIANT
except NameError: NUMERO_ETUDIANT = None 
if type(NUMERO_ETUDIANT) is not int :
    printmd("**ERREUR:** numéro d'étudiant non spécifié!!!")
    NOM,PRENOM,NUMERO_ETUDIANT=info_etudiant()
    #raise AssertionError("NUMERO_ETUDIANT non défini")
# parametres spécifiques
_uid_    = NUMERO_ETUDIANT
np.random.seed(_uid_)
printmd("**Login étudiant {} {} uid={}**".format(NOM,PRENOM,_uid_))
# fonctionnelle a minimiser
import pwd,sys
libpath=pwd.getpwnam('cours')[5]+'/IntroIA/lib'
sys.path.insert(0, libpath)
from Fonctionnelle import Fonctionnelle
J = Fonctionnelle(_uid_)
printmd("**Fonctionnelle J à minimiser**")
J.info()

ERREUR: numéro d’étudiant non spécifié!!!

Login étudiant Marc BUFFAT uid=137764122

Fonctionnelle J à minimiser

Fonctionnelle J(X) 
dimension de X : 43
minimum   de J : -1.7692176662626187
pour ||X|| < 1.0

2.1. Objectives#

Find the vector X minimizing the function J(X).

The function J() is written in Python as an object (i.e. a class instance)

  • J : object name

  • J.dim() : dimension of X, i.e. number of variables

  • J(X) : calculate the value of J for a given vector X of dimension J.dim()

  • J.grad(X) : calculate the gradient of J at X

  • J.err(X) : calculate the norm of the error ||X-Xe|| where Xe minimize J(X)

  • J.min() : calculate the minimum of J

2.2. 1D Minimization#

Study of the minimization of \(J(\mathbf{X})\) in a given direction \(\mathbf{D}\)

Given a vector \(D\), we will minimize \(J(\alpha \mathbf{D})\) (as a 1D function of \(\alpha\))

In the following cells:

  • calculate \(J(\alpha \mathbf{D})\) for different values of \(\alpha\) between -2 and 2

  • plot the function \(J(\alpha)\)

  • use the function minimize_scalar in scipy to calculate \(\alpha\) that minimize \(J(\alpha)\)

  • put the result in the variable alpha_min

# calcul variation dans une direction D
D = np.zeros(J.dim())
D[NUMERO_ETUDIANT % J.dim()] = 1
Alpha = None
JAlpha = None

### BEGIN SOLUTION
Alpha  = np.linspace(-2,2,21)
JAlpha = np.array([J(alpha*D) for alpha in Alpha])
plt.figure(figsize=(10,8))
plt.plot(Alpha,JAlpha)
plt.xlabel("$\\alpha$")
plt.title("J($\\alpha$) dans la direction D");
### END SOLUTION
../../../_images/40d47e1545600b36fe7c8c9a1eb737f7e21e82588e7a6a3c393329eae262a68e.png
from scipy.optimize import minimize_scalar

alpha_min = None
### BEGIN SOLUTION
F = lambda alpha:J(alpha*D)
res = minimize_scalar(F,method='Brent')
print("Jmin=",res.fun)
alpha_min = res.x
print("solution alpha=",alpha_min)
X = alpha_min*D
print("err=",J.err(X))
res
### END SOLUTION
Jmin= -0.018356381667365942
solution alpha= -0.07822271977579136
err= 1.3365604110647604
 message: 
          Optimization terminated successfully;
          The returned value satisfies the termination criteria
          (using xtol = 1.48e-08 )
 success: True
     fun: -0.018356381667365942
       x: -0.07822271977579136
     nit: 5
    nfev: 8
print(f"alpha={alpha_min} minimise J suivant D\n",D)
assert(J.err1D(alpha_min,D)<1.e-5)
alpha=-0.07822271977579136 minimise J suivant D
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

2.3. multi-dimensional minimization#

use of the scipy library

  • function minimize (local minimization)

    • method using exact gradient : Conjugate Gradients, Newton GC,

    • méthod using approximate gradient : BFGS,

    • line search Powell, Simplex Nelder-Mead

  • global optimization

    • simulated annealing

In the following cell, define 2 new functions :

  • F(X) to calculate J(X)

  • Fgrad(X) to calculate the gradient

we use python functions because the minimization function does not allow class method.

F = None
Fgrad = None
### BEGIN SOLUTION
F = lambda X:J(X)
Fgrad = lambda X:J.grad(X)
### END SOLUTION
X0 = np.zeros(J.dim())
print("solution initiale X0:\n",X0)
assert np.allclose(F(X0),J(X0))
assert np.allclose(Fgrad(X0),J.grad(X0))
solution initiale X0:
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

2.3.1. Using the default minimize method#

for each method, we have too:

  • calculate the solution Xe,

  • calculate the value of J(Xe)

  • calculate the error (that should be less than 1.e-5)

We have to prescribe the optional parameters in order to obtain the prescribed precision

from scipy.optimize import minimize

Xe = None
### BEGIN SOLUTION




res = minimize(F, X0,options={'disp':True})
Xe = res.x
print("Jmin=",res.fun,res.message)
print('solution J(Xe)={J(Xe)} pour Xe:\n',Xe)
print("Erreur = ",J.err(Xe))
### END SOLUTION
Optimization terminated successfully.
         Current function value: -1.769218
         Iterations: 26
         Function evaluations: 1892
         Gradient evaluations: 43
Jmin= -1.7692176662297645 Optimization terminated successfully.
solution J(Xe)={J(Xe)} pour Xe:
 [ 0.37669914  0.0473201  -0.05940651  0.24743475  0.10194773  0.04459198
  0.20554939  0.02195719  0.0379892   0.44592214  0.54024204  0.29085524
 -0.11742665  0.17566061  0.13499798  0.10380401 -0.12442166  0.27601026
 -0.22541101  0.07267743  0.12516503  0.27537963  0.19022756  0.0380975
  0.21712647 -0.00406927  0.07766843 -0.1020846  -0.01725833  0.08505746
 -0.07205854  0.15775652  0.06561638  0.11190708 -0.06764155  0.45226144
 -0.05877664  0.03460216  0.02844345  0.08316676  0.20954806  0.02630892
  0.464114  ]
Erreur =  6.022753004989829e-06
print(f"J={J(Xe)} avec erreur={J.err(Xe)} pour  X:\n",Xe)
assert( J.err(Xe) < 1.e-5)
J=-1.7692176662297645 avec erreur=6.022753004989829e-06 pour  X:
 [ 0.37669914  0.0473201  -0.05940651  0.24743475  0.10194773  0.04459198
  0.20554939  0.02195719  0.0379892   0.44592214  0.54024204  0.29085524
 -0.11742665  0.17566061  0.13499798  0.10380401 -0.12442166  0.27601026
 -0.22541101  0.07267743  0.12516503  0.27537963  0.19022756  0.0380975
  0.21712647 -0.00406927  0.07766843 -0.1020846  -0.01725833  0.08505746
 -0.07205854  0.15775652  0.06561638  0.11190708 -0.06764155  0.45226144
 -0.05877664  0.03460216  0.02844345  0.08316676  0.20954806  0.02630892
  0.464114  ]

2.3.2. Conjugate gradient Method#

Xe = None
### BEGIN SOLUTION
res = minimize(F, X0, jac=Fgrad, method='CG',options={'disp':True})
print("Jmin=",res.fun,res.message)
Xe = res.x
print('solution J(Xe)={J(Xe)} pour Xe:\n',Xe)
print("Erreur = ",J.err(Xe))
### END SOLUTION
Optimization terminated successfully.
         Current function value: -1.769218
         Iterations: 20
         Function evaluations: 41
         Gradient evaluations: 41
Jmin= -1.7692176662297676 Optimization terminated successfully.
solution J(Xe)={J(Xe)} pour Xe:
 [ 0.37669861  0.04732022 -0.05940598  0.24743562  0.1019499   0.04459283
  0.20555072  0.02195744  0.03799154  0.44592203  0.54024449  0.2908546
 -0.11742708  0.17566174  0.13500079  0.10380474 -0.12442238  0.27600939
 -0.22540979  0.07267734  0.12516579  0.2753805   0.19023037  0.03809888
  0.21712764 -0.00406822  0.07766976 -0.10208394 -0.01725912  0.08505799
 -0.07205764  0.15775932  0.06561639  0.11191097 -0.06764046  0.45226228
 -0.05877647  0.03460051  0.02844238  0.08316826  0.20954934  0.02630826
  0.46411377]
Erreur =  4.636842973251503e-06
print(f"J={J(Xe)} avec erreur={J.err(Xe)} pour  X:\n",Xe)
assert( J.err(Xe) < 1.e-5)
J=-1.7692176662297676 avec erreur=4.636842973251503e-06 pour  X:
 [ 0.37669861  0.04732022 -0.05940598  0.24743562  0.1019499   0.04459283
  0.20555072  0.02195744  0.03799154  0.44592203  0.54024449  0.2908546
 -0.11742708  0.17566174  0.13500079  0.10380474 -0.12442238  0.27600939
 -0.22540979  0.07267734  0.12516579  0.2753805   0.19023037  0.03809888
  0.21712764 -0.00406822  0.07766976 -0.10208394 -0.01725912  0.08505799
 -0.07205764  0.15775932  0.06561639  0.11191097 -0.06764046  0.45226228
 -0.05877647  0.03460051  0.02844238  0.08316826  0.20954934  0.02630826
  0.46411377]

2.3.3. Conjugate gradient Method with Newton#

Xe = None
### BEGIN SOLUTION
res = minimize(F, X0, jac=Fgrad, method='Newton-CG',options={'disp':True})
print("Jmin=",res.fun,res.message)
Xe = res.x
print('solution J(Xe)={J(Xe)} pour Xe:\n',Xe)
print("Erreur = ",J.err(Xe))
### END SOLUTION
Optimization terminated successfully.
         Current function value: -1.769218
         Iterations: 9
         Function evaluations: 10
         Gradient evaluations: 77
         Hessian evaluations: 0
Jmin= -1.7692176662626165 Optimization terminated successfully.
solution J(Xe)={J(Xe)} pour Xe:
 [ 0.37670016  0.04732056 -0.05940647  0.24743543  0.10194923  0.04459226
  0.20555026  0.02195688  0.03799023  0.44592269  0.54024409  0.29085522
 -0.11742721  0.1756614   0.13499967  0.10380462 -0.12442221  0.27600989
 -0.22541077  0.07267732  0.12516558  0.27537939  0.19022893  0.03809801
  0.2171283  -0.00406866  0.0776689  -0.10208422 -0.01725887  0.08505769
 -0.07205837  0.1577582   0.06561628  0.11190963 -0.06764064  0.45226276
 -0.05877668  0.03460125  0.02844297  0.08316746  0.2095486   0.02630885
  0.46411378]
Erreur =  5.184269262151714e-08
print(f"J={J(Xe)} avec erreur={J.err(Xe)} pour  X:\n",Xe)
assert( J.err(Xe) < 1.e-5)
J=-1.7692176662626165 avec erreur=5.184269262151714e-08 pour  X:
 [ 0.37670016  0.04732056 -0.05940647  0.24743543  0.10194923  0.04459226
  0.20555026  0.02195688  0.03799023  0.44592269  0.54024409  0.29085522
 -0.11742721  0.1756614   0.13499967  0.10380462 -0.12442221  0.27600989
 -0.22541077  0.07267732  0.12516558  0.27537939  0.19022893  0.03809801
  0.2171283  -0.00406866  0.0776689  -0.10208422 -0.01725887  0.08505769
 -0.07205837  0.1577582   0.06561628  0.11190963 -0.06764064  0.45226276
 -0.05877668  0.03460125  0.02844297  0.08316746  0.2095486   0.02630885
  0.46411378]

2.3.4. Method BFGS (use of a numerical approximation of the gradient)#

Xe = None
### BEGIN SOLUTION
res = minimize(F, X0, method='BFGS',options={'disp':True})
print("Jmin=",res.fun,res.message)
Xe = res.x
print('solution J(Xe)={J(Xe)} pour Xe:\n',Xe)
print("Erreur = ",J.err(Xe))
### END SOLUTION
Optimization terminated successfully.
         Current function value: -1.769218
         Iterations: 26
         Function evaluations: 1892
         Gradient evaluations: 43
Jmin= -1.7692176662297645 Optimization terminated successfully.
solution J(Xe)={J(Xe)} pour Xe:
 [ 0.37669914  0.0473201  -0.05940651  0.24743475  0.10194773  0.04459198
  0.20554939  0.02195719  0.0379892   0.44592214  0.54024204  0.29085524
 -0.11742665  0.17566061  0.13499798  0.10380401 -0.12442166  0.27601026
 -0.22541101  0.07267743  0.12516503  0.27537963  0.19022756  0.0380975
  0.21712647 -0.00406927  0.07766843 -0.1020846  -0.01725833  0.08505746
 -0.07205854  0.15775652  0.06561638  0.11190708 -0.06764155  0.45226144
 -0.05877664  0.03460216  0.02844345  0.08316676  0.20954806  0.02630892
  0.464114  ]
Erreur =  6.022753004989829e-06
print(f"J={J(Xe)} avec erreur={J.err(Xe)} pour  X:\n",Xe)
assert( J.err(Xe) < 1.e-5)
J=-1.7692176662297645 avec erreur=6.022753004989829e-06 pour  X:
 [ 0.37669914  0.0473201  -0.05940651  0.24743475  0.10194773  0.04459198
  0.20554939  0.02195719  0.0379892   0.44592214  0.54024204  0.29085524
 -0.11742665  0.17566061  0.13499798  0.10380401 -0.12442166  0.27601026
 -0.22541101  0.07267743  0.12516503  0.27537963  0.19022756  0.0380975
  0.21712647 -0.00406927  0.07766843 -0.1020846  -0.01725833  0.08505746
 -0.07205854  0.15775652  0.06561638  0.11190708 -0.06764155  0.45226144
 -0.05877664  0.03460216  0.02844345  0.08316676  0.20954806  0.02630892
  0.464114  ]

2.3.5. Powell Algorithm (line search 2D)#

Xe = None
### BEGIN SOLUTION
res = minimize(F, X0, method='Powell',options={'disp':True,'xtol':1.e-8,'ftol':1.0e-8})
print("Jmin=",res.fun,res.message)
Xe = res.x
print('solution J(Xe)={J(Xe)} pour Xe:\n',Xe)
print("Erreur = ",J.err(Xe))
### END SOLUTION
Optimization terminated successfully.
         Current function value: -1.769218
         Iterations: 15
         Function evaluations: 11097
Jmin= -1.7692176530299948 Optimization terminated successfully.
solution J(Xe)={J(Xe)} pour Xe:
 [ 0.37667005  0.04731831 -0.0594059   0.24742969  0.10194837  0.04459097
  0.20554676  0.02193932  0.03799056  0.44591172  0.540236    0.29083952
 -0.11742493  0.175661    0.13499505  0.10380322 -0.12441626  0.27598852
 -0.2254106   0.07267111  0.12514853  0.27537008  0.19022729  0.03809785
  0.21702824 -0.00405411  0.07766853 -0.10208704 -0.0172583   0.08506079
 -0.07205901  0.15775171  0.06562448  0.11185635 -0.06764132  0.45225323
 -0.05878437  0.03459999  0.02842351  0.0831695   0.20954474  0.02630869
  0.46409637]
Erreur =  0.00012918732312904748
print(f"J={J(Xe)} avec erreur={J.err(Xe)} pour  X:\n",Xe)
assert( J.err(Xe) < 1.e-3)
J=-1.7692176530299948 avec erreur=0.00012918732312904748 pour  X:
 [ 0.37667005  0.04731831 -0.0594059   0.24742969  0.10194837  0.04459097
  0.20554676  0.02193932  0.03799056  0.44591172  0.540236    0.29083952
 -0.11742493  0.175661    0.13499505  0.10380322 -0.12441626  0.27598852
 -0.2254106   0.07267111  0.12514853  0.27537008  0.19022729  0.03809785
  0.21702824 -0.00405411  0.07766853 -0.10208704 -0.0172583   0.08506079
 -0.07205901  0.15775171  0.06562448  0.11185635 -0.06764132  0.45225323
 -0.05878437  0.03459999  0.02842351  0.0831695   0.20954474  0.02630869
  0.46409637]

2.3.6. Simulated annealing#

from scipy.optimize import dual_annealing

Xe = None
### BEGIN SOLUTION
bounds = [[-1,1]]*J.dim()
res=dual_annealing(F,bounds=bounds)
print(res)
print("Jmin=",res.fun,res.message)
Xe = res.x
print('solution J(Xe)={J(Xe)} pour Xe:\n',Xe)
print("Erreur = ",J.err(Xe))
### END SOLUTION
 message: ['Maximum number of iteration reached']
 success: True
  status: 0
     fun: -1.7692176657187755
       x: [ 3.767e-01  4.732e-02 ...  2.631e-02  4.641e-01]
     nit: 1000
    nfev: 87101
    njev: 25
    nhev: 0
Jmin= -1.7692176657187755 ['Maximum number of iteration reached']
solution J(Xe)={J(Xe)} pour Xe:
 [ 0.37669304  0.04731865 -0.05940457  0.24743587  0.1019486   0.04459476
  0.20555101  0.02195361  0.03799474  0.44591705  0.54023352  0.29085377
 -0.11742663  0.17565963  0.13499311  0.10380461 -0.12442111  0.27600705
 -0.22540478  0.07267668  0.1251646   0.27537906  0.1902271   0.03809665
  0.21711575 -0.00407089  0.0776704  -0.10208516 -0.01725787  0.08505986
 -0.07205864  0.15775122  0.0656194   0.11189518 -0.06764063  0.45225393
 -0.05877729  0.03459876  0.02843693  0.08316774  0.20955133  0.02630694
  0.46411592]
Erreur =  3.0295365921744437e-05
print(f"J={J(Xe)} avec erreur={J.err(Xe)} pour  X:\n",Xe)
assert( J.err(Xe) < 1.e-4)
J=-1.7692176657187755 avec erreur=3.0295365921744437e-05 pour  X:
 [ 0.37669304  0.04731865 -0.05940457  0.24743587  0.1019486   0.04459476
  0.20555101  0.02195361  0.03799474  0.44591705  0.54023352  0.29085377
 -0.11742663  0.17565963  0.13499311  0.10380461 -0.12442111  0.27600705
 -0.22540478  0.07267668  0.1251646   0.27537906  0.1902271   0.03809665
  0.21711575 -0.00407089  0.0776704  -0.10208516 -0.01725787  0.08505986
 -0.07205864  0.15775122  0.0656194   0.11189518 -0.06764063  0.45225393
 -0.05877729  0.03459876  0.02843693  0.08316774  0.20955133  0.02630694
  0.46411592]

2.3.7. Simplex Method (Nelder-Mead)#

Xe = None
### BEGIN SOLUTION
bounds = [[-1,1]]*J.dim()
res = minimize(F, X0, method='Nelder-Mead',bounds=bounds,
               options={'disp':True, 'maxiter':500000, 
                        'fatol':1.0e-5,'xatol':1.0e-5})
print("Jmin=",res.fun,res.message)
Xe = res.x
print('solution J(Xe)={J(Xe)} pour Xe:\n',Xe)
print("Erreur = ",J.err(Xe))
# non cvge
### END SOLUTION
Optimization terminated successfully.
         Current function value: -1.200344
         Iterations: 50200
         Function evaluations: 57706
Jmin= -1.2003442377984364 Optimization terminated successfully.
solution J(Xe)={J(Xe)} pour Xe:
 [ 0.06226151 -0.01369773 -0.08780471  0.17376409 -0.02158641 -0.01399093
  0.12676538 -0.03677043  0.0391837   0.01440498  0.18608908  0.14652088
 -0.16919761  0.08411006 -0.05828204  0.05404556 -0.1838678   0.14468501
 -0.2567649  -0.01107447  0.15114776  0.27385515  0.07086723 -0.00843397
 -0.06355823 -0.07906294  0.00129312 -0.19059111 -0.09705945  0.04175389
 -0.14878703  0.04611975 -0.04325124 -0.09645403 -0.11890353 -0.02834005
 -0.05615334 -0.06193063 -0.07806562  0.00308665  0.07942687 -0.042194
  0.23473536]
Erreur =  1.0398428044675592
print(f"J={J(Xe)} avec erreur={J.err(Xe)} pour  X:\n",Xe)
#assert( J.err(Xe) < 0.8)
J=-1.2003442377984364 avec erreur=1.0398428044675592 pour  X:
 [ 0.06226151 -0.01369773 -0.08780471  0.17376409 -0.02158641 -0.01399093
  0.12676538 -0.03677043  0.0391837   0.01440498  0.18608908  0.14652088
 -0.16919761  0.08411006 -0.05828204  0.05404556 -0.1838678   0.14468501
 -0.2567649  -0.01107447  0.15114776  0.27385515  0.07086723 -0.00843397
 -0.06355823 -0.07906294  0.00129312 -0.19059111 -0.09705945  0.04175389
 -0.14878703  0.04611975 -0.04325124 -0.09645403 -0.11890353 -0.02834005
 -0.05615334 -0.06193063 -0.07806562  0.00308665  0.07942687 -0.042194
  0.23473536]

2.4. Analysis#

comparison of the different methods

  • computational cost

  • precision

Write your analysis using Markdown syntax

2.5. The End#