General Introduction

3. General Introduction#

The objective of the course is to be able to use a machine learning approach applied to the treatment of mechanical problems.

Method: computing AI

The adopted perspective is to present the machine learning approach from a numerical methods point of view (using applied numerical methods) rather than from a statistical point of view, which is mainly used by data scientists.

To achieve this, we will use the following approach of “scientific computing,” using the Python programming language commonly used in science.

Scientific programming

3.1. Scientific Approach#

Scientific Approach

  1. Physical analysis of the problem

  2. Choice of a mathematical model

  3. Choice of a numerical method

  4. Choice of an algorithmic solution

  5. Programming on a computer

  6. Validation of the approach

  7. Simulation

  8. Analysis of the results

Important

In this approach validation is an essential point of the process !!

Note

The domain of application is (mechanical) engineering modelization, simulation and data analysis. The applicationi of AI to general-purpose language generation (text, image, video) using large language model (LLMs) like ChatGPT is not covered in this course.

3.2. Remarks#

Human expertise

Computers do not have feelings, emotions and cannot duplicate human reasonning. We will always need human experts to analyse and validate the machine learning approach in Science.

Without humans, there is no pilot in the plane !!

3.3. Reference#

[Als24]

Hamza Sharaf F Alsharif. Physics-informed neural networks for encoding dynamics in real physical systems. Master's thesis, Department of Engineering, University of Cambridge, 2024.

[Ber21]

Colin Bernet. L’intelligence artificielle: introduction et applications en physique. 2021. URL: https://culturesciencesphysique.ens-lyon.fr/ressource/IA-Bernet-3.xml.

[BV04]

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[BK19]

Steven L. Brunton and J. Nathan Kutz. Chapter 6: Neural Networks and Deep Learning. Cambridge University Press, 2019.

[Buf18]

Marc Buffat. Inpros: introduction à la programmation scientifique. 2018. URL: https://perso.univ-lyon1.fr/marc.buffat/2022/BOOK_INPROS/index.html.

[CCM18]

Dominique Cardon, Jean-Philippe Cointet, and Antoine Mazières. La revanche des neurones: l’invention des machines inductives et la controverse de l’intelligence artificielle. Réseaux, n° 211(5):173–220, November 2018. doi:10.3917/res.211.0173.

[CD10]

Sébastien Charnoz and Adrian Daerr. Algorithmes de minimisation. 2010. URL: https://irfu.cea.fr/Projets/COAST/methodes_numeriques_MINI.pdf.

[dSHBK20]

Brian M. de Silva, David M. Higdon, Steven L. Brunton, and J. Nathan Kutz. Discovery of physics from data: universal laws and discrepancies. Frontiers in Artificial Intelligence, April 2020. doi:10.3389/frai.2020.00025.

[Dow16]

Allen B. Downey. How to think like a computer scientist. 2016. URL: https://www.greenteapress.com/wp/think-python-2e/.

[ESK23]

Megan R. Ebers, Katherine M. Steele, and J. Nathan Kutz. Discrepancy modeling framework: learning missing physics, modeling systematic residuals, and disambiguating: between deterministic and random effects. In arXiv. 2023.

[Eng07]

Andries P. Engelbrecht. Computational Intelligence: An Introduction (Second Edition). John Wiley and Sons, 2007.

[Fra22]

FranceCulture. Apprentissage autosupervisé : ia, au tableau ! 2022. URL: https://www.radiofrance.fr/franceculture/podcasts/la-methode-scientifique/apprentissage-autosupervise-ia-au-tableau-8790358.

[FMRG23]

Clemens Gößnitzer Franz M. Rohrhofer, Stefan Posch and Bernhard C. Geiger. On the role of fixed points of dynamical systems in training physics-informed neural networks. In ArXiv. 2023.

[Gan20]

Dennis Gannon. Notes on deep learning and differential equations. Technical Report, School of Informatics, Computing and Engineering Indiana University, 2020.

[GGG+20]

Thomas Groensfelder, Fabian Giebeler, Marco Geupel, David Schneider, and Rebecca Jaeger. Application of machine learning procedures for mechanical system modeling: capabilities and caveats to prediction-accuracy. Advanced Modeling and Simulation in Engineering Sciences, June 2020. doi:10.1186/s40323-020-00163-4.

[Hai22]

Patrick Hairy. Physics-informed neural networks. 2022. URL: https://metalblog.ctif.com/2022/01/17/physics-informed-neural-networks/.

[HVW+21]

Lei Huang, Daniel Vrinceanu, Yunjiao Wang, Nalinda Kulathunga, and Nishath Ranasinghe. Discovering nonlinear dynamics through scientific machine learning. Technical Report, Department of Computer Science, Prairie View A&M University, 2021.

[Kad21]

Chennakesava Kadapa. Machine learning for computational science and engineering – a brief introduction and some critical questions. In ArXiv. 2021.

[KW19]

Mykel J. Kochenderfer and Tim A. Wheeler. Algorithms for Optimization. MIT press, 2019.

[LZLK21]

J. Ling, K. Zhang, Lu, L., and G. E. Karniadakis. Deep learning of dynamics from data: a neural network approach to understanding chaotic systems. journal of computational physics. Journal of Computational Physics, 2021.

[LMMaGEK20]

Lu Lu, Xuhui Meng, Zhiping Mao, and and George Em Karniadakis. Deepxde: a deep learning library for solving differential equations. In arXiv. 2020.

[MP25]

Sharath Ballupete Nagaraju Madhu Puttegowda. Artificial intelligence and machine learning in mechanical engineering: current trends and future prospects. Engineering Applications of Artificial Intelligence, 2 2025.

[MHT18]

Eyke Hullermeier Michael Hesse, Julia Timmermann and Ansgar Trachtler. A reinforcement learning strategy for the swing-up of the double pendulum on a cart. In 4th International Conference on System-Integrated Intelligence, volume Procedia Manufacuring 24 (2018), 15–20. 2018.

[Met18]

MétéoFrance. Initiation au machine learning. 2018. URL: meteofrance/formation-machine-learning.

[PPEF+21]

Andrei Popescu, Seda Polat-Erdeniz, Alexander Felfernig, Mathias Uta, Müslüm Atas, Viet-Man Le, Klaus Pilsl, Martin Enzelsberger, and Thi Ngoc Trang Tran. An overview of machine learning techniques in constraint solving. Journal of Intelligent Information Systems, 58(1):91–118, August 2021. doi:10.1007/s10844-021-00666-5.

[RSPG22]

Sharad Bhartiya Rahul S. Patel and Ravindra D. Gudi. Physics constrained learning in neural network based modeling. In IFAC conference paper archive, 78–95. 2022.

[RPK19]

M. Raissi, Perdikaris, P., and G. E. Karniadakis. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019.

[RKB18]

Samuel H. Rudy, J. Nathan Kutz, and Steven L. Brunton. Deep learning of dynamics and signal-noise decomposition with time-stepping constraints. In ArXiv. 2018.

[SX24]

Yifa Tang Shanshan Xiao, Jiawei Zhang. Generalized lagrangian neural networks. In ArXiv. 2024.

[SK19]

Jupinder Parmar Sirapop Klinkachorn. Evaluating current machine learning techniques on predicting chaotic systems. Technical Report, Stanford University Department of Computer Science, 2019.

[Spa22]

Philippe Spalart. An old-fashioned framework for machine learning in turbulence and modeling. In arXiv. 2022.

[SRG22]

Sophie Steger, Franz M. Rohrhofer, and Bernhard C. Geiger. How pinns cheat: predicting chaotic motion of a double pendulum. In 36th Conference on Neural Information Processing Systems. 2022.

[SCZZ19]

Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization methods a machine and learning perspective. In arXiv. 2019.

[STTA20]

Franciszek Szewczyk, Michal Tesnar, Wojciech Trejter, and Wojciech Anyszka. Discovering dynamics, conservation laws and symmetries underlying the double pendulum system: a neural and networks approach. In ArXiv. 2020. doi:ng.

[vT23]

F.J.M. (Johan) van Tien. Index aware machine learning for constrained mechanical systems. Master's thesis, TU Eindhoven, 2023.

[Ver21]

Sagar Verma. A survey on machine learning applied to dynamic physical systems. In HAL. 2021.

[Vil24]

Cédric Villani. L’intelligence artificielle : utopie dystopique. 2024. URL: https://www.radiofrance.fr/franceculture/podcasts/serie-l-intelligence-artificielle-utopie-dystopique.

[WYV21]

David W. Hogg Weichi Yao, Kate Storey-Fisher and Soledad Villar. A simple equivariant machine learning method for dynamics based on scalars. In arXiv. 2021.

[Wik24]

Wikipedia. Optimisation (mathématiques). 2024. URL: https://fr.wikipedia.org/wiki/Optimisation_(mathématiques).