

AFIG 2002

Lyon, 9-11 décembre 2002

XVèmes Journées de l’Association Française

d’Informatique Graphique

AFIG 2002

Lyon, 9-11 décembre 2002

XVèmes Journées de l’Association Française

d’Informatique Graphique

Organisation :

Laboratoire

d’Informatique
Graphique, Image
et Modélisation

Université
Claude Bernard

Lyon 1

Ministère de la
Recherche

Centre National de la
Recherche Scientifique

Association
Française

d’Informatique
Graphique

TABLE DES MATIÈRES

Réalité virtuelle
Contrôle d’application en environnement virtuel : le Command and Control Cube 1
J. Grosjean, S. Coquillart.

Visualisation de modèles C.A.O dans une application de réalité virtuelle immersive 13
D. Paillot, F. Merienne, M. Neveu, J.-P. Frachet.

Drones : simulateur d’environnement et apprentissage 23
F. Belhadj.

Science Fiction et Réalité virtuelle
Conférencier invité : Du virtuel au réel 31
Claude Ecken

Réalité virtuelle 2
Validation d’un processus de traitement allant de la capture du mouvement à l’immersion de sujets en réalité
virtuelle : application au tir de handball 43
B. Bideau, L. Fradet, F. Multon, S. Ménardais, R. Kulpa, B. Arnaldi.

Modèle d’animation comportemental de piétons virtuels 53
A. Ebel, D. Hanon, B. Stanciulescu, P. Pudlo, E. Grislin, F.-X. Lepoutre.

Une architecture pour le retour d’efforts 59
T. Meyer, G.Andrade-Barroso, B. Arnaldi

Modélisation
Vectorisation d’une courbe discrète standard 2D 69
R. Breton, E. Andres.

Vers une approche plus intuitive des systèmes de C.A.O 79
E. Malik, Y. Gardan, E. Perrin.

Une méthode d’appariement topologique d’entités dans les modèles géométriques paramétriques 89
D. Agbodan, D. Marcheix, G. Pierra, C. Thabaud

Textures de dilatation pour la génération de plis 101
J. Combaz, F. Neyret.

Rendu
Peinture virtuelle : modélisation et interaction 111
A. Atencia, J.-J. Bourdin.

Visualisation par surfels de textures volumiques 117
G. Guennebaud, M. Paulin.

Ecrasement de photons pour l’illumination globale 129
F. Lavignotte, M. Paulin.

Reconstruction
Optimisation à base de flot de graphe pour l’acquisition d’informations 3D à partir de séquences d’images 139
S. Paris, F. Sillion.

Animation
Détection de collisions entre objets rigides convexes autonomes 149
J. Dequidt, L. Grisoni, P. Meseure, C. Chaillou.

Modélisation de sable 3D : visualisation par structuration du flux 157
C. Guilbaud, A. Luciani.

Animation efficace de solides en contact par modèle physique 167
O. Galizzi, F. Faure.

Réalité virtuelle 3
OpenMASK : [Multi-threaded — Modular] Animation and Simulation [Kernel — Kit] : un bref survol 179
D. Margery, B. Arnaldi, A. Chauffaut, S. Donikian, T. Duval.

Modélisation 2

Arrondi d’arêtes : de la topologie à la
���

continuité 189
F. Ledoux, L. Fuchs.

Partition de l’espace et hiérarchie de cartes généralisées : application aux complexes architecturaux 199
D. Fradin, D. Meneveaux, P. Lienhardt.

Rendu 2
La chambre photographique 211
S. Michelin, C. Pichard.

Respect des niveaux de visibilité dans la restitution d’images de synthèse en unités physiques 221
R. Brémond.

Modélisation 3
Conversion de cyclides de Dupin en carreaux de Bézier Rationnels biquadriques 231
L. Garnier, S. Foufou, M. Neveu.

Rétroconception en modélisation à base topologique 241
F. Ledoux.

Deux algorithmes d’intersection des surfaces de subdivision 251
S. Lanquetin, S. Foufou, H. Kheddouci, M. Neveu.

LÉGENDES DES IMAGES DE COUVERTURE

En haut à gauche et en bas au centre

Les opérations booléennes entre surfaces sont des problèmes fondamentaux en modélisation géométrique. La
première étape lors de ces opérations est de trouver la ou les courbe(s) d’intersection(s) entre les surfaces. Pour
les surfaces de subdivision, le nombre de couples de faces à tester augmente très rapidement à chaque itération.
Nous proposons donc de construire un graphe mettant en relation les couples de faces à tester afin de réduire
considérablement le nombre de tests lors des itérations suivantes. Ce graphe est mis à jour après chaque étape de
subdivision.

S. Lanquetin, S. Foufou, H. Kheddouci, M. Neveu. Pages 251–258
Deux algorithmes d’intersection des surfaces de subdivision

En haut au centre
Détail filtré de ”l’êglise d’Auvers sur Oise” (Van Gogh). Ce filtre conserve les teintes tout en augmentant la lumi-
nosité. L’image parait vive, ensoleillée et plus colorée que l’original.

A. Atencia, J.-J. Bourdin. Pages 111–116
Peinture Virtuelle : modélisation et interaction.

En haut à droite
Conversion des cyclides de Dupin en carreaux de Bézier rationnels biquadriques. Les cyclides de Dupin, inventées
en 1822 par le mathématicien français Charles Dupin, permettent d’effectuer des jointures géométriques

� �
-

continues sans se soucier des problèmes de paramétrisation. Beaucoup de modeleurs utilisent des surfaces de
Béziers. Les lignes de courbures des cyclides de Dupin étant des cercles, nous souhaitons les convertir en car-
reaux de Bézier rationnels biquadriques. Deux approches sont possibles : la méthode de Pratt s’appuyant sur les
paramètres de la cyclide de Dupin (une version améliorée permet de convertir toute la cyclide de Dupin) ou la
notre, basée sur les propriétés barycentriques des carreaux de Bézier rationnels et les symétries du cercle.

L. Garnier, S. Foufou, M. Neveu. Pages 231–240
Conversion de cyclides de Dupin en carreaux de Bézier rationnels biquadriques.

En bas à gauche

Le ”Command and Control Cube” (
���

) est un système de contrôle d’application rapide pour la configuration
d’environnement virtuel appelée Plan de Travail Virtuel. Menu 3D évolutif, il s’adapte au niveau d’expérience
de l’utilisateur. Inspiré des ”Marking Menus” (menus circulaires ”pop-up”), le

���
étend le concept aux trois di-

mensions de l’espace en exploitant chaque dimension pour la sélection elle-même. L’utilisation de la main non
dominante pour contrôler le menu libère la main dominante pour la tache principale.

J. Grosjean, S. Coquillart. Pages 1–12
Contrôle d’application en environnement virtuel : le Command and Control Cube.

En bas à droite
Illustration de la visualisation par surfels des textures volumiques. Cette forêt a été modélisée à l’aide des textures
volumiques : chaque arbre correspond à l’instanciation d’un volume de référence sous la forme d’un texel. L’ori-
ginalité est que le rendu est réalisé par projection de points (surfels), le motif de référence contenant de manière
hiérarchique et multi-résolution l’ensemble des surfels représentant la surface de l’arbre.

G. Guennebaud, M. Paulin. Pages 117–128
Visualisation par surfels des textures volumiques.

Contrôle d’application en environnement virtuel : le
Command and Control Cube

Jérôme Grosjean & Sabine Coquillart.

i3D, INRIA, Domaine de Voluceau, 78153 Le Chesnay Cedex, France
[Jerome.Grosjean|Sabine.Coquillart]@inria.fr

Résumé : Les environnements virtuels permettent le développement de puissants outils d’interaction avec des
mondes 3D générés par ordinateur. Des configurations comme le Plan de Travail Virtuel (Workbench), sont tout
particulièrement adaptées à la manipulation interactive de scènes virtuelles. Un des points forts de ces configu-
rations est la possibilité d’interagir directement et naturellement avec les modèles, l’espace de manipulation et
de visualisation étant identiques. Les programmes développés pour ces environnements virtuels nécessitent des
interfaces nouvelles, adaptées à leur nature spécifique. Si les premières applications ont principalement réutilisé
le concept des menus 2D (métaphore du bureau, fenêtres et menus déroulants), directement portés dans l’espace
à trois dimensions, ces solutions ne sont pas optimales. En effet, l’ajout d’une troisième dimension introduit entre
autre des contraintes de sélection supplémentaires. Dans ce papier nous proposons un paradigme purement 3D
pour le contrôle d’application en environnement virtuel : le ”Command and Control Cube” (

���
). Inspiré des

”Marking Menus” (menus circulaires ”pop-up”), le
���

étend le concept aux trois dimensions de l’espace en
exploitant chaque dimension pour la sélection elle-même. Le

���
est un menu évolutif, qui s’adapte au niveau

d’expérience de l’utilisateur. Il procure un continuum entre un mode débutant avec retour visuel et un mode expert
très rapide d’accès, qui peut être utilisé de façon similaire aux ”raccourcis claviers”. Des tests ont été menés pour
évaluer le

���
dans ses différents modes de fonctionnement. Une version hiérarchique a également été développée

pour étendre son usage à un arbre d’options de menus, de taille quelconque.

Mots-clés : retour d’efforts, architecture logicielle, réalité virtuelle.

1 Introduction

Les configurations d’environnement virtuel (EV) changent notre façon d’interagir avec des objets 3D, de naviguer
dans des univers 3D et de contrôler les applications. Certaines de ces configurations comme les casques immersifs,
la CAVE ��� [7], ou le Plan de Travail Virtuel ou ”Workbench” [14, 15, 11] pour n’en citer que quelques-unes
sont très prometteuses pour exploiter les potentialités offertes par les mondes 3D générés par ordinateur. Parmi ces
configurations, le Plan de Travail Virtuel1 est une des plus attractives pour la manipulation directe. Elle propose une
zone de travail ou les objets 3D peuvent être directement manipulés. Bien que cette configuration soit considérée
comme immersive (ou semi-immersive), elle permet aussi aux utilisateurs de ne pas perdre le contact avec le monde
réel, leur propre corps ou leurs collaborateurs, ce qui est souvent un des facteurs désorientant des EV.

De nombreuses applications opérationnelles sur stations de travail, comme des modeleurs ou des logiciels de visua-
lisation de données scientifiques, peuvent grandement profiter de cette configuration. Le système de visualisation
stéréoscopique, l’enregistrement des mouvements de la tête et l’interaction directe avec la scène virtuelle per-
mettent de simplifier et de rendre plus naturelles des opérations comme déplacer des plans de coupe, sélectionner
et manipuler des objets, modéliser en direct, déformer des objets 3D ou encore déplacer des sources de lumière.

Cependant, porter ces applications sur le plan de travail virtuel soulève un problème principal : reformuler pour
un environnement 3D les techniques classiques d’interaction pour la manipulation et le contrôle d’application (e.g.
changement de mode, envoi de commandes). Cette configuration diffère d’une station de travail sur plusieurs
points majeurs. Le système de visualisation du plan de travail virtuel est un affichage stéréoscopique 3D qui
permet aux utilisateurs de voir, de tourner autour et de manipuler des objets 3D vus en relief. L’enregistrement
des mouvements de la tête permet une superposition de l’espace virtuel et de l’espace physique. En comparaison,
sur station de travail, comme avec de nombreuses autres configurations, l’espace de visualisation reste distinct
de l’espace de manipulation. Les périphériques d’entrée sont très différents également. Sur station de travail, les
utilisateurs communiquent avec les applications à travers des périphériques d’interaction multi-usages : le clavier
et la souris. Le nombre de signaux d’entrée est très élevé (102 touches sur un clavier de PC). Les périphériques

1Le terme ”Plan de Travail Virtuel” est employé ici pour décrire toutes les configurations du type ”Workbench” à un ou deux écrans.

d’interaction génériques sur plan de travail virtuel sont souvent conçus pour la manipulation spatiale uniquement
(léger et équipable) et ne disposent que de très peu de boutons, e.g. un ou deux seulement pour un stylo repéré
dans l’espace.

Une interface de contrôle d’application, basée sur le clavier et la souris, est devenue très populaire sur les sta-
tions de travail : l’interface WIMP (Windows, Icons, Menus and Pointing). Ce choix d’interface homme-machine
est universellement reconnu aujourd’hui comme un standard de facto pour ces configurations. Pour fournir un
système d’accès rapide et léger aux commandes les plus usitées, un système de raccourcis claviers s’est également
popularisé. Le clavier est en effet un outil efficace pour déclencher des commandes en une simple combinaison
de touches (comme CTRL-S pour sauver un travail) et reste le moyen le plus rapide d’appeler des fonctions sur
station de travail.

Dans les environnements virtuels le contrôle d’application est un domaine jeune et il n’existe pas encore de standard
confirmé. Dans ce papier nous nous intéressons dans une première partie à la mise en place d’un nouveau système
de contrôle d’application appelé ”Command & Control Cube” (CCC ou

�	�
) pour un plan de travail virtuel (cf.

Figure 1). Un des objectifs principaux dans le développement de ce nouveau paradigme de contrôle d’application,
est de fournir aux utilisateurs un premier système, simple et rapide, pour déclencher un jeu réduit de commandes
au sein de l’application. L’idée consiste à mettre en place pour les environnements virtuels, et notamment la confi-
guration appelée plan de travail virtuel, une sorte d’équivalent des raccourcis clavier existant sur les stations de
travail.

FIG. 1 – Le
���

sur le Plan de Travail Virtuel

La première partie de cet article propose une description des travaux antérieurs relatifs aux résultats présentés dans
ce papier. La partie suivante décrit le

���
. La troisième partie expose une expérience conduite pour évaluer les

performances d’utilisateurs novices avec le
���

dans ses différents modes de fonctionnement et analyse l’apport
de retours d’informations supplémentaires, sous forme sonore et tactile, pour sa manipulation. La dernière partie
étend le concept premier du

���
, celui d’un menu rapide d’accès pour un jeu limite de commandes, à une version

hiérarchique pouvant contenir un nombre quelconque d’options.

2 Travaux antérieurs

Le contrôle d’application dans les environnements virtuels est un domaine de recherche jeune. Les premières
applications pour ces environnements ont immédiatement été confrontées au besoin de développer des interfaces
spécifiques pour déclencher des fonctions ou contrôler l’état des variables dans les mondes 3D. Les premières
solutions apportées ont suivi une approche pragmatique répondant au cas par cas à des besoins particuliers. A la
conférence SIGGRAPH’2001 lors d’un cours sur la conception des interfaces 3D[1], Ernst Kruijff a proposé une
classification pour les techniques de contrôle d’application actuelle, influencée par la description de techniques non
conventionnelles de MacMillan et al.[23]. Il a notamment divisé les différentes approches en menus graphiques,
commandes vocales, interaction gestuelle et outils. Dans la suite, nous exposons une classification différente,
s’attachant plus spécifiquement aux menus à interface graphique.

Une première approche naturelle pour les concepteurs d’interface graphique 3D a consisté à porter les interfaces

2D vers le monde 3D. Dans le monde 2D (écran, clavier et souris) l’interface WIMP est maintenant le choix
communément accepté pour contrôler les applications. Puisque cette interface est populaire et assez efficace en
2D, porter cette interface a l’avantage de proposer aux utilisateurs un système de contrôle d’application familier
donc intuitif.

Deux catégories peuvent être distinguées dans cette approche, selon que les paradigmes 2D ont été directement
implantés dans le monde 3D, ou que le concept 2D a été adapté ou étendu au monde 3D.

Enfin, certains concepteurs cherchent à inventer de nouveaux paradigmes d’interaction, fondamentalement et
entièrement pensé pour l’interaction 3D en environnements virtuels. Cette troisième voie ne s’inspire pas des
paradigmes 2D mais tente au contraire de proposer directement des techniques de contrôle d’application 3D.

2.1 Menus 2D implantés dans le monde 3D

Dans le monde 2D (écran, clavier et souris) l’interface WIMP est maintenant le choix communément accepté pour
contrôler les applications. Porter cette interface a l’avantage de proposer aux utilisateurs une interface familière,
rassurante et donc intuitive.

Cependant, la sélection d’options de menu dans un environnement 3D est assez différente de la sélection en 2D.
Sélectionner un objet parmi un ensemble de fonctions est conceptuellement un choix à une seule dimension. L’ajout
de dimensions supplémentaires est inutile et nuit à la simplicité de la tâche. Se déplacer dans un plan pour faire un
choix 1D est relativement aisé avec une souris, malgré la seconde dimension. L’ajout de la charge de gestion de la
profondeur rend cette tâche beaucoup moins facile et ralentit notablement le processus de sélection.

L’intégration des menus 2D se réalise en implantant les fenêtres ou menus 2D sous forme de plan dans le monde
3D. Leur placement à l’intérieur de l’univers virtuel est différent selon les techniques. Feiner et al. [10] est à ce
sujet une source principale d’information sur le placement. Les menus peuvent être placés librement dans le monde
virtuel (référence : monde), connectés à un objet virtuel (référence : objet), liés à une partie du corps de l’utilisateur
comme la tête ou la main (référence : corps), ou placés en référence à un objet physique comme les bords du plan
de travail virtuel (référence : équipement).

Les premiers menus 2D implantés dans le monde 3D se sont contentés de proposer des fenêtres flottant dans
l’espace en face de l’utilisateur. La sélection directe d’objets par un outil de pointage non contraint dans l’espace
3D n’est pas optimale [18]. L’utilisation d’un rayon virtuel contrôlé par la main comme outil de pointage peut
atténuer cette difficulté [24] en éliminant la contrainte de sélection en profondeur. Cependant la manipulation reste
lente, car l’interaction n’est plus directe [21].

Une autre approche basée sur un équipement appelé ”virtual tricorder” [26] suggère d’utiliser des menus 2D
”ancrés”. Le menu 2D est affiché comme un plan, à la position courante de l’équipement tenu dans la main.
Le déplacement et la sélection à l’intérieur du menu sont effectués en pressant les boutons de la souris. Une
technique de placement similaire propose de matérialiser le plan de sélection en tenant une palette [6, 18] physique
transparente et plate dans la main non dominante et de sélectionner les options avec la main dominante. Le menu
graphique est affiché directement sur la vitre transparente (à l’aide d’un capteur sur la palette), tirant avantage d’une
manipulation basée sur un outil physique offrant un retour d’effort passif et un affichage virtuel. En contrepartie,
cette méthode contraint l’utilisateur à garder en permanence un équipement plus ou moins encombrant dans sa
main, ou à portée de main, pour pouvoir accéder au menu.

Le placement des menus 2D par rapport à des parties du corps est une dernière approche intéressante, faisant appel
au sens proprioceptif[19, 4]. La proprioception2 procure des avantages importants pour la manipulation directe
(contrôle excellent de sa propre main), des indices mnémoniques physiques (retrouver des objets centrés sur son
corps) et pour les actions gestuelles (rappel des actions).

2.2 Menus 2D adaptés ou étendus au monde 3D

Les paradigmes du monde 2D peuvent également s’intégrer dans les mondes 3D en s’adaptant à ses contraintes et
en évoluant pour offrir une manipulation plus confortable, ou une apparence plus adéquate.

2La proprioception est ”le sens d’une personne de la position et l’orientation de son corps et de ses membres”

Des menus 2D linéaires ont été portés en 3D sous la forme de menus circulaires ou les options sont disposés sur une
bande. Le paradigme de sélection reste à une dimension tout en proposant une apparence 3D et une manipulation
basée sur la rotation de la main [17, 25].

Deering à également proposé en 1995 une adaptation 3D et hiérarchique des ”pie-menus” [8], des menus radiaux
qui apparaissent sur invocation autour de la position courante d’un pointeur. Il utilise la profondeur comme dimen-
sion utile pour gérer l’affichage de la hiérarchie des menus.

Le menu
���

fonctionne notamment comme un menu graphique actionné par la main, adapté du concept 2D des
”Marking Menus” [16] pour s’étendre aux trois dimensions de l’espace et en tirer partie.

2.3 Nouveaux paradigmes

Enfin, certains chercheurs se sont penchés sur le développement de nouvelles techniques d’interaction, n’ayant au-
cun équivalent 2D. En 2001 Bowman et al. [2] ont présenté un nouveau menu appelé TULIP, basé sur le pincement
des doigts de la main. Des ”Pinch Gloves” ��� sont utilisés comme gants pour détecter le pincement des doigts,
tandis qu’un casque virtuel permet d’afficher des options de menus comme des étiquettes rectangulaires virtuelles
prolongeant les doigts.

2.4 Evaluations

Il y a encore peu de travaux d’évaluation rigoureux portant sur les techniques de contrôle d’application en envi-
ronnement virtuel. La plupart des études ne fournissent pas de tests formels au-delà des simples premières impres-
sions des utilisateurs. Quelques chercheurs tentent de donner un cadre formel aux évaluations de ces techniques,
en tenant compte de la multiplicité des facteurs (types d’utilisateur, équipement d’entrée/sortie, techniques d’in-
teraction, type d’application, contexte de la tâche, etc.). Poupyrev et al. [22] ont proposé un cadre général pour
les techniques de manipulation en environnement virtuel. Ils se sont concentrés sur des tâches de manipulations
élémentaires, comme la sélection et le positionnement. Cet ensemble de tâches élémentaires est choisi de manière
à couvrir la majorité des scénarios de manipulation, afin de pouvoir en tirer des résultats généraux et utiles pour les
techniques de manipulation immersive. Bowman et al. ont présenté en 1999 un cadre d’évaluation semblable, basé
sur une taxonomie de tâches élémentaires et l’étude de mesures de performances [3]. Le processus d’évaluation du���

est construit sur une tâche de sélection simple exposée dans cet article.

3 Description

Le
���

[13] est construit comme une extension du concept de ”Marking Menus” [16] à un univers à trois dimen-
sions. Dans les ”Marking Menus”, la zone de sélection du menu, c’est à dire l’espace autour du pointeur de la
souris est divisé en cadrans identiques, délimitant les différentes portions d’un disque. Pour étendre ce concept
en trois dimensions, il faut décider du nombre d’options de menu souhaitées et diviser l’espace 3D en portions
homogènes. Selon le nombre considéré, par exemple une dizaine, la division de l’espace environnant en unités
élémentaires identiques peut être perturbante et difficile à concevoir. Aussi, une division plus simple a été retenue.

Une première approche consiste à décomposer l’espace autour du pointeur en un ensemble de directions simples
(haut, bas, gauche, droite, avant, arrière). Les options sont alors disposées de manière intuitive dans l’espace, et
facilement atteignables. Cependant, le nombre d’options disponibles est alors limité à un chiffre maximum de 6.
Cela reste assez faible, même pour un système de raccourcis.

Une seconde approche a donc été envisagée, s’appuyant sur cette première idée pour organiser la division de
l’espace en un schéma simple à appréhender et retenir, une forme cubique.

L’espace autour du pointeur est vu comme un cube dont il est le centre. Ce grand cube est divisé selon chacune de
ses dimensions en trois petits cubes pour un total de 3x3x3 = 27 petits cubes ou cases. Le pointeur débute dans le
petit cube central de cette structure.

Pour actionner le pointeur, le
���

propose un périphérique faisant office de souris 3D. Un simple bouton dont la
position spatiale est capturée par un capteur électromagnétique est requis pour la manipulation. Le système de

”Pinch Glove” développé par Fakespace [9] ou la ”Ringmouse” [20] sont deux équipements valables. Pour des
raisons pratiques, nous n’avons pas utilisé de système commercial mais en avons construit un à partir d’une souris
standard et d’un capteur (cf. Figure 2). Les boutons de la souris servent de ”boutons à pincer” et sont placés au
sommet de trois doigts de la main à l’aide de bagues en tissu. Ils peuvent être pressés avec le pouce. Le capteur est
placé sur le poignet de l’utilisateur. Un seul des trois boutons est effectivement utilisé pour les besoins du

� �
.

FIG. 2 – Les boutons et le capteur

En position de repos, le menu
���

est invisible et ne gène pas la vue. Lorsque l’utilisateur presse son pouce contre
son index, il pince le bouton et déclenche l’apparition du

�	�
, c’est à dire la forme cubique, à une distance fixe en

avant de sa main, le capteur servant à calculer cette position. Afficher le menu relativement à la main permet de
laisser à l’utilisateur le choix du meilleur endroit où faire apparaı̂tre le menu. Le

���
reste à cette position fixe tant

que le bouton est maintenu enfoncé.

Un pointeur prenant la forme d’une sphère jaune apparaı̂t également au centre du
� �

, dans la case centrale. Tant
que l’utilisateur maintient le bouton enfoncé, les mouvements du pointeur reproduisent fidèlement les mouvements
de la main avec une correspondance un pour un. Cependant, la sphère ne peut pas quitter le volume cubique du���

, aussi l’utilisateur peut-il librement effectuer des mouvements larges, la sphère reste contrainte dans le cube.

En déplaçant sa main, l’utilisateur peut placer le pointeur sphérique dans n’importe laquelle des 27 cases du menu���
. A chaque case est associée une fonction de l’application et une icône placée sur le sommet de chaque petit

cube sous forme d’une texture. La visibilité de ces textures est assurée par le fait que le
� �

apparaı̂t à hauteur de la
main, donc sous le regard de l’utilisateur en général. Cependant, les étages supérieurs de cases cachent les étages
inférieurs à la vue. En conséquence un seul étage de cases est affiché à un instant donné, celui correspondant à
la position courante du pointeur sphérique, et ce à tout instant. Pour différencier en un seul coup d’oeil l’étage
courant à l’intérieur de la structure cubique, l’enveloppe transparente du cube englobant est également affichée (cf.
Figure 3).

FIG. 3 – Deux positions du
���

Les 27 cases sont configurables pour accueillir n’importe quelle icône et fonction de l’application, à l’exception
de la case centrale, qui est réservée comme case d’annulation pour sortir du menu sans invoquer de commande.

Ainsi, si l’utilisateur presse par inadvertance le bouton, il déclenchera l’option correspondant à la case où débute
le pointeur sphérique, la case centrale, et ne déclenchera pas une commande quelconque.

La sélection d’une fonction à l’intérieur du menu est donc réalisée par la simple séquence suivante : pincer les
doigts pour faire apparaı̂tre le

���
en face de sa main, maintenir le bouton et bouger la main dans une direction pour

placer la sphère dans la case voulue, relâcher le bouton une fois dans cette case pour activer la fonction associée.

La sélection avec le
���

s’effectue avec la main non-dominante. Cette décision a été prise pour libérer la main
dominante, qui est souvent concentrée sur la tâche principale et/ou tient déjà un outil. La main non dominante
permet de changer de mode, activer des options, changer l’outil de la main dominante, etc. sans stopper le fil des
actions de la main dominante, qui est prioritaire.

Le
���

propose deux modes de fonctionnement, un mode novice et un mode expert, basés sur la même technique de
sélection. Dans les ”Marking Menus”, un délai est utilisé pour retarder l’affichage du menu circulaire et permettre
à un utilisateur expérimenté de réaliser des sélections ”en aveugle”, sans être perturbé par l’affichage bref du
menu. Un utilisateur novice laisse naturellement s’écouler ce délai (de l’ordre du tiers de seconde) et effectue ses
sélections en utilisant le retour visuel. Un utilisateur chevronné connaı̂t par coeur la disposition des options dans
le menu et peut choisir la direction de son mouvement, avant de voir le menu s’afficher.

Cette méthode a été appliquée dans un premier temps au menu
���

mais des tests informels avec plusieurs valeurs
de délai n’ont pas donné un confort suffisant à la manipulation. Trop court, le délai n’est pas suffisant pour couvrir
le temps nécessaire au mouvement de la main ; trop long, le délai devient une gène pour l’utilisateur novice. Une
seconde approche a donc été choisie, où le

���
s’adapte aux besoins de l’utilisateur.

En utilisant les données venant du capteur positionné sur la tête en plus de celles de la main, il est possible de
déterminer la direction de regard de l’utilisateur et de vérifier si elle entre dans un cône de sommet la tête et d’axe
tête-

���
(cf. Figure 4). Ainsi, lorsque l’utilisateur est concentré sur une tâche en cours et ne se préoccupe pas du

menu, celui-ci n’apparaı̂t pas, et lorsqu’il hésite ou décide qu’il a besoin d’une confirmation visuelle, il déplace
son regard spontanément et tout naturellement vers l’endroit ou celui-ci apparaı̂t.

FIG. 4 – Cône de visibilité du
���

La sélection en aveugle est possible car elle exploite plusieurs indices de positionnement. D’abord elle s’appuie sur
la mémorisation d’une direction plutôt que celle d’une distance selon une direction donnée (comme dans les menus
déroulants), ce qui a été prouvé plus efficace [5]. Ensuite elle s’appuie sur une organisation simple de l’espace en
cases formant une structure cubique autour d’une position de départ. Cette représentation mentale aide l’utilisateur
à visualiser le mouvement à réaliser. La réalisation de la sélection elle-même est alors facilitée d’une part par
l’alignement des axes du cube avec des directions simples relativement au corps de l’utilisateur (haut, bas, droite,
gauche, avant, arrière) lui permettant de bénéficier du sens proprioceptif, d’autre part par l’alignement de ces axes
avec ceux de la configuration elle-même, les bords du plan de travail virtuel, ajoutant un indice visuel sous-jacent.

4 Evaluations expérimentales et analyses

L’approche proposée par le
���

est évaluée [12] ici sur une tâche simple de sélections répétitives d’options à
l’intérieur du menu. Du fait de la spécificité spatiale du procédé de sélection du

���
, nous nous intéressons notam-

ment à l’effet de la position des options à l’intérieur du cube sur les performances (vitesse et précision). De plus,
nous voulons évaluer les effets des quatre conditions suivantes sur l’interaction. Deux des quatre conditions sont
les modes standards de fonctionnement du

���
, i.e. le mode d’apprentissage (avec retour visuel), et le mode expert

(sans retour visuel, c’est à dire une manipulation ”en aveugle”). Deux conditions additionnelles sont construites

en associant au mode expert des retours sur des canaux sensoriels différents : mode expert augmenté d’un signal
sonore (sans retour visuel, avec retour sonore), mode expert augmenté d’un signal tactile (sans retour visuel, avec
retour tactile). Ces conditions supplémentaires sont ajoutées dans l’espoir d’améliorer la sélection ”en aveugle”.

Dans le mode expert augmenté d’un signal sonore, un court bip sonore est émis chaque fois que le pointeur croise la
frontière entre deux cases. Le mode expert augmenté d’un signal tactile fonctionne de la même manière en émettant
une courte vibration sur le pouce et l’index de l’utilisateur au passage d’une frontière. Un gant ”CyberTouch” �
�
(un gant équipé de vibreurs sur la dernière phalange de chaque doigt et dans la paume) est utilisé pour produire
les vibrations. Puisque nous voulons tester le

���
dans son mode de fonctionnement standard, i.e. sélections par la

main non-dominante, le ”CyberTouch” utilisé est un gant gauche pour des utilisateurs droitiers.

4.1 Les sujets

La population d’utilisateurs consiste en 23 sujets (18 hommes et 5 femmes). Seulement quatre d’entre eux sont
déjà familiers du plan de travail virtuel. Aucun n’a d’expérience préalable avec le menu

���
. Les sujets sont tous

droitiers.

4.2 La tâche

La tâche consiste à sélectionner séquentiellement chacune des 26 cases du
���

dans un ordre de passage aléatoire.

La principale difficulté est de décider de quelle manière informer les utilisateurs de la case à sélectionner, sans leur
demander au préalable d’apprendre par coeur un jeu de fonctions et leurs positions dans le cube. L’objectif est de
séparer le travail cognitif consistant à reconnaı̂tre la case demandée de l’aspect manipulation qui est étudié ici. Il
est donc impossible d’utiliser le nom d’une fonction pour désigner une case.

Chaque case étant une combinaison simple de directions spatiales (haut, bas, avant, arrière, gauche, droite) il
pourrait être envisagé de décrire oralement la case à sélectionner. Cependant cette solution est rejetée car elle peut
favoriser une stratégie de déplacement du pointeur dans le

�	�
(mouvement décomposé selon les trois axes) aux

dépends des autres possibles (notamment réaliser des mouvements diagonaux).

Pour ne pas influencer le sujet, il est finalement décidé de lui présenter une représentation complète du menu���
et de ses 27 cases, et d’illuminer la case à sélectionner. Les sujets savent ainsi immédiatement quelle case

ils doivent sélectionner, sans qu’aucune présomption de mouvement ne soit induite. Cette représentation est un
objet graphique supplémentaire dans la scène et n’est pas le menu

�	�
lui-même, qui reste positionné, lorsqu’il est

invoqué, devant la main de l’utilisateur.

Les quatre modes sont testés dans un ordre différent pour chacun des 23 sujets de l’expérience. Pour chacune des
conditions expérimentales l’utilisateur porte un gant ”CyberTouch”, le dispositif nécessaire au

� �
(bouton sur le

doigt et capteur), et les lunettes stéréoscopiques. Les 27 cases sont affichées devant les yeux de l’utilisateur. La
case courante s’illumine jusqu’a ce qu’une sélection soit réalisée. Le système informe alors l’utilisateur du résultat
obtenu en illuminant en vert la case si elle a été correctement atteinte, ou en illuminant en rouge la case sélectionnée
par erreur. Apres un délai de deux secondes, la sélection d’une nouvelle case est proposée et le test continue de la
même manière.

Toutes les cases sont testées deux fois en tout, à l’exception de la case centrale qui est réservée à l’action d’annu-
lation et n’est pas testée ici.

4.3 Données collectées

Les données enregistrées sont le flot des coordonnées des différents capteurs, la liste ordonnée des cases demandées
et les sélections effectivement réalisées par l’utilisateur, et enfin les trois temps de sélection (lorsque la case s’illu-
mine, lorsque l’utilisateur invoque le menu en pressant le bouton pour la première fois, lorsque l’utilisateur termine
sa sélection en relâchant le bouton). La vitesse de sélection se déduit directement de ces données.

5 Résultats et discussion

Une analyse de la variance (ANOVA) avec mesure répétée a été réalisée sur les variables précision et vitesse pour
les quatre conditions : sans retour (mode aveugle), avec retour visuel, avec retour sonore, avec retour tactile.

La vitesse est significativement affectée par la condition (F(3,66) = 4.42, p � 0.0068). Des tests supplémentaires
(HSD Tukey) indiquent que les utilisateurs réalisent rapidement la sélection dans la condition visuelle (m = 1,0s)
comparativement aux autres conditions (aveugle : m = 1,2s ; son : m = 1,3s ; tactile : m = 1,3s). Cette supériorité
du mode visuel peut s’expliquer par le fait que les utilisateurs sont tous novices. Ils ont encore besoin du support
visuel pour être confiant dans leurs sélections et pour les réussir rapidement.

La précision est aussi significativement affecté par la condition (F(3,66)= 10,616, p � 0.0001). Le pourcentage
moyen de cases correctement sélectionnées est de 92.8% avec retour visuel, 87.0% dans le mode aveugle, 83.5%
avec retour sonore et 84.7% avec retour tactile. Un des points d’intérêt de cette étude était de vérifier que les
sélections en absence de tout retour sensoriel avec la main non-dominante étaient possibles. Considérant que les
utilisateurs découvraient le menu pour la première fois, et pour certains la configuration elle-même, les résultats
semblent favorables à cette hypothèse. Les résultats du mode visuel, bien que proche de 100% ne sont pas parfaits.
Une explication peut être trouvée dans la contrainte de vitesse qui était demandée aux sujets du test.

Les performances plus faibles des conditions tactiles et sonores peuvent s’expliquer par la nature parfois pertur-
bante de ces signaux. Les sujets ont remarqué qu’ils n’arrivaient pas toujours, pour les mouvement diagonaux
à distinguer entre un seul bip (ou vibration) et deux ou trois bips (ou vibrations) successifs. Les sujets qui em-
ploient une stratégie de décomposition de leurs mouvements selon les trois axes n’ont pas rencontré ce problème.
Dans la plupart des cas, les sujets utilisent les canaux sensoriels sonores et tactiles pour vérifier la validité de leur
mouvement, plus que pour réaliser le mouvement lui-même.

La hauteur d’une case dans le
���

(position) a aussi un effet significatif (F(2,44) = 134,058, p � 0.0001). Chaque
valeur de précision représente un nombre de sélections correctes réalisées dans un plan (avec un maximum de
18 donc). Le nombre de sélections correctes est plus élevé dans le plan central (m = 17,352), puis dans le plan
supérieur (m = 15,587) et enfin dans le plan inférieur (m = 12,859). Les mouvements à hauteur de la main sont les
plus aisés. Une explication possible est le moindre effort du bras requis par les mouvements dans le plan central
par rapport aux mouvements qui changent de niveau. Il faut noter également que la présence de l’écran horizontal
du plan de travail virtuel sous la main de l’utilisateur a pu gêner ou retenir les utilisateurs dans leurs intentions de
mouvement vers le bas.

L’interaction double du mode et de la position est également significative (F(6,132) =2,684, p � 0.0172). Cette
interaction peut être interprétée dans le tableau suivant : Figure 5.

FIG. 5 – Position des cellules et précision (cellules gris sombre : 100% correct ; cellules grises : score au-dessus
du dernier quartile ; cellules blanches : score en dessous du premier quartile ; cellules gris clair : autres scores)

FIG. 6 – Numérotation des cases

Chaque ligne du tableau présente une condition différente, alors que les colonnes sont les cases des trois plans
horizontaux, du plus bas au plus haut (cf. Figure 6 pour la numérotation des cases). Les cellules contiennent la
somme de toutes les réponses correctes pour les 23 utilisateurs pour une case. La valeur de la médiane est de 41
bonnes réponses. Les cellules avec des résultats en dessous du premier quartile sont sur fond blanc. Celles avec des
résultats au-dessus du dernier quartile sont sur fond gris, et celles avec un taux de 100% sont sur fond gris sombre.

La distribution de teinte grise montre quelques tendances générales. Les performances les plus faibles sont obtenues
pour des cases dans le plan inférieur. Ce résultat s’explique par la proximité de l’écran du plan de travail virtuel.
Dans ce plan, les mouvements qui demandent à l’utilisateur d’allonger son bras reçoivent de moins bons résultats,
tandis que ceux moins éloignés du corps obtiennent de meilleurs scores. Les meilleurs résultats sont obtenus
dans le plan du milieu, avec des performances légèrement moins bonnes quand la main est trop proche du corps et
légèrement meilleures quand elle s’en éloigne pour une distance plus confortable. Il semble d’une manière générale
que les utilisateurs réussissent mieux les mouvements demandant un minimum de flexion de leur bras.

6 Version hiérarchique

Disposant d’une solution fonctionnelle pour contrôler un petit jeu de commandes, l’étape suivante consiste à
étendre cette solution à une version hiérarchique, sous forme d’arbre de menus et de sous-menus, afin de gérer
un nombre arbitrairement grand d’options. Plusieurs approches sont envisageables.

Dans le fonctionnement hiérarchique classique des menus déroulants, la sélection est réalisée par un mouvement
continu. Le pointeur suit un parcours allant de menus en sous-menus, franchissant des frontières bien définies entre
les menus. Il n’y a pas de zones de transition et les menus ne se chevauchent pas. Le point de sortie du menu père
est juxtaposé à l’option choisie, et le point d’entrée dans le menu fils est toujours situé en haut du menu. Il n’y a
pas de symétrie. Le segment à traverser pour descendre dans le sous-menu est également souvent très étroit (de la
hauteur du texte désignant l’option). Tous ces points concourent à freiner et rendre contraignante la descente et la
remontée dans le système hiérarchique.

Un tel système n’est pas forcement souhaitable pour le plan de travail virtuel et le
���

. Notamment, l’idée de
réaliser la sélection d’un seul mouvement continu, qui sera ici plus large dans l’espace que le mouvement de la
main sur la souris, comporte le risque de faire entrer la main de l’utilisateur en collision avec l’écran horizontal du
plan de travail virtuel. Cette situation peut se produire dans le cas d’une succession de sélections de sous-menus
positionnés les uns en dessous des autres. D’une manière générale, l’amplitude du mouvement de sélection peut
vite prendre des dimensions importantes dans le cas de nombreux sous-menus successifs.

Notre solution s’est donc porté sur l’idée de restreindre la manipulation du
���

hiérarchique à une zone délimitée
de l’espace, qui soit confortable pour l’utilisateur : la position de départ du

�	�
, qui correspond déjà à son choix

preferé. Les menus et sous-menus s’affichent tous à cette position. La géométrie (forme, placement) du
���

ne
change donc pas, mais le contenu sémantique des cubes (fonctions associées et icônes) est adapté à la position du
pointeur au sein de l’arbre des sous-menus.

Pour descendre dans un sous-menu associé à une case donnée, il faut sélectionner la case, c’est à dire relâcher le
bouton une fois dedans, comme pour une sélection normale. S’il peut être contraignant d’avoir à décliquer pour
entrer dans un sous-menu, c’est nécessaire pour distinguer l’entrée dans la case avec le pointeur, du choix de
descendre dans le sous-menu. En distinguant ces deux opérations, il est possible de naviguer de cases en cases,
sans que les sous-menus remplacent involontairement le contenu courant du

���
et de n’entrer dans un sous-menu

que lorsque l’utilisateur l’a réellement décidé. De plus, cela maintient une cohérence d’interaction vis à vis des
cases du

���
.

A l’issue de cette sélection un nouveau contenu du
�	�

est affiché, le menu reste visible mais cette fois la main ne
presse plus le bouton. La situation ne diffère de la position de repos avant une première invocation du menu que
par la visibilité du

���
en face de l’utilisateur. Dans ce cas de figure, le pointeur sphère est replacé au centre du

���
,

fixe et en attente. Tant que l’utilisateur ne réappuie pas sur le bouton, celle-ci ne bouge pas. Dès qu’il appuie, il la
rend à nouveau solidaire des mouvements de sa main, comme s’il la saisissait, et la sélection suit toujours le même
principe.

La case centrale, qui est une case d’annulation dans le premier menu rencontré, devient dans les sous-menus une
case de ”remontée” vers le menu père. Si l’action de remontée est choisie, le mécanisme est similaire à la descente
dans un sous-menu. Le

���
reste visible, son contenu change pour correspondre aux 26 options du menu père, et le

pointeur sphère se replace au centre du
���

, en attente d’être saisi.

Pour ajouter un indice visuel supplémentaire permettant de se repérer dans la hiérarchie, chaque fois que l’utilisa-
teur descend dans un sous-menu, la case choisie pour descendre est réaffichée dans une pile verticale au-dessus de
la représentation visuelle courante du

���
. Au fur et à mesure de la descente dans les sous-menus, la liste de toutes

les cases empruntées pour arriver au cube courant apparaı̂t donc en rappel au-dessus du
���

(cf. Figure 7).

FIG. 7 – Le
���

hiérarchique

Pour résumer, descendre dans la hiérarchie des sous-menus consiste à enchaı̂ner des sélections simples, selon le
même paradigme d’interaction que le

���
non hiérarchique. Remonter dans la hiérarchie ou quitter le menu sans

sélectionner est très simple également, même lorsque le pointeur est descendu profondément dans l’arbre des sous-
menus. Il suffit de presser le bouton sans bouger la main. En effet, la sphère est toujours replacée en attente au
centre des cubes après chaque action de montée ou de descente. Par conséquent cliquer sans bouger fait choisir la
case centrale, i.e. remonter de noeuds en noeuds dans l’arbre jusqu’au noeud racine, puis sortir du menu.

7 Conclusion et travaux futurs

Le
� �

a été développé dans l’intention initiale de fournir un système de menu rapide d’accès sur un petit jeu
de commandes usuelles, pour la configuration de réalité virtuelle appelée plan de travail virtuel. Ce système très
similaire dans l’esprit aux raccourcis clavier des stations de travail, s’inspire du concept des ”Marking Menus”
et les étend à trois dimensions en profitant pleinement des trois dimensions de l’espace comme dimensions de
sélection.

Le
���

permet de libérer l’attention de l’utilisateur pour la tâche principale, par son utilisation en main non-
dominante. Un soucis tout particulier a été porté aux considérations de placement et d’occupation de l’espace.
Le
���

n’est présent à la vue que sur invocation et il est invocable n’importe où pour ne pas gêner la vue d’une
scène. Les mouvements de sélection peuvent être rapides et libres. Ils sont larges dans leur tolérance en amplitude
par l’utilisation de parois bloquantes pour le pointeur. L’utilisation de mouvements relatifs à une position de départ
permet d’éviter tout problème de calibrage des capteurs.

Des évaluations ont été menées pour tester la viabilité d’une utilisation du
�	�

en mode expert ”aveugle” et par la
main non-dominante. L’ajout de retours sensoriels supplémentaires, sonore et tactile, ne s’est pas révélé satisfaisant
dans ce cadre. Les premiers résultats sur des utilisateurs novices sont encourageants et montre un taux de réussite
élevé même dans des conditions ”aveugle” à priori difficile. Des tests supplémentaires devront être menés pour
étudier l’effet de l’apprentissage sur les utilisateurs.

Suite à ces résultats une version étendue du
���

a été réalisée, pour obtenir un système de contrôle d’application
complet par l’ajout du concept de hiérarchie. Le

�	�
hiérarchique peut désormais gérer un arbre arbitrairement

grand de menus et sous-menus. Des évaluations du
� �

hiérarchique peuvent faire l’objet de travaux futurs, notam-
ment en le comparant aux autres solutions existantes sur ces configurations d’environnement virtuel.

Le
���

est fonctionnel et actuellement utilisé dans plusieurs applications du plan de travail virtuel, dont par exemple
une application de visualisation d’un habitacle de voiture avec une gamme simple d’outils d’exploration, une
application de visualisation de modèles fractals ou encore une application de modélisation à partir d’objets mous.

Le
���

a été développé pour le plan de travail virtuel mais pourrait être étendu simplement à d’autres configurations
similaires de réalité virtuelle. Il serait ainsi intéressant d’étudier comment celui-ci s’intègre dans d’autres configu-
rations comme la CAVE ou les casques, qui ne disposent pas d’un réferentiel physique pour aligner les axes du
cube.

Références

[1] D. A. Bowman, J. LaViola, M. Mine, and I. Poupyrev. Advanced topics in 3d user interface design. In Course
Notes - SIGGRAPH 2001, 2001.

[2] D.A. Bowman and C.A. Wingrave. Design and evaluation of menu systems for immersive virtual environ-
ments. In Proc. IEEE VR’2001, 2001.

[3] Doug Bowman, Donald Johnson, and Larry F. Hodges. Testhed evaluation of VE interaction techniques. In
Mel Slater, editor, Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST-
99), pages 26–33, N.Y., December 20–22 2000. ACM Press.

[4] J. Butterworth, A. Davidson, S. Hench, and T. M. Olano. 3dm : A three dimensional modeler using a head-
mounted display. In Proc. 1992 Symposium on Interactive 3D Graphics, pages 135–138, 1992.

[5] Jack Callahan, Don Hopkins, Mark Weiser, and Ben Shneiderman. An empirical comparison of pie vs. linear
menus. In Proceedings of ACM CHI’88 Conference on Human Factors in Computing Systems, Menus, pages
95–100, 1988.

[6] S. Coquillart and G. Wesche. The virtual palette and the virtual remote control panel : A device and an
interaction paradigm for projection-based virtual environments. In IEEE VR’99, 1999.

[7] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. Surround-screen projection-based virtual
reality : The design and implementation of the CAVE. In James T. Kajiya, editor, Computer Graphics (SIG-
GRAPH ’93 Proceedings), volume 27, pages 135–142, August 1993.

[8] Michael F. Deering. HoloSketch : a virtual reality sketching/animation tool. ACM Transactions on Computer-
Human Interaction, 2(3) :220–238, September 1995.

[9] Fakespace. http ://www.fakespacelabs.com/.

[10] S. Feiner, B. Macintyre, and D. Seligmann. Knowlege-based augmented reality. Communications of the
ACM, 36(7) :53–61, 1993.

[11] B. Frölich, B. Kirsch, W. Krüger, and G. Wesche. Further development of responsive workbench. In
M. Göbel, editor, Virtual Environments ’95, Eurographics, pages 237–246. Springer-Verlag Wien New York,
1995.

[12] J. Grosjean, J.-M. Burkhardt, S. Coquillart, and P.Richard. Evaluation of the command and control cube. In
ICMI’2002, Pittsburgh, US, October 2002.

[13] J. Grosjean and S. Coquillart. Command & control cube : a shortcut paradigm for virtual environments. In
IPT-EGVE’2001, Stuttgart, Germany, May 2001.

[14] W. Krüger and B. Fröhlich. The responsive workbench. IEEE Computer Graphics and Applications, pages
12–15, May 1994.

[15] Wolfgang Kruger, Christian-A. Bohn, Bernd Frohlich, Heinrich Schuth, Wolfgang Strauss, and Gerold
Wesche. The responsive workbench : A virtual work environment. Computer, 28(7) :42–48, July 1995.

[16] Gordon Kurtenbach and William Buxton. User learning and performance with marking menus. In Beth
Adelson, Susan Dumais, and Judith Olson, editors, Proceedings of the Conference on Human Factors in
Computing Systems, pages 258–264, New York, NY, USA, April 1994. ACM Press.

[17] Jiandong Liang and Mark Green. JDCAD : A highly interactive
 D modeling system. Computers and
Graphics, 18(4) :499–506, July–August 1994.

[18] R. Lindeman, J. Sibert, and J. Hahn. Hand-held windows : Towards effective 2d interaction in immersive
virtual environments. In IEEE VR’99, 1999.

[19] Mark R. Mine, Frederick P. Brooks, Jr., and Carlo H. Séquin. Moving objects in space : Exploiting proprio-
ception in virtual-environment interaction. In Turner Whitted, editor, SIGGRAPH 97 Conference Procee-
dings, Annual Conference Series, pages 19–26. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN
0-89791-896-7.

[20] Ring Mouse. http ://www.worklink.net/ringmouse.html.

[21] A. Paljic, J.-M. Burkhardt, and S. Coquillart. A study of distance of manipulation on the responsive work-
bench. In IPT’2002 Symposium, Orlando, US, 2002.

[22] I. Poupyrev, S. Weghorst, M. Billinghurst, and T. Ichikawa. A framework and testbed for studying manipu-
lation techniques for immersive VR. In Proceedings of the ACM Symposium on Virtual Reality Software and
Technology (VRST-97), pages 21–28, New York, September 15–17 1997. ACM Press.

[23] McMillan G. Eggelston R. and Anderson T. Nonconventional controls. In Handbook of human factors and
ergonomics, pages 729–771, 1997.

[24] Ron van Teylingen, William Ribarsky, and Charles van der Mast. Virtual data visualizer. IEEE Transactions
on Visualization and Computer Graphics, 3(1) :65–74, January – March 1997. ISSN 1077-2626.

[25] G. Wesche and M. Droske. Conceptual free-form styling on the responsive workbench. In VRST 2000, 2000.

[26] Matthias M. Wloka and Eliot Greenfield. The virtual tricorder : A uniform interface for virtual reality. In
Proceedings of the ACM Symposium on User Interface Software and Technology, Virtual and Augmented
Realities, pages 39–40, 1995. TechNote.

Visualisation de modèles CAO dans une application de
réalité virtuelle immersive

D. Paillot1, F. Merienne1, M. Neveu2, J.P. Frachet1.

(1) : Institut Image-ENSAM
2, rue Thomas DUMOREY – BP 123

71321 Chalon sur Saône
33 (0)3 85 90 98 60 / 33 (0)3 85 90 98 61

E-mail :
{ paillot,merienne,frachet} @cluny.ensam.fr

(2) : Université de Bourgogne – LE2I
UFR Sciences et Techniques – Bât. Mirande

Aile de l’ Ingénieur – BP 47870
21078 Dijon Cedex

33 (0)3 80 39 58 45 / 33 (0)3 80 39 58 46
E-mail : mneveu@u-bourgogne.fr

Résumé : Les applications de réalité virtuelle se développent de plus en plus. La quasi totalité des
secteurs industriels peuvent aujourd’hui tirer profit de la réalité virtuelle. Les attentes des utilisateurs
sont en augmentation, plus d’interactivité avec la scène graphique, meilleur rendu, meilleure fluidité de
l’application,… Bien que les performances des calculateurs continuent d’augmenter, il est toujours
nécessaire d’optimiser les scènes 3D. Le principal et premier problème pour optimiser les scènes reste
les modèles qui seront utilisés dans l’application. L’origine de ces modèles, leur qualité et leur
conversion en un format compatible avec ceux utilisés par les applications de réalité virtuelle restent les
problématiques majeures. Nos travaux ont pour objectif de visualiser en temps réel des modèles issus de
la CAO dans une salle immersive de type CAVE™. Ces travaux couvrent deux axes de recherche
principaux. Le premier concerne la mise en conformité, la simplification des modèles surfaciques en
modèles triangulés. Le deuxième axe de recherche se consacre à la visualisation et à son optimisation
pour l’utilisation d’un périphérique particulier : salle immersive.

Mots-clés : Triangulation, simplification, visualisation réaliste, temps réel, salle immersive.

1. Introduction.
Les cartes graphiques actuelles ne savent gérer que des polygones, principalement des triangles. Pour cette
raison les applications de réalité virtuelle utilisent des modèles polygonaux plutôt que des modèles surfaciques.
Dans la mesure où les modèles doivent être créés pour une application de réalité virtuelle spécifique, ils sont
parfois générés directement dans ce format. Mais bien souvent, il est souhaitable d’utiliser des données issues
d’autres corps de métiers (design, conception assistée par ordinateur, …). Cette réutilisation évite d’avoir à
redessiner les modèles et de bénéficier à tous moments de la dernière mise à jour des modèles. Cependant, cela
impose un travail de préparation, de réparation, d’optimisation pour chacun de ces modèles. Cette mise en
conformité est nécessaire pour rendre les modèles utilisables par les applications et de les optimiser pour une
application de visualisation. Bien que les capacités des calculateurs se soient accrues, il est toujours
incontournable de réduire lenombre depolygones d’une scènede réalitévirtuelle. Les applications développées
sont principalement des applications de revue de projet. La finalité n’est pas d’étudier la fonctionnalité ou la
définition structurelle, mais de visualiser les pièces dans leur environnement. La visualisation sera réalisée dans
une salle immersive de type MoVE™ (Modular Virtual Environment). Ce périphérique particulier offre une
place unique à l’utilisateur. Il est immergé au cœur de la scène 3D, alors que tous les autres périphériques
existants placent l’utilisateur en dehors de la scène. L’ immersion est totale et réelle. Cette configuration amène
a repenser les applications de visualisation. Actuellement, les logiciels offrent des solutions pour les
périphériques classiques. Leur fonctionnement pourrait être modifié pour s’ implémenter correctement et être
encore plus performant dans la gestion du nombre de polygones et de la qualité visuelle offerte. En particulier,
la notion de vision périphérique semble être utilisable pour les salles immersives. Comme l’utilisateur est
équipé d’un capteur de position, l’application connaît à tout moment ce que regarde l’utilisateur. L’application
peut ainsi en temps réel dégrader les modèles situés à la périphérie du champ visuel et affiner ceux situés dans
la partie centrale de la vision.
Le chapitre 2 de l’article présentera les enjeux, les problèmes rencontrés et les solutions développées pour
apporter une réponse au transfert des modèles. Le troisième chapitre abordera la visualisation et

particulièrement la vision périphérique, ses apports éventuels ainsi que sa mise en œuvre. La conclusion et les
perspectives feront l’objet de la quatrième partie.

2. Conversion de modèles surfaciques en modèles polygonaux.

2.1. Problématique.

L’utilisation des modèles issus de la CAO offre l’avantage de travailler avec des modèles constamment en phase
avec le cycle de vie du produit. Cependant cette réutilisation n’est pas directe. Il est impossible de visualiser les
modèles issus de la CAO dans une application de réalité virtuelle sans les convertir. Les étapes de conversion
sont actuellement bien connues :�

Triangulation,
�

Cohérence,
�

Réduction du nombre de polygones,
�

Suppression des éléments non visibles.

Ces quatre étapes sont présentées dans les sous-chapitres suivants.

2.2. Triangulation.

La trinagulation consiste à générer un modèle polygonal à partir d’un modèle surfacique. Pour ce faire, on
utilise un critère appelé erreur cordale (cf. Figure 1). Cette erreur porte souvent le nom de SAG dans les
logiciels. Elle correspond à la distance maximale autorisée entre la facette générée et la courbe.

Figure 1 : Erreur cordale.

Cette erreur conditionne le nombre de polygones du modèle final. Plus cette erreur sera faible, plus le modèle
polygonal sera fidèle au modèle initial mais plus le nombre de polygone risque d’être élevé. Il faut trouver la
valeur optimum entre nombre de polygones et finesse géométrique. Le nombre de polygones peut être
sensiblement élevé puisqu’une étape de simplification aura lieu ultérieurement.

2.3. Mise en cohérence.

Lors de la visualisation, il est fréquent de voir apparaître des trous ou discontinuités dans les modèles (cf.
Figure 2(b)). La mise en cohérence consiste à rendre le modèle polygonal conforme pour un visualisation
correcte du modèle. Ces discontinuités sont dues à la non concordance des sommets entre eux (cf. Figure 2 (a)).
Cette non-concordance crée des discontinuités dans le maillage apparaissent comme des trous.

(a) (b)

Figure 2 : Problème de cohérence des modèles triangulés.

2

Non-concordance

SAG

1 3

Ce problème de discontinué peut être résolu de deux manières différentes.

La première solution consiste à travailler sur le modèle surfacique. Les modèles surfaciques sont un assemblage
de carreaux. La Figure 2(a) montre un modèle surfacique avec ses trois carreaux. Ces carreaux ont en commun
des frontières, grâce à ses frontières le modèle surfacique possède une unité et permet d’obtenir un rendu de
bonne qualité sans trou ou discontinuité.
Ces carreaux sont triangulés un par un. La connaissance des frontières communes est alors perdue. Chaque
carreau possède sa propre triangulation. Cela aura pour effet de ne pas avoir de cohérence au niveau du modèle
final. Les Figure 2(a) et (b) illustrent le problème de continuité de triangulation le long des frontières. Les
carreaux 1 et 2 ont subi chacun leur propre triangulation. Comme la notion de frontière est perdue, la frontière
commune entre le carreau 1 et le carreau 2 sera triangulé de deux manières différentes. Les sommets de la
frontière appartenant au carreau 1 n’ont aucune raison a priori de concorder avec les sommets de la frontière
appartenant au carreau 2. La conséquence de ce manque de cohésion est une apparition de trous et de
discontinuités lors du rendu des pièces (cf. Figure 2(b)).
La solution à ce niveau est de coudre les différents carreaux surfaciques entre eux. Cette couture permet de
rassembler sous une seule entité les différents carreaux surfaciques initiaux. Cette étape peut se faire dans le
logiciel de conception du modèle. A titre d’exemple, une simple pièce plastique d’intérieur de véhicule peut
atteindre 200 carreaux. Il n’est pas possible de tous les sélectionner et de les coudre en une seule opération. Il
faut bien souvent traiter le modèle morceau par morceau. Cette tâche devient vite longue et fastidieuse. Le
résultat de la triangulation présenté sur la Figure 3 montre un exemple de concordance souhaitée pour les
sommets ainsi que la qualité de la continuité du rendu.

(a) (b)

Figure 3 : Modèle cousu.

La deuxième solution consiste à intervenir après la triangulation. A partir d’un critère de distance, les sommets
et arêtes dont la distance qui les sépare est inférieure àce critère seront fusionnés. Cetteaction est plus rapide et
moins contraignante à réaliser que la première solution. Cependant, à ce niveau il n’existe plus de référence. Le
modèle surfacique initial n’est plus connu. Il est possibled’avoir des dérives non souhaitées sur la géométrie ou
topologie du modèle.
Quelle que soit la méthode utilisée, la qualité du modèle triangulé sera primordiale pour la suite. En particulier,
le résultat de la simplification sera fonction de la cohérence du modèle initial.

2.4. Réduction du nombre de polygones.

Face à ce problème de réduction du nombre de polygones, de nombreux algorithmes ont été développés.
Chacun d’entre eux possède sa spécificité. Plusieurs techniques de génération de niveaux de détails ont été
définies par Heckbert et Garland [HG94]. Il est possible de définir trois catégories d’algorithmes pour la
création de niveaux de détails. La première catégorie regroupe les algorithmes qui font appel à des
simplifications polygonales en générant de nouveaux modèles avec des niveaux de détails différents. La
seconde concerne les algorithmes qui remplacent les objets par des textures. Ces algorithmes nenous seront pas
utiles ici, puisque nous nous intéressons à l’ immersion 3D. Les textures ne sont pas très appropriées pour la
vision en relief. La troisième catégorie représente les algorithmes qui agissent sur la scène et qui remplacent un
ensemble d’objets par une représentation plus simple.

31

2

Nous ne nous intéressons dans un premier temps qu’à la première catégorie. Dans cette catégorie plusieurs
approches existent :

1. Subdivision adaptative (Adaptative Subdivision) : cette méthode consiste à construire un modèle de
base très simple qui sera ensuite subdivisé. L’algorithme s’arrête lorsque l’écart entre le modèle initial
et le modèle subdivisé est inférieur au critère spécifié par l’utilisateur. Cette méthode est peu utilisée à
cause de la complexité à définir le modèle de base.

2. Réduction géométrique (Geometrical Removal) : cette méthode s’appuie sur le modèle d’origine et
supprime des faces ou des sommets. L’algorithme s’arrête lorsque le degré de satisfaction imposé par
l’utilisateur est atteint. La majorité des algorithmes respecte la topologie des modèles initiaux. La
plupart des algorithmes récents fonctionnent avec cette méthode.

3. Echantillonnage (Sampling) : cette méthode effectue un échantillonnage de la géométrie du modèle
initial (en choisissant arbitrairement des sommets ou en l’englobant dans une grille tridimensionnelle et
en échantillonnant chaque boîte de la grille). L’algorithme essaye de créer un modèlesimplifié qui soit
proche des données échantillonnées. Le contrôle se fait par le nombre de points ou la taille de la grille.

De manière générale, parmi les méthodes de décimation de polyèdres bon nombre d’entre elles sont contrôlées
par des critères d’arrêts directement liés au nombre de sommets désirés par l’utilisateur [SZL92], [HG94],
[RO96]. Ce critère n’est dans notre cas d’étude pas satisfaisant. En effet, l’écart géométrique généré doit être
connu et même maîtrisé. D’autres méthodes permettent un contrôle de la déviation entre le maillage résultant et
le maillage initial [DFMP96], [G96], [PS97]. Ces techniques sont d’utilisation plus délicate ou bien concernent
des modèles particuliers (modèles de terrain). Les paramètres de contrôle (distance et angle) ne sont pas faciles
à définir par les utilisateurs.
Les principes desimplification depolyèdres reposent sur l’emploi d’opérateurs de fusion d’arêtes [H96] ou bien
de remaillage d’un contour après suppression de sommet [PS97], [V97a]. Les opérateurs de fusion d’arêtes
n’engendrent qu’un nombre limité de configurations de maillage du contour du nœud supprimé ce qui réduit la
qualité de la restitution de la forme du polyèdre simplifié.

2.4.1. Analyse multirésolution de maillage (Eck [EDRDHLS95]).

La méthode consiste à reproduire une représentation à résolutions multiples d’un maillage polygonal
quelconque. Les représentations à résolutions multiples sont basées sur une technique introduite par De Rose et
al. [DRLW93] appelée analyse multirésolution. Elles consistent en un maillage de base simple et une séquence
de corrections locales sous formes de coefficients d’ondelettes.

2.4.2. Maillages progressifs (Hoppe [H96]).

Une représentation en maillage progressif d’un maillage arbitraire M’ contient un maillage moins détaillé M0 et
une séquence de n enregistrements de détails qui précise comment reconstruire de manière incrémentale M’ à
partir de M0 : M’ = Mn. Un des points très important de cette technique est que le degré de simplification est
contrôlé par le choix du nombre de facettes désiré. De plus, il est possible de générer tous les niveaux de détails
en un seul traitement.

2.4.3. Approximation de polyèdre triangulaires (Ronfard [RR96]).

Cet algorithme, présenté à Eurographics’96, est issu des techniques de segmentation d’images. Il utilise un
opérateur de fusion de régions sur des modèles triangulés. Cet opérateur retire une arête en fusionnant à la fois
ses extrémités et plusieurs triangles. Cette méthode est capable de supprimer les détails les plus petits (et ce
uniquement à base d’un raisonnement géométrique), elle produit tous les niveaux de détails en une seule passe.
En revanche, l’ implémentation actuelle est un peu lente.

2.4.4. Simplification multicritères (Véron [V97b]).

Les principes de simplification de polyèdres retenus sont basés sur un critère de distance entre le polyèdre initial
et le polyèdre simplifié.
L’approche utilisée est une suppression répétée d’un nœud du polyèdre suivie par un remaillage du contour en
fonction des courbures locales du polyèdre.
L’algorithme fonctionne à partir de zones d’erreurs. Ces zones sont géométriquement représentées par des
sphères centrées sur les nœuds du polyèdre initial et constituent une enveloppe entourant le polyèdre initial. La
Figure 4 représente dans le plan le concept de zones d’erreurs. La Figure 4(a) illustre le placement des sphères
par rapport aux sommets ainsi que l’enveloppe d’erreur générée. La Figure 4(b) illustre le principe de
suppression, ici, le sommet S ne pourra pas être supprimé car la nouvelle arête est placée en dehors de
l’enveloppe.

(a) (b)

Figure 4 : Définition des zones d'erreurs.

La dimension des zones d’erreur (rayon des sphères) est le seul paramètre fourni par l’utilisateur pour effectuer
la simplification.

2.5. Suppression des éléments non visibles.

Cette dernière étape dans le processus de conversion est une étape d’optimisation. L’objectif est toujours de
limiter le nombre de polygones aux polygones utiles à l’application considérée. Dans notre application, il s’agit
de visualisation. Les pièces utilisées sont des pièces issues des bureaux d’études, elles comportent toutes les
informations utiles à leur fabrication et à la fonction ultime. Beaucoup d’éléments utiles pour le fonctionnement
ne le sont pas pour la visualisation. Par exemple, les nervures et raidisseurs de pièces plastiques, les trous de
fonctionnement sont des éléments qui pour leur définition géométrique vont utiliser des polygones mais qui
n’ont pas d’apport réel dans une application de visualisation. Afin de diminuer le nombre de polygones dans la
scène, il semble nécessaire de les supprimer (cf. Figure 5).

Avec nervures Sans nervure

Figure 5 : Suppression des parties non visibles.

1
S

2.6. Mise en œuvre.

La chaîne complète de conversion d’un modèle surfacique en un modèle polygonal peut être décrite comme sur
la Figure 6. Cette chaîne représente la première solution, la mise en cohérence est effectuée au niveau du
modèle surfacique.

Figure 6 : Chaîne de conversion modèle surfacique / modèle polygonal.

Les étapes decouture et de triangulation sont réalisées par lemodeleur CAO. Pour la simplification, nous avons
fait le choix de travailler en collaboration avec le laboratoire 3S (Sols Solides et Structures) dirigé par Jean-
Claude LEON à Grenoble et la société Géo-Numéric sur la base du logiciel Simpoly®. Ce logiciel est le fruit de
plusieurs thèses réalisées au sein du laboratoire3S. Nous avons effectué ce choix suiteà l’étude des algorithmes
existants. Il s’est avéré qu’ils ne répondaient pas entièrement à notre demande. Principalement parce que nous
souhaitions pouvoir piloter la simplification non uniformément sur tout le modèle. Les travaux de P. VERON
[V97b-VL98] présentent une approche différente de la simplification. Leur algorithme permet de simplifier de
manière non uniforme.
L’objectif de leur outil de simplification est de générer des modèles pour de la simulation de calculs. Ils avaient
besoin de simplifier différemment les zones d’un modèle en fonction de leur implication dans les calculs de
résistance. Par ailleurs, la majeure partie des algorithmes de simplification existants utilise comme critère de
pilotage un pourcentage de réduction. L’utilisateur indique s’ il souhaite une réduction de X%, l’algorithme
respectera ce critère et générera un modèle. L’écart géométrique, l’erreur commise, sera une conséquence du
taux de réduction. Simpoly® propose de piloter la simplification avec l’erreur géométrique maximale tolérée par
l’utilisateur. Le taux de réduction devient une conséquence du calcul. Dans notre cas, il est impératif de
contrôler finement cet écart géométrique. Les modèles ne doivent pas avoir un écart géométrique supérieur au
millimètre pour que l’application soit crédible. La simplification non uniforme est pilotée par unecarte de taille.
Cette carte de taille est une répartition de sphères dans l’espace qui permet d’ indiquer pour chaque sommet sa
latitude àdisparaître ou à sedéplacer (cf. 2.4). Actuellement, les modules existants génèrent des cartes de tailles
dans le l’objectif d’effectuer des calculs de résistance.
Nous développons les modules qui permettent de piloter l’algorithme de simplification dans l’objectif de
générer des modèles pour des applications de visualisation. Notre objectif est de conserver les détails visibles du
modèle et de simplifier les zones non visibles. La simplification des zones non visibles peut aller jusqu’à la
modification géométrique de certaines parties. Le problème est d’ identifier ces différentes zones. Le premier
algorithme [PMFNTF02] implémenté travaille à partir de l’angle solide entre les normales des facettes et la
direction de vue du modèle. Pour un angle solide compris entre –π/2 et +π/2 la facette sera déclarée comme
visible. La Figure 7 illustre cet algorithme. La pièce traitée est vue par la face dessinée en pointillée sur la
Figure 7(a).

Modèle original

Maillage optimisé

Maillage réduit

Maillage cohérent

Modèle cousu

Triangulation
SAG

Réduction du nombre
de polygones, (

2

Suppression des
éléments non visibles.

Simplification

Surface

Surface

Polygone

Polygone

Polygone

Couture

(a) (b)

Figure 7 : Orientation des normales.

Cet algorithme n’est pas assez robuste. Le clip de fixation n’a pas été complètement détecté (cf. Figure 7(b)).
Nous nous orientons actuellement sur des algorithmes de partitionnement de l’espace ou de profondeur. Nous
recherchons à connaître les faces cachées par les autres. Avec cette connaissance, il sera aisé de pouvoir
supprimer les sommets des faces non visibles. La priorité dans le traitement des sommets sera faite par
l’ importance de la concavité entre les faces. Plus la concavité sera grande, plus il semble difficile de voir ce qui
se passe à l’ intérieur de cette concavité.
Cette préparation des modèles est l’étape incontournable avant la visualisation dans une application de réalité
virtuelle. Tout ce travail a pour objectif de pouvoir donner au calculateur le temps de traiter la totalité des
polygones contenus dans la scène dans le temps qui lui est imparti. Les applications sont en stéréo et en temps
réel. Il faut que le calculateur puisse calculer entre 30 et 50 images par seconde pour un confort maximal.

3. Visualisation et vision.

3.1. Matériel utilisé.

Les applications sont portées dans la salle immersive MoVE™. Cette salle immersive de type CAVE™ est
reconfigurable et possède 4 faces (deux faces latérales, la face avant et le sol). Comme le montre la Figure 8,
l’utilisateur est physiquement immergé dans la scène 3D.

Figure 8 : MoVE.

Habituellement l’utilisateur perçoit les images de l’application sur un écran ou dans un casque, dans le cas d’un
écran l’utilisateur a toujours dans son champ visuel des éléments réels (bureaux, meubles, …), dans le cas d’un
casque la totalité du champ visuel n’est pas couvert. Dans la salle immersive, l’utilisateur est physiquement au
cœur de la scène 3D.

Détails et résultats
présentés sur la Figure
7(b)

Face vue

3.2. Système visuel humain.

L’œil humain n’est pas sensible de la même manière à tout son environnement. Le récepteur de l’œil, la rétine,
est composé d’une zone, la fovéa, représentant 1% de la surface de la rétine. La densité de cônes dans cette zone
est de 180000 par mm² alors qu’elle est de 5000 sur le reste de la rétine. Les cônes servent principalement dans
la vue diurne et apportent des informations précises sur la position et la couleur des objets. Les bâtonnets quant
à eux sont utilisés pour une vision nocturne ou de faible luminosité. On s’aperçoit donc que la zone où
l’ information est maximale est faible. Cette faiblesse est compensée par le mouvement rapide des yeux.
L’acuité visuelle est la capacité pour un œil humain à distinguer les détails (i.e. résolution). Elle est évaluée à
une minute d’arc. Cette acuité visuelle a été établie pour la ligne de vue qui correspond à la fovéa.

Figure 9 : Résolution spatiale des cônes et bâtonnets en fonction

du rayon angulaire par rappor t à la fovéa (source [HVPO]).

La Figure9 montreque l’acuitévisuellemaximale (Av=1) ne représente que1% du champ devision, c’et àdire
une surface d’environ 2° de rayon angulaire. L’acuité visuelle diminue très vite en fonction de l’écartement de
la fovéa, elle est divisée par 2 à 2° du centre de la fovéa, par 4 à 5° et par 10 pour des angles variant de10 à 20°
[SUPELEC-YRR94]. Ces constatations confirment qu’une simplification plus importante des modèles situés à
la périphérie du champ visuel ne modifiera pas a priori la perception visuelle de la scène globale.

3.3. Mise en œuvre.

Le fait de simplifier d’avantage les modèles situés sur la périphérie du champ visuel permettra de diminuer le
nombre de polygones à calculer pour chaque image et ainsi accroître les performances de l’application. Les
logiciels actuels gèrent les niveaux de détails de manière identique. Il est fonction de la distance séparant l’œil
de l’utilisateur à l’objet considéré. Dans notre cas, nous avons vu qu’un objet qui serait proche de l’œil mais
situé à 15° de l’axe de vision principal serait vu avec 10 fois moins de détails qu’un objet situé sur l’axe. Un
pilotage des niveaux de détails ne fonctionnant qu’avec la distance œil-objet ne serait pas satisfaisant. Il serait
possible d’optimiser la scène afin d’augmenter les performances de l’application. Nous proposons de définir
une autre fonction de choix des niveaux de détails (cf. Figure 10).

Figure 10 : Cônes de vue.

Le niveau de détail d’un objet ne doit plus être choisi uniquement en fonction de son éloignement par rapport à
l’œil, mais aussi en fonction de sa position angulaire.
Cette approche est soumise à la condition que la direction du regard coïncide avec la direction de la tête de
l’utilisateur qui est connue (capteur de position). Cette approximation est acceptable puisque l’utilisateur est
muni de lunettes stéréoscopiques qui lui obturent une grande partie du champ visuel. On constate que les
utilisateurs ont tendance à tourner la tête plutôt que le regard. L’assimilation de la direction de la tête et du
regard est dans ce cas valide.
L’approche envisagée actuellement est d’utiliser les arbres binaires de partitionnement de l’espace (BSP :
Binary Space Partition). Ce partitionnement de l’espace permet de savoir en temps réel en fonction de la
direction de la caméra dans quelle zone de l’espace se situe un objet. En fonction de l’appartenance de l’objet à
une zone, le niveau de finesse du modèle est choisi et affiché.

4. Conclusions et perspectives.
Les dispositifs de réalité virtuelle imposent des contraintes de temps et de qualité de visualisation très sévères.
Aussi, des compromis sont nécessaires afin d’optimiser l’ immersion virtuelle de l’utilisateur. L’étude des
caractéristiques de la vision humaine montre qu’il n’est pas nécessaire d’afficher une image avec un rendu
homogène dans l’espace. La notion de zones d’intérêts doit être développée en fonction de la distance de l’objet
virtuel à l’œil mais également en fonction de l’écart à l’axe visuel principal. Par conséquent, il est opportun de
prendre en compte ces caractéristiques lors du calcul de rendu des objets pour leur affichage dans la scène
virtuelle. L’objet calculé pour l’affichage ne doit tout d’abord comporter que les faces utiles à la visualisation de
l’objet. Cette première étape de simplification est déjà traitée par les mécaniciens pour leurs calculs de
structures et peut être adaptée à la visualisation. L’objet calculé doit ensuite subir certaines opérations de
simplification dont le degré doit être fonction de la distance de l’objet à l’œil ainsi que de la zone d’intérêt de
l’objet. Les travaux présentés s’ inscrivent dans le cadre du développement de méthodes et outils permettant
d’optimiser l’ immersion virtuelleeu égard àces critères. Ces travaux prennent également en compte le contexte
technologique fort du dispositif de visualisation MoVE utilisé. Il s’agit alors d’intégrer les méthodes en
développement dans les outils logiciels disponibles ou en évaluation rapide sur le marché.

Références :

[DFMP96] L. DE FLORIANI, P. MARZANO et E. PUPPO, Multiresolution models for topographic surface
description, The visual computer, vol. 12, n°7, pp 317-345, 1996.

[DRLW93] T. D. DE ROSE, M. LOUNSBERY et J. WARREN, Multiresolution analysis for surface of
arbitrary topological type, report 93-10-05, Department of Computer Science, University of
Washington, Seattle, WA, 1993.

[EDRDHLS95] M. ECK, T. DE ROSE, T. DUCHAMP, H. HOPPE, M. LOUNSBERY et W. STUETZLE,
Multiresolution Analysis of Arbitrary Meshes, SIGGRAPH ’95 , 1995.

[G96] A. GUEZIEC, Surface simplification inside a tolerance volume, rapport technique RC 20440, IBM
research division, T.J. Watson Research Center, USA, Mai 1996.

[HG94] P. HECKBERT et M. GARLAND, Multiresolution modeling for fast rendering, Proceedings of
Graphics Interface ’94, pages 43–50, Banff, Alberta, Canada. Canadian Information Processing
Society, 1994.

[H96] H. HOPPE, Progressive Meshes, Computer Graphics, Vol. 30, Annual Conference Series, pp. 99--
108, 1996.

[HVPO] Human Visual Perception Overview : http://www.stanford.edu/class/ee392c/lectures/chapter05.pdf

[PMFNTF02] D. PAILLOT, F. MERIENNE, J.-P. FRACHET, M. NEVEU, S. THIVENT, L. FINE,
Revue de projet immersive pour le style automobile, Virtual Concept 2002, Biarritz, pages 92-97,
2002.

[PS97] E. PUPPO et R. SCOPIGNO, Simplification, LOD and Multiresolution Principles and Applications,
Eurographics’97, 1997.

[RO96] K.J. RENZE et J.H. OLIVIER, Generalized Unstructured Decimation, IEEE Computer Graphics
and Applications, pp 24-32, Nov. 1996.

[RR96] J.R. RONFARD et P. ROSSIGNAC, Full-range approximation of triangulated polyhedra,
Technical report RC 20423, IBM research division, T. J. Watson Research Center. Also in
Eurographics’96, 1996.

[SUPELEC] http://www.supelec-rennes.fr/ren/perso/jweiss/tv/perception/percept3.html

[SZL92] W.J. SCHROEDER, J.A. ZARGE et W.E. LORENSEN, Decimation of triangle meshes, ACM
SIGGRAPH 92, Chicago, pp 65-70, 26-31 juillet 1992.

[V97a] P. VERON et J.-C. LEON, Static polyhedron simplification using error Measurements, Computer
Aided Design, Vol. 29, n° 4, pp 287-298, Avril 1997.

[V97b] P. VERON, Techniques de simplification de modèles polyédriques pour un environnement de
conception mécanique, thèse de doctorat, INPG, Grenoble, 1997.

[VL98] P. VERON, J.-C. LEON, Shape preserving polyhedral simplication with bounded error, Computer
& Graphics, Vol. 22, N°5, pp. 565-585, 1998.

[YRR94] Akitoshi YOSHIDA, Jannick P. ROLLAND, John H. REIF, Design and Applications of a High
Resolution Insert Head Mounted Display, June 1994.

Drones : Simulateur d’Environnement et Apprentissage

Farès Belhadj

Laboratoire d’Intelligence Artificielle
Université de Paris 8
2, rue de la Liberté

93526 Saint Denis cedex
amsi@ai.univ-paris8.fr

Résumé : Nous présentons un simulateur d’environnement temps réel pour l’entraı̂nement de pilotes automatiques.
Ce simulateur gère le comportement de véhicules de type hélicoptère dans un univers virtuel modélisé à partir
de paysages fractals. Un pilote automatique, implanté sous la forme d’un Perceptron Multi-Couches, apprend à
voler en rase-mottes et évite les obstacles, statiques ou dynamiques, rencontrés. Cet apprentissage est supervisé
et effectué en deux phases : il apprend à voler en observant les réactions de deux superviseurs. Ces phases sont
repectivement orchestrées par un programme, l’automate volant, et un utilisateur humain. Ce dernier pilote le
véhicule via une interface dans laquelle le rendu de la simulation est effectué en images de synthèse.

Mots-clés : paysages fractals, simulation, images de synthèse, temps réel, apprentissage, drone, planification de
trajectoires, réseau de neurones.

1 Introduction

Les systèmes embarqués sont des entités autonomes capables de percevoir et d’interagir avec leur environnement.
La perception est généralement réalisée à l’aide de capteurs. Un algorithme utilisant ces informations prend des
décisions et réagit aux événements. Il est impératif de vérifier les réponses de l’algorithme dans diverses situa-
tions. Celles-ci peuvent être rencontrées dans des environnements reconstitués ou fictifs. Pour cela, il est nécessaire
d’avoir un simulateur d’environnement dans lequel les modèles physiques sont respectés et où tout type d’environ-
nement peut être créé. De nombreux travaux existent dans ce domaine, par exemple [Tho98, DRC

�
00].

Nous proposons une première approche dans laquelle un environnement est un univers virtuel composé d’un terrain
(cartes fractales), d’obstacles et de véhicules de type hélicoptère interagissant avec l’ensemble. Nous synthétisons
l’ensemble de notre interface et de ses éléments sous la forme d’une librairie. Chaque module de pilotage peut se
connecter à cette librairie et utiliser les entrées/sortie proposées.
Nous décrivons, dans ce qui suit, les méthodes utilisées pour la génération des différents types de paysages, terrains
et arbres. Nous donnons une modélisation du type de véhicules importés. Nous détaillons, pour ces véhicules, les
possibilités de perception de leur environnement ainsi que le processus de commande. Enfin, nous réalisons et
comparons dans ce cadre nos deux implémentations de pilotes automatiques, un automate volant et un Perceptron
Multi-Couches.

2 Les composantes de l’environnement

2.1 La génération de terrains

Nous représentons les terrains selon un maillage régulier donné par une matrice de valeurs d’altitudes. Ces valeurs
sont échelonnées sur un intervalle

� ���������
	
et la matrice résultante produit une carte topographique du terrain.

Pour générer ces cartes, nous utilisons au choix trois algorithmes fractals [Man95] (cf. figure 1). L’algorithme du
plasma [Aud97, Ste90] ainsi que BROWN-GAUSS produisent ce que nous appelons des � nuages fractals � . Enfin,
un troisième algorithme, basé sur la méthode du � Quick Union Find � [Sed98], produit des cartes de labyrinthes
aléatoires.
Génération de nuages fractals :

Les deux algorithmes proposés sont basés sur un système d’interpolations bilinéaires par déplacement des milieux.
Soit une matrice
���������� dont les valeurs aux quatre coins ������� �����! , �#"��$�&%('*) �+�, , �.-/��� ����0 '1) et

��� � �&% '�) �+0 '�) sont prises aléatoirement. Nous calculons récursivement les valeurs aux points intermédiaires.
L’interpolation des points varie suivant l’algorithme utilisé.

a. Le plasma : nous calculons à partir du rectangle � � � � �." � �.- � ��� les valeurs aux quatre points des milieux des
bords — ��� � ��� � ��� et ��� — ainsi que la valeur au point central �	� . Ces valeurs
#� ��� sont obtenues selon :�

�

�
 � � �

 ��
 � ��� �" ���! ��� ����� � � � �����+�" ��� ���
#� � � �
 � ��� �" �+0 ') �!� ����"+� � � ���$#��" �%� �&�
 � � � ��
 � ��� �'� �" ��� ����� � � � ����"+�" �%� �&�
 � � � ��
#� % ') � �(� �" �!� �����+� � � ���$#��" �%� �&�
 � � � ��
 � ��� �" � �'� �" �)� ����� � � � ������� � � ����"�� � � ���$#+�� �%� �&�
où � �&� est un entier relatif aléatoire proportionnel à � avec � ��*,+.- � % ��0

.
Chaque valeur
#� ��� est ramenée dans l’intervalle

� ���+�,��� 	
par modulo.

Nous obtenons, après une première itération, quatre nouveaux rectangles de dimensions
� "0/ � " : � � � � � � � � � � � � ,

� � � � �." � � � � � � , � � � � � � � �.- � � � et � � � � � � � � � � ��� . Nous répétons récursivement ce calcul sur chaque sous rectangle
obtenu tant que � � *1+.- � �"32 � �"42 65 � où 7 est la profondeur de récursion.
Remarque : Si une valeur a été attribuée à un point, alors cette valeur ne sera plus modifiée.

b. BROWN-GAUSS : de la même manière que précédemment, nous calculons, pour les quatre points initiaux, cinq
nouvelles valeurs aux points � � � � � � � � � � � et � � . Les dépendances entre points ne sont plus les mêmes et la variable
aléatoire � ��8 , prise ici, est régie par une distribution gaussienne. Ces valeurs sont calculées selon :�

�

�
 � ���

 ��
 � ��� �" � �'� �" � � ����� � � � ������� � � ����"�� � � ���$#+�� �%� ��8
 � ��� ��
 � ��� �" ���! ��� ����9+� � � ����� � � � �����+�- ��� �:8
 � ��� ��
#� ��� �" ��0 ') ��� �;�$9+� � � �;�$"+� � � �;�<#��- ��� �:8
 � ��� ��
 � ��� �'� �" ��� ����9+� � � ����� � � � ����"+�- �%� ��8
#� ��� �=
 �&% ') � �'� �" ��� �;�$9+� � � �;�$�+� � � �;�<#��- ��� �:8
où :

- � ��8 est un réel aléatoire égal à 8 /,> +.?A@B@,� <C
- 8 � DE "32 avec 7 le numéro de l’itération en cours.
- F est l’écart-type de la distribution gaussienne �HG) <C
- > +I?A@B@!� est une fonction qui renvoie un réel compris entre J � F suivant une distribution gaussienne.

Tant que � �K*1+I- � �" 2 � �" 2 65 � , nous réitérons cette opération sur chaque sous rectangle obtenu. Pour finir, nous
échelonnons la matrice résultante sur l’intervalle [0, 255].

Génération de labyrinthes :

Nous proposons une méthode de production aléatoire de labyrinthes 1-connexes : un unique chemin relie deux
positions distinctes (la connexité de ces labyrinthes peut être augmentée en supprimant certains murs). Pour un
labyrinthe de dimensions % / 0 , une matrice L de dimensions � � % �) / � � 0 �) est créée. Cette matrice
représente les données topographiques du labyrinthe. Elle est initialisée telle que chaque position libre est entourée
de murs (cf. exemple pour % � 0 ��M) où les murs sont représentés par la valeur -1. Pour construire le labyrinthe,
nous sélectionnons aléatoirement une position murée séparant, en 4-connexité, deux positions libres. Si aucun
chemin ne relie ces deux positions, alors le mur est supprimé. Cette opération est répétée jusqu’à ce que toutes les
positions libres, à l’initialisation, soient connectées.
Nous donnons un exemple d’initialisation de L pour % � 0 ��M :

NPO
QRRRRRRRS
� � � � � � � � � � � � � �� � T � � U � � V � �� � � � � � � � � � � � � �� � W � � X � � Y � �� � � � � � � � � � � � � �� � Z � � [� � \ � �� � � � � � � � � � � � � �

]:^^^^^^^_
Donc pour % et

0
quelconques, L est initialisée par :

– Si la position �a` �Hb! est telle que ` ou
b

pair alors L � ` 	 � b�	 � ') et �&` �Hb est murée ;
– Sinon, L � ` 	 � b�	 � �&% /dc �"fe � chg "fe et �a` �:b est non murée.

Puis nous posons que L est assimilée à un graphe à % / 0 composantes. Nous avons alors un nœud à identifiant
unique par composante. Nous produisons, à partir de ce graphe, un graphe à une composante. Pour ce faire, une
position murée séparant deux composantes disjointes est sélectionnée aléatoirement ; la position est libérée et le
plus petit identifiant est propagé sur la nouvelle composante connexe. Nous posons que deux nœuds sont disjoints
si et seulement si leurs identifiants respectifs sont différents. L’algorithme se termine quand les % / 0 nœuds du
graphe ont un 0 comme identifiant. La matrice résultante est échelonnée1 sur l’intervalle [0, 255].

1Par exemple : 0 pour les positions non murées et 255 pour les positions murées.

FIG. 1 – Cartes topographiques générées et rendu 3D ; de gauche à droite : plasma, BROWN-GAUSS et labyrinthe.

2.2 Les L-Systèmes

Plus qu’un aspect visuel, les arbres représentent des obstacles supplémentaires dans le parcours des drones. Nous
implémentons, pour la génération d’arbres, un interprète de � Bracketed � L-Systèmes à composante stockastique
[PL89, PL90, PH92]. Ce module crée les images représentant les différents types d’arbres à partir d’un fichier
décrivant les règles de production. Nous utilisons ces images comme des textures 2D que nous plaquons sur deux
rectangles perpendiculaires. Les arbres, ainsi créés, sont placés dans le paysage aléatoirement et par groupe de
même famille. Un exemple de fichier descriptif ainsi que le rendu 2D de l’arbre obtenu est donné en figure 2.

1. Arbre001 � // Nom de l’objet
axiom +++++++++++++X // L’axiome �
angle 7.2 // La variation d’angle �
angle0 85.0 // L’angle initial ���
step 50.0 // Le pas de déplacement � en pixels
gen 9 // Le nombre de générations
X=F[@.5+++++++++X]-F[@.4-----------!X]@.6X // Une règle de production�
FIG. 2 – Fichier descriptif et rendu 2D produit par l’interprète de L-Système.

2.3 Les véhicules

Les aéronefs sont placés et évoluent dans les paysages virtuels générés par les algorithmes fractals. Nous allons
étudier maintenant comment ces véhicules sont représentés et se meuvent. Nous implémentons un module d’im-
portation d’objets 3D réalisés par modeleur. Ce module permet une représentation tridimensionnelle paramétrable
pour chaque type de véhicule, actuel ou à venir. Il créé l’objet OpenGL [WNDS99] décrit par des fichiers A.S.E.
— � Ascii Scene Export � — et le place dans le paysage. Pour un hélicoptère, nous utilisons quatre fichiers A.S.E.,
chacun décrit respectivement le cockpit, la queue, le disque rotor et le rotor anti-couple. Cette subdivision aide à
la construction de l’enveloppe convexe contenant l’ensemble ; nous utilisons cette enveloppe dans la détection de
collisions.
Pour obtenir une simulation de la dynamique de vol d’un hélicoptère, nous proposons un modèle physique sim-
plifié du véhicule. Dans notre modèle, la sustentation et la propulsion du véhicule sont assurées par le disque rotor
qui produit deux types de mouvements : le tangage et le roulis. Le rotor anti-couple produit une force contraire
à la direction de rotation du disque rotor ; elle assure le mouvement en lacet. Seule la variation de cette force est
considérée dans notre modèle. La dynamique de vol de l’aéronef est montrée sur la figure 3, elle obéit à :�

�

�

'� 	 � * / '�
 � * / '� + projetée sur chaque axe :

'� 	 �
�� 	�
	��	����� � '� + � �� +
+ �+ ������ �� � +
 �

	�

+ � �

	��
'
+ � �

	�� � �

�

� +

� ������� � �!� �" # �!�$ �a- + � � �&% ')(�*�!� �" # �!�$ '
 �&+ + � � �����,(� �!� �" # �!�$ �.-
Avec

'� 	
la force produite par le disque rotor, '�
 la gravité, * la masse du véhicule et '� + son accélération.

Enfin, les différentes projections du vecteur vitesse sont corrigées par l’ajout d’une force de résistance à l’air. Nous
obtenons :
 � ��
 � ' ��� /
 "�
où � est le coefficient aérodynamique, déterminé pour une vitesse maximale donnée, environ �

� * C @ � � pour ce
type d’aéronefs, par :

��� * / +
 "$��

Résultante

Portance

θρ

φ

Poids

Résistance

z

x

y

z

x

y

Roulis
Tangage

Lacet

FIG. 3 – Dynamique de vol de l’aéronef.

3 Les éléments de perception et de commande

Chaque programme (pilote automatique) accède via notre librairie à une série de fonctions lui permettant de piloter
un ou plusieurs hélicoptères ainsi que de percevoir l’univers virtuel local ou global. Nous décrivons ici ces outils
de perception et le processus de commande [LLS

�
01].

3.1 La perception globale : le plus sûr chemin

Notre algorithme du plus sûr chemin, noté P.S.C., est une méthode rapide de calcul du chemin discret reliant
deux points quelconques sur une carte. Le chemin résultant minimise les altitudes empruntées réalisant le meilleur
compromis entre altitude et distance. L’utilisateur de l’interface sélectionne une coordonnée d’arrivée pour chaque
véhicule ; le module P.S.C. calcule les chemins aux buts.
Cet algorithme est basé sur la méthode de calcul du plus court chemin dans un graphe [Dij59, LS95]. Le graphe des
chemins possibles est donné par la matrice, en 8-connexité, des données topographiques du terrain. Les arètes sont
pondérées par l’altitude en chaque point ou nœud du graphe. Nous introduisons des modifications de l’algorithme
afin d’améliorer les temps de calcul des P.S.C. Pour cela, nous découpons la carte des altitudes en sous-régions
rectangulaires de dimensions égales. Une moyenne des altitudes est calculée pour chaque sous-région et un P.S.C.
grossier est produit pour relier l’ensemble des sous-régions empruntées. À partir de là nous raffinons le résultat
obtenu en calculant un P.S.C. à l’intérieur de chaque sous-région empruntée par le chemin grossier. La complexité
des graphes représentant chaque sous-région est bien moindre comparée à l’ensemble.
Nous obtenons par cette méthode un P.S.C. équivalent à une version non optimisée dans des délais inférieur à la
seconde. Un ratio de temps de calcul supérieur à) � - a été mesuré entre l’algorithme classique et le nôtre. Cette
mesure est donnée pour une carte topographique de) �,��� /) �,��� nœuds.

3.2 La perception locale

Tout aéronef créé possède sa propre configuration d’outils de perception. Ces outils sont implémentés sous la
forme d’un ensemble paramétrable d’instruments de bord. Nous pouvons les sélectionner dans la liste contenant :
des capteurs de distance, des instruments de mesure de l’angle de direction, l’angle de tangage, l’angle de roulis et
la mesure de la vitesse. Cette dernière est donnée en unité-terrain par seconde, notée ?	� C @ � � , et ?
� est la distance

horizontale séparant, dans le quadrillage du terrain, deux sommets voisins. Enfin, un système radar permet de
localiser les différents véhicules présents à proximité de l’appareil.
Nous utilisons, dans nos implémentations de pilotes automatiques, un instrument de mesure de l’angle de direction
ainsi que six capteurs de distance. Ces derniers renvoient la distance, en ?	� , les séparant d’un obstacle. Leur portée
maximale est de) � ?
� . Quand à l’instrument de mesure de l’angle de direction, il renvoie l’angle permettant à
l’aéronef de suivre le chemin discret donné par l’utilisateur via le module du P.S.C.

3.3 Le processus de commande

Dans un hélicoptère, les commandes correspondent au manche de pas cyclique, il incline le disque rotor afin de
modifier la direction de la portance, le palonnier contrôle le rotor anti-couple, le levier de pas collectif contrôle
l’inclinaison des pales et la manette de gaz modifie la vitesse de rotation du disque rotor.
Nous émulons les commandes réelles d’un hélicoptère par l’intermédiaire d’un automate à états qui produit une
modification des paramètres de l’hélicoptère et génère la dynamique de vol correspondante. De cette manière, toute
action produite par le pilote devient accessible en lecture / écriture. Nous pouvons ainsi, à tout moment, interroger
l’interface sur l’état de chaque commande.
Nous obtenons alors une représentation numérique des actions effectuées par le pilote. Cette représentation nous
permet d’introduire la notion d’apprentissage par observation. Elle est utilisée pour l’apprentissage du Perceptron
Multi-Couches. L’observateur apprend à piloter en copiant les réaction du superviseur (cf. figure 4).

tridimensionnelle
environnementale

Simulation

Observateur

Lit

États des commandes du véhicule
Lit / Écrit

Pilote

Modifie

Perçoit Perçoit

Produit

Dynamique de vol

FIG. 4 – Le processus d’apprentissage par observation.

4 Les pilotes automatiques

Comme application de notre librairie de gestion d’environnements virtuels, nous implémentons deux pilotes auto-
matiques, un automate déterministe et un Perceptron Multi-Couches, et nous comparons leurs résultats. Pour cette
évaluation, la configuration de la perception des hélicoptères est la suivante :

– six capteurs de distance configurés comme suit :
– cinq capteurs en position avant-centre et orientés respectivement ��� ���� � ��� � '��� � , ��� ���� � ��� �	�� � ,��� � '��� � ��� �
�� � , ����� '��� � ��� � '��� � , ����� ����� � �, ;
– un capteur en position centre-bas et orienté ��� � ' � " ��� � �, ;

– un instrument de mesure de l’angle de direction : il renvoie l’angle
�

permettant à l’aéronef de rejoindre la
prochaine position discrète donné par le plus sûr chemin ;

– un instrument de mesure de la vitesse au sol.

4.1 L’automate volant

Ce pilote doit, à partir des informations de perception locale (instruments de mesures et capteurs de distance) et
globale (le plus sûr chemin), s’orienter dans l’environnement virtuel et arriver jusqu’aux coordonnées spécifiées
par l’utilisateur de l’interface. Il est implémenté sous la forme d’un automate déterministe pour lequel, d’une part,

les capteurs définissent les entrées de l’automate et d’autre part, ses différents états donnent les commandes corres-
pondantes pour l’hélicoptère (cf. figure 5). Ce pilote adopte un comportement de précaution : il vole à des altitudes
moyennes en prenant ses distances par rapport aux obstacles.

D(d)
E(u)

D(u)
E(d)

D(f)
E(u)

D(b)
E(f)

D(u, d)

D(f, b)
E(u)

E(b)
A1

A2

A3

B 1

B 2

B 3

C 1

D(l, r)

E(l)

E(r)

D1

D2

D3

ε

ε

E(X) : Active la commande X
D(X) : Désactive la commande X
u : up − mouvement vers le haut
d : down − mouvement vers le bas
l :left − roulis vers la gauche
r : right − roulis vers la droite
f : forward − tangage vers l’avant
b : backward − tangage vers l’arrière

ε

ε

ε

ε
ε

ε

ε

ε
ε

FIG. 5 – La réaction aux événements (perception via les capteurs de distance, de vitesse et d’orientation) de
l’automate volant produit un changement dans le comportement de l’hélicoptère.

Nous donnons les conditions de passage d’états sur la figure 6, où � ��� �	��� est la distance, en unité-terrain, ren-
voyée par le capteur 7 et
�� est la projection de la vitesse sur le plan horizontal.

� � �
	 ��� ��
&����� ��� ��� � ��� ��� ��
&��� " ��� -�� � ��� ��� ��
&��� # ��� -�� � �� � �
	 � � ��� ��� ��
&��� � ��� "�� � ��� ��� �
&�!�a"+��� � � � ��� ��� ��
&��� #���� � � � �� " �
	 � � � ��� � � ���" � �
	 ��� ��
&����# ��� -�� � ��� ��� ��
&����� ��� -�� � ��� ��� ��
&���a����� -�� � �" � �
	 � " ���%$ ��� ��
&����#+��� � � � ��� ��� ��
&����� ��� � � � ��� ��� �
&�!�a����� � � � �'&" " �
	 � � " � � � " � �(� �
	 � �!) �+*+�
� � �
	 ��,.-/�+*10 ��2 ��3 �
� � �
	 � � � � � ��,�-/� ��*10 ��2 ��3 � �� " �
	 � � � � � � � � �4 �
	 vrai

FIG. 6 – Définition des conditions de changement d’état de l’automate volant.

4.2 Le Perceptron Multi-Couches

La dynamique de vol de l’automate, ainsi défini, suit un comportement de précaution. Notre but est d’obtenir un
nouveau pilote qui adopte une attitude dangereuse mais efficace. Celui-ci devra voller en rase-mottes, à une vitesse
soutenue et sans collision. Pour ce faire, nous utilisons l’automate volant à des fins d’entraı̂nement d’un Perceptron
Multi-Couches noté P.M.C.
Le P.M.C. est un réseau de neurones [Ros58, DMS

�
02, MP90] à apprentissage supervisé. Notre implémentation

est constituée de trois couches de neurones avec huit neurones en entrée pour une compatibilité avec l’automate et
six neurones en sortie pour les six commandes de l’hélicoptère. Lors de la première phase d’apprentissage, nous
interfaçons l’automate (i.e. le superviseur) aux commande de dix hélicoptères. Le P.M.C. apprend par observation
(cf. figure 4) et converge vers le même comportement.
En deuxième phase, l’utilisateur humain prend, via l’interface clavier, les commandes d’un hélicoptère et adopte
un comportement plus dynamique et vole au plus près du sol. Comme dans le cas précédent, le P.M.C. apprend par
observation : cette phase d’apprentissage dure quelques minutes. L’interface permet à l’utilisateur de redonner la
main au P.M.C. et ainsi vérifier l’amélioration de son comportement.
Nous obtenons à la suite des deux phases d’apprentissage un nouveau pilote au comportement dit amélioré. Nous
comparons les résultats obtenus par l’automate volant aux résultats du P.M.C. après chaque phase d’apprentissage
(cf. tableau 1). Ces tests sont effectués dans les mêmes conditions, sur un échantillon de dix terrains et pour les
mêmes couples de coordonnées (point de départ et point d’arrivée). Nous pouvons voir sur la figure 7 une réduction
considérable de la distance par rapport au sol. Le P.M.C. amélioré effectue un vol en rase-mottes et sa vitesse ho-
rizontale est globalement constante.

Vitesse horizontale Distance par rapport au sol
Automate volant) � M � � ?
���f@ � �.����� � ?
�
P.M.C.) �+���) ?
���f@ �

�
� MIM ��� ?
�

P.M.C. amélioré) C �,����� ?	��� @) � � M �) � ?	�
TAB. 1 – Comparatif entre l’automate volant, le P.M.C et le P.M.C amélioré. La distance par rapport au sol
est donnée est unité-terrain et la vitesse horizontale moyenne en unité-terrain par seconde. La fréquence de
l’échantillon est de 40 itérations par seconde.

Niveau
de la mer

Niveau
de la mer

���
�

Relief du terrain �	��	�

Relief du terrain

Vitesse

0

Altitudes de l’automate volant

Vitesse

0

Altitudes du P.M.C. amélioré

t

t

t

t

Altitude Altitude

FIG. 7 – Comparaison des courbes des altitudes et de vitesse horizontale de l’automate volant et du Percepton
Multi-Couches amélioré.

4.3 Conclusion et perspectives

Nous avons développé, sous la forme d’une librairie, un simulateur temps réel d’environnement d’entraı̂nement
pour drones. L’interface nous a permis de réaliser plusieurs phases d’apprentissage, de visualiser et de comparer
les comportements obtenus. Une modélisation plus complexe et plus interactive de l’interface peut être produite en
étendant les résultats obtenus par cette première approche.
Dans cette optique, la création et l’intégration à l’environnement d’un modeleur pour véhicules et capteurs vir-
tuels permettrait d’élargir le champ applicatif de l’interface. Ce module prendrait à sa charge la dynamique de
mouvement des véhicules créés. Une autre perspective est la possibilité de mettre en concurrence plusieurs pro-
grammes autonomes et d’observer leur évolution comportementale. Ces programmes communiqueraient entre-eux
via l’environnement virtuel et feraient émerger des notions de concurrences ou d’entre aide.

Références

[Aud97] P. Audibert. Algorithmes et Programmation. Université Paris 8, 1995-1997.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1 :269–
271, 1959.

[DMS
�

02] G. Dreyfus, J.-M. Martinez, M. Samuelides, M.B. Gordon, F. Badran, S.Thiria, and L. Hérault Sous
la direction de Gérard Dreyfus. Réseaux de neurones : Méthodologie et applications. Eyrolles, 2002.

[DRC
�

00] T. Duval, J. Regincós, A. Chauffaut, D. Margery, and B. Arnaldi. Interactions collectives locales en
immersion dans des univers virtuels 3d avec gasp. Actes de la conférence ERGO-IHM 2000, Biarritz,
France, Octobre 2000.

[LLS
�

01] J.-P. Laumond, Florent Lamiraux, Sepanta Sekhavat, Pascal Morin, Claude Samson, Patrick Rives,
Michel Devy, Malik Ghallab, Bernard Espiau, and Frank Génot sous la direction de Jean-Paul Lau-
mond. La robotique mobile. Hermès, 2001.

[LS95] C.A. Lazere and D.E. Shasha. Out of Their Minds. Copernicus Books, 1995.

[Man95] B. Mandelbrot. Les Objets Fractals. Flammarion, quatrième edition, 1975-1995.

[MP90] M.L. Minsky and S.A. Papert. Perceptrons. 1990.

[PH92] P. Prusinkiewicz and J. Hanan. Lindenmayer Systems, Fractals, and Plants. Springer Verlag, 1992.

[PL89] P. Prusinkiewicz and A. Lindenmayer. Developmental models of multicellular organisms : A computer
graphics perspective. In Christopher G. Langton, editor, Artificial Life volume VI : Proceedings of an
Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems. Addison Wesley, 1989.

[PL90] P. Prusinkiewicz and A. Lindenmayer. Algorithmic Beauty of Plants. Springer Verlag, 1990.

[Ros58] F. Rosenblatt. The perceptron : a probabilistic model for information storage and organization in the
brain. Psychological Review 65 : 386-408, 1958.

[Sed98] R. Sedgewick. Algorithms in C. Addison-Wesley, third edition, 1998.

[Ste90] R.T. Stevens. Advanced Fractal Programming in C. M&T, 1990.

[Tho98] G. Thomas. Représentation d’environnement urbains pour l’animation de piétons. AFIG’98, 1998.

[WNDS99] M. Woo, J. Neider, T. Davis, and D. Shreiner. Le guide officiel à l’apprentissage d’OpenGL, version
1.2. CompusPress France, 1999.

Conférence invitée : Du Virtuel Au Réel

Claude Ecken

ecken_c@club-internet.fr

 La Science-Fiction ne se préoccupe pas du futur : elle parle du présent. Peu importent les événements
du quatrième millénaire, nous ne serons plus là pour les voir. Mais le monde change si vite qu'il est nécessaire,
pour le comprendre, de le mettre en perspective. Celle tournée vers le passé n'est pas toujours suffisante tant les
référents et points de repères ont été bouleversés. En revanche, il est possible d'imaginer les alternatives qui
s'offrent à nous et de projeter, dans un futur plus ou moins lointain, les interrogations et les problèmes de nos
sociétés.
 Il ne s'agit pas de prospective ni de futurologie : la question n'est pas de savoir si l'auteur a prédit
l'avenir mais s'il a mené sa réflexion jusqu'au bout. L'ancrage dans un futur indéterminé lui permet justement de
s'abstraire du présent, des trop nombreuses interactions qui perturbent l'analyse d'un problème. C'est un peu
comme s'il éliminait les parasites, le bruit de fond ambiant, qui gênent son observation. Il se place ainsi dans les
conditions d'un chercheur de laboratoire, qui isole un phénomène de son environnement et fait ensuite varier les
paramètres qui permettent de le mesurer. Aujourd'hui, on ne parle bien du présent qu'au futur.
 Les questions d'ordre philosophique ou métaphysique peuvent s'épanouir dans des futurs lointains, sans
rapport avec notre quotidien. Les problèmes sociologiques, centrés sur des préoccupations actuelles, s'illustrent
davantage dans des futurs proches qui gardent une continuité historique avec le présent.
 La SF ne se préoccupe pas de prévoir l'évolution de la science, ni les prochains développements
scientifiques. Elle ne prédit pas, elle commente, pas forcément dans une perspective éthique, mais dans la façon
dont l'homme s'approprie les nouveaux outils qu'il a mis au point et les intègre à son environnement, observant
plus spécifiquement l'impact social et psychologique que peut provoquer une révolution technologique.
 La SF est une mise en scène de la science qui permet d'effectuer une lecture du présent ; elle ressemble,
de ce point de vue, à un story-board qui met un scénario en images avant le tournage effectif des scènes. Cela
permet parfois de trouver, pour une nouvelle technologie, des utilisations auxquelles on n'avait peut-être pas
pensé, et de prévoir les avantages et les inconvénients auxquels on peut s'attendre. De cette mise en scène naît
une vision nouvelle du monde. Le miroir déformant de la science-fiction met en évidence des détails qui avaient
jusque là échappé à l'attention et qui permettent d'interpréter notre présent. Elle déforme la réalité à la façon
d'une caricature qui exagère ou minimise les traits d'une personne afin de mieux la saisir dans son essence.
 Du coup, la SF est prompte à placer dans un environnement familier ce qui n'existe encore qu'à l'état
d'ébauche dans les laboratoires. Pour les besoins de son histoire, elle est capable d'aller bien au-delà du
raisonnable : l'essentiel est qu'elle tire matière à réflexion à travers sa fiction.
 Les problèmes techniques qu'il a fallu surmonter pour mettre au point une invention sont souvent
gommés au profit de son utilisation. On se contente de voir que ça marche, et ça marche bien : il est rare qu'en
SF l'utilisation d'un outil informatique soit ralentie par de gros temps de calcul ou par l'apparition de bugs… sauf
si ces complications servent l'intrigue.
 La preuve que la SF ne prédit rien est qu'elle n'a pas annoncé la révolution informatique. Ni la
miniaturisation de l'ordinateur (on trouve dans certains récits des ordinateurs occupant la surface d'une planète),
ni sa diffusion dans le grand public, à l'exception d'une seule nouvelle de Murray Leinster, en 1948, intitulée Un
Logic nommé Joe. Par contre, quand les premiers PC ont été mis sur le marché, elle s'est aussitôt penchée sur les
implications de cette dissémination technologique, ce qui a généré un rameau spécifique de ce genre littéraire : le
cyberpunk.
 Le terme, titre d'une nouvelle de Bruce Bethke parue en 1983, n'est pas forcément apprécié des tenants
du genre mais l'alliance de cybernétique et de punk recouvre assez exactement son contenu. Il s'agit d'univers où
la technologie évoluée est omniprésente, disséminée dans les moindres interstices du quotidien, et utilisée par
tous, notamment les délinquants, qui pullulent dans ces sociétés déliquescentes, dures et cruelles, où la survie est
un enjeu quotidien.
 Le premier roman de William Gibson, Neuromancien, est considéré comme le livre ayant lancé le
mouvement cyberpunk, orchestré par Bruce Sterling, auteur et théoricien du genre. La première phrase du
roman, typique de l'ambiance cyberpunk, témoigne bien de l'immersion de l'informatique à tous les niveaux : "Le

ciel au-dessus du port était couleur télé calée sur un émetteur hors service."
 Dès le début, les perceptions, les couleurs sont décrites à l'aide de référents technologiques. On ne prend
plus la nature comme modèle, on la compare au contraire aux images virtuelles fabriquées par l'homme, ce qui
est le signe d'une immersion dans une réalité de synthèse.
 Le glissement n'est pas nouveau. Il fait même partie de l'histoire de l'humanité. Parler d'images de
synthèse, de réalité augmentée ou virtuelle revient à parler de notre désir de façonner le réel. L'homme s'est
toujours caractérisé par sa capacité à intervenir sur son environnement, à le modeler selon ses souhaits. Ce que
permet la technologie n'est qu'une nouvelle étape du remodelage de la réalité.

Images de synthèse et images virtuelles : moins d'outils, plus de réalisme

 Une image de synthèse est une image obtenue en l'absence de support concret, mais qui est capable
d'imiter les outils ayant servi à la produire. Le grain du papier, le gras du fusain ou les couleurs pastel de
l'aquarelle, les couches plus épaisses de la gouache ou de la peinture à l'huile sont simulées à l'aide d'appareils
qui n'ont aucun rapide avec la pratique réelle des arts plastiques. Mais l'image de synthèse ne se limite pas à la
simulation : elle produit ses propres images avec des rendus extrêmement longs et difficiles à obtenir par des
moyens classiques, quand on y parvient. Un dégradé impeccable, des reflets métalliques ou humides sont
obtenus par infographie avec une précision supérieure à l'usage de l'aérographe des hyperréalistes.
 Cette substitution ne se limite pas à l'image : la musique électronique a connu la même révolution. Les
synthés et autres orgues électroniques simulent depuis longtemps une foule d'instruments et créent également des
sons nouveaux, que nul instrument ne saurait reproduire.
 L'art, qui imitait la nature, est à présent imité par la machine.
 Elle l'interprète également. Les images de synthèse permettent de visualiser des objets invisibles à l'œil,
parce que trop petits ou n'appartenant à notre spectre de vision, et d'autres qui n'existent pas en tant que tels mais
qui sont construits par l'interprétation d'une certaine somme d'informations. On peut ainsi "voir" de superbes
galaxies lointaines aux couleurs chatoyantes alors qu'on n'a fait qu'écouter des bruits dans une certaine longueur
d'onde ; un microscope électronique ne voit pas les atomes à l'aide d'un instrument optique mais interprète de
même des informations électromagnétiques. L'imagerie médicale, par TEP (Tomographie par Émission de
Positons) et IRM (Imagerie par Résonance Magnétique Nucléaire) permet de reconstituer le système digestif
d'un patient le long duquel le médecin se promènera ensuite à loisir, comme dans un jeu vidéo. On n'a jamais
réellement filmé l'intérieur du corps humain, mais on peut le voir comme s'il avait été ouvert. La plupart des
images que nous produisons sont donc loin de la réalité mais intègrent un certain nombre d'informations qui leur
donne du sens. Virtuel ne signifie pas irréel mais réel interprété.
 En cela, rien de neuf sous le soleil. Les peintures rupestres des hommes des cavernes étaient déjà une
interprétation de la réalité, et l'histoire de la peinture témoigne des tentatives pour imiter le réel, avec un rendu
toujours plus grand, ou l'interpréter, surtout à partir du moment où la photographie a rendu caduque la
représentation platement réaliste. Dans le cas de l'imitation comme de l'interprétation, il y a à la base une
intention de truquer le réel.
 Au XIIIe siècle, Giotto, alors élève de Cimabue, dessina sur un tableau de son maître qui s'était absenté
une mouche à l'apparence si réelle que Cimabue tenta de la chasser quand il la vit. L'anecdote montre que le
désir de donner réalité à nos productions, en abusant nos sens, est de tous temps. Par ailleurs, les trompe l'œil ne
sont rien d'autre que des leurres dessinés. Plus près de nous, l'hyperréalisme a le détail et le rendu d'un cliché
photographique.
 Mais on peut aller beaucoup plus loin dans le trucage avec les images virtuelles, qui ne diffèrent des
premières que par l'angle selon lequel on les considère : l'image de synthèse se définit par rapport aux moyens
utilisés, l'image virtuelle par rapport au contenu.
 On sait comme l'industrie du cinéma s'en est emparée pour représenter l'impossible et donner libre cours
à tous les fantasmes, à l'imaginaire le plus débridé, avec un saisissant effet de réalisme. Ce qu'on appelle trucage
et effets spéciaux n'est pas non plus nouveau : la photographie à peine née a suscité des trucages, certes grossiers
pour un œil contemporain, mais qui déjà annonçaient l'ère du faux dans laquelle nous sommes entrés. On allait
jusqu'à gratter le film pour remplacer un détail par un autre. Le cinéma, dès Méliès, s'engouffra dans les effets
spéciaux avec plus de rapidité encore que la photographie. Les techniques sont devenues toujours plus
sophistiquées jusqu'à l'apparition du numérique, dont la puissance de calcul permet de créer des mondes
entièrement simulés. Final Fantasy, le film, en est un bon exemple.
 Les auteurs de science-fiction n'ont pas manqué de se pencher sur les implications de l'usage immodéré
de tels moyens. Dans Remake, de Connie Willis, Hollywood est toujours aussi puissante mais n'utilise plus
d'acteur depuis longtemps ni ne tourne un seul film. On se contente de faire du neuf avec du vieux, la
modélisation des interprètes du passé permettant de les placer dans des situations nouvelles. C'est ainsi que
Marylin Monroe donne la réplique à Tom Cruise et que Charlie Chaplin tombe amoureux de Sharon Stone. Le
numérique annonce la mort de l'acteur, dans la perspective de belles économies pour des bénéfices identiques, à

moins qu'ils ne soient réinvestis dans les moyens techniques. Les majors ne s'en plaindront pas. On sait que les
acteurs sont tous des caractériels avec lesquels il est impossible de travailler et qui coûtent cher, en plus. Le film
Simone, où une créature virtuelle a le premier rôle, témoigne de cette tendance.
 Mais il y a fort à parier qu'on donnera ensuite au spectateur la possibilité d'effectuer lui-même les
modifications qu'il désire. Voici ce que pense d'un film étranger un personnage de La Tour des rêves, de Jamil
Nasir : "C'était une virtu – une bande virtuelle, avec des acteurs digitalisés – fauchée, pratiquement pas
interactive, avec juste quelques ébauches de scénarios alternatifs et sans fonction "en coulisses" permettant de
déshabiller et de programmer soi-même les vedettes, comme dans des virtus occidentales."
 On peut aussi offrir au spectateur d'être le héros d'une histoire : son image est synthétisée de manière à
se substituer à celle de l'acteur qui a joué le rôle.
 La retouche et la correction d'images, les incrustations, ont depuis si longtemps envahi notre quotidien
qu'on se méfie avec raison de ce que l'on voit. Alarmiste, la science-fiction avait mit l'accent sur l'usage
totalitaire de tels procédés, qui permettraient à des dictateurs de renforcer leur pouvoir par la désinformation.
Dans le 1984 de George Orwell, Winston est employé au Ministère de la Vérité pour maquiller les journaux,
réhabilitant ou supprimant des personnages selon la ligne officielle du parti. Sur les photos, des têtes
disparaissent et d'autres les remplacent. Les complots sont souvent de nature idéologique : dans le film
Capricorne One, les astronautes ne se sont jamais posés sur la Lune mais se sont livrés à une simulation filmée
visant à faire accroire la suprématie technologique des États-Unis. Il est cependant difficile de se livrer à de tels
trucages de la réalité sans se faire attraper. L'usage qui en est fait est davantage commercial et économique que
politique ou idéologique. Les top-models des magazines sont toutes retouchées pour que leur corps soit parfait
sur le papier glacé, et les incrustations publicitaires pullulent lors des retransmissions d'un match de foot.
 Mais si on peut éliminer les défauts physiques, on peut aussi s'attaquer aux problèmes moraux. Le
politiquement correct, les tenants d'une éthique rigide se sont toujours autorisés à censurer ce qu'ils jugeaient
inacceptable. Ce n'est pas neuf non plus, mais le numérique offre ici aussi de vertigineuses perspectives.
Toujours dans Remake, on s'attaque à tout ce que la société a prohibé et qui perdure sur la pellicule : l'alcool, le
tabac et la drogue sont soigneusement effacés des vieux films par conformité aux codes moraux en vigueur.
 On truque également sa propre image. Dans L'Enfance attribuée de David Marusek, les personnes se
rencontrent de façon virtuelle, par hologrammes interposés, et affichent une apparence qui leur semble flatteuse
ou correspond à l'humeur du moment.
 Le trucage des images ne posant plus aucun problème, la science-fiction s'est davantage intéressée à
multiplier les supports où les incruster. Les lunettes sur lesquelles s'inscrivent des messages n'ont déjà plus rien
de futuriste. La SF se contente de remarquer qu'il n'est pas très poli de s'abriter derrière ses lunettes pour lire son
journal pendant une conversation : elle invente les nouveaux codes sociaux qui seront en vigueur quand ces
pratiques se seront généralisées.
 Les murs des appartements sont tapissés de vidéos, qui peuvent interagir avec les occupants. Dans les
rues, des bâtiments holographiques décorent la ville et cachent la misère. Les vêtements constituent évidemment
un support idéal, bien que cela puisse être gênant quand on en change ou quand le tissu est élimé. Certains
auteurs lui préféreront donc le brassard, plus facilement transportable et plus économique. Les images sur les
vêtements servent davantage à afficher une publicité ou un motif ornemental, personnalisé, à la façon d'un tee-
shirt imprimé. Mais elles peuvent aussi devenir des outils de communication. Voici comment Greg Bear imagine
leur fonctionnement dans Éon : "Les symboles lumineux qui apparaissaient entre les deux hommes provenaient
de leurs pictotorques. Ces colliers qu'ils portaient autour du cou étaient des appareils capables de projeter le
langage parléographique qui s'était imposé au cours des siècles (…) Toller picta l'image déplaisante d'un nid
grouillant de créatures qui ressemblaient à des serpents. (…) Toller haussa les sourcils et picta quatre cercles
de surprise orangée." Autrement dit, le pictogramme est devenu un mode de communication rapide, capable
également de transmettre des émotions, à la façon des smileys qui ponctuent les e-mails.
 Mais pourquoi s'encombrer de gadgets ou de vêtements dont il faut parfois changer ? Il suffit de se faire
greffer des puces sous la peau, alimentées par l'électricité naturelle du corps humain, pour devenir à son tour un
logo ambulant. Dans Métrophage, de Richard Kadrey, les nouveaux peinturlurés urbains sont très à la page :
"Les traits du garçon étaient d'une pâleur lumineuse, son crâne lisse et chauve. Jonny reconnut sa dégaine :
c'était un zombi analytique. (…) L'archétype du zombi. Jonny vit toutefois des taches noires sur le crâne et les
mains du garçon, aux endroits où les pixels sous-cutanés avaient cramé ou avaient été détruits. Manifestement,
cela faisait plusieurs mois qu'il avait négligé tout entretien sérieux." Ce Zombi s'est donc fait "dermatténuer la
peau et pixeliser les couches profondes" pour afficher sur son corps les images de son choix. Et voici ce qui se
passe lorsqu'il est blessé lors d'un combat : "Le Kid était sur le dos, à demi conscient, la peau couverte de
serpents et de phosphènes. Écrasement de fichier, songea Jonny. Toutes les images de son logiciel ressortaient
d'un coup, hors de contrôle. Le bras tendu de Kid-la-Glisse se mit à clignoter comme un stroboscope pris de
folie : un bras de femme, un reptile, un robot industriel ; des araignées écarlates le couvraient de leur toile ;
couleur d'ambre, des caractères alphanumériques défilaient sur son visage déformé par la douleur : Brando,
Lee, Bowie, Véga ; le programme tournait en boucle, les visages s'enchaînaient de plus en plus vite, succession

clignotante fondue en un unique méta-visage imaginaire, incolore, multicolore, pour s'évanouir à l'instant même
où il se formait. La Glisse se releva, assis, jeta autour de lui un regard dément et partit d'un grand rire. Un
ultime éclat de chiffres binaires, et il s'affala de nouveau."
 Les images envahissent donc le réel, profitant du moindre support. Elles contaminent également
l'intimité de l'être, au-delà de la peau. Elles sont imprimées directement sur la rétine. Transmises par le nerf
optique, elles permettent déjà à un aveugle de voir a minima ; en SF, celui-ci voit en technicolor. Le mieux est
encore de les diffuser directement dans le cerveau : l'idée à présent très répandue des broches à la base du crâne
est presque devenue un lieu commun de la science-fiction, en littérature comme au cinéma.

Réalité augmentée

 Les lunettes permettent surtout d'afficher des informations qui se surimposent à la vision normale. Dans
Lumière virtuelle, de William Gibson, l'héroïne est poursuivie car elle est en possession d'une paire de lunettes
qui, pour peu qu'on active sa lumière virtuelle verte, dessine les plans des projets immobiliers des promoteurs de
San Francisco.
 Cette réalité augmentée, qui trouve des applications dans de multiples domaines, depuis la chirurgie
jusqu'à l'orientation dans l'espace, est surtout une réalité commentée, qui ajoute de l'information sur une image.
Ce n'est pas neuf non plus : on met de la valeur ajoutée partout. Un plan, une photo sur laquelle on a entouré des
bâtiments ou nommé une colline s'apparente déjà à la réalité augmentée. On parle bien, à propos de livres,
d'édition annotée et augmentée. Une voix off sur un film augmente également l'information visuelle par un
commentaire. Ce désir d'enrichir le réel de façon signifiante est si ancré en nous que nous ne le percevons même
plus : à l'époque du cinéma muet, un pianiste illustrait l'action avec ses gammes ; depuis l'ère du parlant, la
musique est un contrepoint indispensable à l'image, dont le rôle est de souligner les aspects émotionnels d'une
scène. C'est si évident qu'on s'en étonne dans les rares cas où aucun thème sonore n'accompagne le film. La
réalité a ensuite été contaminée par ce besoin d'illustration sonore : la musique dans les supermarchés, les
apparitions d'artistes au cirque ou dans une émission télévisée jusqu'au candidat politique qui entre en scène,
pardon, monte à la tribune, sur le rythme d'une marche triomphale.
 Ce qui change, c'est l'interactivité et la simultanéité, tout cela s'effectuant en temps réel.
 L'interaction avec l'image fait entrer l'homme dans une nouvelle dimension, où il manipule des objets à
distance. Ce pouvoir d'agir à distance fait également partie de la longue marche de l'humanité. Les armes, depuis
la lance jusqu'au fusil, en passant par les missiles à tête chercheuse, agissent sur des distances toujours plus
grandes. J'avais remarqué, dans mon roman L'univers en pièce, que l'expression "voie de communication" était
tombée en désuétude. On ouvre à présent des voies de transport. La communication n'est plus liée à la route, elle
n'est plus physique mais immatérielle, grâce au téléphone, à la télévision, à Internet, et transporte de
l'information, plutôt que des produits. Avant, il fallait se déplacer pour communiquer ; ce n'est plus nécessaire
aujourd'hui. Le déplacement est supprimé car, bien qu'on ait besoin d'aller de plus en plus vite, il est presque
impossible de se déplacer plus rapidement qu'on ne le fait aujourd'hui, en tout cas, d'aller plus vite que les outils
technologiques, ces extensions à nous-même. Si le titre de mon roman s'écrit sans "s" à pièce, c'est parce qu'on
préfère aujourd'hui faire venir le monde chez soi que sortir pour s'y déplacer.
 La commande à distance passait jusqu'alors par une interface : un bouton à presser, une manette à
relever. À présent, l'action est exécutée d'un simple geste, qui peut être un clignement de paupière, comme on l'a
vu lors de la guerre du Golfe, où un pilote est désormais capable de tirer avec l'œil. Arthur C. Clarke avait
stipulé, dans une de ses lois, que toute technologie suffisamment avancée est impossible à distinguer de la magie.
Effectivement, un individu du moyen-âge, voire du XIXe siècle, confondrait avec un magicien une personne
capable d'allumer des lumières d'un simple claquement de doigt ou de demander l'ouverture d'une porte à l'aide
de sa seule voix. Il la considérerait comme quasiment divine s'il la voyait manipuler des objets qui n'existent pas,
comme une molécule de carbone. C'est une autre distance dont on s'affranchit ici ; elle n'est pas spatiale mais
dimensionnelle. L'homme, qui a toujours cherché à étendre son domaine d'influence partout et à tous les niveaux,
de l'infiniment grand à l'infiniment petit, avec des télescopes et des microscopes, change radicalement d'échelle
en touchant ce qu'il ne pouvait jusqu'à présent manipuler que par outil interposé.
 Cette fois, la réalité augmentée ne dispense pas l'information à l'aide des codes usuels, comme l'écriture
ou les pictogrammes mais en se servant des "périphériques humains" par lesquels nous recevons de
l'information. Elle sollicite de plus en plus nos sens : après la vue, l'ouïe, puis le toucher et l'odorat en attendant
le goût. Les gants à retour d'effort, les casques de vision équipés de lunettes stéréoscopiques sont des outils qui
n'agissent plus à distance mais qui agissent sur nous. C'est un fantastique renversement de perspective : le corps
devient l'objet que l'on manipule via une interface. C'est lui qui devient un organe augmenté par les sensations
qu'il reçoit.
 Parler d'objet à propos de corps n'est pas anodin. Il est de plus en plus considéré comme tel. Les
chirurgiens ressemblent à des plombiers s'occupant de problèmes de tuyauterie ou à des mécaniciens remplaçant
les pièces défectueuses. Des analyses chimiques permettent de sonder cette machine biologique qu'on modifie

ensuite par l'injection de molécules. La nanotechnologie prévoit d'y envoyer des machines servant à évaluer,
modifier, réparer des cellules. Le mariage avec la cybernétique permet d'informer en temps réel "l'occupant" de
l'état de son "véhicule". Voici comment, en pleine action, un personnage de L'École des assassins, roman de
Gilles Dumay et Ugo Bellagamba, reçoit dans son cerveau des informations en provenance de son corps :
"Rythme cardiaque: 55 pulsations/minute, maximum enregistré durant la course : 75 pulsations/minute, retour
automatique à p.n.m. : 1% - OK, résorption nanomachines : 8 secondes". Tout son environnement est ainsi
analysé en permanence : "Augmentation de la densité de la peau : maximum tolérable. Identification de la
menace : 8 fusils d'assaut AEG cal. 5.56 – cartouches équipées de projectiles full metal jacket – vitesse de la
balle à la sortie du canon 1120 m.s-1."
 On comprend donc pourquoi Case, le voyou de Neuromancien, de Gibson, qui était auparavant
"branché sur une platine de cyberespace maison qui projetait sa conscience désincarnée au sein de
l'hallucination consensuelle qu'était la matrice" se sent devenir une épave quand on le prive de la possibilité de
se connecter : "Pour Case, qui n'avait vécu que pour l'exultation désincarnée du cyberspace, ce fut la Chute.
Dans les bars qu'il fréquentait du temps de sa gloire, l'attitude élitiste exigeait un certain mépris pour la chair.
Le corps, c'était de la viande. Case était tombé dans la prison de sa propre chair."
 En fait, Case ne voit plus son corps que comme une interface. Il se déréalise car il ne se sent exister que
dans la réalité virtuelle.

Une Virtualité bien réelle

 A présent que l'homme a dominé la nature, façonné son environnement, il ne lui reste plus qu'à créer sa
propre réalité dans laquelle il s'engouffrera car elle sera à sa (dé)mesure et à son goût. Cette fois, il ne s'agit plus
seulement d'éprouver quelques sensations cinesthésiques ou de commander des objets à distance, mais de
s'immerger dans le décor ainsi crée.
 C'est bien vers ce but que tous les efforts humains ont tendu depuis des siècles. Un intérieur, une
architecture, témoignent de la volonté de se doter d'un environnement adapté et non naturel. L'argent n'est rien
d'autre qu'une forme de troc où un des éléments d'échange est devenu virtuel, remplacé par un symbole auquel
on assigne une valeur. Plus tard, la monnaie est à son tour remplacée par des écritures sur papier dans un premier
temps, lettre de change ou chèque, sous forme entièrement virtuelle ensuite, l'argent électronique transitant par
carte de crédit ou par des saisies sur un écran d'ordinateur.
 Le fait que l'argent soit plus apprécié qu'un objet réel de même valeur est que sa dimension virtuelle le
rend, comme une cellule à son stade primitif, totipotente. Il peut se concrétiser en plusieurs objets. Il y a un
fantasme de l'argent, dans ce qu'il représente comme possibilité de consommation, et il y a de même un fantasme
de la réalité virtuelle. Ce n'est pas un hasard si chaque nouvelle révolution technologique, dont on vante d'abord
les vertus pratiques, se développe paradoxalement par l'assouvissement du plus répandu des fantasmes, celui du
sexe. C'était déjà le cas à l'époque du Minitel et du téléphone rose. Ça l'est encore avec Internet. Et on y songe
pour l'exploration d'univers virtuels.
 Cette superposition de sa propre création sur la réalité, avant l'évacuation de cette dernière, est à l'œuvre
dans Le Château des Carpathes, de Jules Verne. Certes, l'auteur n'y décrit que l'invention du cinéma et du
magnétophone, mais l'intrigue qu'il en tire est à nouveau basée sur une supercherie, un leurre : il s'agit de faire
prendre pour réelles, dans un but de vengeance, l'image et la voix de Stilla, une chanteuse décédée. L'homme qui
l'aimait croit devenir fou quand il voit et entend ce fantôme qu'il poursuit à travers les couloirs du château.
Orfanik, l'inventeur, utilise bien ses instruments dans le but de faire prendre pour réel ce qui ne l'est pas. Il est
symptomatique aussi de constater que ces inventions très modernes sont mises en scène dans une région
passéiste, où survivent mythes et légendes : ce sont bien deux mondes qui se rencontrent.
 Les premières manifestations de cette création d'un autre monde sont dans les communautés virtuelles,
chats, forums, qui établissent une proximité avec des personnes distantes dans l'espace. Gibson lance le terme de
cyberespace dans Neuromancien, accréditant l'idée qu'un nouveau territoire est à conquérir. Les images de
synthèse, après avoir nourri les univers fantastiques des jeux, sont investies dans des villes virtuelles où on se
promène, sur écran d'abord, en s'immergeant ensuite.
 Les lieux virtuels finissent par être aussi fréquentés que les concrets, à la différence que tout y est plus
rapide. Les sociétés y importent ou y adaptent l'organisation qu'elles avaient adoptées dans le monde réel. Dans
Le Samouraï virtuel, de Neal Stephenson, le Métavers est un univers virtuel établi le long d'une rue d'un milliard
de kilomètres de long où l'on travaille et s'amuse sous l'apparence de son choix. Les moins fortunés ne disposent
que d'un avatar en noir et blanc et se projettent depuis les cabines publiques aussi répandues que celles du
téléphone de nos jours.
 Dans Nécroville, de Iain McDonald, voici comment une avocate se connecte au tribunal virtuel pour y
plaider une affaire devant un juge tout aussi immatériel puisqu'il s'agit d'une Intelligence Artificielle capable de
gérer les procès avec l'impartialité et l'objectivité requises, sans jamais se lasser :
 "1er novembre 20 : 30 : 35 : 50. Temps moyen de Greenwich. Affaire numéro 097-0-17956-67-01.

 Dans une chambre en papier proche de Sunset, Yo-Yo Mok enjamba le cadre d'une fenêtre
événementielle et arriva sous Zurich, à deux mille mètres de profondeur.
 Zwingli II était impressionnant. Ses concepteurs suisses l'avaient conçu pour inspirer du respect envers
les procédures quasi divines de la justice. Ils avaient atteint leur but. Elle en restait bouche bée. Chaque fois.
 Yo-Yo se retrouvait sur une étroite corniche à un tiers de la hauteur de la face interne d'une pyramide
qui, si elle avait été réelle, l'eût surplombée de huit kilomètres. Quatre kilomètres plus bas, sa base eût recouvert
la majeure partie du Secteur Métropolitain de la Reine des Anges. Les parois noires de la construction virtuelle
frissonnaient et ondulaient de coulées lumineuses colorées : les logs légaux ne pouvaient franchir le portillon
de l'arène où seuls des esprits humains avaient l'autorisation de s'affronter. Mais elle les savait derrière elle, et
leur présence lui apportait de l'assurance, de l'audace. Redresse toi, Yo-Yo. Du calme. Du calme. Détends toi.
Garde la tête aussi froide que les processeurs immergés dans du CO2 liquide de Zwingli II. Des étoiles
scintillaient à l'intérieur du volume démesuré, des constellations qui brûlaient et mouraient. En permanence.
L'ordinateur judiciaire traitait simultanément soixante-dix mille affaires.
 La peau de la pyramide ondoya sous ses pieds et cracha un pont sur l'abîme miroitant.
 Debout. La séance est ouverte.
 Elle tendit un doigt gainé de noir et ceint d'argent et fut propulsée sur l'étroite passerelle. Un astre se
détacha de l'arrière-plan galactique et vint à sa rencontre en acquérant de la substance et de la netteté.
 Mon adversaire. Pas d'outrecuidance, pas d'orgueil mal placé. Ne va surtout pas t'imaginer que deux
cents Go de logs légaux corporadistos te permettront d'écraser à plate couture ces ploucs en djellaba. Ici,
Zwingli est le seul Dieu.
 Elle ouvrit la main et descendit au centre du tablier convexe du pont. Le vide au-dessus d'elle. Le vide
au-dessous. Des étoiles qui brasillaient. Son collègue était devenu un fantasme de jambes et de bras surmonté
d'une tête. Un homme stellaire. Avec la rapidité surnaturelle propre à la virtualité, il se posa devant elle."
 La possibilité de recréer un environnement de son choix incite à rhabiller de même le réel. La
décoration de la maison abandonne le papier peint pour l'image de synthèse qui autorise les rêves les plus fous,
tel celui de Consuela, qui, dans Les Synthérétiques de Pat Cadigan, a transformé son appartement en aquarium :
 "Il entra et se retrouva sous l'eau.
 Des rubans d'algues fluorescents de toutes les couleurs dressaient leurs molles ondulations au-dessus
du plancher océanique, éclairant d'un feu froid la semi-obscurité. Gabe hésita, laissa la porte se refermer dans
son dos puis avança d'un pas. Son pied passa au travers du plancher d'aspect pâle et mou et disparut ; il sentit
au-dessous un plancher plus conventionnel mais sans que l'illusion visuelle se dissipe. Consuela se débrouillait
comme un chef ; seuls les gens richissimes ou les grosses boîtes comme Alternatives avaient des projecteurs de
cette qualité.
 Une pieuvre d'un pourpre lumineux rampa au sommet d'un rocher qui lui arrivait à la tête ; l'animal le
regarda, faisant mouvoir ses tentacules avec une grâce sensuelle ; un poisson couvert de piquants sortit de
l'ombre et lui passa sous le nez comme un dirigeable compassé. Gabe plissa les yeux. Pas tout à fait un poisson :
les piquants étaient des aiguilles plantées sur des puces de silicium en guise d'écailles. Les énormes yeux marron
l'examinèrent avec une solennité glacée.
 « Que voulez-vous ? » lui demanda le poisson d'une voix de contralto féminin, dont le léger accent lui
était resté familier.
 « Salut, Consuela… C'est moi. Gabe Ludovic. »"
 Ce qui n'est encore qu'un décor immatériel prend vite davantage de texture avec l'introduction
d'effecteurs propres à apporter des sensations cénesthésiques. La combinaison munie de capteurs s'est bien vite
imposée comme le vêtement standard du virtuel. On suppose que ce genre de gadget, dans un premier temps, ne
sera pas donné et qu'il sera disponible, comme actuellement Internet dans les cybercafés, dans des lieux réservés
à cet usage, ce qui pose tout de même des inconvénients. Pat Cadigan, dans Vous Avez Dit Virtuel ?, en a tout de
suite pris la mesure : "– Attendez, répond-elle en agitant les bras pour diffuser l'odeur. D'ici une seconde, on ne
sentira plus rien. Ce truc-là vous endort le nez. On en utilise des tonnes ici, à cause des odeurs corporelles. Les
combis puent, voyez-vous. (…) On est obligés d'attacher les clients sur des couchettes, sinon ils bousilleraient les
combis à force de se rouler par terre et de se jeter contre les murs."
 Comme quoi, le réel ne se laisse pas effacer comme ça. Les effets, par contre, sont avérés. Même en ce
qui concerne les dommages physiques : "Une fois, il y en a qui s'est blessé avec, sans mentir ! A force de
s'exciter, il a réussi à s'entailler avec les sangles. Même qu'il avait des côtes cassées. Et vous savez la meilleure
? (…) La meilleure, c'est qu'au même moment, sa persona était prise dans une bagarre et qu'elle s'est cassé les
mêmes côtes."
 Cela peut-il aller jusqu'à la mort ? Elle se résume à une déconnexion dans Le Samouraï virtuel. Dans
Les Synthérétiques, une forte émotion peut provoquer une crise cardiaque. J'ai cependant supposé, dans Petites
Vertus virtuelles, qu'une combinaison bien conçue serait équipée de capteurs qui préviendraient ce risque en
arrêtant l'immersion virtuelle à la moindre alerte. Évidemment, le jeu consiste à chercher un moyen de
contourner ces précautions. Dans mon roman, l'affaire n'était possible qu'à condition de connaître

l'environnement de l'utilisateur pour l'amener à accomplir des actes dangereux, par le biais d'illusions. C'est ainsi
qu'un personnage mord un fil électrique sans le savoir.
 Pour éviter de sangler un internaute du futur sur une couchette, il convient de lui allouer un espace dans
lequel il peut se déplacer : des salles nues sont conçues à cet effet, qui se rempliront d'un décor virtuel au sein
duquel évoluer. Pour se connecter dans un café virtuel, le héros de L'Univers en pièce prend la précaution de
placer une bouteille réelle à l'emplacement où est censée se trouver celle que le serveur lui apportera, afin de
pouvoir réellement trinquer avec un interlocuteur physiquement absent. David Brin, dans sa nouvelle La Vie
naturelle™, imagine que la pièce repose sur un tapis qui suit les mouvements de la personne et se déforme pour
simuler les accidents de terrain.
 La simulation totale reste cependant l'immersion, grâce à une connexion neuronale reliant l'homme et la
machine. Les sensations n'ont plus besoin d'effecteurs : le rêve a, sur le plan émotionnel, les mêmes effets que
l'état de veille. S'immerger, de façon consciente, dans une autre réalité, en activant des zones du cerveau revient
à peu de choses près à consommer de la drogue ; les paradis artificiels sont également des substituts à la réalité, à
la différence qu'on n'en contrôle pas réellement ses effets. L'avocate de Nécroville recevant instantanément les
analyses et les sentences du juge virtuel est bien consciente de cette analogie :
 "Les données actives des murs fusionnèrent en nœuds serrés à la blancheur stellaire brûlante et
s'élancèrent sur l'étroit pont noir. Leur flot traversa Yo-Yo tel un raz-de-marée igné. Nul plaisir terrestre ne
pouvait être comparé à cette pénétration d'une micro seconde, au goût de l'omniscience savouré à l'instant où
les logs légaux éjaculaient des Go d'arguments dans le système.
 Si Yo-Yo était une piètre avocate, elle était une toxicomane hors pair."
 Cette connexion n'est pas sans danger : les virus peuvent à présent passer dans le cerveau, les
expériences traumatisantes transformer l'utilisateur en légume, à moins que celui-ci ne se perde dans un espace
virtuel d'où il ne revient jamais.
 Jean-Marc Ligny, dans Inner City, distingue la Basse Réalité, le réel, et la Haute Réalité, celle du
virtuel, plus une troisième catégorie, la Réalité Profonde, une sorte de no man's land, un abîme virtuel où
disparaissent les Inners ayant craqué leur console pour empêcher la déconnexion au bout de vingt-quatre heures.
Des équipes spécialisées dans la récupération des Inners en détresse s'emploient à les retrouver dans le
cyberespace avant la mort du voyageur, par déshydratation, faim ou épuisement. N'oublions qu'en Corée est
récemment mort un joueur qui était resté connecté dans un cybercafé 87 heures d'affilée. Les Inners s'égarent au
point de plus pouvoir réintégrer leur corps quand ils entrent en résonance avec l'inconscient collectif : "les inners
visualisent leur propre inconscient, leurs fantasmes, leurs désirs, mais aussi leurs angoisses, leurs frustrations,
etc.", ce qui les bloque dans une sorte d'état autistique dont ils ne ressortent pas seuls.
 On pourrait penser que ces incursions restent sans incidence sur l'utilisateur soucieux de sa sécurité
physique, hormis peut-être une tendance au dédoublement de personnalité à force de vivre entre deux univers, ce
qu'illustre Les Deux Sam, une nouvelle de Robert Reed où le protagoniste ne parvient pas à choisir entre sa
famille, notamment de sa femme atteinte d'un cancer, et son univers simulé dont il est le roi. Existe-t-il un risque
de confusion avec le réel ? Le protagoniste de La Vie naturelle™ est gêné d'éprouver un désir physique pour une
créature virtuelle à qui il a sauvé la vie, dans une simulation de la vie préhistorique : "Puis il y eut la pression de
son corps chaud qui se collait au mien, et qui s'avéra beaucoup plus confortable, en certains endroits, que je ne
l'avais imaginé. (…) Bientôt, je réalisai que Cheville de Girafe ne s'agrippait plus à moi pour être réconfortée.
Elle bougeait, et respirait, d'une façon qui n'avait rien à voir avec le réconfort moral." La confusion avec le réel
est notée par ce raccourci saisissant : "Ce n'était qu'un logiciel – des morceaux d'illusion sur une puce de
silicium. Et puis, je la connaissais à peine." Toute l'ambivalence du virtuel est là, dans les effets réels provoqués
par quelques octets. Le problème du narrateur est de savoir, si, en acceptant les avances de cette femme, il
commet ou non un adultère. La question est vite résolue : voulant en parler à sa femme, il la trouve dans sa
chambre de Virtualité, accroupie sur le sol qui s'est déformé pour dessiner les contours d'un homme. Son épouse
avait depuis longtemps résolu la question. Il n'en va pas toujours de même dans la réalité : un Israélien a
demandé à divorcer au motif que sa femme le trompait en se connectant sur des sites pornographiques.
 Ce risque de confusion est cependant mineur. Dans la plupart des romans, la distinction est toujours
bien établie entre le monde réel et l'univers virtuel. Seul un individu aliéné est susceptible de se comporter dans
la réalité comme s'il évoluait dans une simulation. Dans Idoru, de William Gibson, Rez, chanteur célèbre,
projette d'épouser une star du petit écran qui n'est rien d'autre qu'une idoru, c'est-à-dire une créature virtuelle.
Mais Rez est lui-même une icône, qui tente d'échapper à ses fans hystériques. Ce "mariage alchimique" n'est pas
la preuve d'une confusion mais un défi, une démarche artistique et philosophique, qui vise en même temps à
développer l'intelligence artificielle vers une véritable personnalité humaine.
 Quand les protagonistes ignorent qu'ils se trouvent dans un univers de synthèse, ce n'est pas par
confusion mais parce qu'une machination occulte la vérité. C'est le cas du film Matrix, où la machine domine
l'homme, et aussi celui de Dark City, où des extraterrestres ont falsifié les souvenirs des habitants pour les
plonger dans un environnement qui n'est qu'un simulacre dont ils peaufinent l'architecture chaque nuit, à minuit,
en arrêtant le temps. Dans ces exemples aussi, une fois admise l'existence d'un réel caché, la distinction entre

univers concret et virtuel est faite.
 Mais le fait de faire la distinction n'empêche pas les utilisateurs de préférer l'univers virtuel au point de
ne pas vouloir réintégrer le réel, forcément plus plat et plus trivial. Déjà, dans Futur Intérieur, de Christopher
Priest, certains membres d'une ville virtuelle, qui sert de laboratoire social dans la mesure où on y introduit des
problèmes contemporains afin de voir comment la société factice les résout, refusent de revenir dans la réalité.
Leurs corps, artificiellement nourris dans des caissons, massés par des intervenants extérieurs, dépérissent
lentement. Pour les obliger à se réveiller, il suffit d'agiter devant leurs yeux un miroir ; mais les plus malins
parviennent toujours à éviter les agents chargés de les ramener.
 Les contempteurs de la réalité virtuelle dénoncent cependant les ravages que peuvent provoquer une
mauvaise utilisation des univers virtuels : perte de la communication réelle, enfermement dans des fantasmes,
affadissement du réel. A se perdre dans le virtuel, on en vient à oublier que le concret n'a pas que des
inconvénients. Dans Inner City, des protagonistes égarés dans la Basse Réalité redécouvrent les rugueuses
sensations du réel et des plaisirs terrestres, notamment au contact de deux étonnantes grands-mères amatrices
d'alcool et de hasch.
 Pour Baudrillard, "l'absence des relations des gens par rapports aux autres, l'absence de soi par
rapport à soi-même, la non-identité définitive des choses" aboutit à une perte de sens car les référents s'effacent.
On ne sait plus quelle est la part de réalité derrière les images de synthèse. Baudrillard se défend d'avoir un
jugement moral sur des faits de société mais s'insurge contre le mensonge fait à nous-mêmes, le fait que nous
nous illusionnions et que nous remettions "en cause le principe de réalité". Ce que Gibson caractérise comme
une hallucination consensuelle établit une hiérarchie entre les deux univers, qui se fait de plus en plus au
détriment du réel.
 A cet égard, l'acte de foi de l'avocate de Nécroville est éclairant :
 "Le réseau est un domaine. Un potentiel. Un état. Une hallucination. Une zone intermédiaire. Un défi
lancé aux définitions spécieuses. Un article de foi. Un credo.
 Je crois en l'inviolabilité des mathématiques pures, appliquées et statistiques, créatrices et nourricières
de toutes les connaissances, langage sacré par lequel les réalités de l'univers sont le plus justement exprimées.
Je crois en la physique, la chimie, la biologie, la théorie quantique et la relativité générale, l'informatique et le
chaos (bien qu'il me soit impossible de faire un choix entre l'indécidabilité de Gödel et les incertitudes
d'Heisenberg). Je crois au Saint-Esprit de l'Information, aux journaux télévisés, à mes relevés de compte
bancaire, à la musique de ma chaîne hi-fi, aux amis qui apparaissent sur l'écran digital de mon Idcom. Je crois
en la résurrection nanotechnologique des corps et en la vie éternelle. Amen.
 J'y crois parce que j'ai la preuve que ça marche. Je n'ai nul besoin d'en comprendre les mécanismes. Je
sais que c'est efficace. Les gris-gris de la science ont un sérieux avantage sur les autres. La piété et la foi ne sont
pas nécessaires pour permettre d'atteindre le but recherché. Il suffit pour cela d'avoir de l'argent. Yahvé a fait
tomber la manne avec la rosée du matin pour nourrir les enfants d'Israël, mais à cette exception près ce sont par
les réseaux de virtuel-achat qu'on obtient du lait et du miel.
 Comme toute croyance, c'est un pur produit de l'esprit. Or, les esprits évoluent et, avec eux, les
doctrines sur le mode de fonctionnement du monde. Les modèles changent."
 Mettre le réel et le virtuel sur le même plan donne plus de crédibilité à ce dernier. Il n'est pas si
évanescent ni dénué de conséquences qu'on veut bien l'affirmer. Citant Nietzsche qui disait que les caméléons
changent mais ne deviennent pas, Baudrillard affirme qu'un adepte du virtuel ne devient rien de plus quand il
revêt plusieurs identités lors de ses connexions. C'est vrai et faux à la fois. Avancer masqué dans le but de
tromper autrui sur sa nature ou s'amuser à devenir un autre un peu plus valorisant est une façon de se leurrer
effectivement stérile, identique au mythomane qui cherche à impressionner son entourage par des mensonges.
Mais revêtir pour un temps une autre personnalité, vivre des expériences qui demeurent virtuelles, ne sont pas
sans effet sur l'individu qui en sort changé. Un livre ou un film totalement imaginaire a bien un impact
émotionnel, quand bien même on sait qu'on ne réagit qu'à une fiction. Une lecture peut transformer une vision du
monde, avoir des résonances qui modifient un individu, dans sa façon de penser et d'être. On s'enrichit également
de l'expérience des personnages fictifs. On en revient à la définition de la science-fiction, qui est une
"exploration de la virtualité rationnelle" pour reprendre l'expression de Gérard Klein : puisqu'on "se perd en
conjectures sur les conséquences à venir des univers virtuels, (…) faute d'expérience et de recul, c'est sans doute
à la lecture des textes de Science-Fiction que l'on peut rencontrer les réflexions les plus avisées", écrit-il dans sa
préface à L'Âge de diamant, de Neal Stephenson.
 Dans L'Âge de diamant, justement, un manuel interactif destiné à l'éducation des petites filles aisées
tombe entre les mains d'une gamine pauvre, défavorisée par la vie. Ce livre, qui s'adapte à son utilisateur, par les
contes métaphoriques qu'il imagine, par des jeux et des exercices, parvient à si bien transformer la fillette qu'elle
devient l'un des plus importants personnages de sa société, qu'elle contribuera à remodeler.
 Jadis, on partait en quête de soi, de son identité, en voyageant. L'exploration était le moyen de se
confronter au réel pour se connaître. À présent le voyage est virtuel, mais garde la même fonction. Sandy Torrès,
sociologue, note qu'"indépendamment des formes qu'elle peut revêtir, la fiction autorise des concrétisations de

notre «pouvoir-faire»", elle est un lieu où des mondes possibles peuvent être éprouvés. Les fictions, et le virtuel
également "donnent corps à nos désirs aussi bien qu'à nos craintes et permettent ainsi de prendre la mesure de
notre liberté et de nos possibilités d'action".

Vers l'abstraction

 Cependant, mettre le réel et le virtuel sur le même plan revient également, par réciprocité, à "virtualiser"
le réel.. Des penseurs et philosophes ont toujours émis des doutes sur la réalité du monde ou interrogé sa nature
et la fiabilité de nos perceptions, mais cette fois il s'agit d'une remise en question plus radicale. Dès 1964,
Galouye posait le problème dans Simulacron 3. Simulacron 3 est un simulateur d'environnement total, qui a crée
une société électronique en tous points conforme à la nôtre, afin d'étudier les réactions de la population virtuelle
face à certains changements. Les créatures électroniques n'ont aucune conscience d'évoluer dans un simulacre.
Le concepteur découvre alors qu'il en va de même pour son univers, recréation d'un méta-univers semblable au
sien. "Au sommet de la colline, une terreur glaciale me paralysa. (…) A une centaine de mètres plus loin, la
route s'achevait brusquement. Au-delà, le paysage s'interrompait net, comme tranché au couteau ! De chaque
côté du ruban d'asphalte, la terre elle-même sombrait dans une impénétrable barrière de ténèbres absolues."
 Le vertige provoqué par cette prise de conscience débouche sur un sentiment de néant. Rencontrant une
femme de cet univers supérieur, qui a projeté son esprit dans le simulacre afin de l'observer, le protagoniste
avoue son désarroi :
 "– Mais Jinx, je ne suis rien !
 Elle me sourit.
 – Moi non plus, en ce moment, je ne suis rien.
 – Mais tu es réelle ! Tu as une longue vie physique devant toi ! (…)
 – Non, Doug. Rien ne prouve que, même dans mon monde, les choses matérielles aient une substance
réelle. Quant à l'esprit, qui a jamais prétendu qu'il dût avoir un support physique à sa mesure ? S'il en était
ainsi, un nain ou un amputé en détiendrait moins qu'un géant hyperthyroïdien. Et ce que je dis est valable pour
tous les mondes. (…) C'est l'intellect qui compte (…). S'il existe une vie spirituelle, elle n'est pas davantage
refusée aux unités de ce monde qu'à celle du simulateur de Fuller ou aux gens "réels" de mon monde."
 Tout est dit. Et cette future acception de la conscience augure de la façon dont il faudra un jour
considérer les intelligences artificielles, des entités dignes du même respect et des mêmes droits que ses
concepteurs.
 Il n'en reste pas moins qu'on va vers une spiritualisation du monde, une abstraction qui en efface les
contours tangibles. Mais ce mouvement n'est que l'aboutissement de ce à quoi a toujours tendu l'homme. On a vu
combien les réalisations du passé, notamment à travers l'art, amorçaient une immersion dans une réalité virtuelle.
Dans le domaine de l'image, Yann Minh, plasticien et infographiste, observe que de tous temps les peintres ont
cherché à représenter de façon réaliste des événements, des décors et des lieux imaginaires1. Sa filiation va de
Breughel à Christopher Foss et Manchu en passant par les peintres de la Renaissance. Ce qu'il nomme
"hyperréalisme immersif qualifie une démarche spécifique, une motivation d’auteur, à la fois dans le monde des
arts plastiques, comme dans celui du cinéma ou du jeu vidéo, de favoriser l’immersion du spectateur dans une
cosmogonie imaginaire et spéculative, en s’efforçant de simuler le plus précisément possible nos modes de
perceptions sensuels et sensoriels, tout en investissant l’œuvre d’une charge émotionnelle forte. En particulier,
en simulant de la façon la plus réaliste possible nos perceptions visuelles, mais aussi nos perceptions auditives,
et parfois tactiles. (…) L'hyperréalisme immersif est l’expression de notre besoin ancestral de pouvoir
communiquer et transmettre de l’information, de l’émotion à nos semblables avec le plus d’efficacité et de
fiabilité possible. Quoi de plus efficace en termes de transmission de l’information que de pouvoir immerger
l’interlocuteur dans une cosmogonie artificielle et maîtrisée qui sera d’un réalisme en tous points semblable à ce
que nos sens nous font percevoir de la « réalité » à chaque instant ?" Pour Yann Minh, l'exploration de la
noosphère n'est que le dernier avatar de cette immersion toujours plus totale.
 Finirons-nous, comme dans le livre de William Hjortsberg, Matières grises, dans des boîtes abritant nos
cerveaux, nos consciences, dans l'attente d'un corps ou comme les protagonistes numériques de Jour de noces, de
Pierre Bordage, qui attendent que la terre soit à nouveau habitable ? Ou encore comme ces entités désincarnées
d'Un Feu sur l'abîme qui se passent désormais de support physique ? Pour Philippe Quéau, directeur de
l'information et de l'informatique à l'UNESCO, "le virtuel est en train de devenir le paradigme fondamental de
notre civilisation". "La véritable réalité de l'homme est dans sa virtualité, dans sa capacité virtuelle à
transformer le monde. (…) Le virtuel est au sens propre une réalité intermédiaire". S'il nous aide à mieux
comprendre le monde, et à nous réaliser, le danger que repère Philippe Quéau est "de nous désensibiliser, de
nous couper de nos racines humaines et sociales les plus profondes". Ce risque de désincarnation n'est pas nul,
mais peut-être faut-il y voir, plutôt qu'un anéantissement, une étape vers une autre forme d'humanité et de réalité,

1 Son argumentation est lisible sur son site : http://www.yannminh.com/hyperealism/

un état supérieur permettant également d'accéder à une conscience supérieure.
 La Cité des permutants de Greg Egan, présente un individu ayant réussi à réaliser une copie numérique
de lui-même. C'est là qu'il constate que l'homme peut survivre sans support informatique : la trame de l'univers
devient l'assise de l'esprit. Il accède en quelque sorte à l'immortalité et s'enrichit en proposant le procédé à des
milliardaires qui, devenus simulations, vivent dans la cité virtuele parfaite, Permutation City, qu'il a crée à leur
effet. À présent, seul ce qui est pensée existe. Egan pose les problèmes d'identité lié à la duplication, qui peut
être en grand nombre ; une copie est-elle encore humaine ? Les abîmes métaphysiques qui s'ouvrent sous nos
pieds, sous-tendus par des théories cosmogoniques et de physique quantique, donnent le vertige.
 Nous ne serions plus que de l'information qui se moque de savoir quel support elle utilise, support qui
est d'ailleurs est en passe de se modifier plus vite que prévu par les miracles de la génétique. Cité par Norman
Spinrad, Greg Bear avait un jour demandé dans un débat sur le courant cyberpunk : "Combien d'entre-vous
pensent-ils que les gens auront un aspect reconnaissable comme humain d'ici cinquante ans ?" En voyant toutes
les mains levées, il répondit : "Vous vous trompez tous." Son roman La musique du sang présente de l'ADN
utilisé comme mémoire vive d'ordinateur. L'expérimentateur s'injectant les noocytes pour éviter qu'o ne détruise
ses réalisations jugées dangereuses voit son corps se transformer, les noocytes repérer le siège de l'intelligence,
puis contaminer l'univers entier, dissociant les molécules de la matière pour les combiner différemment et
intégrer les personnalités de l'humanité dans une seule méta-conscience où chacun garde cependant son
individualité. L'esprit supérieur ainsi crée coupe ses liens avec le monde physique pour poursuivre ailleurs son
évolution.
 Les réalités virtuelles nous entraînent décidément très loin. Mais cette désincarnation ne correspond-elle
pas à notre nouvelle perception de l'univers ? Les récents développements de la physique tendent à prouver que
la matière est faite d'information et que les paradoxes de la physique quantique se dissipent lorsqu'on considère
celle-ci sous l'angle de l'information. De la sorte, nous ne ferions, une fois de plus, que nous conformer à la
réalité, à y coller au plus près plutôt que de nous en éloigner.
 Le réel est devenu immatériel, voire subjectif comme chez Greg Egan. Faut-il s'en inquiéter ? Le
déplorer ? Ou l'accepter comme une évolution inéluctable à laquelle l'humanité accèdera un jour, s'il ne se détruit
pas entre-temps. Personnalité électronique évoluant dans un univers virtuel, nous aurons aimé et souffert,
éprouvé des sensations, nous aurons échangé de l'information. Nous aurons mis de l'intention, donc du sens quel
que ce soit le niveau de réalité et d'abstraction où nous nous situerons. En d'autres termes, nous aurons vécu.
 Tout ceci n'est bien sûr que spéculation science-fictive et rien ne permet d'affirmer que ces futurs
virtuels se concrétiseront. Mais le simple fait d'évoquer ces fictions qui vont aussi loin que l'imaginaire peut
porter permet de poser sur notre présent un regard, qui je l'espère, l'enrichit ou tout au moins le questionne
utilement.

Claude Ecken

BIBLIOGRAPHIE DES TITRES CITES :

Éon Greg Bear Le Livre de Poche 7162
La musique du sang Greg Bear J'ai lu 2355
Jour de noces Pierre Bordage in Galaxies 21, été 2001
La Vie naturelle™ David Brin DLM, Cyberdreams 01
Les Synthérétiques Pat Cadigan Denoël, Présence du futur 537 & 538
Vous Avez Dit Virtuel ? Pat Cadigan J'ai lu 6407
L'École des assassins Gilles Dumay, Ugo Bellagamba Bifrost/Etoiles vives
L'Univers en pièce Claude Ecken Fleuve Noir 1521
Petites Vertus virtuelles Claude Ecken Baleine, Macno 11
La Cité des permutants Greg Egan Livre de Poche 7224
Neuromancien William Gibson J'ai lu 2325
Lumière virtuelle William Gibson J'ai lu 3891
Matières grises William Hjortsberg Pocket 5129
Métrophage Richard Kadrey Denoël, Présence du futur 491
L'Enfance attribuée David Marusek Bifrost/Etoiles vives
La Tour des rêves Jamir Nasil Pocket 5758
1984 George Orwell Folio 822
Futur intérieur Christopher Priest Pocket 5335
Les Deux Sam, in Chrysalide Robert Reed Imaginaires sans Frontières
L'Âge de diamant Neal Stephenson Livre de Poche 7210
Le Samouraï virtuel Neal Stephenson Livre de Poche 7221
Le Château des Carpathes Jules Verne Livre de Poche
Remake Connie Willis J'ai lu 4429

Bibliographie critique :

Roger BOZZETTO, Science-fiction et ordinateurs : un mariage d'amour ou comment l'imaginaire nourrit-il la
technique au point de lui fournir des idées ?, in Métaphores n°20-21-22, Actes du quatrième colloque
international de science-fiction de Nice, tome 1, Centre d'étude de la métaphore, Nice, 1992.
Jean-Claude DUNYACH, Science-fiction et ordinateurs, in Galaxies n°1, Nancy, 1996.
Groupe ETI, Rencontre avec Jean Baudrillard, in Zénon n°6, Toulouse, 2000.
Gérard KLEIN, Préface à L'Âge de diamant, Neal Stephenson, Livre de Poche 7210, Paris, 1998
Yann MINH, L’hyper-Réalisme immersif en art plastique et en SF, http://www.yannminh.com/hyperealism/,
2002
Louise POISSANT, Réel ou virtuel : l'art et les nouvelles technologies, in Métaphores n°20-21-22, Actes du
quatrième colloque international de science-fiction de Nice, tome 2, Centre d'étude de la métaphore, Nice, 1992.
Philippe QUÉAU, Multiplicités virtuelles, in Zénon n°6, Toulouse, 2000.
Norman SPINRAD, Les Neuromantiques, in Univers 1987, J'ai Lu 2169, Paris, 1987.
Bruce STERLING, Préface à Mozart en verres miroirs, Anthologie de Bruce Sterling, Folio SF 49, Paris, 2001
Sandy TORRES, Espaces du cinéma de science-fiction, in Zénon n°6, Toulouse, 2000.

 Je tiens à remercier à Yann Minh pour son aide ainsi que sa relecture attentive et critique.

Validation d’un processus de traitement allant de la capture du mouvement à
l’ immersion de sujets en réalité virtuelle : application au tir au handball

Benoit Bideau(1), Laetitia. Fradet(1), Franck Multon(1), Stéphane Ménardais(2), Richard
Kulpa(1), Bruno Arnaldi(2)

1-Laboratoire de physiologie et de biomécanique de l’exercice musculaire av charles Tillon
350044 Rennes

2-IRISA projet SIAMES campus universitaire de Beaulieu 35042 Rennes

Benoit.Bideau@uhb.fr

Résumé : . Cet travail consiste à évaluer toute la chaîne allant de la capture du mouvement à l’ immersion de
sujets en réalité virtuelle. En effet, de nombreux paramètres peuvent faire que le sujet ne réagisse pas comme
dans le monde réel : qualité des modèles géométriques, mise à l’échelle de la scène projetée, réalisme des
mouvements, comportement des humanoïdes… Dans la littérature, l’ impact global de ces paramètres a été
étudié en évaluant la présence. Cependant, encore peu d’études ont cherché à évaluer chaque paramètre
isolément. Nous proposons une nouvelle méthode pour évaluer un processus particulier permettant d’ immerger
un gardien de handball dans un environnement virtuel habité de joueurs synthétiques. Une étude préalable de la
gestuelle du gardien en situation réelle nous permet de vérifier que ses réactions dans l’environnement virtuel
sont réalistes. Dans cet article, nous insistons sur le processus qui a permis d’animer les joueurs synthétiques
afin de montrer que ces techniques d’animation produisent des mouvements suffisamment réalistes pour
déclencher des réponses réalistes du gardien de but.

Mots-clés : Evaluation de la présence, capture du mouvement, application sportive, réalité virtuelle, animation

1. Introduction
L’utilisation de la réalité virtuelle est de plus en plus répandue. Cependant, on peut s’ interroger sur la manière
dont les sujets perçoivent l’environnement virtuel. La présence dénote la sensation subjective d’un sujet d’être
dans le monde virtuel. Cette sensation a été souvent étudiée au travers d’études comportementales [SVK01].
L’environnement virtuel doit être le plus proche possible du monde réel, comme la montré Hodgins [HOT 98]: la
qualité du model géométrique semble jouer un rôle important dans le réalisme des scènes animées. En plus du
réalisme graphique, les humanoïdes synthétiques peuplant l’environnement virtuel doivent agir comme des
acteurs réels.
Le mode d’ interaction avec l’environnement virtuel a aussi un rôle important à jouer. Différentes formes
d’ interactions peuvent avoir lieu entre les différents agents. Noser [NPCM96] a expérimenté l’ interaction entre
un joueur de tennis réel (représenté par son avatar) et un joueur virtuel. Le joueur virtuel était un agent perceptif
et interactif guidé par un modèle comportementale. Cependant l’avatar était simplement représenté par une partie
du corps composé du bras et de la raquette. Le mouvement capturé du joueur réel était rejoué avec ce bras
virtuel sans tenir compte des détails du geste. De même, les effets donnés à la balle ainsi que les déplacements
complexes du joueur sur le cours n’étaient pas pris en compte. Molet [MBT96] a réalisé une expérience avec
deux joueurs qui interagissent entre eux dans un environnement distribué via VLNET [CPNMT97]. Les deux
joueurs voyaient leur propre avatar (bras et raquette) jouer avec l’humanoïde virtuel. Comme dans l’étude
précédente, l’utilisateur ne pouvait pas jouer au tennis comme dans le monde réel. Cette forme de jeu virtuel ne
peut pas être directement appliquée à l’étude de mouvement sportif d’athlètes de haut niveau.
D’autres applications sont dédiées à l’évaluation et l’entraînement de sportifs. Par exemple la réalité virtuelle a
été utilisée pour tester des stratégies en sport collectif en immergeant un entraîneur dans une phase de jeu
simulée [MM00]. Dans ce jeu l’entraîneur doit donner des ordres aux joueurs synthétiques pendant que les
opposant sont dirigé par un modèle comportementale. Cependant les comportements simulés ne sont pas
comparés à une situation réelle et l’entraîneur ne réagit pas comme dans une vrai match mais utilise des
métaphores pour diriger son équipe. D’une autre manière des bobsleigheurs se sont entraîné sur un simulateur
pour les jeux olympiques d’hiver [HH96]. Dans cette étude le simulateur a été créé pour que le conducteur du
bobsleigh réagisse comme dans le monde réel, sans vraiment le vérifier.

Pour résumer, les travaux antérieurs sur la réalité virtuelle sont généralement basés sur des métaphores pour
animer les avatars. Toutefois, on peut s’ interroger sur le réalisme des réactions des sujets, avec ce type
d’ interaction. Nous proposons de mettre en place une expérimentation entre un gardien de but de handball réel et
un tireur virtuel. Cette expérimentation vise à valider les choix techniques qui sont mis en œuvre pour immerger
le sujet dans un terrain virtuel de handball. En particulier, la qualité de l’animation de l’avatar est essentielle
pour assurer un bon niveau de présence.
Pour animer les acteurs virtuels, plusieurs techniques peuvent être envisagées. Les techniques de motion warping
ont été expérimentées en modélisant les trajectoires dans le domaine temporel [WP95] ou fréquentiel [UAT95].
L'inconvénient principal du domaine fréquentiel est le manque de la contrôlabilité du mouvement résultant. En
effet changer le poids d'une harmonique n'est pas intuitif et nous conduit à un processus itératif d'essai-erreur. Le
fait d’utiliser des points de contrôle ou d’ajouter des contraintes spatio-temporelles [WK88] est plus intuitif. Les
mouvements capturés doivent être corrigés afin de pouvoir être employés pour une telle méthode. Par exemple,
le bruit doit être filtré et des corrections anatomiques doivent être exécutées [MBT96][BRRP97]. Pour notre
application, l’animation procédurale [Z82][BMT90][BC96] et la simulation dynamique
[ADHMT89][HWBO95][MNH99] ne sont pas appropriées. En effet, même pour des modèles précis, les
mouvements synthétiques ne peuvent pas être comparés à ceux mesurés dans de vrais phases de match.
Une dernière approche consiste à adapter des mouvements capturés à l’environnement virtuel mais cela pose un
certain nombre de problèmes techniques : conserver le contact des pieds avec le sol, s’adapter au squelette
synthétique, éviter les glissements sur le sol, gérer une animation complète à partir de plusieurs petites
séquences… L’adaptation de mouvements capturés à des squelettes et des environnements synthétiques est,
toutefois, une étape préliminaire à toutes les précédentes approches. Gleicher [G98] propose une méthode
permettant d’adapter un mouvement capturé à un personnage de morphologie différente et à un environnement
différent [GL98]. Le problème de l’adaptation d’un mouvement à une morphologie différente est de respecter les
contraintes particulières de ce mouvement. Par exemple, un pointage ou une préhension contraignent la position
cartésienne d’un ou de plusieurs éléments du squelette. A l’ inverse, un mouvement de gymnastique doit garantir
une posture globale répondant à des contraintes sur les angles aux articulations. Les contraintes à respecter
doivent être spécifiées pour chaque mouvement étudié et aucune méthode générale ne semble répondre, à l’heure
actuelle, à tous les cas de figure.
En plus d’adapter un mouvement élémentaire à un squelette et à un environnement, l’animation de personnages
synthétiques nécessite généralement de générer des mouvements complexes. Ceci peut être obtenu en
mélangeant des mouvements élémentaires [BBE97]. Dans ce cas, plusieurs problèmes se posent : gérer la
continuité du mouvement, assurer que les contraintes géométriques et non-holonomes sont respectées…
Toutes ces techniques d’animation modifient les trajectoires capturées originelles et peuvent donc dégrader le
réalisme du mouvement. Un moyen de vérifier la validité des mouvements ainsi modifiés est d’utiliser la réalité
virtuelle. Nous proposons, dans une application liée au handball, de vérifier qu’un gardien de but réagit de la
même manière à des tirs virtuels ainsi modifiés qu’à ceux (réels) qui ont servi à calculer les mouvements de
l’avatar. Dans un premier temps, nous présentons la démarche générale de cette approche. Nous décrivons
ensuite les différentes phases utilisées pour animer l’adversaire synthétique du gardien de but. Nous présentons
ensuite les résultats de cette expérimentation pour conclure sur l’ intérêt de ce type d’expérimentation

2. Organisation générale
La première partie de cette étude est une expérience préliminaire impliquant le gardien de but et le tireur de
handball lors d’une rencontre sur un terrain réel de handball. Les deux protagonistes étaient équipés de
marqueurs infrarouges qui permettaient de capturer leurs mouvements en 3D. Le système utilisé était un
Vicon370 (Oxford Metrics) composé de 7 caméras infrarouges, synchronisées à 60Hz. Le but de cette étude était
de capturer le tir au but d'un vrai joueur de handball ainsi que le mouvement correspondant du gardien (cf. figure
1). Par conséquent, nous avons analysé la réaction du gardien face à différents tirs. Pour chaque catégorie de tir,
nous avons identifié les contraintes spatio-temporelles qui lient les mouvements du tireur et du gardien.

Figure 1 : capture des mouvements d’ un gradient de but et d’un tireur .

Une fois les mouvements du tireur capturés, plusieurs traitements sont nécessaires pour animer un joueur
synthétique de la même manière :
1. Adaptation des mouvements capturés à des humanoïdes synthétiques,
2. Animation temps réel de joueurs synthétiques de handball.
Notre objecti f est de vérifier que les traitements génèrent un mouvement suffisamment réaliste pour engendrer
les mêmes réactions chez le gardien de but. Ceci a fait l’objet d’une seconde expérimentation.
En effet, dans la deuxième partie de l'expérience nous avons placé le même gardien de handball dans un stade
virtuel afin de jouer contre un tireur virtuel. Nous avons employé un système de réalité virtuelle composé d'une
SGI Onyx2 InfiniteReality dont les sorties vidéo sont redirigées vers trois vidéoprojecteurs Barco 1208S
synchronisés. L’ image était projetée sur un écran semi-cylindrique (avec un rayon de 3,80m, une taille de 2.38m
et un champ visuel 135°). Pour obtenir un vrai comportement du gardien nous avons reconstruit un
environnement aussi réaliste que possible en reproduisant les repères visuels bien connus du joueur. Un des
repères les plus importants était le but qui était physiquement placé au centre de la salle de réalité virtuelle. Une
calibration entre l’environnement virtuel et réel a été effectuée. Ainsi, l’ image retransmise sur grand écran
permettait de reconstruire un stade à échelle 1. Pour étudier les mouvements du gardiens, nous avons une fois de
plus utilisé le système de capture du mouvement Vicon370. La plate-forme de réalité virtuelle et le système
Vicon n’étaient pas physiquement synchronisés et aucun signal de départ n’était donné au gardien. Celui-ci
devait juste essayer de parer les tirs virtuels qui lui étaient proposes: vingt quatre tirs qui ont été choisis de
manière aléatoire parmi l’ensemble des tirs capturés lors de la première expérimentation. Ces tirs ont été divisés
en trois catégories :

�
 Tirs à 6 mètres en appui, dans cette catégorie nous avons utilisé trois tirs capturés.

�
 Tirs à 6 mètres en suspension, dans cette catégorie nous avons utilisé quatre tirs capturés.

�
 Tirs à 9 mètres en appui, dans cette catégorie nous avons utilisés quatre tirs capturés.

Tous les tirs ci-dessus ont été joués deux fois, mélangés aux autres essais, de manière à éviter que le gardien
puisse identifier les tirs. Entre chaque tir, le gardien se repositionne dans son but et attend la prochaine épreuve.
Nous décrivons maintenant les différentes phases qui ont permis de restituer les mouvements du tireur dans
l’environnement virtuel.

3. Adaptation des mouvements capturés à des humanoïdes synthétiques
Les humanoïdes de synthèse utilisés pour cette expérimentation utilisent 26 degrés de liberté :

• Trois rotations à l’épaule
• Une rotation au coude,
• Trois rotations au niveau du torse,
• Trois rotations et trois translations au niveau du pelvis (considéré comme l’origine de la hiérarchie),
• Trois rotations à la hanche,
• Une rotation au genou,
• Une rotation à la cheville.

7 caméras infrarouges cadencées à 60 Hz (faisant partie du système Vicon370, Oxford Metrics) ont été
placées de manière à couvrir un champ de mesure de 12 mètres par 6 mètres. Pour couvrir cet espace et mieux
appréhender le mouvement du tireur et du gardien, nous avons disposé les caméras en cercle autour de la surface
de jeu. Les sujets étaient ensuite équipés de 26 marqueurs infrarouges qui permettaient la reconstruction 3-D de
repères anatomiques. La figure 2 représente, à gauche, le sujet vu grâce aux marqueurs infrarouges et, à droite,
l’humanoïde synthétique utilisé pour l’expérimentation.

Figure 2 : Placement des marqueurs infrarouges et humanoïde synthétique utilisé lors des
expér imentations.

A partir de ces marqueurs externes, placés sur des repères anatomiques peu sensibles aux glissements de la peau,
nous développons maintenant le processus qui nous permet d’animer au plus juste le joueur synthétique. Ce
processus se déroule en 4 étapes pour chaque animation capturée [MM01] :

Figure 3 : processus de traitement des mouvements capturés pour l'animation de joueurs synthétiques.

1. à récupérer les points manquants qui sont dus à des occultations pendant la capture. Pour cela, nous utilisons
un fichier de paramètres décrivant la structure du squelette humanoïde (mesurée lors de la capture du
mouvement grâce à une posture pour laquelle les longueurs de chaque segment sont mesurées). Un graphe
non-orienté définit des contraintes de distance entre deux marqueurs appartenant au même segment corporel.
Les nœuds de ce graphe sont les marqueurs, les arcs entre deux nœuds représentent une notion de contrainte
de distance. Les arcs sont associés à la longueur séparant les deux marqueurs. Ces longueurs, supposées
constantes pendant le mouvement, permettent de calculer les points manquants en minimisant l’ensemble
des contraintes avec ces voisins dans le graphe. Soient quatre marqueurs V1, V2, V3 présents, et M, à
reconstruire. d’1, d’2 et d’3 représentent respectivement les distances séparant M de V1, V2 et V3. M’ est
une approximation de M, à partir d’une interpolation naïve de M dans le temps. Cette première interpolation
ne tient pas compte des contraintes de distance. M est reconstruit en modifiant M’ pour qu’il corresponde au
mieux (au sens des moindres carrés) aux distances d’1, d’2 et d’3 (cf. figure 4).

Figure 4 : recontsruction d'un point manquant à par tir de ses trois voisins.

2. à reconstruire les repères associés à chaque segment corporel à partir des repères anatomiques. Par exemple,
le centre du poignet est retrouvé à partir des deux marqueurs positionnés sur la tête de l’ulna et du radius. Le
même type d’hypothèse est utilisé pour retrouver les autres centres articulaires qui composent ainsi les axes
principaux des repères liés à chaque segment corporel [D95].

Figure 5 : reconstruction des centres ar ticulaires à par tir des marqueurs externes.

3. à calculer les quaternions à chaque pas de temps pour obtenir les trajectoires articulaires nécessaires à
l’animation du personnage synthétique.

4. à adapter le mouvement au squelette synthétique qui a, en général une taille différente de celui du sujet
[MM01].

En sortie de ces étapes, plusieurs mouvements, adaptés à l’humanoïde synthétique, sont disponibles.

4. Animation temps réel de joueurs de handball
Les étapes présentées ci-dessus doivent être effectuées pour tout mouvement capturé. Afin d’offrir une plus
grande liberté de mouvement au joueur synthétique, nous avons capturé des trajectoires de course, de marche et
de tir au but. Ces trajectoires sont capturées indépendamment les unes des autres.
Le joueur synthétique doit être capable d’enchaîner et de mélanger ces trajectoires pour obtenir un mouvement
complexe qui corresponde à une situation réaliste de jeu. Cette situation inclut le déplacement du joueur, le tir et
son replacement sur le terrain. Il est donc nécessaire d’enchaîner ces actions de manière réaliste.
Pour cela, des priorités sont associées à chaque mouvement et évoluent continûment au cours du temps en
fonction des besoins de l’animation [M03]. Ces priorités indiquent, pour chaque degré de liberté l’ importance
relative de chaque mouvement. Prenons l’exemple d’une marche normale, suivie d’une marche fatiguée puis
d’une course (figure 6).

Figure 6 : mélange de mouvements capturés (marche normale, marche fatiguée et course) appliqués à un
personnage synthétique.

La locomotion fait intervenir principalement les membres inférieurs. Les trois mouvements de locomotion ont
donc une priorité importante sur les articulations de la hanche, du genou et de la cheville. Inversement, ils ont
une importance plus relative pour le haut du corps qui peut donc effectuer une autre tâche en parallèle.
Supposons maintenant que, pendant la séquence de la figure 6, un lancer de ballon doive être effectué. Le lancer
de ballon fait principalement intervenir le haut du corps. Par contre, le bas du corps intervient moins dans ce
lancer. En résultat, le bas de corps est principalement animé grâce aux mouvements de locomotion (priorité
importante) même si ces mouvements sont légèrement modifiés par le lancer. A l’ inverse, sur le haut du corps, le
lancer a une priorité importante mais le mouvement est légèrement modifié par la locomotion.
En plus de ce mélange de mouvements, il est possible de séquencer les animations. Pour cela, la priorité de
chaque mouvement augmente et diminue continûment respectivement en début et en fin de séquence. Cette
augmentation (resp. diminution) continue permet de lisser les transitions entre deux gestes.
Cette technique ne fonctionne que si les postures de début et de fin sont suffisamment proches, sans quoi, même
avec une interpolation linéaire, la séquence résultante est totalement irréaliste. Dans notre application, nous
séquençons des mouvements proches : différentes locomotions et un tir. Les différentes locomotion sont
séquencées en prenant soin que le pied d’appui en fin de mouvement corresponde bien au même appui au débuts
de l’autre. Le tir au but s’effectue toujours avec un pied l’un devant l’autre (le pied avant est aussi appelé pied
d’appui). De plus, le tir s’effectue généralement après une locomotion si bien que le séquencement d’une marche
ou d’une course avec un tir s’effectue sans discontinuité majeure.
Nous aurions pu utiliser des techniques de séquencement de mouvement comme ceux proposés par Gleicher
[G98] mais nous avons préféré cette solution qui garantit une réponse rapide de l’humanoïde aux consignes, tout
en assurant une fluidité et une continuité dans le geste.
Lors des expérimentations, il a été impossible de capturer correctement le mouvement du ballon sur la totalité du
volume de capture. De plus, en réalité virtuelle, nous voulions être capables de modifier la trajectoire du ballon
soit de manière artificielle, soit pour répondre à une adaptation du geste du tireur. C’est pourquoi nous avons
choisi de modéliser le ballon comme un système mécanique, en négligeant les forces de frottement. Pour ce
modèle, les paramètres d’entrée sont :

• la vitesse du ballon mesurée grâce à un radar à main Radargun (Vr),
• la position du ballon au moment du lâcher (X0),
• et la destination du ballon dans le but (mesurée lors des expérimentations) (Xf).

Avec ces paramètres, il est possible de connaître la trajectoire du ballon à chaque instant :

��
��
�

++−=
+=
+=

00
2

00

00

2
1 ztVgtz

ytVy
xtVx

z

y

x

(1)

où g est l’accélération de la gravité, et X0=(x0, y0, z0). Le radar était placé dans la direction du tir et mesurait donc

() ()20

2

0
yx VV + alors que la balle suivant une trajectoire longue de () ()2

0
2

0 yyxxl ff −+−= mètres dans le

plan horizontal. Ainsi, le temps requis pour atteindre le but est de
rV
lt=∆ . Si on considère t=0 au moment du

lâcher, V0
z est égal à :

t
tgzz

V
fz

∆
∆+−=

2
2
1

0

0 (2)

Le modèle de ballon, ainsi que le module responsable de l’animation du tireur synthétique ont été embarqués
dans la plate-forme Openmask [DCDK98]. OpenMask est une plate-forme logicielle qui permet des
communications et des interactions entre des entités autonomes qui évoluent dans l’environnement virtuel. Le
ballon et le tireur sont deux entités autonomes communicantes. Les paramètres initiaux du ballon sont donnés par
le module de tireur au moment du lâcher. Avant cet instant, le module de tireur fournit la position de la main qui
tient le ballon à ce dernier pour qu’ il suive parfaitement cette même trajectoire.

5. Résultats
En résultat, nous présentons les comparaisons entre les mouvements du gardien face au tireur virtuel et face au
tireur réel. Dans cette étude nous nous sommes intéressé à la qualité de l’animation du tireur virtuel. Pour cela,
nous avons utilisé des données biomécaniques pour évaluer le comportement du gardien. Ainsi, nous avons
choisi de nous intéresser au déplacement du centre de masse (CM) du bras du gardien dans les deux situations
(réelle et virtuelle). Nous avons choisi le centre de masse du bras car dans les situations étudiées le gardien a
paré les tirs avec le membre supérieur.
Pour comparer les trajectoires du CM du bras dans les deux situations, il nous faut tout d’abord normaliser le
temps. Pour cela, nous avons choisi de prendre l’ instant zéro à un événement particulier que l’on retrouve dans
tous les tirs : l’ instant où le gardien réagit au tir. Cet instant est calculé à partir du pic d’accélération du bras du
gardien dans toutes les situations. Nous définissons une plage d’étude de –0.3s à +0.3s autour de ce pic.

Nous avons étudié 24 tirs divisés en trois catégories. Pour chaque tir, nous comparons les paramètres suivant,
pour le tir en situation d’origine (dans le réel) et dans la salle de réalité virtuelle :

• la position initiale du CM du bras,
• la position finale du CM du bras,
• son déplacement,
• la différence en pourcentage entre le déplacement face au tir virtuel et celui lié au tir réel,
• la corrélation point à point entre les deux trajectoires.

Pour l’ensemble des tirs étudiés, les trajectoires étaient identiques aussi bien du point de vue des valeurs que de
la forme. Le tableau 1 présente les résultats liés à la trajectoire du CM du bras selon l’axe vertical. Ces valeurs
sont obtenues pour le tir où les variations par rapport à la situation d’origine étaient les plus importantes. Ainsi
nous pouvons dire que les variations les plus importantes sont de 11,9% et que le coefficient de corrélation le
plus faible entre les deux courbes est de 0.96. Il semble important de souligner que lorsque l’on compare deux
tirs réels considérés comme quasiment identiques, les variations sont de l’ordre de 20% et le coefficient de
corrélation est nettement inférieur (de l’ordre de 0.9).

Mouvement Position initial du
bras
(m)

Position finale du
bras
(m)

Déplacement
(m)

Différence par rapport
à l’action réelle

(%)

R²

Réelle 0.546 0.706 0.16 **
Virtuelle 1 0.526 0.667 0.141 11.9 0.96
Virtuelle 2 0.519 0.668 0.149 6.9 0.98

Tableau 1 : Var iations cinématique du CM du bras suivant l'axe ver tical

6. Discussion
Dans cet article, nous avons présenté une expérimentation virtuelle mettant en jeu un gardien de but de handball
réel immerge dans un stade de handball virtuel. Un joueur virtuel effectue une série de tirs que le gardien est
censé arrêter, comme lors d’un match réel. Cette application implique que le gardien reconnaisse son
environnement et réagisse de la même manière que lors d’un match réel. Plusieurs phénomènes peuvent dégrader
la perception qu’a le sujet de son environnement. L’aspect géométrique semble jouer un rôle important puisqu’ il
intervient, semble-t-il [HOT98], sur la perception qu’a le sujet du mouvement synthétisé. Le calibrage de
l’environnement virtuel joue lui-aussi un rôle important puisqu’ il fait garantir que l’environnement soit
correctement perçu. Nous nous sommes principalement intéressé aux animations produites pour l’environnement
virtuel. En effet, un gardien de but est habitué à intercepter des tirs et réagit à des stimuli qui semblent plus liés
aux mouvements du tireur qu’à celui du ballon. Ceci est spécialement vrai à haut niveau où les vitesses de balle
sont tellement importantes que le temps séparant la perception d’un événement intervenant après le lâcher du
ballon et la réaction est trop long. L’animation est donc un élément crucial pour assurer que le gardien se sente
effectivement immergé dans le jeu virtuel.
La méthode de validation que nous avons mise en œuvre dans cet travail ne permet pas d’ isoler la qualité du
modèle d’animation. En effet, nous jugeons de la présence du sujet dans sa globalité : est-ce que le sujet réagit de
la même manière dans le réel et dans une représentation virtuelle de la même scène ? La réponse donnée par
cette expérimentation pilote est positive. Des travaux sont en cours pour reproduire ce travail sur un plus grand
nombre de sujets. Comme nous pouvons conclure que la présence est vérifiée pour cette expérimentation, nous
pouvons aussi conclure que l’animation (qui était un élément entrant dans cette expérimentation) est de qualité
suffisante.
Cette animation est le produit d’une chaîne de traitements qui vont de la capture du mouvement à sa restitution
sur un personnage synthétique de taille différente, en passant par une interpolation des points manquants, par un
calcul des repères associés aux segments corporels et par une adaptation du mouvement à un squelette de taille
différente. Lors de ces traitements, le mouvement capturé subit un certain nombre de dégradations et de
modifications qui auraient pu altérer les réactions du gardien de but. Or, nos résultats tendent à montrer que ce
n’est pas le cas. De futurs travaux sont à envisager pour juger de la sensibilité des gardiens aux modifications
apportées aux mouvements. Ainsi, nous envisageons de définir un modèle cinématique et dynamique de tir au
handball à partir des mesures déjà effectuées. Ce modèle permettrait d’obtenir des tirs proches de ceux capturés
et de vérifier si les réactions des gardiens sont altérées.
Le fait que les gardiens de but réagissent positivement à ce type d’expérimentation ouvre un grand champs
d’applications de la réalité virtuelle. Il est possible d’envisager des entraînements virtuels, de mener des
expériences pour mieux cerner les paramètres pris en compte par le gardien pour réagir…

Remerciements

Ce travail a été soutenu par le Ministère des Sports, la Préparation Olympique et le Conseil Régional de
Bretagne. Merci à Dominique Favotti pour son modèle géométrique de joueur de handball.

Références

[ADHMT89] Arnaldi, B., Dumont, G., Hégron, G., Magnenat-Thalmann, N., Thalmann, D. Animation
control with dynamics. Proceedings of Computer Animation'89, 113-123.(1989).

[BBE97] Boulic R, P Becheiraz , L Emering, D Thalmann. Intergration of motion control techniques for
virtual human an avatar real-time animation. Actes de VRST ’97 111-118 septembre 97
(1997)

[BC96] Bruderlin, A., Calvert, T.Knowledge-driven, interactive animation of human running. In
Proceedings of Graphics Interface'96, 213-221(1996).

[BMT90] Boulic, R., Magnenat-Thalmann, N., Thalmann, D. A Global human walking model with real-
time kinematic personification. The Visual Computer, 6(6), 344-358.(1990).

[BRRP97] Bodenheimer, B., Rose, C., Rosenthal, S., Pella J. The process of motion capture: dealing with
the data. Proceedings of Eurographics Workshop on Computer Animation and Simulation, 3-
18.(1997).

[CPNMT97] Capin, T., Pandzic, I., Noser, H., Magnemat-Thalmann, N., Thalmann. D. Virtual Human
Representation and Communication in VLNET Networked Virtual Environments. IEEE
Computer Graphics and Applications, Special Issue on Multimedia Highways, 17(2), 42-53,
1997.

[D95] Dempster WT . Space requirements of the seated operator. WADC-TR-55-159. Wright-
Patterson Air Force Base, Ohio (1995).

[DCDK98] Donikian, S., Chauffaut, A., Duval, T., Kulpa. R. GASP: from Modular Programming to
Distributed Execution. Computer Animation'98, IEEE, Philadelphie, USA, Juin.(1998).

[G98] Gleicher M Retargetting motion to new characters. Actes de ACM siggraph 33-42 Juillet
(1998)

[GL98] Gleicher M, Litwinowicz Lconstraint based motion adaptation . Journal of Visualization and
computer animation, 9 (2) 65-94(1998).

[HH96] Huffman, K., Hubbard, M. A motion based virtual reality training simulator for bobsled
drivers. The engineering of sport, 195-203, Balkema Rotterdam, July (1996).

[HOT98] Hodgins, J., O'Brien, J. , Tumblin, J. Perception of human motion with geometric models.
IEEE Transaction on Visualisation and Computer Graphics, Vol 4, No. 4, 307-316 (1998).

[HWBO95] Hodgins, J., Wooten, W., Brogan, D., O'Brien, J. Animating human athletics. In Proceedings of
ACM SIGGRAPH, 71-78.(1995).

[M03] Ménardais Fusion et adaptation temps réel de mouvements acquis pour l’animation
d’humanoïdes synthétiques. Thèse de l’Université de Rennes 1, janvier 2003 (à paraître).

[MAC99] Molet, T.,. Aubel, A ., Capin, T., Carion, S., Lee, E., Magnenat-Thalmann, N., Noser, H.,
Pandzic, I., Sannier, G., Thalmann, D. Anyone for tennis? Presence, MIT, Vol. 8, No. 2, 140-
156 (1999).

[MBT96] Molet, T., Boulic, R., Thalmann, D. A real-time anatomical converter for human motion
capture. Eurographics Workshop on Computer Animation and Simulation, 79-94,
september(1996).

[MM00] Metoyer, R., Hodgins, J. Animating athletic motion planning by example. Proceeding of
graphics interface 2000, Montreal, Canada, 61-68, May 15-17 (2000).

[MM01] Menardais S, Multon F Amélioration des trajectoires acquises par des systèmes optiques pour
l’animation de personnages synthètiques. Revue internationale de CFAO, 99-113, 2001.

[MNH99] Multon, F., Nougaret, JL., Hegron, G., Millet, L., Arnaldi, B. A software toolbox to carry-out
virtual experiments on human motion. Computer Animation, Genève, 16-23, May 1(1999).

[NPCM96] Noser, H., Pandzic, I.., Capin, T., Magnemat-Thalmann, N., Thalmann, D. Playing Games
through the Virtual Life Network. ALIFE V, Oral Presentation , Nara, Japan, 114-121(1996).

[SVK01] Mj, Schuemie, P Van der Straaten, M Krijin, C Van Der Mast. Research on presence in Vr: a
survey. cyberpsychology and behavior. 4(2), 183-202 (2001).

[T.96] Thalmann. D. A new generation of synthetic actors: the Interactive Perceptive Actors.
Proceedings of Pacific Graphics'96, Taipeh, Taiwan, 200-219 (1996).

[UAT95] Unuma, M., Anjyo, K., Takeuchi, R. Fourier principles for emotion-based human-figure
animation. Proceedings of ACM SIGGRAPH, 91-96 .(1995).

[W79] Winter, D. A new definition of mechanical work done in human movement. Journal of applied
physiology, 46(1), 78-83 (1979).

[WK88] Witkin, A., Kass, M. Spacetime constraints. Proceedings of ACM SIGGRAPH, Atlanta,
Georgia, 159-168 (1988).

[WP95] Witkin, A., Popovic, Z. Motion warping. Proceedings of ACM SIGGRAPH, 105-108.(1995).

[Z82] Zeltzer, D. Motor control techniques for figure animation. IEEE Computer Graphics and
Applications. 2(9), 53-59.(1982).

Modèle d‘animation comportemental de piétons virtuels
A. Ebel, D. Hanon, B. Stanciulescu, P. Pudlo, E. Grislin, F-X. Lepoutre

LAMIH UMR CNRS 8530, Université de Valenciennes et Hainaut-Cambrésis
59313 Valenciennes cedex 9

aurelien.ebel@meletu.univ-valenciennes.fr

Mots-clés : Animation, Capture de Mouvement, Animation Comportementale, Intelligence Artificielle, Agents
Autonomes, Planification de Trajectoire

1. Introduction
Ce papier s’inscrit dans le cadre du projet RESPECT (Route Empruntée en Sécurité par le Piéton -Enfant
Confronté au Trafic) projet PREDIT, qui s’effectue en partenariat avec l’INRETS LPC, le CRP2C et l’entreprise
CORYS TESS.
Ce projet consiste à développer un simulateur réaliste du trafic des piétons et de voitures en ville. L’objectif
pédagogique vise à sensibiliser les jeunes enfants de 5-7 ans à se déplacer dans la ville en sécurité. Présenté
dernièrement au salon de l’automobile de Paris (septembre 2002) au stand sécurité routière, il sera testé dans sa
première version en janvier 2003 dans les écoles primaires.
Cette communication traite des deux principaux aspects que la modélisation de l’enfant-piéton comporte : la
modélisation des mouvements du piéton et la modélisation comportementale.

La deuxième partie traite des mécanismes qui gèrent le comportement des piétons par rapport au trafic et aux
évènements qui l’entourent. Deux types de comportement sont modélisés : le comportement réactif du piéton
face aux événements générés par son environnement dynamique et le comportement général du piéton en
fonction du but global de celui-ci. A cette fin, un modèle orienté agent est utilisé. Le contrôle est basé sur une
architecture à fusion d’actions généralisée.

Enfin, une démonstration pratique du stade de développement du projet clôturera notre communication (pas
utile).

2. Modèle du piéton
Le modèle du piéton virtuel retenu (cf. figure 1) se compose de 18 corps rigides. Les 17 articulations sont de
type pivot (1 DDL), cardan (2 DDL) et rotule (3DDL). Le modèle compte 41 degrés de liberté. Il ne correspond
pas au modèle exhaustif du groupe H-ANIM (Humanoid Animation Working Group) : il est en restriction.

SACRUM

Part ie Thoracique

Buste

Tête Bras Gauche Bras Droi t

Avan t-Bras Gauche Avan t-Bras Droi t

Main Droi teMa in Gauche

Cuisse Droi teCu isse Gauche

Pied Droi t

Jambe Gauche

P ied Gauche

Jambe Dro i te

racine

Rotule (L3)

Rotule (T6)

Rotule (C4)
Rotule (EG) Rotu le (ED)

Pivot (CG) Pivot (CD)

Cardan (PG) Cardan (PG)

Rotu le (HG)

Cardan (GG) Cardan (GD)

Pivot (CD)Pivot (CG)

Rotu le (HD)

Ortei ls Gauche Orteils Droit

Pivot (OG) Pivot (OD)

SACRUMSACRUM

Part ie ThoraciquePart ie Thoracique

BusteBuste

TêteTête Bras GaucheBras Gauche Bras Droi tBras Droi t

Avan t-Bras GaucheAvan t-Bras Gauche Avan t-Bras Droi tAvan t-Bras Droi t

Main Droi teMain Droi teMa in GaucheMain Gauche

Cuisse Droi teCuisse Droi teCu isse GaucheCu isse Gauche

Pied Droi tPied Droi t

Jambe GaucheJambe Gauche

P ied GaucheP ied Gauche

Jambe Dro i teJambe Dro i te

racine

Rotule (L3)

Rotule (T6)

Rotule (C4)
Rotule (EG) Rotu le (ED)

Pivot (CG) Pivot (CD)

Cardan (PG) Cardan (PG)

Rotu le (HG)

Cardan (GG) Cardan (GD)

Pivot (CD)Pivot (CG)

Rotu le (HD)

Ortei ls GaucheOrte i ls Gauche Orteils DroitOrtei ls Droit

Pivot (OG) Pivot (OD)

Fig. 1 : Hiérarchie des nœuds (segments corporels et articulations) pour le modèle générique de piéton

3. Obtention des données d’entrée nécessaires à l’animation

3.1. Principaux mouvements à générer

La table 1 présente les mouvements retenus pour l’animation réaliser des piétons virtuels en environnement
urbain.

Marcher Courir
Accélérer Ralentir
Arrêter Attendre

Monter un trottoir Descendre un trottoir

Table 1 : Mouvements standards d’animation en environnement urbain

3.2. Capture des mouvements
Les mouvements considérés précédemment sont enregistrés à l’aide du système d’analyse gestuelle VICON,
composés de 8 caméras CCD, à une fréquence de 100Hz .

 Avant chaque expérimentation, il est demandé au sujet de se positionner dans une configuration
enregistrée, dite de référence, coïncidant avec le modèle virtuel à l’état initial.

4. Recalage des données réelles
Les données mesurées expérimentalement doivent permettre d'animer et contrôler le piéton virtuel. Ce piéton
peut être positionné " n'importe où " dans l'environnement virtuel.

Une méthode a été mise en œuvre, dite de « recalage », et consiste à identifier les matrices de cosinus directeurs,
définissant l'orientation de chaque segment corporel du piéton virtuel par rapport au segment corporel père, à
appliquer au modèle pour une animation du piéton virtuel coïncidant au mouvement réel du sujet lors de
l'expérimentation. La méthode de « recalage » procède en deux temps : la coïncidence et le recalage .

 - La coïncidence exploite l'expérimentation en position de référence afin d'identifier les corrections à

appliquer aux données réelles. - Le recalage applique ces corrections à l'expérimentation afin
d'obtenir un mouvement du piéton coïncidant au mouvement réel.

5. Animation du piéton virtuel
Le modèle du piéton est hiérarchique et le sacrum en est sa racine. L'animation du piéton virtuel consiste à :

• positionner et orienter le sacrum du piéton virtuel dans l'environnement,

• orienter chaque segment corporel fils par rapport au segment corporel père respectif dans l'espace
virtuel 3D.
l'orientation et la position des segments corporels fils dérivent de la position et l'orientation du sacrum

6. Modèle comportemental du piéton
Les piétons peuplant la simulation sont conçus dans l'objectif d'en faire des acteurs autonomes, capables de
raisonner et d’analyser leur situation afin de choisir les actions appropriées en fonction de leurs objectifs.
Ces exigences conduisent naturellement à adopter une modélisation orientée agent. En effet, un agent est une
entité réelle ou virtuelle, capable de percevoir, au moins partiellement, son environnement, d'agir sur son
environnement et de se comporter de manière « rationnelle » : ses actions sont le produit d’un « raisonnement »
(ou du moins, d’un ensemble de règles de comportement) dans le but d’obtenir un état souhaité de
l’environnement [MAN 01]. La solution choisie consiste à associer un agent à chaque piéton. Chaque agent
contrôle les mouvements du piéton associé.

Le fonctionnement d’un agent peut se résumer en trois sous-fonctions : percevoir, décider, et agir.
La fonction de perception d'un agent de la simulation est caractérisé par un besoin de production d'un
comportement crédible. En effet, bien que toutes les informations associées aux objets de l'environnement soient
a priori disponibles pour l'agent, il s'agit de restreindre la recherche au sous-ensemble des données compatible
avec le champ de perception que possède le personnage dans le monde réel. Les personnages de la simulation
sont ainsi dotés de capteurs virtuels [NOS 95].
Actuellement, ces capteurs sont limités au domaine visuel. Chaque capteur virtuel retourne les adresses des
objets présents dans le champ de vision de l’agent. L’agent a alors accès à tous leurs attributs, qui décrivent la
géométrie de l’objet : dimensions, position, orientation, etc. La figure 3 montre un exemple d’évitement entre
deux agents. Chaque agent dispose de deux capteurs de proximité et d’informations sur la distance et la direction
du point à atteindre.
L'agent met en œuvre également une forme de perception volontaire (ou "active") lorsqu'il recherche des
informations dans un but précis. Par exemple, la perception volontaire s'appliquera lors de la recherche
d'information avant la traversée : présence d'un feu tricolore, présence d'un passage protégé, position et vitesse
des véhicules, etc.

Fig. 3. Exemple d'évitement entre 2 piétons

Dans le cadre de l'animation d'humanoïde, les modèles décisionnels utilisés par les agents servent à déclencher
les actions en fonction de leurs intentions et des informations perçues.
Selon Yves Duthen [DUT 02], il y a trois principales manières de programmer le comportement d’un personnage
virtuel, ce sont les approches :

• Impératives : ce type d’architecture est généralement basé sur des scripts que l’agent rejoue ;
• Déclaratives : le comportement est déterminé par un système à base de règles. Le raisonnement provient

des inférences réalisées ;

• Basées sur l’émergence : cette approche repose sur l’utilisation d’éléments simples qui s’organisent
pour arriver à une solution.

D’un point de vue agent la première solution n’a pas de réel intérêt.
La seconde correspond à un agent cognitif (raisonnement sur des symboles abstraits). Cette solution présente les
inconvénients liés à ce type de système : il n’est pas simple de constituer un ensemble de règles, celui -ci se
limite souvent à un domaine particulier. Ce type d’approche est particulièrement remis en cause par l’approche
animat [GUI 99] et la robotique [BRO 98]. Pour gérer les déplacements du personnage avec ce type
d’architecture il faut, vraisemblablement, discrétiser l’environnement et contraindre les déplacements du joueur,
ce qui n’est pas souhaitable.
La dernière solution envisage la construction d’un agent composé de plusieurs agents simples. Il s'agit d'une
architecture à découpage horizontal (opposée à l'architecture verticale des agents cognitifs). Dans cette lignée,
nous avons choisi de mettre en oeuvre une architecture basée sur la « fusion d’action généralisée » [ARN 00].
Ses principes sont particulièrement intéressants car ils permettent l'unification de trois architectures de contrôle :

• L’architecture à subsomption de R.Brooks [BRO 86]
• L’architecture à sélection d’actions de P.Maes [MAE 89]
• L’architecture orientée schémas de R.Arkin [ARK 98]

Comme toutes les architectures horizontales elle utilise le comportement comme élément de base. Un
comportement est caractérisé par :

• une activité a. La valeur de a est un nombre décimal compris entre 0 (comportement inactif) et 1
(comportement actif). L’activité traduit la présence et l’importance des stimulus relatifs à ce
comportement.

• Un vecteur de nombres décimaux R. Chaque élément de R correspond à une consigne sur « les
actionneurs » de l’agent. En particulier la vitesse et la direction pour un robot mobile

Le vecteur de consigne appliqué aux « actionneurs » de l’agent est calculé par un réseau de nœuds. Cette
notation permettant de décrire l’architecture du système dérive directement de la subsomption et utilise quatre
types de nœuds : l'inhibition, la suppression, l'augmentation et le maximum. Les fonctions de transfert des nœuds
permettent de réaliser un arbitrage entre les différents comportements et de calculer le vecteur de consignes en
sortie du réseau.
Cette architecture est spécialement adaptée aux robots mobiles et peut être implémentée simplement. Néanmoins
comme pour les Boids [REY 99], ce modèle nécessite des ajouts afin de gérer des déplacements étendus à
l’ensemble d’une ville. Les agents sont construits sur le modèle présenté en figure 4. Les vecteurs de consignes
sont : (vitesse, changement de cap).

L'architecture de contrôle reprend les comportements présentés dans [ARN 00] auxquels nous proposons l'ajout
d'un comportement cognitif appelé "Contrôle de la traversée". Ce comportement analyse la circulation et inhibe
les autres comportements lorsque l'agent doit attendre avant de pouvoir traverser une rue.
L'action de suivre le trottoir se composent de deux comportements qui vont tendre à positionner le piéton au
centre du trottoir.
L'évitement de collision est prioritaire par rapport aux comportements "suivre le trottoir" et "aller au but".
L'action qu'il propose subsume les actions proposées par les couches inférieures de l'architecture. Les deux
comportement qui le composent font dévier le mobile de sa direction. " Éviter objet à droite " permet l'évitement
des obstacles se trouvant à droite en proposant un virage à gauche, même chose pour l'évitement à gauche. Un
nœud "maximum arbitre ces deux comportements : seule la proposition de comportement le plus actif est donc
prise en compte. Les comportements d'évitement peuvent être plus ou moins réactifs, en effet une idée est
d'introduire une mémorisation de l'état précédent afin de limiter les oscillations du personnage.

Fig. 4. Architecture

7. Conclusions et Perspectives
Dans ce papier les deux lignes générales du simulateur issues du projet RESPECT ont été présentés, à savoir la
partie modélisation de piétons et la partie IA de la modélisation du contrôle de leur comportement.
Dans le cadre de la modélisation de piétons, nous avons introduit le modèle d’animation de l’humanoïde piéton.
Ce modèle, dérivé du modèle h-anim1, s’est révélé suffisant afin d’implémenter les capacités d’animation qu’un
piéton réel suppose.
Un ensemble de mouvements d’animation qu’un piéton est supposé présenter a été enregistré par capture de
mouvement à l’aide d’un système de capture VICON.
Les données ci-enregistrées ont été traitées de manière qu’elles puissent servir pour l’animation des piétons
virtuels. Le premier traitement de données a été le calcul des positions articulaires à partir des positions
enregistrées des marqueurs, suivi du calcul des angles articulaires correspondant aux différents types de
mouvements et aux différents membres du piéton. Ces angles ainsi enregistrés et stockés sont ensuite injectés
après dans le modèle du piéton, afin de réaliser les différents mouvements.
La deuxième partie de ce travail a consisté dans le développement de systèmes de contrôles comportemental du
déplacement des piétons dans la ville. Pour cela nous avons choisi l’utilisation des réseaux à fusion d’actions. Le
comportement d’un piéton est défini par deux composantes : la composante réactive qui gère l’interaction
instantanée du piéton avec le milieu extérieur (évitement d’obstacles, évitement de collision avec un autre
piéton, etc.) et une deuxième composante qui gère la stratégie longue-durée du piéton (suivi de trajectoire,
traversée de rue, planning de trajectoire, etc.).
Comme perspectives immédiates du projet nous pouvons mentionner les points suivants :

• Au niveau de la modélisation du mouvement du piéton nous envisageons d’introduire des modules de
commande adaptatifs en fonction des contraintes externes, au lieu d’utiliser des données préenregistrées
pour chaque mouvement possible.

• Au niveau comportemental nous travaillons à l’affinement des stratégies de contrôle à moyen et long
terme par l’introduction de composantes plus cognitives que les comportements gérés actuellement;

Références

[ARK 98] R. ARKIN, “Behavior-based robotics”, The MIT Press, 1998

[ARN 00] ARNAUD P., "Des Moutons et des robots ", Presse polytechniques et universitaires romandes,
Lausanne, 2000

[BRO 86] R. A. BROOKS"a robust layered control system for a mobile robot", IEEE Journal of Robotics and
Automation, RA-2/1, pp. 14-23, mars 1986.

[BRO 98] R. A. BROOKS, C. BREAZEAL, R. IRIE, C. C. KEMP, M. MARJANOVIC, B. SCASSELLATI,
M. M. WILLIAMSON, “Alternative Essences of Intelligence”, AAAI98.

[CAU 96] F. CHAUMETTE, S. BOUKIR, P. BOUTHEMY, D. JUVIN. Structure From Controlled Motion.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 18(5): 492–504, May 1996.

[DUT 02] Y. DUTHEN, “Behavioural Simulation and Artificial Life”, 3IA 2002, Limoges.

[FAU95] F. FAURE. Modélisation cinématique du contact pour la dynamique inverse. In 3èmes journées de
l'AFIG. pages 15–22, Marseille, Novembre 1995.

[GUI 99] GUILLOT A.,”Pour une approche dynamique des animats”, dans Drogoul et Meyer (Eds.).
Intelligence Artificielle Située, Hermes, 1999

[LH96] M. LEVOY, P HANRAHAN. Light Field Rendering. Proceedings of ACM Siggraph’96, pages 31–
42, August 1996, New Orleans.

[MAE 89] P. MAES, "The dynamics of action selection", proceedings of the international Joint conference on
Artificial Intelligence, IJCAI-89,1989

[MAN 01] R. MANDIAU, E. GRISLIN-LE STRUGEON (2001). Systèmes multi-agents. In TI (Ed.), S 7216,
Paris: Les Techniques de l'Ingénieur, pp. 1-17.

[NOS 95] H. NOSER, D. THALMANN : "Synthetic vision and audition for digital actors",
Proc.Eurographics’95, 1995, pp.325-336.

[REY 99] C. W. REYNOLDS : "Steering Behaviors For Autonomous Characters", in the proceedings of Game
Developers Conference 1999 held in San Jose, California. Miller Freeman Game Group, San
Francisco, California. Pages 763-782, 1999.

Une architecture pour le Retour d’Efforts.

T.Meyer, G.Andrade-Barroso & B.Arnaldi.

IRISA 35042 Rennes Cedex
[Tangi.Meyer|Guillermo.Andrade-Barroso|Bruno.Arnaldi]@irisa.fr

Résumé : Ce document présente l’architecture pour la simulation avec retour d’efforts que nous avons développée.
Notre objectif est de proposer des outils facilitant la mise en oeuvre d’applications métier. Nous avons implémenté
des interfaces qui permettent une intégration générique des éléments logiciels nécessaires au retour d’efforts. Nous
décrivons également les évolutions en cours et les perspectives qu’offre notre architecture.

Mots-clés : retour d’efforts, architecture logicielle, réalité virtuelle.

1 Introduction

De nombreuses applications de réalité virtuelle exploitent le retour d’efforts depuis que certains périphériques
comme le PHANToM (c)[29] ou le Virtuose (c) de Haption1 sont “sortis des laboratoires” pour être commercialisés.
Des domaines comme la CAO (assemblage virtuel, ergonomie, design...), la médecine (chirurgie, rééducation...) ou
la formation, bénéficient grandement du développement des techniques de réalité virtuelle et plus particulièrement
du retour d’efforts.

OpenMASK(c)2 est une plate-forme Open Source de développement d’applications pour la réalité virtuelle [10],
issue des travaux du projet SIAMES de l’IRISA. De nombreux travaux exploitant cet outil ont été réalisés : simu-
lation d’environnements urbains [14], animation d’humanoı̈des [22], manipulation coopérative [28] et distante de
données industrielles...

Dans le cadre de l’extension de cette plate-forme, le développement d’applications de réalité virtuelle exploitant
le retour d’efforts est un objectif naturel. Dans la logique des travaux de l’équipe SIAMES, nous cherchons à pro-
poser des fonctionnalités et non un outil spécialisé. Celles-ci ont pour objectif de faciliter la mise en oeuvre des
outils nécessaires à la simulation avec retour d’efforts. En effet, bien que le retour d’efforts soit un dénominateur
commun aux applications sus-citées, il semble irréaliste de vouloir développer un outil universel pour sa simu-
lation tant les besoins en terme de modèles, de formats, sont différents. A partir de cette constatation et dans un
soucis d’ouverture d’OpenMASK vers le plus grand nombre d’applications de réalité virtuelle, nous avons cherché
à identifier les principaux besoins en terme d’outils logiciels pour la simulation avec retour d’efforts. Nous avons
alors défini une architecture logicielle modulaire et ouverte afin que les utilisateurs d’OpenMASK puissent facile-
ment intégrer leur travaux et développer des applications plus spécialisées. Nous présentons ici, les travaux réalisés
autour d’OpenMASK dans ce but.

La suite du document s’organise de cette façon : à partir d’un état de l’art, nous identifions les principaux éléments
logiciels nécessaires à la simulation avec retour d’efforts. Nous présentons ensuite l’architecture développée et les
premiers résultats obtenus. Les évolutions envisagées sont exposées dans la quatrième partie du document. Enfin
nous présentons les perspectives qu’offre notre architecture.

2 État de l’art

2.1 Exemples d’outils pour la simulation avec retour d’efforts

De nombreux développements ont déjà été réalisés pour des applications spécifiques. Voxmap Point Shell [31] de
Boeing (c) est un logiciel destiné à la navigation interactive dans des environnements de CAO avec un périphérique
à retour d’efforts. La scène simulée est représentée sous forme de voxels et l’objet que l’utilisateur manipule sous
la forme d’un nuage de points. L’interaction entre la pièce mobile et le reste de l’environnement est réalisé au

1http ://www.haption.com
2http ://www.openmask.org

travers d’une méthode dite de pénalité appliquée aux points du nuage qui intersectent avec les voxels de plus
petite dimension. La configuration à chaque pas de temps est calculée en intégrant les équations de Newton-
Euler. Le périphérique haptique est lié à la simulation par un couplage virtuel [20] qui permet de renvoyer un
effort vers le manipulateur. Ce principe est également utilisé par D.Baraff [12] pour associer un autre type de
périphérique haptique à une bibliothèque logicielle de simulation dynamique pour les corps rigides. Des exercices
d’apprentissage simples peuvent être construits à partir de ce système. S.Cotin [25] présente une autre application
de la simulation avec retour d’efforts : la chirurgie. Un modèle déformable de foie est simulé et lié à un périphérique
haptique spécialisé pour la simulation de chirurgie laparoscopique. L’auteur utilise ici les éléments finis pour
calculer une déformation due à l’interaction de l’utilisateur.

Ces exemples mettent en évidence l’étendue des différents domaines et outils logiciels qui sont utilisés pour la
simulation avec retour d’efforts.

2.2 Les éléments nécessaires à la simulation avec retour d’efforts

2.2.1 Généralités

Dans la plupart des approches, la scène virtuelle associée à une simulation avec retour d’efforts est un monde
contenant des objets dont le comportement est dicté par des lois dans la plupart des cas physiques. Il est possible
d’établir des domaines du monde à l’intérieur desquels il règne des lois de comportements bien définis et dont
la nature ne change pas au cours du temps. Ces domaines sont par exemple les volumes des objets rigides ou
déformables et les avatars des utilisateurs. Ce sont les interactions entre les différentes frontières des domaines qui
vont déterminer les conditions aux limites ou de passage d’un domaine à l’autre. Ces conditions aux limites vont
modifier l’évolution interne des domaines. Ainsi deux objets rigides se touchant en un point (contact entre deux
domaines volumiques) génèrent du frottement entre leurs surfaces (frontières). Ce frottement va définir des forces
(conditions aux limites) qui vont modifier les déplacements des objets (comportements).

De ces définitions découlent les éléments nécessaires à la simulation :

– des outils capables de déterminer le lieu des interactions entre les frontières,
– des outils permettant de produire les conditions aux limites associées à ces interactions,
– des outils définissant le comportement d’un domaine à partir de son état actuel et des conditions aux limites

associées à ses frontières.

Dans la plupart des travaux sur la réalité virtuelle avec retour d’efforts, ces outils prennent les dénominations res-
pectivement de détecteur de collision, de traitement du contact et de solveur physique ou de solveur mécanique.

2.2.2 Détection de collisions.

La détection de collisions a été étudiée dans de nombreux domaines comme la robotique et l’informatique gra-
phique. Les besoins ou objectifs peuvent être très différents (application temps-réels, résultat exact, adaptation des
données CAO, déformations, etc.). De ce fait, de nombreux algorithmes ont été développés [19] [30][1][6][26].

Toutefois, les étapes essentielles de leur fonctionnement peuvent être décrites simplement par la figure 1. Après
une mise à jour des positions et des vitesses des objets concernés, on réalise le test de détection de collisions. Les
données géométriques obtenues en résultat sont traitées afin d’être envoyées au calculateur de réponses au contact.

Détection

1

2

3

Mise à jour

Cinématique
de la Configuration

de Collisions

Traitement des
 Collisions

FIG. 1 – Fonctionnement simplifié de la détection de collisions.

2.2.3 Traitement du Contact

Il existe plusieurs traitements possibles de la collision : par une méthode de type pénalités [32], par une méthode
impulsionnelle [7] ou par une méthode dite LCP [11]. Chacune produit des informations à traiter par le solveur
mécanique. Le résultat de ce traitement est l’apparition de forces de frottement et de non pénétration ou directement
de changements dans les champs de vitesses des objets ou dans celui des accélérations. Ces effets seront traités à
différents niveaux dans le solveur mécanique.

2.2.4 Mécanique

Il existe de nombreux types de simulateurs physiques. Il sont parfois spécialisés. Ils peuvent être basés sur des
algorithmes et des méthodes de résolution très différentes. La robotique est à l’origine d’outils spécialisés dans le
traitement des chaı̂nes poly-articulées. SMR [3] par exemple dispose d’un traitement optimisé des chaı̂nes poly-
articulées fermées. D’autres logiciels permettent la simulation physique d’ensembles de corps rigides : Dynamo
[4], ODE3, ou encore CONTACT [27]. Vortex de CMLabs4 a été développé pour les jeux vidéo. Pour animer les
corps déformables, Les méthodes retenues sont souvent des modèles mécaniques simplifiés afin de satisfaire les
contraintes de l’animation interactive [18].

Bien que d’un point de vue général, ces logiciels permettent de traiter l’animation mécanique, leur variété met
surtout en évidence la diversité des problèmes à traiter. Toutefois, comme dans le cas de la détection de collisions,
il est possible de décrire les grandes étapes de la résolution du système mécanique (Cf. figure 2). Le système
mécanique est construit à partir de l’ensemble des informations dynamiques de la scène. Le système d’équations
obtenu lie les forces et contraintes aux accélérations des différents degrés de liberté du système. Une intégration
numérique produit alors un nouvelle configuration cinématique.

1

3

2

Informations Dynamiques

(Efforts, Contraintes...)

Résolution des Equations

Mise à Jour

de la Configuration

de la Mécanique

Prise en Compte des

Cinématique

FIG. 2 – Résolution Mécanique simplifiée.

2.2.5 Manipulation interactive haptique

L’immersion de l’utilisateur passe par une manipulation interactive d’objets virtuels. Dans le cas d’une souris,
cela consiste à commander directement en position l’objet que l’on manipule. L’introduction du retour d’efforts
nécessite une approche plus évoluée : il ne s’agit plus de se contenter de visualiser des déplacements, il faut
également renvoyer des informations haptiques à l’utilisateur.

Le principe directeur peut être décrit de la façon suivante : nous disposons de deux représentations d’un même
objet, la représentation “réelle” qui est asservie en position et vitesse au périphérique haptique, ainsi qu’une
représentation virtuelle dont les position et vitesse sont calculées par la simulation. L’objectif est de faire coı̈ncider
ces deux représentations ou tout du moins à les faire tendre l’une vers l’autre. Pour cela, il faut définir un outil
bilatéral qui permettra à l’utilisateur de ressentir les efforts nécessaires à cette correspondance (et qui permettra
une prise en compte de l’influence de l’utilisateur dans la simulation).

3http ://www.q12.org/ode/
4http ://www.cm-labs.com/

Plusieurs méthodes ont été proposées : nous avons évoqué le couplage virtuel [20] dans le paragraphe 2.1. Cette
technique exploitée par [5], [31] et [12] entre autres, s’accorde très bien avec le principe du rendu d’impédance [9]
(mesure de déplacement et renvoi de force, figure ?? (a)). Un lien composé d’un ressort et d’un amortisseur virtuel
entre les positions simulée et issue du périphérique permet d’envoyer des informations d’efforts au périphérique et
au module de résolution mécanique à chaque pas de temps.

Opérateur

Opérateur

Interface

Haptique

Interface

Haptique

Environnement

Virtuel

Environnement

Virtuel

X imposé

F rendue F calculée

X mesuré

F imposée F mesurée

X calculéX rendu

(a)

(b)

FIG. 3 – Représentation simplifiée du rendu d’impédance (a) et du rendu d’admittance (b).

Une autre approche “par contraintes” a été proposée [8]. Il s’agit d’imposer des contraintes dynamiques entre la
position réelle de l’objet manipulé et sa position virtuelle (“God-object”). Le “Proxy” de [13] est associé à une
méthode de rendu haptique de type “shading”. Ces méthodes permettent d’éviter des incohérences en imposant un
suivi plus strict des surfaces. Par exemple, l’utilisateur ne traversera pas un objet lors d’un suivi d’une surface de
faible épaisseure.

Comme pour le problème de la détection de collisions et le traitement de la mécanique, la manipulation interactive
pour le retour d’efforts peut être résolue de plusieurs façon. La technique la plus adaptée dépend souvent de
l’application étudiée.

2.2.6 Identification du besoin

La variété des applications et des techniques sus-citées rend très complexe le développement d’une solution uni-
verselle. Cependant, les blocs logiciels représentés par les figures 1, 2 et ?? permettent de faire abstraction de la
méthode employée tout en définissant des interfaces communes.

3 Architecture

Notre travail consiste en une formalisation des échanges d’informations pour définir une architecture modulaire
ouverte pour la simulation avec retour d’efforts.

3.1 Principe

Le principe de notre architecture est d’offrir des outils génériques pour l’intégration. Nous avons développé plu-
sieurs interfaces abstraites pour les modules logiciels indispensables que nous avons identifiés dans la section
précédente.

La figure 5 présente la première étape de nos travaux. Nous l’avons basée sur le fait que les modules mécaniques
étaient plus aisément commandables en forces. Ainsi nous considérons que le traitement de la collision est réalisé
au travers d’un modèle de pénalité. De la même façon, nous avons retenu le couplage virtuel comme liaison
périphérique/simulation. La figure 4 présente le modèle général de nos modules.

Initialisation

Configuration

....

....

− Abonnement
− Désabonnement
− Calcul
−Mise à jour

Représentation Interne

Gestionnaire
de la

Bibliothèque

Entrées Sortie

Envoi/Réception

de Messages

ObjetInterne 1

ObjetInterne i

FIG. 4 – Représentation d’un module.

− Distribué ou Multi−processeur
− Multi−Fréquences
− Gestion Dynamique des flux

"Bus" OpenMASK

Forces
Positions

Vitesses

Positions

Vitesses Positions

Interactifs

Interactifs
Forces Forces

Position
Vitesse

Position
Vitesse

Vitesse
Position

Position
Interactif

Forces

Solveur
Mécanique

Détection
de Collision

Couplage
Virtuel

Module de
Visualisation

Périphérique
Haptic

FIG. 5 – Représentation simplifiée de l’architecture.

Notre architecture exploite plusieurs propriétés d’OpenMASK :

– La notion de bus logique et l’architecture modulaire.
– le module de visualisation avancée qui nous évite des travaux complexes concernant le rendu.
– les fonctionnalités distribuées et multi-processeurs.

Mais avant tout, ce sont les outils de communication entre les modules qui nous intéressent. Plus particulièrement,
nous exploitons les notions de flux d’entrées et de sorties pour les signaux continus et les messages pour les signaux
discrets.

Dans le premier cas, il s’agit pour un module de s’abonner à des informations provenant d’un autre module ou
encore de produire des sorties qui seront connectées aux entrées d’un module différent. Nous avons développé
des interfaces basées sur les principes présentés par les figures 2 et 1, qui généralisent le type des entrées et
des sorties des modules afin de rendre ceux-ci compatibles. Comme le montre la figure 5, un module “solveur
mécanique” dispose d’entrées de type forces. Celles-ci permettent la prise en compte d’éventuels contacts5 ou
d’interactions de type couplage virtuel. Après intégration des équations de la mécanique, le solveur propose une
nouvelle configuration cinématique par l’intermédiaire de ses sorties de types position et vitesse. Un module de
détection de collisions peut se brancher sur ces sorties afin de mettre à jour sa représentation interne du monde.
C’est également le cas pour un module de type couplage virtuel ou pour le module de visualisation.

OpenMASK nous permet une gestion dynamique des flux. Pour cela nous exploitons les messages : ils faci-
litent l’échange d’informations typées entre deux modules. En particulier, nous provoquons l’abonnement ou
le désabonnement des entrées à un flux par leur intermédiaire. Dans le cas de l’interaction avec une souris par

5Notre premi ère architecture est bas ée sur un mod èle de type p énalit é en ce qui concerne le traitement de la collision.

exemple, un couplage virtuel est créé entre la souris et l’objet virtuel dont on prend le contrôle. Celui-ci génère
des efforts qui s’exercent sur l’objet manipulé. Le solveur mécanique chargé de l’animation de cet objet doit donc
s’abonner à la sortie force du couplage virtuel. Dans ce but, un message de type AddForceStream est envoyé
par la souris au système mécanique qui en réponse crée une entrée de type force qui se connecte à la sortie spécifiée.
Le désabonnement est réalisé de la même façon grâce à un message DeleteForceStream.

3.2 Premiers résultats

Les objectifs de cette plate-forme sont avant tout de faciliter le développement d’applications métier. Pour cela
l’interchangeabilité des modules est un élément essentiel. Afin de valider cet objectif, nous avons procéder au
développement de simulation basées sur différentes bibliothèques logicielles. En ce qui concerne les solveurs
mécanique, Dynamo, SMR et CONTACT ont été portés avec succès. Notre interface s’est avérée fonctionnelle et
a permis des développements rapides.

Dans le même but, des travaux sur diverses librairie de détection de collisions ont été réalisés : VCollide, SWIFT++
[24], les résultats étant traités par un modèle de pénalité.

L’architecture nous permet également de mixer dans une même scène la simulation de plusieurs systèmes basés
sur diverses librairies.

Nous avons également validé la manipulation interactive de type “couplage virtuel” unilatéral (commande en force
de la simulation par la souris). L’interface générique permet une manipulation interactive transparente des objets
quelque soit le solveur mécanique qui l’anime.

4 Évolution de l’architecture

4.1 Généralisation du couplage virtuel

Notre architecture permet entre autre de faire coexister plusieurs systèmes de type simulateur dynamique de corps
rigides. Commander en position ce type d’outil peut s’avérer délicat en particulier si le système mécanique est
constitué d’une chaı̂ne comprenant des contraintes bilatérales telles que des rotules, des pivots... En effet, les
manipulations directes risquent d’engendrer des violations de contraintes qui peuvent faire diverger le système lors
de l’intégration numérique.

Afin d’éviter ces écueils, il est souhaitable de recourir à un mode de commande plus proche de la dynamique (i.e.
du second ordre). Le couplage virtuel présente des caractéristiques intéressantes pour transformer les sorties de
type position d’un système en entrées de type force pour un autre solveur mécanique. Par exemple, dans le cas
d’une simulation de téléopération (Cf. figure 6), il peut être intéressant de travailler avec deux logiciels différents :
le premier issu de travaux en robotique permettra une manipulation du robot virtuel, par contre il sera sans doute
moins pertinent pour des travaux de suivi de surface, d’où l’exploitation éventuelle d’un second logiciel. Le cou-
plage virtuel permet un lien transparent entre ces outils : chaque logiciel anime une représentation d’un objet (ici
l’extrémité du robot) et elles sont ainsi associées par une liaison bilatérale.

Simulation de suivi
de surface en téléopération

FIG. 6 – Exemple de généralisation du couplage virtuel.

Nous avons donc étendu l’utilisation de la notion de couplage virtuel : il nous permet de faire communiquer des
systèmes mécaniques basés sur des logiciels différents.

4.2 Types des Entrées/Sorties

La généralisation du couplage virtuel conduit à rencontrer des systèmes équivalents à la figure 7 où l’objet A et
son image sont animés par des simulateurs physiques différents tout en étant liés par un couplage virtuel.

A image de A

FIG. 7 – Couplage Virtuel généralisé.

La représentation de ce système pour notre architecture est celle de la figure 8. Où le solveur mécanique n
�
1 anime

l’objet
�

et le solveur mécanique n
�
2 son image (� représente ici un vecteur position+vitesse).

Bus OpenMASK

Solveur
Mécanique n°1

Solveur
Mécanique n°2

Couplage
Virtuel pour A

F F’F F’Xa Xa
X’a

X’a

FIG. 8 – Architecture et couplage virtuel généralisé.

Cette configuration peut poser quelques problèmes dans le cas d’une utilisation distribuée d’OpenMASK. Plus
particulièrement, les entrées de type forces des solveurs mécaniques risquent de conduire à des instabilités dues
à des erreurs de fonctionnement du réseau (latence, perte de données...). Nous avons donc décidé d’instaurer une
communication de flux position+vitesse entre les solveurs mécaniques en intégrant le couplage virtuel sous la
forme d’un pré-traitement des entrées des solveurs afin d’obtenir une architecture proche de la figure 9.

Solveur

Mécanique n°2

Solveur

Mécanique n°1

Bus OpenMASK

X’aXaXaX’a

CV
Intégré

CV
Intégré

FIG. 9 – Couplage Virtuel intégré.

Nous avons réalisé, avec Simulink (c) [17], une étude comparative de stabilité entre ces deux modes de traitement
du couplage virtuel. L’objectif est d’étudier la convergence entre ��� et ����� lorsque le système mécanique est
soumis à des perturbations. Les données obtenues6 mettent en évidence une stabilité accrue et une convergence
améliorée lorsqu’on intègre le couplage virtuel au solveur mécanique (modèle de la figure 9).

Nous cherchons à généraliser la communication de type position. En effet, outre les avantages en terme de stabilité,
ce modèle permet d’ouvrir le panel des traitements applicables à la collision par exemple. Il devient possible
d’appliquer des modèles plus évolués comme des contraintes de type non-pénétration ou contact point/plan. Un

6Les r ésultats de cette étude feront l’objet d’une publication ult érieure.

message permettra de spécifier, au moment de la création de l’entrée de type position généralisée, le traitement à
appliquer (Cf. figure 10).

X’a Xa

CV? Contrainte?

Bus OpenMASK

Mécanique

Solveur

traitement

Message :

− Spécification du

− Création de l’entrée

FIG. 10 – Principe d’une entrée généralisée.

5 Perspectives

5.1 Objets déformables

Plusieurs applications du retour d’efforts concernent les objets déformables : la chirurgie [25], la sculpture virtuelle
[15] ... Valider notre architecture pour les modèles de corps déformables sera un de nos objectifs futurs. Les parti-
cularités d’un solveur mécanique pour ce type de modèle ne paraissent pas incompatibles avec les développements
réalisés.

Les intérêts de tels développement sont multiples : il sera possible de coupler la simulation de chirurgie à un simu-
lateur de robotique afin de réaliser une application de téléopération chirurgicale. L’aspect distribué d’OpenMASK
nous permettra en outre de répartir les calculs aisément pour satisfaire les besoins en performance.

5.2 Localisation des contraintes logicielles du retour d’efforts

La performance constitue une contrainte forte pour une simulation avec retours d’efforts. En effet, la perception
haptique impose des fréquences de fonctionnement élevées pour la simulation : la bande passante de la perception
des efforts pour un manipulateur se situe à quelques dizaines de hertz mais celle de la perception tactile est de
l’ordre de 300Hz [16] [2].

Les nouveaux types d’environnements de visualisation comme les salles immersives ou les CAVE (c) permet-
tent de travailler sur des modèles de grandes dimensions comme des véhicules à l’échelle 1. Dans la plupart des
cas, à un instant donné, le retour d’efforts ne concerne qu’une partie réduite de la scène. Différents travaux sur
les modélisations pour la chirurgie à retour d’efforts se rapprochent de la notion de niveaux de détails haptiques
[21]. Hayward [23] propose deux niveaux de maillages éléments finis fonctionnant à des fréquences différentes.
Debunne [18] fait cohabiter plusieurs maillages de résolutions différentes.

Notre architecture nous permet d’envisager une localisation géométrique des contraintes du retour d’efforts qui se
rapprocherait de cette idée de niveau de détails haptiques. En déterminant une zone d’intérêt autour de l’objet que
l’utilisateur manipule, il devient possible de séparer les objets de la scène en deux groupes : une partie d’entre eux
sera directement concernés par l’interaction haptique (fréquences élevées de simulation), le reste de la scène aura
un comportement découplé de l’interaction (contraintes logicielles relachées : fréquences faibles).

5.3 Travail coopératif

Un de nos objectifs est également de développer des applications de travail coopératif. Notre architecture permet
la mise en oeuvre de différents périphériques tout en conservant les mêmes interfaces de communication avec la

simulation.

Nous envisageons également d’exploiter les travaux sur l’interaction à distance réalisés sur la plate-forme GASP
à l’origine d’OpenMASK. Le réseau VTHD a en effet permis des manipulations interactives entre le projet I3D
de l’INRIA Rocquencourt et le projet SIAMES de Rennes. Des démonstrations de manipulations coopératives à
distance intégrant le retour d’efforts sont actuellement à l’étude.

6 Conclusions

Nous avons présenté dans ce document les travaux que nous avons réaliser dans le but d’intégrer des applications de
réalité virtuelle avec retour d’efforts sur la plate-forme OpenMASK. Nous proposons une architecture modulaire
destinée à faciliter l’insertion de bibliothèques logicielles spécialisées. Divers développements nous ont permis de
valider la première version de cette architecture.

Actuellement, nous développons des évolutions de nos interfaces afin de rendre plus générique et plus robuste cette
architecture. Les perspectives sont relativement nombreuses. L’extention aux simulations avec retour d’efforts pour
les corps déformables en est une, tout comme les applications coopératives et distantes.

Références

[1] A.Gregory, M.Lin, S.Gottschalk, and R.Taylor. A framework for fast and accurate collision detection for
haptic interaction. In IEEE Virtual Reality 1999 Conference, volume 1, pages 38–45, Houston, Texas, USA,
March 1999.

[2] A.Lecuyer. Contribution à l’étude des retours haptique et pseudo-haptique et de leur impact sur les simu-
lations d’opérations de montage/démontage en aéronautique. PhD thesis, University Paris XI, November
2001.

[3] G. Andrade. Modélisation et adaptation du mouvement de robots tout-terrain. PhD thesis, University Paris
6, Paris, France, September 2000.

[4] B. Barenbrug. Designing a Class Library for Interactive Simulation of Rigid Body Dynamics. PhD thesis,
Technische Universiteit Eindhoven, april 2000.

[5] B.Chang and J.E.Colgate. Real-time impulse-based simulation of rigid body systems for haptic display. In
ASME International Mechanical Engineering Congress and Exhibition, pages 145–152, Dallas, Texas, USA,
1997.

[6] B.Mirtich. V-clip : Fast and robust polyhedral collision detection. ACM Transactions on Graphics,
17(3) :177–208, July 1998.

[7] B.V.Mirtich. Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis, University of California
at Berkeley, Fall 1996.

[8] C.B.Zilles and J.K.Salisbury. A constraint-based god-object method for haptic display. In IEEE Conference
on Conference on Intelligent Robots & Systems, volume 3, August 1995.

[9] C.R.Carignan and K.R.Cleary. Closed-loop force control for haptic simulation of virtual environnements.
Haptic-e : http ://www.haptic-e.org, 1(2), February 2000.

[10] David Margery, Bruno Arnaldi, Alain Chauffaut, Stéphane Donikian, and Thierry Duval. Openmask : � Multi-
Threaded — Modular 	 animation and simulation � Kernel — Kit 	 : a general introduction. In Simon Richir,
Paul Richard, and Bernard Taravel, editors, VRIC 2002 Proceedings, pages 101–110. ISTIA Innovation, June
2002.

[11] D.Baraff. Fast contact force computation for non-penetrating rigid bodies. In SIGGRAPH 94 Proceedings,
1994.

[12] D.Baraff, P.J.Berkelman, and R.L.Hollis. Interaction with a realtime dynamic environment simulation using
a magnetic levitation haptic interface device. In IEEE International Conference on Robotics and Automation,
volume 3, pages 3261–3266, Detroit, Michigan, USA, May 1999.

[13] D.C.Ruspini, K.Kolarov, and O.Khatib. Haptic interaction in virtual environments. In IEEE International
Conference on Intelligent Robots & Systems IROS’97, Grenoble, France, September 1997.

[14] S. Donikian and G. Thomas. Modeling virtual urban environments for multi-modal driving simulation. In
UM3’99, Int. Workshop on Urban 3D/Multi-Media mapping, pages 103–110, Institute of Industrial Science
(IIS), The University of Tokyo, Japan, 1999.

[15] E.Ferley. Sculpture Virtuelle. PhD thesis, Institut National Polytechnique de Grenoble, 2002.

[16] G.C.Burdea and P.Coiffet. La Réalité Virtuelle. Hermes, 1993.

[17] G.D.Buckner. Simulink : a graphical tool for dynamic system simulation. In NCSU ASME Technical Sessions,
October 11 2001.

[18] G.Debunne. Animation multirésolution d’objets en temps-réel. PhD thesis, Institut National Polytechnique
de Grenoble, Grenoble, France, December 2000.

[19] J.D.Cohen, M.Lin, D.Manocha, and M.K.Ponamgi. I-collide : An interactive and exact collision detection
system for large scale environments. In ACM Internationnal 3D Graphics Conference, pages 189–196, 1995.

[20] J.E.Colgate, M.C.Stanley, and J.M.Brown. Issues in the haptic display of tool use. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 140–145, Pittsburgh, PA, USA, 1995.

[21] J.Zhang, S.Payandeh, and J.Dill. Haptic subdivision : an approach to defining level-of-detail in haptic ren-
dering. In IEEE 10th Symposium On Haptic Interfaces for Virtual Environments & Teleoperator Systems,
Orlando, Florida, USA, March 2002.

[22] N.Courty, S.Menardais, D.Margery, F. Lamarche, S.Donikian, and F.Devillers. Towards believable autono-
mous actors in real-time applications. In IMAGINA’02, Monaco, february 2002.

[23] O.R.Astley and V.Hayward. Multirate haptic simulation achieved by coupling finite element meshes through
norton equivalents. In IEEE International Conference on Robotics & Automation, volume 1, pages 989–994,
Leuven, Belgium, May 1998.

[24] S.A.Ehmann and M.C.Lin. Swift : Accelerated proximity queries between convex polyhedra by multi-level
voronoi marching. Technical report, Computer Science Department, University of North Carolina at Chapel
Hill, 2000.

[25] S.Cotin and H.Delingette. Real-time surgery simulation with haptic feedback using finite element. In IEEE
International Conference on Robotics & Automation, volume 3, pages 3739–3744, Leuven, Belgium, May
1998.

[26] S.Redon, A.Kheddar, and S.Coquillart. An algebraic solution to the problem of collision detection for rigid
polyhedral objects. In IEEE International Conference on Robotics & Automation, San Fransisco, CA, USA,
April 2000.

[27] S.Redon, A.Kheddar, and S.Coquillart. Gauss’ least constraints principle and rigid body simulations. In IEEE
International Conference on Robotics & Automation, Washington, DC, USA, May 2002.

[28] T.Duval and D.Margery. Building objects and interactors for collaborative interactions with gasp. In Pro-
ceedings of the Third International Conference on Collaborative Virtual Environments (CVE’2000), pages
129–138. ACM, September 2000.

[29] T.H.Massie and J.K.salisbury. The phantom haptic interface : A device for probing virtual object. In ASME
International Mechanical Engineering Congress and Exhibition, pages 295–300, Chicago, Illinois, USA,
1994.

[30] T.Hudson, M.Lin, J.Cohen, S.Gottschalk, and D.Manocha. V-collide : Accelerated collision detection for
vrml. In VRML’97, Monterey, CA, USA, 1997.

[31] W.A.McNeely, K.D.Puterbaugh, and J.J.Troy. Six degree-of-freedom haptic rendering using voxel sampling.
In SIGGRAPH, volume 1, pages 401–408, Los Angeles, California, USA, August 1999.

[32] Y.T. Wang, V. Kumar, and J. Abel. Dynamics of rigid bodies undergoing multiple friction contacts. In Proc.
of the IEEE International Conference on Robotics and Automation, pages 2764–2769, Nice, France, May
1992.

Vectorisation d’une courbe discrète standard 2D

Rodolphe BRETON, Eric ANDRES

Laboratoire IRCOM-SIC,Université de Poitiers, BP 30179,
86962 Futuroscope Chasseneuil Cedex, France

{breton,andres}@sic.sp2mi.univ-poitiers.fr

Résumé : Une nouvelle méthode de vectorisation est proposée. À partir de l’algorithme de reconnaissance de
J. Vittone, nous proposons une reconstruction Euclidienne d’une courbe discrète standard 2D (

���
connexe) qui est

inversible et proche du résultat “intuitif” attendu.

Mots-clés : Géométrie discrète, vectorisation, polygonalisation, reconstruction

1 Introduction

La vectorisation de courbe discrète est un enjeu important depuis déjà une vingtaine d’années. Une nouvelle ap-
proche est poursuivie depuis quelques années en France dans la communauté de géométrie discrète (cf. [IDR92]
et [JF96]). Nous présentons ici les premiers résultats 2D pour des courbes standard.

En ce qui nous concerne, la vectorisation s’inscrit logiquement dans un projet de modeleur multi-plongement
[EA01] au sein duquel elle constitue une étape majeur. Dans ce modeleur, nous voulons gérer tant des objets réels
que discrets, et nous voulons manipuler indifféremment un objet dans un plongement discret ou Euclidien.

Nous nous intéressons ici essentiellement aux courbes discrètes standard 2D (
���

connexité) (cf. Andres [And00] et
[And02] et Reveillès [Rev91]) parce que ce modèle possède de bonnes propriétés mathématiques, par opposition au
modèle naïf (� � connexité), plus classique. De plus, le modèle standard est particulièrement bien adapté à la modé-
lisation dans l’espace des complexes cellulaires discrets (cf. [Kov93]) ; cette dernière permettant une segmentation
efficace d’images en régions. Et enfin, ce modèle est aisément extensible aux dimensions supérieures.

L’enjeu ici est classique : passer du discret au continu. Et plus précisément, en partant d’une courbe discrète
standard ��� (une suite de pixels), on veut reconstruire une courbe Euclidienne polygonale lui correspondant. C’est-
à-dire que si on discrétise la courbe Euclidienne ainsi obtenue, on doit retrouver exactement la courbe discrète de
départ (cf. Fig. 1).

vectorisation

discrétisation

FIG. 1 – Courbe discrète de départ, courbe réelle reconstruite et courbe réelle discrétisée.

Pour vérifier la validité de la méthode, nous avons choisi trois critères1 qui nous paraissent pertinents :
- l’opération doit être “inversible” (i.e. l’objet réel obtenu peut être discrétisé pour retrouver l’objet discret

de départ),
- l’aspect visuel de l’objet réel doit être celui “attendu”,
- la méthode doit être la plus générique possible.

Dans une première partie, nous décrirons une première version de notre méthode. Ensuite, dans une seconde partie,
nous mettrons en évidence les faiblesses de cette méthode et les améliorations que nous y avons apportées. Et enfin,
nous concluerons et envisagerons les futures évolutions de cette technique.

1ces critères seront développés dans la section 3

2 Notre méthode

2.1 Rappel sur les droites standard 2D

La discrétisation dans le modèle standard (cf. Andres [And00] et [And02]) de la droite continue �	��

����
������ ,
avec ����� , est l’ensemble des points (ou pixels) vérifiant la double inéquation suivante :

����� ���
����!
��#" � avec � �
$ � $
 $ � $% (épaisseur arithmétique)

Ce qui permet de décrire et de manipuler analytiquement une droite standard.

2.2 Les bases de l’algorithme

Notre méthode de vectorisation d’une courbe discrète consiste à choisir un point de la courbe (une extrémité si
celle-ci n’est pas fermée), reconnaître un premier segment et à répéter le processus avec le reste de la courbe.

Parmi les algorithmes de reconnaissance de segments discrets existants, nous avons choisi d’utiliser celui de J. Vit-
tone [Vit99]. Étant originellement prévu pour reconnaître un autre type de droites, les droites naïves (& � connexes),
nous l’avons adapté au cas standard (' � connexité). Ce choix n’est pas le fruit du hasard puisque cet algorithme
a l’énorme avantage de donner toutes les solutions. C’est-à-dire qu’à partir d’un segment discret, on obtient l’en-
semble de toutes les droites réelles qui, discrétisées sur cet intervalle, coïncident parfaitement avec le segment
discret de départ. De fait, on peut interpréter cet ensemble de solutions comme une classe d’équivalence. Celle-
ci est obtenue sous la forme d’un polygone convexe à trois ou quatre sommets (cf. [ML93]), dans l’espace des
paramètres (*),+.-0/ , qu’on nommera 1 .

Dans d’espace 1 , une droite d’équation �2�3)0�4
�- est représentée par un point de coordonnées (*),+.-0/ . C’est
ainsi qu’on fait correspondre à un polygone à trois (resp. quatre) sommets de 1 , trois (resp. quatre) droites dans
l’espace “classique”, qu’on appellera 5 . Dans une première approche, la solution choisie sera la droite médiane
solution, i.e. la droite passant au centre de l’ensemble de solutions. La figure 2 illustre les cinq formes générales
que peut prendre le polygone solution dans 1 , leur correspondance dans 5 , ainsi que la droite médiane solution.

droite médiane

droite médiane

y

x x x x x

y y y y

6

7 7 7 7 7

6 6 6 6

5

1

FIG. 2 – Les cinq formes possibles de l’ensemble de solutions et la solution choisie dans chaque cas.

La figure 3 montre un exemple complet de reconnaissance avec cet algorithme. En figure 3 �98 , on peut voir le
segment discret à reconnaître. Une fois l’algorithme déroulé, on obtient un ensemble de triplets d’entiers :

: (% + �!; +.'</=+>(*'�+ �@? +BA	/=+C(D'�+ �FE +GA�/=+C(*A�+ �@H +G&�/�I
À chaque triplet (J�K+��L+B�>/ on fait correspondre un point (NM O�+QPON/ dans 1 et une droite �	� � �=�!
��F�R� dans 5 . On a

ainsi une correspondance ;<�S; entre un point dans 1 et une droite dans 5 . D’où, le polygone solution (en figure 3 �N8)
défini par les points suivants :

: (LTU + � TV /=+C(UW + ��XY /=+>(UW + � TU /Z+>(
W
V + ��[\ /�I . On peut également observer l’ensemble des

solutions représentée par quatre droites (en figure 3 �]8), l’ensemble étant en fait l’enveloppe convexe de ces quatre
droites.

1
−0.25

−0.5

−0.83
−0.875

0.5 0.66 0.75
a

b

c
d

droite médiane solution

a
c

d

b

a
c

d

b

droite médiane solution

^_

` a

b9c

dNc

e c

f	c

g c

FIG. 3 – Résultat de l’algorithme de Vittone sur un segment.

Ensuite, une fois le segment reconnu, on sélectionne la droite médiane solution dans sa classe d’équivalence (en
figure 3

e c) et on en déduit enfin les coordonnées des sommets réels (en figure 3 f	c).
Dans le cas d’un segment isolé, on prend comme extrémités du segment réel, deux points de la droite solution
appartenant chacun à un pixel extrémité, et dans le cas d’une ligne polygonale, on prend le point d’intersection
des deux droites réelles obtenues successivement. Mais dans ce dernier cas, le point d’intersection n’appartient pas
toujours à la courbe discrète, comme nous allons le voir.

La figure 4 montre le cas de figure le plus simple. On a reconnu deux segments discrets h�i et hCiZj0k ayant un pixel
en commun et les droites solutions retenues s’intersectent dans ce pixel commun. Il suffit donc de prendre ce point
d’intersection comme fin du premier segment réel et comme début du second.

l<mNn,o
l<m

FIG. 4 – Intersection triviale.

Mais on peut très bien être dans un cas où les droites s’intersectent à l’extérieur de ce pixel (cf. Fig. 5), voire ne
s’intersectent pas du tout (cf. Fig. 6). Dans ces derniers cas, on est contraint d’ajouter un petit segment pour joindre
les extrémités des deux segments réels. On appelle un tel segment un joint.

l<mNn,o
l<m

FIG. 5 – Intersection hors du pixel commun aux deux segments p ajout d’un joint.

q<rNs,t
q<r

FIG. 6 – Intersection hors du pixel commun aux deux segments ou aucune intersection u ajout d’un joint.

En itérant ces opérations de base sur toute la longueur de la courbe, on obtient au final une ligne polygonale
continue correspondant à l’objet discret initial.

Nous allons maintenant présenter l’algorithme global de reconnaissance, mais auparavant, introduisons quelques
notations.

Notations :
Soit une suite ordonnée de v pixels wyx{z|z>zDwK} représentant un segment discret ~N� , on note ~N�
��� w�xL�JwK}	� (avec�����

). On note également �Q� la droite réelle choisie comme solution Euclidienne de ~]� . Et on note enfin �N� le
segment réel solution, porté par �Q� et dont les extrémités appartiennent respectivement à w�x et w9} .

2.3 Première version de l’algorithme

Initialisation :
- au départ, on a une courbe discrète, représentée par une suite ordonnée de v pixels : w0x�z|z|z*wK}
Étape 1 : Reconnaissance
- on note le segment courant ~N� (au début

� ���)
- on note le pixel courant w�� (au début ���R�)
- on utilise l’algorithme de J. Vittone pour reconnaître un segment discret :� on injecte le pixel w � dans ~ �� si ~ � ainsi augmenté est toujours un segment discret, on continue : ���������� sinon ~ � s’arrête en w �D�yx et ce pixel devient le point de départ du nouveau segment : ��������� et� � � ���
- jusqu’au dernier pixel �*����v��
- la courbe est alors entièrement reconnue et polygonalisée en

�
segments discrets, chacun associé à une

classe d’équivalence représentant toutes les solutions continues valides

Étape 2 : Reconstruction
- pour chacune de ces classes d’équivalence, on prend la droite médiane solution de l’ensemble �K�
- il reste à construire les segments réels �N� portés par les droites �Q�
- pour cela, on commence par fixer la première extrémité du premier segment réel ��x en prenant un point de�Qx appartenant à w�x (le premier pixel de la courbe)
- puis, on commence une boucle sur l’ensemble des droites � � trouvées précédemment :� on regarde si � � et � �=�0x s’intersectent bien dans le pixel commun aux deux segments ~ � et ~ �=�0x� si tel est le cas, ce point d’intersection devient la seconde extrémité de � � et la première de � �=�0x� sinon (intersection à l’extérieur ou aucune intersection), on crée un petit joint et dans ce cas, la sec-

onde extrémité de � � est le premier sommet du joint et la première extrémité de � �=�{x est le
second sommet du joint

- on a alors une suite de segments réels �N� (décrits chacun par deux points réels) formant ainsi une ligne
polygonale, fermée ou non, et dont la discrétisation standard coïncide parfaitement avec l’objet discret de
départ

3 Améliorations de l’algorithme

La méthode de base marche bien mais les résultats obtenus ne sont pas toujours de très bonne qualité “visuelle”. On
obtient en particulier des lignes polygonales “très brisées” (cf. Fig. 6). Voici plusieurs améliorations pour pallier à

ce type de problème.
� Jonction premier-dernier segment : (amélioration de la reconnaissance)

Un premier problème apparaît dans le cas où l’objet discret est fermé, quand le premier point de la reconnaissance
se situe au milieu d’un segment discret. Dans ce cas, après la reconnaissance, le premier et le dernier segment
auraient pu être fusionnés en un seul. D’où une première amélioration de notre méthode qui consiste à essayer de
prolonger la reconnaissance du dernier segment de la courbe avec les premiers pixels de la courbe.
� Retrait systématique du dernier pixel reconnu : (amélioration de la reconnaissance)

Pour le moment, lors de la reconnaissance d’un segment discret, on essaye d’aller le plus loin possible, i.e. on
décide que la fin du segment n’est atteinte que lorsque le dernier pixel trouvé ne peut plus s’y ajouter. Cependant,
une telle règle entraîne des configurations peu esthétiques comme illustré sur la figure 7.

obtenue

point de départ de la reconnaissance

forme effectivementforme attendue
à reconnaître
objet discret

dernier pixel reconnu pour le premier segment

FIG. 7 – Problème de la reconnaissance maximale.

C’est pourquoi, on peut décider de retirer systématiquement le dernier pixel de chaque segment reconnu. Mais
cette nouvelle règle a un autre défaut : elle rend la reconnaissance encore plus dépendante du sens de parcours de
la courbe discrète (cf. Fig. 8). D’où l’amélioration décrite ci-après.

point de départ de la reconnaissance

reconnaissance
dans un sensà reconnaître

objet discret reconnaissance dans
l’autre sens

FIG. 8 – Problème du retrait systématique du dernier pixel reconnu.

� Points de rebroussement et retrait intelligent : (amélioration de la reconnaissance)

Un point de rebroussement, au sens mathématique, est un point d’une courbe où celle-ci admet deux tangentes
distinctes à gauche et à droite de ce point. Nous allons introduire la notion de point de rebroussement discret
définie ainsi : un point d’une courbe discrète est un point de rebroussement discret si le segment constitué de ce
point, des deux points précédents et des deux points suivants, n’est pas un segment discret (cf. Fig. 9). De fait, un
tel point ne peut pas se situer en plein milieu d’un segment, mais seulement à une extrémité (à un pixel près). Et
donc, si on repère ces points sur une courbe, on s’aperçoit qu’ils se trouvent systématiquement à la jonction de
deux segments discrets. On peut donc les utiliser comme des sorte d’“aimants” destinés à être en priorité des points
de départ et de fin de segments.

points de rebroussement

FIG. 9 – Exemple de points de rebroussement sur deux courbes.

Le code de Freeman du voisinage d’un point nous permet de déterminer très simplement si ce point est un point de
rebroussement discret (cf. Fig. 10).

peut être un segment discret
code de Freeman : 2323

code de Freeman : 1100
ne peut pas être un segment discret

points de rebroussement

FIG. 10 – Détermination des points de rebroussement.

Utilisation des points de rebroussement :
Lors de la reconnaissance d’un segment �]� , on peut maintenant choisir de garder ou non le dernier pixel trouvé �¡ ,
selon les trois cas de figure suivants :¢ 9¡ est un point de rebroussement : �N� s’arrête sur 9¡ ,¢ K¡*£�¤ est un point de rebroussement : �N� s’arrête sur K¡*£�¤ , afin de mieux “coller” à l’allure globale de la courbe,¢ K¡¦¥0¤ est un point de rebroussement : �]� s’arrête sur 9¡*£�¤ ; en effet, par définition, un segment discret ne

pouvant contenir un point de rebroussement qu’à une de ses extrémités (à un pixel près), si � � finit en ¡ , le
prochain segment aura une longueur maximale de trois pixels et de manière générale, les segments trop courts
correspondent assez peu au résultat souhaité,¢ dans tous les autres cas : � � s’arrête sur ¡ .

Les points de rebroussement permettent de régler le cas de la figure 11 où on voit très bien que si les deux courbes
réelles correspondent bien à la courbe discrète, la première est plus pertinente.

FIG. 11 – Plusieurs courbes réelles correspondent à une même courbe discrète.

De plus, pour s’assurer de respecter l’allure générale de la courbe et éviter le cas illustré par la figure 12, on peut
maintenant décider de ne commencer la reconnaissance que sur un point de rebroussement (dans le cas d’une
courbe fermée).

sens de parcours pour la reconnaissance

point de départ de la reconnaissance

FIG. 12 – La même courbe discrète, reconnue en partant de deux points différents.

¢ Élargissement de la zone possible d’intersection : (amélioration de la reconstruction)

Jusqu’à maintenant, si le point d’intersection des deux droites continues se situait en dehors du sommet discret,
nous ajoutions un joint. Or, on s’aperçoit que si l’intersection se situe dans l’un des deux pixels voisins (nous tra-
vaillons en §�¨ connexité), on peut également conserver ce point d’intersection comme extrémité du futur segment
réel.

Preuve :
Prenons deux segments ©]ª et ©C« ayant le pixel ¬9­ en commun, avec ¬9­*®�ª appartenant à ©]ª et ¬K­¦¯0ª à ©C« . Nommons° ª et

° « les deux droites réelles solutions de la reconnaissance, telles que
° ª et

° « sont sécantes en ± . Les deux
cas étant symétriques, nous allons considérer que le point d’intersection ± se situe à l’intérieur du pixel ¬ ­²¯{ª
(cf. Fig. 13). Puisque ¬ ­²¯0ª appartient à © « , si le segment réel correspondant à © « débute en ± , on perd juste le pixel¬ ­ par rapport au segment discret reconnu. Cependant, la droite

° ª passe par ¬ ­¦¯0ª (puisqu’elle y intersecte
° «). Ce

qui implique qu’en fait, on peut prolonger le segment discret © ª jusqu’en ¬ ­²¯{ª . Et donc, ¬ ­¦¯0ª devient le nouveau
pixel commun aux deux segments discrets.

I ³<´
³Kµ

¶{·D¸ µ¶�·J¹ µ
¶�·

FIG. 13 – Intersection dans un pixel voisin du pixel commun aux deux segments discrets.

º Reconnaissance inverse : (amélioration de la reconstruction)

On peut éviter l’ajout de certains joints en effectuant, à certains endroits, une reconnaissance de Vittone dans le
sens opposé au parcours choisi pour la reconnaissance.

Exemple :
Soient deux segments discrets © ª et © « . Après la reconnaissance, on connaît leurs pixels extrêmes : © ª¼»¾½ ¬9¿	À*¬�ÁÃÂ
et © «Ä»Å½ ¬�ÁZÀJ¬9Æ.Â . On a également obtenu deux droites

° ª et
° « ne s’intersectant ni dans ¬�Á , ni dans ¬�Á ®�ª , ni dans¬ Á ¯{ª (cas précédent). On devrait donc avoir un joint. Mais on peut éventuellement l’éviter. Il suffit de tenter une

reconnaissance en sens inverse entre les pixels ¬ Æ et ¬ ¿ .
Appelons ©CÇ« le nouveau segment discret obtenu, ¬�È le pixel où s’est arrêtée la nouvelle reconnaissance, avecÉËÊ °�ÌÎÍ

(on a donc ©L« »Ï½ ¬9È�À*¬ Æ Â), et
° Ç« la droite solution correspondante. On a alors deux cas. Soit la

reconnaissance s’est à nouveau arrêtée sur ¬ Á » ¬9È et le joint est alors inévitable puisque
° Ç« » ° « . Soit la

reconnaissance est allée au-delà de ¬ Á (cf. Fig. 14) et on pourra éviter le joint si
° ª et

° Ç« s’intersectent dans l’un
des pixels de ½ ¬�È�À*¬ Á Â . En effet, on constate que les pixels situés entre ¬�È et ¬ Á appartiennent tous aux deux segments
discrets ½ ¬ ¿ ÀJ¬ Á Â et ½ ¬9È�À*¬ Æ Â puisque ces deux segments se chevauchent. Donc, si la nouvelle intersection se situe dans
cet intervalle, on peut prendre ce point comme sommet commun aux deux segments réels.

¶ÑÐ ¶ÑÐ
¶ÑÒ ³Kµ

³<´

¶ÑÓ
¶ÑÔ ¶ÑÐ

¶ÑÓ¶ÑÓ
¶ÑÔ¶ÑÒ

FIG. 14 – Elimination d’un joint grâce à une seconde reconnaissance.

º Adoucissement des joints : (amélioration de la reconstruction)

Et enfin, quand le joint est inévitable, on peut quand même s’arranger pour qu’il s’intègre le mieux possible dans
la courbe, contrairement à ce que nous pouvons voir sur la figure 6. En effet, supposons qu’on a reconnu deux
segments discrets ©LÕ »�½ ¬ ¿ À*¬ Á Â et ©LÕ=¯0ª »Ö½ ¬ Á À*¬ Æ Â et qu’on soit obligé d’ajouter un joint entre ces segments car les
deux droites solutions

° Õ et
° Õ=¯{ª ne sont pas sécantes (cf. Fig. 15 à gauche). On aurait normalement un joint en¬ Á , illustré sur la figure 15 au milieu.

Mais en fait, on peut construire un autre joint. Il suffit de prendre comme point de départ, l’intersection entre
° Õ et

le segment commun à ¬ Á ®9« et ¬ Á ®yª , et comme point d’arrivée, l’intersection entre
° Õ=¯0ª et le segment commun à¬ Á ¯{ª et ¬ Á ¯y« . Il est évident que les deux segments réels ainsi obtenus décrivent les segments discrets ½ ¬ ¿ À*¬ Á ®�«=Â et½ ¬ Á ¯y«�À*¬ Æ Â . Et de même, le joint ainsi construit décrit les trois pixels manquants, à savoir ½ ¬ Á ®�ªLÀJ¬ Á ¯0ª�Â .

ajout d’un joint inévitable joint normal joint adouci

×ÑØ ×ÑØ ×ÑØ
×ÑÙ ×ÑÙ ×ÑÙ×ÑÚ ×ÑÚ ×ÑÚÛyÜ
ÛyÜLÝ,Þ

ß ÜNÝ,Þ
ß Ü

FIG. 15 – Cas d’un ajout de joint inévitable.

Ces six points constituent de bonnes améliorations de l’algorithme précédent qui peut alors être réécrit comme
suit.

3.1 L’algorithme amélioré

Initialisation :
- au départ, on a une courbe discrète, représentée par une suite ordonnée de à pixels : á0â�ã|ã|ã*áKä
Étape 0 : Rercherche des points de rebroussement
- on répertorie les points de rebroussement de la courbe (cf. Fig. 10).

Étape 1 : Reconnaissance
- on note le segment courant åNæ (au début çÄè�é)
- on note le pixel courant á�ê (au début ë�èRì)
- on utilise l’algorithme de J. Vittone pour reconnaître un segment discret :í on injecte le pixel á9ê dans åLæí si åCæ ainsi augmenté est toujours un segment discret, on continue : ë�è�ë�î�éí sinon åLæ s’arrête en á9ê*ï â et en appliquant la règle établie précédemment, soit á�ê*ï â , soit áKê*ï9ð devient

le point de départ du nouveau segment : ëÑè�ë�ñ�é (ou ë�è�ë{ñ2ì) et çÄèRç!î�é
- jusqu’au dernier pixel ò*ë�è�à�ó
- si la courbe est fermée, alors on poursuit la reconnaissance jusqu’au prochain point de rebroussement et on
fusionne éventuellement le dernier et le premier segment
- la courbe est alors entièrement reconnue et polygonalisée en ç segments discrets, chacun associé à une
classe d’équivalence représentant toutes les solutions continues valides

Étape 2 : Reconstruction
- pour chacune de ces classes d’équivalence, on prend la droite médiane solution de l’ensemble ôKæ
- il reste à construire les segments réels õNæ portés par les droites ôQæ
- pour cela, on commence par fixer la première extrémité du premier segment réel õ â en prenant un point deô â appartenant à á â (le premier pixel de la courbe)
- puis, on commence une boucle sur l’ensemble des droites ô�æ trouvées précédemment :í on regarde si ô<æ (segment åLæSè÷ö á9ø	ùJá9úüû) et ô	æ=ý â (segment åNæ=ý â èþö á�ú>ù*á9ÿüû) s’intersectent bien dansá ú , á ú.ï â ou á ú ý âí si tel est le cas

�
, ce point d’intersection devient la seconde extrémité de õ æ et la première de õ æ=ý âí sinon (intersection à l’extérieur ou aucune intersection), on refait une reconnaissance entre á ÿ et á ø

et on a deux cas :
� on a toujours les deux mêmes segments å æ et å æZý â , le joint est inévitable, et dans ce cas, la sec-

onde extrémité de õNæ est le premier sommet du joint et la première extrémité de õ]æ=ý â est
le second sommet du joint

� åLæ=ý â a été allongé et l’intersection entre ôQæ et la nouvelle droite solution permet d’éviter le joint ;
on retombe alors dans le cas normal (cf. �)

- on a alors une suite de segments réels õNæ (décrits chacun par deux points réels) formant ainsi une ligne
polygonale, fermée ou non, et dont la discrétisation standard coïncide parfaitement avec l’objet discret de
départ

4 Conclusion

4.1 Résultats

L’algorithme présenté ici répond en partie à nos attentes, à savoir, il permet d’obtenir une courbe continue à partir
d’une courbe discrète standard 2D et la courbe réelle ainsi obtenue peut être discrétisée pour obtenir de nouveau
la courbe discrète. De plus, l’allure générale de la courbe calculée correspond relativement bien à notre intuition.
Cependant, même si nous avons optimisé la reconnaissance, notamment grâce aux points de rebroussement, cette
méthode est encore un peu dépendante du point de départ de la reconnaissance et du sens de parcours.

La figure 16 montre deux exemples obtenus en affichant sur une même courbe discrète, les différentes courbes
réelles obtenues en faisant varier le point de départ de la reconnaissance.

FIG. 16 – En haut, résultats obtenus avec la première version de l’algorithme, en bas, avec la version actuelle. En
foncé, les points de rebroussement.

4.2 Perspectives

Le travail est loin d’être terminé et plusieurs améliorations peuvent encore être apportées.

Dans un premier temps, nous allons regarder du côté des points de rebroussement. En effet, si nous trouvons
plusieurs points de rebroussement consécutifs, cela “déconcerte” l’algorithme de reconnaissance ; il faudrait donc
en éliminer. À l’inverse, peut-être faut-il ajouter de nouveaux points de rebroussement là où, manifestement, il y
aura une jonction entre deux segments mais où le critère de détection n’est pas rempli.

Ensuite, nous envisageons d’adapter notre algorithme à divers domaines applicatifs, et notamment à la segmenta-
tion d’images où on doit reconnaître plusieurs régions différentes. Le problème surviendra lorsque deux régions
auront une frontière commune, puisque pour le moment, la reconnaissance n’est pas unique.

Et enfin, une fois cette méthode éprouvée sur le cas 2D, il est prévu de l’adapter au cas 3D.

Références

[And00] Eric Andres. Modélisation analytique discrète d’objets géométriques, 2000. Université de Poitiers,
Habilitation à diriger des recherches.

[And02] Eric Andres. Defining discrete objects for polygonalization : the standard model. In J.-O. Lachaud
A. Braquelaire and A. Vialard, editors, Discrete Geometry for Computer Imagery 2002, volume 2301 of
Lecture Notes in Computer Science, pages 313–325, Bordeaux, France, april 2002. Springer.

[EA01] Pascal Lienhardt Eric Andres, Rodolphe Breton. Spamod : design of a spatial modeling tool. In Atsu-
shi Imiya Gilles Bertrand and Reinhard Klette, editors, Digital and Image Geometry, Advanced Lectures,
volume 2243 of Lecture Notes in Computer Science, pages 90–107. Springer, 2001.

[IDR92] J.-P. Reveillès I. Debled-Rennesson. Un algorithme linéaire de polygonalisation des courbes discrètes.
In Discrete Geometry for Computer Imagery 1992, Grenoble, France, septembre 1992.

[JF96] M. Tajine J. Françon, J.-M. Schramm. Recognizing arithmetic straight lines and planes. In Discrete
Geometry for Computer Imagery 1996, volume 1176 of Lecture Notes in Computer Science, pages 141–
150, Lyon, France, novembre 1996.

[Kov93] V. Kovalesky. Digital geometry based on the topology of abstract cell complexes. In Discrete Geometry
for Computer Imagery 1993, pages 259–284, Université Louis Pasteur, Strasbourg, France, septembre
1993.

[ML93] A. Bruckstein M. Lindenbaum. On recursive, �
���	�

partitioning of a digitized curve into digital straight
segments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9) :949–953, september
1993.

[Rev91] J.-P. Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique, décembre 1991. Univer-
sité Louis Pasteur, Strasbourg, Thèse d’état.

[Vit99] Joëlle Vittone. Caractérisation et reconnaissance de droites et de plans en géométrie discrète. PhD
thesis, Université Joseph Fourier - Grenoble 1, décembre 1999.

Vers une approche plus intuitive des syst̀emes de C.A.O.

E. Malik*, Y. Gardan*, E. Perrin**

I.F.T.S.* / Universit́e de Metz**
Equipe C.M.C.A.O.

erwan.malik@univ-reims.fr gardan@infonie.fr
perrin@sciences.univ-metz.fr

Résuḿe : Le projet DIJA propose, en plus d’être d́edíe à Internet, une approche synthétique de la conception
de solides contrairement aux méthodes de conception classiques plus constructives. Cette méthode a l’avantage
d’être adapt́ee au design et d’éviter certaines impŕecisions de calcul pouvant survenir lors d’une conception
par assemblage. La mise en œuvre des déformations demande de trouver un modèle sṕecifique qui s’adaptèa
notre repŕesentation des objets. Ceux-ci sont constitués d’́eléments de dialogue couplésà des r̀egles de construc-
tion. Nous distinguons deux types de déformations : les d́eformations directes qui peuvent modifier directement
les éléments de dialogue et les déformations ńecessitant l’utilisation d’un mod̀ele interḿediaire. Le mod̀ele de
déformation doit donc nous permettre de modifier la forme d’un objet en utilisant des actions simples et naturelles
(étirement, torsion, compression, . . .) tout en respectant une cohérence physique. Nous avons répertoríe diff́erentes
méthodes en analysant, pour chacune d’elles, la manière dont elles pourraient s’adapterà nos besoins. Notréetude
porte sur leśeléments finis, les masses–ressorts, les particules et les smoothed particle hydrodynamics . En conclu-
sion, nous abordons les orientations actuelles du projet pour le contrôle des d́eformations en nous intéressant̀a
l’interface homme–machine. Nous montrons comment une interaction plus qualitative peut aider l’utilisateur dans
lesétapes conduisant̀a la définition de la forme souhaitée.

Mots-clés : C.A.O., Interface Homme–Machine, Eléments finis, Particules, Masses–Ressorts, Déformation, Lo-
gique floue

1 Introduction

Traditionnellement, les systèmes de C.A.O. sont bâtis autour d’une approche constructive. Pour créer un objet,
l’utilisateur ajoute deśeléments les uns aux autres, par exemple par combinaison booléenne, jusqu’à ce qu’il
obtienne la forme d́esiŕee. Cette approche nécessite d’avoir une vision précise de l’enchâınement deśetapes
nécessaires̀a la ŕealisation de celui-ci. Or, cette condition n’est pas toujours vérifiée. Un utilisateur novice dans
le maniement des systèmes de C.A.O. n’aura sans doute pas assez d’expérience pour esṕerer concevoir une pièce
aux formes complexes. L’inconvénient majeur survient quand on s’intéresse aux premières phases de conception,
celles concernant le design de l’objet. L’important est alors d’avoir un point de vue global concernant sa future
forme et non la manière dont celui-ci vâetre construit [GPD+02].

Dans ce domaine, le projet DIJA souhaite apporter une approche innovante. Nos objectifs principaux sont de
rendre la cŕeation assistée par ordinateur plus intuitive, que ce soit pour permettre une prise en main plus facile
pour l’utilisateur ńeophyte ou pour permettre audesignerde se concentrer sur la forme de son objet plutôt que
sur les outils propośes par le système. Pour y parvenir le système DIJA est baśe sur une ḿethode synth́etique, par
opposition aux ḿethodes constructives. L’utilisateur commence par choisir une forme s’approchant de celle qu’il
désire puis il la d́eforme successivement jusqu’à aboutirà la forme souhaitée. Il està noter que le fait de choisir
une forme initialéeloigńee de la forme souhaitée n’a aucune incidence sur notre méthode ; cela ralentit seulement
le processus.

Cette d́emarche place les déformations au cœur de l’architecture du système DIJA. En effet, d’une part il faut
un mod̀ele de d́eformation qui soit puissant (comportement réaliste, possibilit́es de d́eformation varíees, . . .) et
facile d’utilisation (param̀etres aiśesà appŕehender et̀a manipuler). En outre, le modèle se doit de tirer le maxi-
mum parti des particularités de DIJA qui sont principalement liéesà la structure des objets. Celle-ci est basée sur
deséléments de dialogue (fibre, ligne caractéristique, contour caractéristique) [DDGP02]. Par exemple un cylindre
peutêrte compośe de deux contours caractéristiques d́efinissant sa face supérieure et inf́erieure, d’une fibre qui aura

le rôle d’axe de ŕevolution et d’une autre servant de profil (cette représentation n’est pas la seule). Ceséléments
sont líes ensemble par des règles de construction dont l’application permet de construire le solide. Notre objectif
est d’́etudier l’outil de d́eformation de DIJA dont l’action se situe au niveau deséléments de dialogue. Naturelle-
ment, des problèmes de coh́erence peuvent survenir lors d’une déformation ce qui peut induire des difficultés pour
reconstruire un objet valide une fois unélément de dialogue déformé. Malgŕe cela, et bien que la reconstruction
soit uneétape tr̀es importante dans notre processus, nous n’aborderons pas cette problématique dans ces pages.

Nous nous proposons dans cet article de passer en revue différents mod̀eles de d́eformation classiquement uti-
lisés. Nous essayons de dégager les avantages et les inconvénients de chacun d’eux pour déterminer les possibilités
d’adaptatioǹa notre projet. Nous continuons en exposant notre approche concernant le contrôle de ces d́eformations
via l’interface de DIJA.

2 Positionnement du Probl̀eme

Les d́eformations dans le projet DIJA sont basées sur l’architecture exposée dans la figure 1. Les objets sont
construitsà partir d’́eléments de dialogue couplésà des r̀egles de construction. Nous faisons la distinction entre
deux types de d́eformations. D’une part, il y a les déformations qui sont directement applicables auxéléments
de dialogue que nous appelons déformations directes. D’autre part nous trouvons des déformations, comme celle
résultant d’une action telle que ”bomber”, qui ont besoin de s’appuyer sur un modèle interḿediaire afin d’avoir
un comportement cohérent. En effet, il peut̂etre utile d’appliquer des déformations̀a une surface, oùa un volume
calcuĺe à partir de l’́elément que l’utilisateur souhaite manipuler. La déformation est, dans ce cas, calculée sur le
volume ou la surface qui sera ensuite traité pour extraire l’́elément de dialogue final. Afin de clarifier la situation,
nous appelons ”entité” indiff éremment uńelément de dialogue (dans le cas d’une déformation directe) ou le volume
ou la surface utiliśee par le mod̀ele de d́eformation interḿediaire.

FIG. 1 –Architecture des d́eformations

Les crit̀eres qui vont nous servirà étudier les ḿethodes de d́eformations sont :

– La souplesse d’utilisation :

– La possibilit́e de modifier n’est pas une restriction.

– Le nombre et la complexité des param̀etres est̀a prendre en compte.

– La stabilit́e nuḿerique.

– Les contraintes temporelles.

3 Modèles de d́eformation

3.1 Eléments finis

Les éléments finis sont traditionnellement utilisés en physique pour simuler le comportement des matériaux
soumisà des forces [Cot97, TC97]. Comme on ne peut pas résoudre leśequations qui ŕegissent le comportement
d’un mat́eriau en milieu continu, l’entité est discŕetiśee pour obtenir une représentation sous forme de maillage de
l’entité initiale. Les forces de déformation sont ensuite calculées en chacun des nœuds [Gay89]. L’objectif est de
minimiser l’énergie contenu dans le système afin de trouver l’état d’́equilibre. Pour cela, on chercheà ŕesoudre un
syst̀eme d’́equations afin de trouver comment les points de notre réseau vont se déplacer sous l’effet des contraintes.
Cette technique fait donc appelà une ḿethode de ŕesolution implicite.

La méthode a l’avantage d’être tr̀es pŕecise, par contre, elle est relativement complexeà mettre en œuvre. Son
inconv́enient majeur reste son coût algorithmique prohibitif. En effet, chaqueétape de d́eformation ńecessite une
inversion de matrice dont la taille varie en fonction du carré du nombre de nœuds. De plus, ce système d’́equation
est baśe sur les relations topologiques qui existent entre chaque nœud du réseau. Il faut donc prendre en compte
les probl̀emes líes aux auto-intersections ce qui alourdit encore le coût en temps de calcul [HFS+01].
Néanmoins, [Cot97] propose une approche originale avec une formulation explicite de la méthode deśeléments
finis. Son objectif est de définir un mod̀ele anatomique d́eformable en temps réel. Les ḿethodes baśees sur l’uti-
lisation interactive de d́eformation via leśeléments finis effectuent des pré-calculs en fonction de l’entité qui doit
être d́eformée.

Bien que cette ḿethode offre des résultats tr̀es ŕealistes et tr̀es pŕecis, son côut de calcul en fait une ḿethode
inadapt́eeà nos objectifs. En outre l’utilisation de pré-calculs ne nous convient pas non plus car la forme de notre
entit́e est d́efinie de manìere dynamique par l’utilisateur. Par ailleurs, il est difficile de changer la topologie de
l’entité au cours du temps.

3.2 Masses - Ressorts

FIG. 2 –Transformation d’une entité continu en un système masses - ressorts

Il s’agit d’une ḿethode qui est utiliśee depuis longtemps dans le domaine de l’animation (comme par exemple
pour l’animation d’un visage chez [PB81]). On discrétise l’entit́e afin d’obtenir une représentation sous forme d’un
ensemble de points auxquels on associe une masse ponctuelle (cf. figure 2). Chacun de ces points est relié à n de
ces voisins. Pour d́ecrire le comportement de l’objet, on exprime le bilan des forces appliquéesà chaque point. Ce
bilan s’exprime via l’́equation suivante [Deb00] :

−→
fi =

∑

voisinsj

ki,j(li,j − linitiale
i,j)

−→
IJ

li,j
(3.1)

ki,j repŕesente la raideur du ressort entre le pointi et le pointj, li,j est la distance séparant les deux points. Cette
équation d́ecrit le comportement d’un ressort simple mais on peut aussi utiliser des ressorts plus complexes (avec
amortissement, ressort en torsion, . . .).
La méthode de ŕesolution classique est une méthode explicite (ḿethode de ŕesolution it́erative) ce qui signifie que

les ŕesultats d́ependent du choix d’un intervalle de temps. A chaque pas de temps, on calcule le bilan des forces
pour l’ensemble des points du réseau. La valeur des déplacements est ensuite modifiée en fonction de l’intervalle
temporel (seule une fraction du déplacement initial est conservée). Les points sont ensuite effectivement déplaćes.
Au terme de cette phase, on teste la stabilité du nouveau système ; si le syst̀eme n’est pas stable, le processus est
réṕet́e jusqu’̀a satisfaction de cette contrainte.

Le principal avantage de cette méthode ŕeside dans sa simplicité d’utilisation et dans son caractère intuitif en
grande partie dùa la ḿethode de ŕesolution explicite. De plus, en prenant certaines précautions, elle peut converger
rapidement vers une solution acceptable. Toutefois cette méthode n’est pas exempte de défauts. En effet, dans sa
version explicite, elle d́epend grandement de la rigidité du syst̀emeétudíe. Plus le système est rigide, plus le pas
de temps d’int́egration doit̂etre faible entrâınant ainsi un nombre d’itérations grand afin d’éviter des divergences
éventuelles. On peut aussi ajouter des tests chargés d’emp̂echer des changements trop brutaux dans notre système.
Malgré cela, l’instabilit́e n’est pas lev́ee : on ne peut garantir le bon fonctionnement de la méthode quelle que soit la
rigidité du syst̀eme. Une solution serait de changer la méthode de ŕesolution et d’opter pour une ḿethode implicite
comme celle proposée par [BW98] pour mod́eliser le comportement avec une rigidité élev́ee.
On trouvera unéetude comparative portant sur les différentes ḿethodes de ŕesolutions dans [VMT01]. Celle-ci
analyse les points forts et les inconvénients de la ḿethode explicite du point milieu (explicit midpoint method), de
la méthode explicite de Runge–Kutta et de la méthode d’Euler inverse qui est une méthode implicite.
La méthode des masses–ressorts est bâtie sur un ŕeseau pŕeétabli (les points et leurs liaisons), ce qui rend difficile
un changement de topologie de l’objet.

La méthode est simple et peutêtre efficace si on prend soin de limiter la rigidité du syst̀eme. Nous pouvons
envisager de l’utiliser pour d́eformer deśeléments de dialogue en appliquant des forces de déformationsà un
ensemble de points reliés (cas òu on ne connâıt pas l’́elément final), ou en d́eplaçant certains points d’uńelément
de dialogue de façoǹa obtenir les ŕepercutions sur la globalité de l’objet.
En outre, d́eterminer la raideur associéeà chaque ressort de façonà obtenir l’effet souhait́e n’est pas aiśe. Cette
méthode offre des possibilités limit́ees concernant les changements de topologies. En effet, une fois celle-ci fixée,
il est difficile d’en changer au cours d’une déformation sous peine d’aboutirà une forme non coh́erente.

3.3 Particules

Il s’agit d’une extension du modèle masses–ressorts [Deb00]. Il faut discrétiser l’entit́e afin d’obtenir un en-
semble de points la caractérisant. Ici les liens entre les masses ponctuelles ne sont plus préétablis maiśevoluent
dynamiquement [WH94]. Chaque particule peut interagir avec l’ensemble des autres particules.
Les forces qui ŕegissent ces interactions sont de type attraction–répulsion. La figure 3 représente la force exercée
par une particulei sur une particulej en fonction de la distance les séparants (d) :

FIG. 3 –Force d’interaction de type Lennard–Jones

Comme avec les masses–ressorts, pour connaı̂tre le comportement de l’objet, on exprime le bilan des forces ap-
pliquéesà chaque particule puis on intègre les ŕesultats au système afin d’obtenir la nouvelle position des particules
dans l’espace. Le processus peutêtre stopṕe une fois atteint uńetat stable. Il s’agit donc d’une ḿethode explicite.
Voici l’algorithme utilisé pour cette ḿethode :

– Tant que non(Etat Stable)

– Pour chaque particule i
– Pour chaque particule j

Calculer la force exerćee par la particule j sur la particule i
Mettreà jour la somme des forces appliquées sur la particule i
Calculer la force exerćee par la particule i sur la particule j
Mettreà jour la somme des forces appliquées sur la particule j

– Fin pour
– Fin pour
– Miseà jour des positions des particules en fonctions des forces qui leurs sont appliquées.
– Fin Tant que

Une nouvelle fois, l’int́er̂et de cette ḿethode ŕeside en partie dans sa simplicité. A l’aide d’une loi de com-
portement simple au niveau atomique, on obtient un comportement global complexe. Cette méthode autorise les
changements de topologie en fonction du choix de l’utilisateur.
[JV02] ont d́evelopṕe une ḿethode permettant de passer d’un modèle BRep d́efinissant l’objet̀a un mod̀ele phy-
siqueà particules (en ŕealit́e, leur mod̀ele se situe entre les systèmes masses-ressorts et les systèmesà particules)
sur lequel sont effectúees les d́eformations pour revenir au BRep au moment de l’affichage.
Dans [ST92], les particules sont orientées et sont uniquement réparties sur la surface de l’objet. Les forces qui les
régissent sont basées sur des critères ǵeoḿetriques locaux. Les centres des particules sont ensuite maillés comme
un nuage de points mais en tenant compte de l’orientation des particules pour diminuer les incohérences topo-
logiques. Leur ḿethode permet des déformations de la surface avec changement de topologieà l’aide d’outils
virtuels.
Par contre, la complexité des ḿethodes̀a particules peut s’avérer un probl̀eme pour un traitement en temps réel.
Dans sa version de base (tel qu’ilà ét́e expośe pŕećedemment) l’algorithme a un coût enO(n2) (n étant le nombre
de particules). En effet, chaque particule peut théoriquement interagir avec n’importe quel autre de ces voisins.
En ŕealit́e, la force d’interaction tend vers zéro lorsque la distance devient grande. Une technique revient alorsà
attribuer un rayon d’actioǹa chacune des particules au delà duquel il n’y a plus d’interaction possible. On peut
ainsi partitioner l’espace de façonà limiter le côut de l’algorithme en ne travaillant qu’avec les voisins ”utiles”
d’une particule ramenant ce coût à une complexit́e quasi lińeaire.

Le changement de topologie est l’avantage principal de cette méthode vis̀a vis des systèmes masses-ressorts.
Par contre, cela se fait au prix d’une plus grande complexité de l’algorithme. Les particules n’ayant pas de rela-
tions topologiques priviĺegíees entre elles, il est difficile d’assurer la conservation des arrêtes vives au cours des
déformations, ou de conserver certaines distances. De plus, cela signifie que déformer unélément de dialogue
(qui par d́efinition est uńelément de dimension un) implique l’utilisation d’un modèle interḿediaire dans lequel la
méthode s’appliquera sur une surface ou un volume.

3.4 Smoothed Particle Hydrodynamics

La premìere étape consistèa discŕetiser le volume de l’objet en un ensemble de particules. Chacune de ces
particules repŕesente un point d’échantillonnage du volume qui l’entoure [Des97, Mon92]. On peut alors exprimer
les forces s’exerçant sur une particule comme suit :

F∇P
i = −mi

∑

voisinsj

mj(
Pi

ρ2
i

+
Pj

ρ2
j

)∇iW
i,j
h (3.2)

La particulei a un rayon d’influence noté h. Wh est un filtre de lissage,∇iW
i,j
h repŕesente le gradient de

Wh(Xi − Xj) par rapport̀a la position de la particulei. Pk est la valeur du champ de pression au pointk. Ce
champ de pression dépend directement de l’équation d’́etat du mat́eriau. Nous pouvons l’écrire sous la forme :

P = k(ρ− ρ0) (3.3)

Ce qui revient̀a appliquer des forces de pressions quand la densité du mat́eriau diff̀ere de sa densité initiale (ρ0).
Enfin, pour calculer la densité assocíeeà chaque particule on utilise l’équation suivante :

ρi =
∑

voisinsj

mjWh(Xi −Xj) (3.4)

Il nous restèa d́eterminer la forme du filtre de lissageWh dont le r̂ole est d’att́enuer les hautes fréquences pouvant
perturber l’int́egration. Ǵeńeralement, ce filtre est caractériśe par une approximation spline de la Gaussienne avec
un support fini de rayon2h.
On pourra aussi ajouter des forces dissipatives au système afin d’aḿeliorer la stabilit́e du syst̀eme.

Le mod̀ele SPH offre les m̂emes avantages que le modèleà particules standard (principalement, il rend possible
le changement de topologie). En plus, il permet d’assurer une gestion de l’équation d’́etat qui garantit un plus grand
réalisme lors des d́eformations de l’objet [Des97, Deb00].
De même, il est ńecessaire, pour appliquer les déformations, d’utiliser un mod̀ele interḿediaire dans lequel on
traduit leséléments de dialogue afin de pouvoir travailler sur une surface ou un volume avant d’obtenir l’élément
de dialogue final. Malheureusement cette méthode s’adapte mal aux frontières d́efinies (elle áet́e d́evelopṕee pour
des gaz) [Mon92, MPT93]. Or, c’est le cas pour toutes les entités que nous souhaitons déformer ! Le probl̀eme
vient du fait que la densité chute sur les bords de l’objet ce qui provoque donc un mouvement des particules situées
à l’intérieur du solide vers les bords de celui-ci (le répartition devient non-homogène). Pour contrer ce phénom̀ene
[Des97] utilise une autréequation pour exprimer la densité dans le matériau (́equation de continuité baśee sur la
conservation de la masse) qui permet alors de disposer d’une densité valide dans l’objet.
La premìere modification apportée se rapporte au calcul de la densité assocíee à une particule. L’́equation 3.4
calcule cette densité en fonction des voisins de la particule, or près des bords leur nombre chute. Il convient donc
d’exprimer diff́eremment celle-ci. Pour cela, il utilise les propriét́es de l’́equation de continuité (hydrodynamique)
en exprimant la variation de la densité au niveau local sous la forme :

ρ̇i = −ρi div(v)i (3.5)

où div(v) repŕesente la divergence de la vitesse avec :

div(v)i =
1
ρi

∑

voisinsj

mj(vj − vi) · ∇iW
i,j
h (3.6)

Il suffit alors de d́efinir la densit́eρi initiale pour chaque particule et d’intégrer cette relation au cours du temps.
On dispose ainsi d’une densité correcte m̂eme au niveau des bords de l’objet.
La deuxìeme modification concerne la définition du filtre de lissage qui devient :

Wh(X) =
15

π(4h)3

{
(2− ‖X‖

h)3 si0 ≤ ‖X‖ ≤ 2h

0 si‖X‖ > 2h
(3.7)

Ce qui permet d’avoir un gradient non nul quand la distance entre deux particules tend vers zéro (si le gradient
était nul, comme c’́etait le cas pŕećedemment, on pourrait assisterà des fusions de particules).

On retrouve dans cette méthode les caractéristiques ǵeńerales des systèmesà particules. Comme elles, cette
méthode est plus adaptée aux d́eformations appliquant des forcesà certains points. Ces caractéristiques nous en-
couragent̀a utiliser les SPH pour d́eformer des entités via un mod̀ele interḿediaire, en permettant les changements
de topologie et òu nous envisageons un système qui se raffinerait en fonction des forces appliquées (particule de
grande dimension dans les zonesà faible d́eformation et de petite dimension là òu les d́eplacements sont plus
importants).

3.5 Bilan

Après analyse, la modélisation paŕeléments finis nous apparaı̂t trop côuteuse (algorithmiquement) malgré le fait
qu’il existe des ḿethodes visant̀a acćelérer le processus. Malheureusement ces méthodes ne sont pas applicables
dans notre cas ce qui nous pousseà rejeter cette approche. Les trois modèles suivant qui font tous partie de la
famille des interactions entre masses [Des97] nous semblent plus prometteur. Le modèle masses–ressorts offre
un bon compromis entre possibilités et simplicit́e (surtoutà travers sa version explicite). Malheureusement, cela
s’accompagne de quelques restrictions concernant la rigidité assocíee aux ressorts ainsi qu’à la construction m̂eme
du ŕeseau ; c’est de lui dont dépendra la coh́erence du comportement de la déformation. Il faut noter cependant
que ce mod̀ele est celui qui semble s’adapter le mieuxà l’architecture du projet DIJA. En effet, il est relativement
facile d’exprimer leśeléments de dialogue en un réseau de masses–ressorts afin de leur appliquer directement les
déformations, ce qui n’est pas le cas des modèles suivants. Le deuxième mod̀ele de la cat́egorie des interactions
entre masses, le modèleà particule, est le premier modèleà offrir de ŕeelles possibilit́es de changement dynamique
de topologie. Malgŕe cela, cette ḿethode souffre d’un manque de rigueur dans les résultats d̂u à sa loi de compor-
tement arbitraire (dans le sens où elle n’est pas basée sur les propriét́es ŕeelles d’un mat́eriau). Pour conclure, nous
avons abord́e le formalisme des SPH. Ce modèle apporte une plus grande rigueur grâceà une gestion réaliste de
l’ équation d’́etat du mat́eriau. Malheureusement, pour l’utiliser, il faut passer par un modèle interḿediaire afin de
travailler sur une surface ou un volume avant de pouvoir obtenir unélément de dialogue déformé. Toutefois, sa
puissance et ses résultats ŕealistes font de ce modèle un candidat id́eal dans le cadre des déformations reposant sur
un mod̀ele interḿediaire. Concernant les déformations applicables directement, nous menons des recherches afin
de d́evelopper un nouveau modèle de d́eformation qui ŕepondrait d’une meilleure façoǹa nos crit̀eres.

4 Déformations floues

4.1 Introduction

La plupart des logiciels de CAO actuels utilise la géoḿetrie comme le mod̀ele id́eal de repŕesentation d’un
objet. Ce faisant, cette représentation cristallise les idées de l’utilisateur car elle représente une forme exacte
[LL97]. Malheureusement, cela s’avère un frein tr̀es important pour les stylistes qui manipule des formes dont
le rôle est de v́ehiculer des id́ees plus que des informations purement géoḿetriques [HSZ01, DG97, LLD01].
D’autant plus que ces formes peuvent avoir des caractéristiques impŕecises ou qualitatives. Heureusement, il existe
des moyens de travailler avec de tels concepts. En effet, la logique floue permet de manipuler des informations
qui sont qualitatives, imprécises, incertaines et/ou incomplètes [Zad97]. Avec DIJA, notre première contribution
à l’utilisation de mots et de notions floues comme vecteurs d’information se situe au niveau des déformations.
Nous souhaitons effectivement proposerà l’utilisateur le moyen d’exprimer avec des termes en langage naturel
les d́eformations qu’il d́esire ŕealiser. Nous avons donc intégŕe des actions telles que ”bomber”, ”étirer”, . . . Ces
termes font ŕeférences̀a des connaissances préalablement introduites dans le système par un expert. Au stade actuel
de nos travaux, une déformation comme ”bomber” s’applique sur un contour en deux dimensions d’un objet de
révolution.

4.2 Exemple de d́eformation

Par exemple, l’utilisateur peut souhaiter ”bomber” unélément de dialogue qu’il aura préalablement śelectionńe.
Premìerement, il choisit parmi un ensemble proposé une loi de comportement. Cette loi va caractériser le compor-
tement de la d́eformation au cours du temps. Ensuite, il doit définir qualitativement l’action ”bomber” grâceà des
adverbes tel que : ”plus”, ”moins” oùa des combinaisons d’adverbes : ”beaucoup moins”, ”beaucoup plus”. Une
fois ces param̀etres ŕegĺes, les informations sont communiquéesà un moteur d’inf́erence flou dont le rôle est de
supprimer les param̀etres flous pour en permettre une représentation graphique.

4.3 Observations

Malgré le fait que notre système soit pour le moment extrêmement simplifíe, nous voyons apparaı̂tre un certain
nombre de difficult́es se rapportant au comportement des déformations ainsi que d’autres d’ordre géoḿetrique. Par

exemple, nous pouvons bomber une formeà la manìere d’un ballon dans lequel on souffle, mais aussià la manìere
d’un emboutissage avec un objet circulaire. Si nous appliquons ce style de déformationà un segment, nous le
verrons se d́eformer progressivement jusqu’à prendre la forme d’un demi-cercle. Passé ce stade, le système doit
proposer des choix̀a l’utilisateur afin que celui-ci d́efinisse le comportement de sa déformation.

5 Conclusion et perspectives

Le projet DIJA est un système de CAO dont les objectifs sont de rendre la création d’objets plus intuitive
grâceà une approche synthétique. Cette approche est une approche modificatrice, ce qui signifie que l’utilisateur
part d’une forme initiale puis la d́eforme jusqu’̀a obtenir l’objet souhaité. Cette d́emarche permet̀a l’utilisateur
de se focaliser sur des questions d’aspect (directement lié au design) plutôt que sur des plans de construction
comme c’est le cas avec la méthode constructive. Les déformations sont donc uńelément sitúe au cœur du projet.
Pour les ŕealiser, nous avons défini deséléments de dialogue sur lesquels nous nous basons pour construire la
silhouette de l’objet. La d́eformation d’unélément de dialogue implique une déformation locale ou globale de
la forme de l’objet. Il est donc ńecessaire de proposer une interaction pour que l’utilisateur puisse manipuler
simplement leśeléments de dialogue. Le modèle sur lequel s’appuient ces déformations doit̂etre suffisamment
puissant, pour permettre un grand nombre d’interactions, et réaliste pour offrir des comportements cohérents lors
des d́eformations. Dans cet optique, nous nous sommes premièrement int́eresśe à plusieurs mod̀eles couramment
utilisés afin d’en d́egager les caractéristiques principales. En conclusion, nous avons retenu le modèle SPH pour ses
possibilit́es et sa robustesse (déformations utilisant un modèle interḿediaire). Toutefois, nous menons activement
des recherches pour développer un mod̀ele de d́eformation qui soit capable de manipuler directement noséléments
de dialogue tout en palliant aux différents probl̀emes rencontrés avec l’utilisation des masses–ressorts. Dans un
deuxìeme temps, nous avonsévoqúe le r̂ole des mots dans le domaine de la conception assistée par ordinateur.
Traditionnellement, la CAO fait appelà des concepts purement géoḿetriques qui sont caractériśes principalement
par la pŕecision, la compĺetude et l’aspect quantitatif. Or, desétudes ont montré que de telles notionśetaient
éloigńees des considérations de l’utilisateur lors des phases de design. Effectivement lors des premières phases de
la conception la forme d’un objet véhicule avant plus de sens que son aspect purement géoḿetrique. Notre premier
pas dans ce sens aét́e de proposer une interface homme–machine pour contrôler certaines d́eformations baśees
sur des notions floues. L’utilisateur souhaitant modifier un objet suivant une de ces déformations choisit une loi
de comportement puis sélectionne un ou des termes modificateurs qui donnent la force de la déformation. Les
résultats que nous avons obtenus jusqu’à pŕesent sont prometteurs notamment suiteà l’exposition d’une maquette
à l’occasion du salon international de la CAO de 2002.

Nos recherches actuelles se portent sur la réalisation d’une interface homme–machine intuitive capable de
prendre en compte des déformations impliquant des changements de topologie dans l’objet. De plus, nous poursui-
vons nośetudes sur les d́eformations̀a caract̀ere flou. Nous souhaitons̀a pŕesent disposer d’un modèle de l’objet
imprécis b̂ati en parall̀ele du mod̀ele ǵeoḿetrique.

Références

[BW98] D. Baraff and A. Witkin. Large steps in cloth simulation.Computer Graphics, 32(Annual Conference
Series):43–54, 1998.

[Cot97] S. Cotin. Modèles Anatomiques D́eformables En Temps-Réel. PhD thesis, INRIA Sophia Antipolis,
Novembre 1997.

[DDGP02] F. Danesi, L. Denis, Y. Gardan, and E. Perrin. Basic components of the DIJA project. InProceedings
of the Seventh ACM Symposium on Solid Modeling and Applications. ACM Press, 2002.

[Deb00] G. Debunne.Animation Multiŕesolution D’objets D́eformables En Temps-Réel, ApplicationÀ la Si-
mulation Chirurgicale. PhD thesis, Institut National Polytechnique de Grenoble, Décembre 2000.

[Des97] M. Desbrun.Modélisation et Animation de Matériaux Hautement D́eformables En Synthèse d’Images.
PhD thesis, INP Genoble, Décembre 1997.

[DG97] T.H. Dani and R. Gadh. Creation of concept shape designs via a virtual reality interface.Computer-
Aided Design, 29(8):555–563, August 1997.

[Gay89] Gay. Une Approche Simple Du Calcul Des Structures Par la Méthode DeśEléments Finis. Hermes
Sciences, 1989.

[GPD+02] Y. Gardan, E. Perrin, F. Danesi, L. Denis, N. Gardan, F. Heschung, E. Malik, M. Reimeringer, and
R. Stock. First operational systems based on the DIJA project. InApplied Modelling and Simulation
AMS’2002, A parâıtre, 2002.

[HFS+01] G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs. An implicit finite element method for elastic
solids in contact. InProceedings of Computer Animation 2001. CA. IEEE Computer Society, 2001.

[HSZ01] J. Liu H. Shu and Y. Zhong. A preliminary study on qualitative and imprecise solid modelling for
conceptual shape modelling.Engineering Applications of Artificial Intelligence, 14(2):255–263, April
2001.

[JV02] J. Jansson and J.S.M. Vergeest. A discrete mechanics model for deformable bodies.Computer-Aided
Design, 34(12):913–928, October 2002.

[LL97] B. Lawson and S. Ming Loke. Computers, words and pictures.Design Studies, 18(2):171–183, April
1997.

[LLD01] S. W. Lim, B. S. Lee, and A. H. B. Duffy. Incremental modelling of ambiguous geometric ideas (i-
MAGI): Representation and maintenance of vague geometry.Artificial Intelligence in Engineering,
15(2):93–108, April 2001.

[Mon92] J.J. Monaghan. Smoothed particle hydrodynamics.Annu. Rev. Astron. Astrophys., 30:543–574, 1992.
[MPT93] T.J. Martin, F.R. Pearce, and P.A. Thomas. An owner’s guide to smoothed particle hydrodynamics.

Available on Sissa, 1993.
[PB81] S. Platt and N. Badler. Animating facial expressions. InProceedings of SIGGRAPH’81, pages 245–

252, July 1981.
[ST92] R. Szeliski and D. Tonnesen. Surface modeling with oriented particles. InSIGGRAPH’92, pages

185–194, 1992.
[TC97] J. Turner and C. Chaillou. Utilisation deséléments finis pour simuler les interactions aiguille-tissus

humains. InActes Du 5̀eme Śeminaire Du Groupe de Travail Animation et Simulation, pages 101–107,
mars 1997.

[VMT01] P. Volino and N. Magnenat-Thalmann. Comparing efficiency of integration methods for cloth anima-
tion. In Proceedings of CGI’01, Hong-Kong, July 2001.

[WH94] A. Witkin and P. Heckbert. Using particles to sample and control implicit surfaces. InSIGGRAPH’94,
volume 28, pages 269–278, 1994.

[Zad97] L.A. Zadeh. Toward a theory of fuzzy information granulation and its centrality in human reasoning
and fuzzy logic.Fuzzy Sets and Systems, 90(2):111–127, September 1997.

Une Méthode d’Appariement Topologique d’Entités
dans les Modèles Géométriques Paramétriques

Dago Agbodan
David Marcheix

Guy Pierra
Christophe Thabaud

 Laboratoire d’Informatique Scientifique et Industrielle (LISI)
Ecole Nationale Supérieure de Mécanique et d’aérotechnique (ENSMA)

Téléport 2 — 1 avenue Clément Ader
 BP 40109

 86961 Futuroscope Chasseneuil cedex — France
 (+33/0) 5 49 49 80 63

{agbodan | marcheix | pierra | thabaud}@ensma.fr

Résumé : De nos jours, de nombreux systèmes commerciaux de CAO proposent la modélisation history-based,
constraint-based et feature-based. Malheureusement, la plupart de ces systèmes échouent lors de la phase de
réévaluation lorsque divers changements topologiques se produisent. Ce problème est connu sous le nom de
nomination persistante. Cela consiste à identifier des entités géométriques dans un modèle paramétrique initial
puis à apparier ces entités avec celles du modèle réévalué. Cet article propose une méthode complète fondée sur
la topologie sous-jacente pour identifier et apparier n’importe quel type d’entités. La méthode d’identification
est basée sur la structure invariable de chaque classe de caractéristiques de forme (feature) et sur l’évolution de
la topologie. La méthode d’appariement confronte l’historique topologique initial avec l’historique topologique
réévalué. Pour chaque étape de construction, l’appariement se déroule en deux étapes. Lors de l’étape locale,
deux mesures de similitude topologique sont calculées entre des couples d’entités appartenant respectivement
aux modèles initial et réévalué. Lors de l’étape globale, l’appariement final est défini comme une relation
binaire qui maximise la similitude topologique entre les entités des deux modèles. La méthode de nomination et
d’appariement a été mise en œuvre avec la plate-forme de développement d’application 3D Open CASCADE.

Mots-clés : CAO, CAD, conception paramétrique, nomination persistante.

1. INTRODUCTION
Les systèmes de modélisation solide statiques (B-Rep, CSG, etc...), largement utilisés dans le domaine de la
conception assistée par ordinateur (CAO), sont de plus en plus remplacés par des systèmes de modélisation
dynamique (connus sous le nom de modeleur history-based, constraint-based et feature-based) qui permettent
d’exprimer et d’enregistrer le processus de conception et les intentions de conception. Ces systèmes de
modélisation dynamique sont souvent rassemblés sous le terme de modeleurs paramétriques. Un modèle
paramétrique se compose de la représentation d’un objet, d’un ensemble de paramètres (caractérisant l’objet) et
d’une liste de contraintes (des équations ou des fonctions) appliquées à l’objet. Par extension, un modeleur
paramétrique est un système pour la conception géométrique qui préserve non seulement la géométrie explicite
de l’objet conçu (appelé objet paramétrique ou instance courante), mais également l’ensemble des gestes
constructifs employés pour le concevoir (appelé processus de conception ou spécification paramétrique). Cette
structure de données duale permet la modification rapide par réévaluation. Cependant, quand la réévaluation
entraîne des modifications topologiques, il est difficile de retrouver les références des entités utilisées par les
gestes constructifs dans le nouveau contexte, donnant des résultats différents de ceux prévus. Un système de
nomination persistante, robuste aux modifications topologiques, s’avère nécessaire pour préserver, d’une
réévaluation à l’autre, les références sur les entités topologiques. Ce problème est connu sous le nom de
nomination persistante ou nomination topologique [8,4]. Cet article est structuré comme suit. Dans la section 2,
nous donnons un exposé détaillé des principales difficultés liées à la nomination dans un modeleur paramétrique.

La troisième section présente quelques travaux existants ; essentiellement les deux principaux travaux sur la
nomination topologique. Ces travaux ne répondent pas complètement au problème de la nomination persistante.
Nous présentons, dans la section 4, une approche alternative.

2. PROBLEMATIQUE
Le problème principal pour la réévaluation paramétrique est de caractériser les entités géométriques et
topologiques d’un modèle paramétrique. Caractériser des entités consiste à leur donner un nom lors de la
conception et à retrouver à quoi correspond ce nom lors de la réévaluation (c.-à-d. apparier les entités du modèle
initial avec les entités du modèle réévalué.) Prenons l’exemple de la figure 1 pour illustrer ce problème. Dans
l’exemple ci-dessous, la spécification paramétrique contient quatre gestes constructifs successifs. Le quatrième
consiste à arrondir l’arête e. Si le modèle initial est sauvegardé après cette quatrième étape, l’instance courante
ne contient plus l’arête e : elle a été détruite par l’opération d’arrondi. Ainsi, l’opération d’arrondi, qui a pour
paramètre d’entrée l’arête e, ne peut plus être représentée dans la spécification paramétrique du modèle. Par
conséquent, un nom est nécessaire pour représenter les entités référencées dans les spécifications paramétriques
lorsqu’elles n’existent plus dans l’instance courante. De plus, chaque geste constructif crée un certain nombre
d’entités. Ces entités doivent être distinguées et donc nommées, pour pouvoir être référencées par des gestes
constructifs ultérieurs ; même si le nombre d’entités est le même dans toute réévaluation possible (aucun
changement topologique). Par conséquent, chaque entité devrait être nommée de manière non-ambiguë et unique
lors de la phase de construction. Le problème est bien plus complexe lorsque le nombre d’entités change dans le
modèle paramétrique d’une réévaluation à l’autre.

Modèle
initial

Bloc par
balyage rainure horizontale rainure verticale arrondi de l’arête e

1 2 3 4

2’1’ 3’ 4’

e e1 e2
Modèle
réévalué

Figure 1: Nomination persistante

Revenons à l’exemple ci-dessus, mais cette fois considérons le modèle réévalué. Nous notons qu’à l’étape 3
l’arête e a été coupée en deux arêtes e1 et e2. Ainsi, à l’étape 4, le problème est de déterminer quelle(s) arête(s)
doit(doivent) être arrondie(s). Le problème est d’identifier, c.-à-d. apparier, l’arête e avec les arêtes e1 et e2 en
dépit des changements topologiques. Ainsi, quand la réévaluation entraîne des changements topologiques, la
difficulté supplémentaire est d’apparier deux structures différentes. Le mécanisme de nomination devrait être
assez puissant pour effectuer un appariement robuste lors de la réévaluation.

3. ETAT DE L’ART
Au cours des dernières années, à la suite des premiers travaux de Hoffmann et Juan [6], plusieurs auteurs ont
analysé la structure de données interne des modèles paramétriques, proposant des représentations éditables
[6,10,14,11,9], discutant les structures mathématiques fondamentales [10,12], décrivant les difficultés liées à la
sémantique des opérations [6,5,1] ou à la gestion des contraintes [3]. La plupart de ces travaux ont abordé la
modélisation paramétrique en terme de création mais peu en terme de réévaluation. Plusieurs méthodes de
nomination persistante et d’appariement ont été proposées. En particulier Kripac [8] et Chen [5] ont proposé des
solutions pour résoudre certains des problèmes mentionnés dans la section précédente. Kripac a essentiellement
développé un algorithme d’appariement tandis que Chen s’est concentré sur la nomination persistante non
ambiguë d’entités.

3.1. L’approche de Chen
Chen [5] propose un modèle qui se compose de deux représentations. Pour la première, il définit une
représentation éditable, appelée Erep [6], qui est une représentation de haut niveau, générative, textuelle,
indépendante de tout noyau de modeleur et non-évaluée. Elle abstrait les opérations de conception, contient la
spécification paramétrique et stocke les entités sous forme de nom. La deuxième représentation, évaluée et
dépendant du modeleur, contient la géométrie (l’instance courante). Le lien entre ces deux représentations est
obtenu par un schéma de nomination qui met en correspondance les entités du modèle géométrique et les noms
génériques (persistants) de la représentation non-évaluée.
Chen définit une structure précise pour la nomination des entités résultant d’une opération d’extrusion ou de
révolution. Chaque entité résultant de l’extrusion est nommée par référence à l’entité source correspondante du
contour 2D et au geste constructif. Il propose également une technique d’identification pour les entités générées
par collision qui est fondée sur la composition des contextes topologiques (les voisinages topologiques plus ou

moins étendus) et sur l’orientation de la feature. Chacune de ces entités est décrite par son origine, soit une entité
source soit une intersection de faces sources, son plus petit contexte topologique non ambigu et l’orientation
locale dans le modèle B-Rep [4][5]. Pour assurer également l’unicité des noms dans le domaine non linéaire, une
information additionnelle, basée sur la géométrie, est ajoutée à l’information topologique précédente :
l’orientation de n’importe quelle arête par rapport à la direction d’extrusion de la feature à laquelle elle
appartient. L’appariement d’une entité est réalisé par une comparaison locale des voisinages topologiques. Par
exemple, dans le cas des faces, la face qui doit être appariée est comparée à l’ensemble des faces issues de la
même face invariante (ensemble préliminaire – preliminary set). À chaque étape de construction, les faces
contingentes héritent du nom de leur face parent ce qui permet de construire l’ensemble préliminaire. Un indice
est associé à chaque face de cet ensemble préliminaire. L’indice pour chaque face candidate est le nombre
d’arêtes frontières mises en correspondance. La face est conservée si cet indice dépasse un seuil.
Dans son étude, Chen s’est limité à trois types de features : balayage (extrusion et révolution), arrondi et filet.
Pour ces features, il a montré qu’il était possible d’identifier dans la plupart des cas pratiques (c.-à-d., quand il
n’y a pas trop de symétries dans le modèle) sans ambiguïté les entités topologiques des modèles définis par
l’attachement successif de telles features, même lorsque les faces sont gauches,. Un algorithme d’appariement,
supportant un certain degré de changements topologiques dans le modèle réévalué, est aussi proposé. Cependant,
l’utilisation du contexte réduit dans cet algorithme n’est pas détaillée. De plus cet algorithme emploie des seuils
et aucune précision n’est donnée sur les valeurs raisonnables possibles. Finalement, l’algorithme d’appariement
est local à l’entité à rechercher (cf. 4.2). Dans le cas de la figure 4, et selon le seuil utilisé, F2 serait
probablement appariée avec Fx.
Le modèle proposé apporte deux notions importantes dans le domaine : d’une part, deux concepts principaux
pour l’identification topologique des entités (contexte topologique et orientation de feature qui seront employés
ensuite par plusieurs approches), et d’autre part une étude très précise des cas d’ambiguïté.

3.2. L’approche de Kripac
Kripac [8] s’est concentré sur l’appariement des entités. Il propose un API (Interface de Programmation
d’Application) encapsulant son système topologique d’identification et garantissant la nomination persistante des
entités en utilisant une table de correspondance entre une entité du modèle initial et une ou plusieurs entités du
modèle réévalué. Il propose une structure de graphe intéressante pour l’identification de toutes les entités
topologiques basées sur l’historique des faces (créations, scissions, fusions et suppressions des faces) et un
algorithme d’appariement complexe. Lors de chaque réévaluation, toutes les faces, comme toute entité
référencée dans la spécification paramétrique, sont appariées avec les nouvelles entités. En plus de la structure de
graphe des faces, l’approche de Kripac est novatrice car le mécanisme d’appariement proposé est global. La
robustesse et la fiabilité induites par le caractère global de la méthode d’appariement entraîne un surcoût dans la
complexité spatiale (maintien de deux structures parallèles) et temporelle (plus d’entités à comparer). Le modèle
de Kripac ne permet pas d’enregistrer précisément la qualité d’un appariement car il emploie une métrique
discrète. Cela induit fortement les appariement ultérieurs et mériterait d’être pris en considération. De plus,
aucune explication n’est donnée sur la façon de représenter et d’exploiter cette relation entre graphes pour les
opérations suivantes. Son algorithme d’appariement est très sensible à la subdivision du voisinage topologique.
Par exemple, comme illustré dans la figure 2, nous appelons γFi le voisinage topologique de la face Fi, ainsi les
voisinages topologiques des faces Fa et Fb lors le la phase de construction sont:
γFa

={F1,F2,F3,F4,F5,F6,F15,F14} et γFb
={F7,F8,F9,F10,F11,F12,F13,F16}. Lors de la réévaluation, la

scission génère deux nouvelles faces Fx et Fy dont les voisinages topologiques sont :
γFx

={F1,F15,F10,F11,F12,F13,F14} et γFy
={F2,F3,F4,F5,F6,F7,F8,F9,F16}. L’algorithme proposé par Kripac

tente d’apparier ces nouvelles faces avec les faces initiales en analysant les voisinages topologiques. L’analyse
consiste à trouver le plus long cycle de faces communes (ici {F2,F3,F4,F5,F6} et {F10,F11,F12,F13}) dans les
voisinages topologiques.
Malheureusement, comme on peut remarquer avec cet exemple, les faces Fa et Fb sont respectivement appariées
avec les faces Fy et Fx et pas avec les faces Fx et Fy. Une opération ultérieure avec Fa en paramètre d’entrée, aura
Fy pour paramètre en réévaluation.

F13 F12 F11 F10 F9F14

F1

F3 F4 F5 F6 F7F2

F8

F13 F12 F11 F10 F9F14

F1

F3 F4 F5 F6 F7F2

F13 F12 F11 F10 F9F14

F13 F12 F11 F10 F9F14

F3 F4 F5 F6 F7F2

F3 F4 F5 F6 F7F2

F1

F8

F8

F1

F15

F16

F15

F16

Fy

FbFa

FxF0

F0

F8

Figure 2 : Vue de dessus d’un bloc avec rainure : construction et réévaluation

Un autre problème important de cette approche est la perte de morceaux pendant la réévaluation. L’algorithme
d’appariement consiste en une recherche en arrière-en avant dans le graphe et une analyse croisée. Plus
précisément, à partir d’une face donnée, une recherche en arrière est faite dans le graphe réévalué, jusqu’à
atteindre une face appariée avec une face de l’ancien graphe. Puis, à partir de cette face appariée, une recherche
vers l’avant est faite dans l’ancien et le nouveau graphe, traitant toutes les branches et récupérant les feuilles (des
faces). Une analyse croisée est faite sur les faces. L’appariement entre les deux faces est fait approximativement.
Par conséquent, il est possible de ne pas prendre en compte toutes les faces qui devraient être analysées. La
figure 3 illustre ce problème. L’appariement des faces F avec T et G avec U est fait à la quatrième étape de
réévaluation. L’analyse croisée est effectuée seulement entre les faces issues de G et les faces issues de U. En
particulier, dans cet exemple, seules les faces K et L seront croisées avec les faces X et Y. L’algorithme oubli la
face J qui peut être considérée comme une partie de la face X. En conclusion, dans son approche, Kripac
préserve une copie des modèles géométriques à chaque étape du procédé de construction. Ceci accélère la
réévaluation mais nécessite un espace mémoire qui n’est pas compatible avec la taille des modèles effectivement
rencontrés en CAO.

A

B

C D E

F GB
L

K

J

I

H

D E D E

H

A

P

Q R S

T
U

P

X

V

T
Y

V

R S R S

1

3

4

5

6
7

8
9

10
11

12

3

1

2

4

5

6 7

8
9

10
11

12

2

6

1

2

3

4

5

6 7

8
9

10
11

12

2

6
5

3

23

24

21
22

21
22

21
22

23

24

23

24

21
22

1

2

3

4

5

6 7

8
9

10
11

12

2

6
5

3

1

11

9

7

25

26

25

26

21
22

23

24

1

2

3

5

6 7

9
10

11

2

6
5

3

1

11

9

7

25

26

25

26

25 26

 28
27

28
27

1

3

4

5

6
7

8
9

10
11

12

3

1

2

4

5

6 7

8
9

10
11

12

2

1

2

3

4

5

6 7

8
9

10
11

12

2

3

23

24

21

22

23

24

23

24

1

2

3

4

5

6 7

8
9

10
11

12

2

5

3

1

11

9

7

25

26

 25

 26

23

24

1

2

3

5

6 7

9
10
11

2

5

3

1

11

9

7

25

26

25

26

 28
27

21

22

21

22

21

225

Figure 3: Perte de face lors d’un appariement (J correspond à X ?)

4. PRINCIPE DE NOTRE APPROCHE
Pour définir des noms robustes permettant de résoudre les problèmes précédents, nous proposons de distinguer
deux types d’entités géométriques et topologiques [1] :
• Entités invariantes
Une entité invariante est une entité géométrique et topologique qui peut être, complètement et sans ambiguïté,
caractérisée par la structure d’un geste constructif et ses paramètres d’entrée, indépendamment des valeurs
impliquées. Sur la figure 1, les entités invariantes incluent la face extrémité du bloc balayé, la coque latérale de
la rainure horizontale avec ses faces initiale et finale (qui peuvent exister ou pas), la face résultant du geste

d’arrondi, etc. Pour caractériser, c.-à-d. nommer, de telles entités, des modèles de caractérisation doivent être
définis pour relier ces entités aux gestes constructifs et à leurs paramètres d’entrée.
• Entités contingentes
A côté de ces entités invariantes, existent des entités qui dépendent du contexte d’un geste constructif. Nous
appelons entité contingente, une entité géométrique et topologique qui résulte d’une interaction entre le modèle
géométrique courant et les entités invariantes résultant d’un geste constructif particulier. Par exemple, sur la
figure 1, le nombre de faces latérales de la rainure horizontale est différent dans le modèle initial (étape 3) et
dans le modèle réévalué (étape 3’). Un mécanisme de nomination est également nécessaire pour nommer ces
entités contingentes.
La méthode que nous avons développée est basée sur le modèle proposé dans [1]. Ce modèle permet d’identifier,
d’une manière unique et non-ambiguë, les entités invariantes, puis les entités contingentes à l’aide des entités
invariantes.

4.1.1. Le graphe des faces
Le but est de suivre l’évolution des faces afin de pouvoir, pendant la conception, identifier les faces impliquées,
puis, pendant la réévaluation, identifier les faces effectives (dans l’instance courante) correspondant aux faces
référencées.
La figure 4 présente un exemple de construction avec le graphe de faces associé. Chaque geste constructif peut
être décomposé en deux étapes. La première étape est la spécification approximative de la feature. Elle
correspond à la structure invariante (six faces du premier bloc). Cette première structure invariante représente les
entrées du graphe des faces. La deuxième étape correspond à l’interaction avec le modèle ce qui introduit des
entités contingentes. Ces entités résultent de l’évolution de la structure initiale. L’évolution des faces est décrite
par des liens historiques. Sur la figure 4, nous pouvons voir la structure de graphe partielle liée à deux rainures
sur un bloc. Dans cet exemple, la face supérieure du bloc est coupée en deux faces par la première rainure, puis
en quatre faces par la deuxième rainure. Le graphe des faces représente l’historique (création, rainure,
suppression) de la face supérieure. Notez que le graphe initial et le graphe réévalué ne sont pas identiques.

Figure 4 Exemple de graphe de faces. Objet initial et réévalué avec les graphes de faces correspondant
(face supérieure seulement)

Chaque face est identifiée par un nom unique qui est défini à la fois par un parcours des entités topologiques
unique (les entités invariantes), et par un nombre itératif (entités contingentes) (cf. [2]). Chaque nœud représente
une face, qui existe ou a existé dans le modèle. Toutes les faces sans lien historique sortant existent dans la
géométrie.

4.1.2. Nomination des entités
L’identification des entités (sommets, arêtes, chemins etc...) est faite en se référant aux faces. Il est ainsi
nécessaire de pouvoir nommer ces faces de manière unique et déterministe. D’une façon générale,
l’identification d’une entité est fondée sur les éléments inchangés qui la caractérisent d’une manière unique.
Dans un modèle paramétrique, ce qui ne change jamais c’est le processus de construction (nous considérons la
modification du processus de construction comme édition du modèle et non comme réévaluation du modèle). Par
conséquent, la nomination des faces est faite au moyen de l’étape de construction (ordre de création) et au moyen
d’un identifiant qui caractérise chaque face de manière unique. Le problème est de définir cet identifiant pour
effectuer une caractérisation unique à chaque étape de construction.

e2

e1

e4
e6

e5

v1

v2
v3

e4 e2e5
v4

v0

e3

f1

e1

e2

e3v1

v2 v3
e1 e2e4

v0

e3

f1
e1e1

v1f1

v0f1
e1e4

e2e4 e3e4

e3e1

e1e2

e2e2
e3e2

e1e3
e2e3

e3e3

v0f1e3e4
e2e4

v1f1
e2e2

e5e4

e4e4

e4e5

e4e1
e4e6 e5e5 e2e5

e3e5

e5e6 e2e6
e3e6 …

…v1f1 v0f1 e3e4 e1e3

v1f1 v0f1 e3e4 e4e6 e5e6 e4e5 e5e5

…

Réévaluation e1 e2 e5 e6 e4 Réévaluation e4 e5 e2 e3Contour Construction e1 e2 e3 e3 e4 Chemin Construction e1 e1 e2 e3

Figure 5: Nomination des faces invariantes

Pour chaque étape de construction, nous considérons qu’il y a deux phases. Premièrement, la création de la
feature où toutes les faces doivent être nommées. Deuxièmement, la feature est placée dans la géométrie
existante. Cette interaction avec la géométrie existante entraîne la modification, la suppression de faces
existantes et la création de nouvelles faces (contingentes). Ces faces contingentes doivent également être
nommées. Par conséquent, il y a deux types de nom à définir : un pour les faces invariantes et un pour les faces
contingentes.

4.1.2.1. Faces invariantes
Selon la taxonomie des features proposées dans [7,2], les faces invariantes du graphe sont créées par quatre types
de features (primitive, transition, extrusion et révolution). Pour les deux premiers types, la nomination des faces
invariantes est assurée par un parcours topologique unique de l’objet (cf.[2]).
Dans une opération d’extrusion, un profil générateur est balayé le long d’un chemin directeur. Chaque entité
topologique correspond au produit cartésien entre une entité topologique du profil et une entité topologique du
chemin. Par exemple sur la figure 5, la face e1e4 de l’objet extrudé correspond au produit cartésien de l’arête e1
du chemin directeur et l’arête e4 du profil générateur. D’une manière analogue, la face interne v2f1 correspond à
v2 (chemin directeur) et f1 (profil générateur). La nomination robuste de chaque entité du profil et de chaque
entité du chemin est donc fondamentale pour permettre la nomination robuste des faces dans le graphe. Par
conséquent, un appariement est fait entre le profil générateur et le chemin directeur du modèle initial et le profil
générateur et le chemin directeur du modèle réévalué, pour assurer une nomination persistante. Chaque nom de
face est construit comme suit :

<étape, entité du profil générateur, entité du chemin directeur>
Pour simplifier l’écriture, les numéros d’étape ont été omis sur la figure 5. Dans cet exemple, lors de la
réévaluation, le sommet entre les arêtes e1 et e4 (du profil) a été déplacé. Cette modification, comme toute
modification géométrique, n’a aucune influence sur la nomination topologique du profil générateur, ni du
chemin directeur, et n’a donc aucune influence sur la nomination des entités invariantes. Toute modification
topologique du profil (par exemple dédoubler l’arête e3) ou du chemin (par exemple dédoubler l’arête e1) doit
être tracée pour assurer une nomination robuste. La table d’appariement représentée sur la figure 5 permet
d’enregistrer la relation entre le profil et le chemin du modèle initial et le profil et le chemin du modèle réévalué.
Ainsi, en dépit des déformations géométriques et des subdivisions topologiques (arêtes e3 et e1) du profil et du
chemin, la face e3e4 est identifiée de façon unique dans la construction comme dans la réévaluation. De façon
analogue, les faces e4e6, e5e6, e4e5 et e5e5 seront identifiées comme subdivision de la face e1e3. Nous
obtenons une relation d’identification (arc en pointillé sur la figure 5) entre les faces invariantes du graphe de
faces en construction (appelée AG) et celles du graphe de faces en réévaluation (appelée NG) (cf. section 4.2.1.1
pour plus de détails).

4.1.2.2. Faces contingentes
Le nom des faces contingentes se compose du numéro d’étape et d’un numéro itératif (un numéro arbitraire mais
unique pour chaque étape de construction). Pour les faces contingentes, ceci n’est pas suffisant pour permettre un
appariement ultérieur. Par conséquent, des informations relatives au voisinage topologique sont associées à
chaque face contingente dans le graphe. Ainsi, le nom d’une face contingente est constitué d’un numéro d’étape,

d’un numéro itératif et d’une information supplémentaire pour permettre un appariement ultérieur (voir la
section 4.2).

4.2. Méthode d’appariement des entités contingentes
Apparier des entités consiste à associer n entités du modèle initial avec m entités du modèle réévalué afin de
déterminer si chacune des n entités correspond à une ou plusieurs entités du modèle réévalué, et réciproquement
si chacune des m entités correspond à une ou plusieurs entités du modèle initial. L’appariement peut être réalisé
en exploitant la géométrie et/ou le voisinage topologique des entités à mettre en relation. L’utilisation de la
topologie permet d’obtenir une méthode d’appariement robuste par rapport aux variations géométriques
importantes et aux petites variations topologiques. Cependant, dans quelques cas particuliers, lorsque le modèle
contient des entités non linéaires, les voisinages topologiques, même étendus [8], sont ambigus et ne permettent
pas de caractériser de manière unique une entité du modèle. Ainsi, il serait judicieux d’employer un mécanisme
additionnel reposant sur la géométrie (orientation de feature, etc...) permettant de lever les ambiguïtés [5].
La qualité de l’appariement est très relative et dépend généralement des opérations et de la sémantique que le
concepteur veut exprimer. Par exemple, la face J sur la figure 3 peut être appariée de deux manières différentes
selon la sémantique donnée à l’opération :
• On peut considérer que la face J est un morceau de la face X en raison de la similitude topologique et de

l’ancêtre invariant commun (face A).
• Ou on considère que la face J est issue de la division de la face F par la quatrième rainure. La face F est

appariée avec la face T, ainsi J ne peut qu’être appariée avec une face issue de la division de la face T. En
conséquence, dans cet exemple, J ne serait appariée avec aucune face.

Notre approche adopte la première sémantique qui s’avère être plus générale et permet d’éviter la perte
d’appariement d’une face telle que J. Comme nous le verrons, cette perte d’appariement est fortement liée avec
le type d’appariement qui peut être représenté dans un modèle. Ainsi, le choix d’une représentation peut s’avérer
trop restrictif. En effet, la deuxième sémantique est plus restrictive car elle ne tient pas compte du fait
qu’apparier une entité avec une autre signifie que les deux entités sont géométriquement et topologiquement
semblables mais pas nécessairement identiques.
Notre approche consiste à calculer un coefficient de ressemblance pour les faces du graphe. Les autres entités
(arêtes, sommets) sont nommées selon l’appariement des faces (voir la section 4.2.2). Notre méthode
d’appariement des faces est composée de deux étapes : le calcul générique de recouvrement permet d’évaluer les
recouvrements topologiques entre les faces de AG et les faces de NG (voir la section 4.2.1.1), et le calcul
d’appariement spécifique permet de déterminer un appariement effectif lié à la sémantique des opérations (voir
la section 4.2.1.2). Cette décomposition en deux étapes est fondamentale car elle permet de distinguer la partie
générique et la partie spécifique d’une méthode d’appariement. Une telle approche offre de nombreux intérêts
comme par exemple la possibilité de définir un système qui propose une méthode d’appariement par défaut que
l’utilisateur pourra spécialiser si elle ne lui convient pas. Par ailleurs, la méthode de calcul de recouvrement est
une méthode globale d’appariement topologique entre deux ensembles de faces, qui peut être employée dans
d’autres domaines utilisant la reconnaissance de forme comme l’identification et l’extraction de feature, etc.

4.2.1. Appariement de faces contingentes

4.2.1.1. Calcul générique de recouvrement
Lors de l’étape de réévaluation, nous calculons un recouvrement qui consiste à évaluer la ressemblance
topologique entre p faces de AG et q faces de NG. Ainsi, nous parlons de croisement fondé sur les voisinages
topologiques des faces. Pour chaque face F, on note γF={ο0,ο1,..οn} le circuit d’arêtes orientées (οi)i=0..n du bord
de F. Le résultat du croisement est un ensemble de liens inter-graphes entre des faces de AG et des faces de NG.
Soit γFag

={ο0, ο1,..οn} et γFng
={ο0’, ο1’,..οm’} les circuits associés aux faces Fag de AG et Fng de NG. Nous

définissons ΓFag
 et ΓFng

 les ensembles de sous-chemins partiels de γFag
 et γFng

; un sous-chemin partiel d’un circuit
est un sous-chemin du circuit où des arêtes orientées ont été supprimées.
On notera qu’une arête orientée ne peut pas apparaître dans deux circuits de faces distincts dans un modèle
orienté. Si une arête orientée apparaît dans le circuit de la face F et dans les circuit de la face G alors cela signifie
que F et G ont des orientations opposées : le modèle n’est pas orienté. Ainsi, pour chaque arête orientée ο, il
existe une et une seule face dont le circuit fait apparaître ο et nous appelons face adjacente voisine de ο, la face
adjacente à l’arête associée à ο qui ne fait pas apparaître ο dans son circuit.
Pour quantifier la ressemblance topologique, nous définissons une relation d’équivalence ~Adj entre deux circuits
de faces γ et γ’, par : γ~Adjγ’ ⇔ ∃ (οi)i=0..n et (οi’)i=0..n / γ=ο0.. οn, γ’=ο0’..οn’ et ∀i∈{0..n}, la face invariante
ancêtre de la face adjacente voisine de οi est aussi la face invariante ancêtre de la face adjacente voisine de οi’.
En d’autres mots, quand on parcourt γ et γ’ et que l’on considère seulement les faces invariantes ancêtres des

faces adjacentes voisines, on obtient la même liste circulaire de faces invariantes autour des faces dont les
circuits sont γ et γ’.

Voisinages topologiques δδδδ0 δδδδ1 Graphe
γFag

 est égal à γFng 1 1
γFng

 est inclus dans γFag 1]0,1[
γFag

 est inclus dans γFng]0,1[1
γFag

 et γFng
 d’intersection non vide]0,1[]0,1[

γFag
 et γFng

 d’intersection vide 0 0

Fag
B

C

Fng
Y

Z

Table 1: Relations inter-graphes

Ainsi, on peut définir ΓF∩G l’ensemble des éléments de ΓF qui sont équivalents à un élément de ΓG selon la
relation précédente. De cette façon, ΓF∩G contient tous les sous-chemins partiels de γF tels qu’il existe au moins
un élément de γG dont la liste circulaire des faces adjacentes voisines, en termes de faces invariantes, est
identique. Puis, pour répondre au problème de la subdivision des voisinages topologiques illustré dans la figure
2, nous proposons d’introduire un coefficient permettant de pondérer l’influence des arêtes dans le voisinage
topologique selon la longueur de l’arête. Nous introduisons alors trois fonctions :
• π telle que pour toute arête (orientée ou non) e, π(e) est la longueur de e,
• Π telle que pour tout circuit γ={ο0, ο1,..οn}, Π(γ)=Σi=0..nπ(οi),
• Θ telle que pour tout élément γ de ΓF∩G , Θ(γ)=max{ Σi=0..n min(π(οi), π(οi’)) avec (οi)i=0..n et (οi’)i=0..n /

γ=ο0.. οn et ο0..οn~Adjο0’.. οn’}.
Θ(γ) peut être interprété comme le poids maximal commun entre γ et un élément équivalent de ΓG.
Enfin, on définit σ=max{Θ(γ),γ∈ΓF∩G}.
σ est la somme de longueurs d’arêtes maximale que l’on peut extraire du bord de Fag et Fng telle que les arêtes
apparaissent dans le même ordre dans le bord orienté de Fag et Fng.
Nous calculons deux ratios : δ0=σ/Π(γG) et δ1=σ/Π(γF ). δ0 est le ratio d’inclusion de γFag

 dans γFng
 et δ est le ratio

d’inclusion de γFng
 dans γFag

. Comme le montre la table 1, δ0 et δ1 sont compris dans l’intervalle [0,1] selon la
ressemblance de leur voisinages topologiques pondérés.
Observons l’exemple de la figure 2. Nous devons croiser deux faces de AG (Fa, Fb) avec deux faces de NG (Fx,
Fy). La table 2 illustre une étape du calcul de δ0 et δ1.
Les calculs précédents permettent d’évaluer de façon individuelle les ratios δ0 et δ1 d’inclusion mutuelle des
faces Fng et Fag et ainsi la ressemblance topologique entre ces deux faces. Cette approche locale ne prend pas en
compte la ressemblance des autres faces à croiser. Une fois que δ0 et δ1 sont calculés, nous devons définir une
méthode permettant d’évaluer de façon globale les recouvrements entre les faces à croiser. Cette méthode
consiste à traiter, de façon itérative, la table de toutes les cellules dans l’ordre de ressemblance décroissante.
Pour cela, nous appliquons l’algorithme suivant :
• Trouver une cellule non traitée dont la somme δ0+δ1 est maximale (s’il existe plusieurs cellules ayant la

valeur maximale, en prendre une quelconque). Supposons que cette cellule correspond au croisement des
faces Fng et Fag,

• Décrémenter les poids des arêtes de γFag
 et γFng

 selon le poids correspondant à chaque arête d’un élément
ο∈ΓF∩G qui donne σ maximal ; en fait, une fonction de pondération temporaire remplace π et fait apparaître
les arêtes ‘raccourcies’ car une certaine longueur est devenue indisponible pour les calculs de cellules
suivants,

• Pour les cellules non traitées, calculer le numérateur σ de δ0 et δ1 avec les poids restants,
• Marquer la cellule traitée,
• Réitérer jusqu’à ce que toutes les cellules soient marquées.
Notons que traiter une cellule dont les coefficients δ0 et δ1 valent zéro ne modifie aucune cellule de la table.
Ainsi, lorsque les deux coefficients d’une cellule valent zéro, on peut considérer la cellule traitée donc marquée ;
on notera de plus que les coefficients δ0 et δ1 ne peuvent que décroître lors du traitement de la table.

Faces du graphe initial

Faces du graphe réévalué

Fa

F1 F2 F3 F4 F5 F6 F15 F14

10 8 2 2 2 2 14.1 6

Fb

F7 F8 F9 F10 F11 F12 F13 F16

 8 10 10 2 2 2 2 14.1

Fx

F1 F15 F10 F11 F12 F13 F14

10 18.9 2 2 2 2 8

F1 F15 F14

10 14.1 6

1.46
1.30,9.44

1.30
10 == δδ

F10 F11 F12 F13

 2 2 2 2

1.50
8,9.44

8
10 == δδ

Fy

F16 F2 F3 F4 F5 F6 F7 F8 F9

18.9 6 2 2 2 2 10 10 8

 F2 F3 F4 F5 F6

 6 2 2 2 2

1.46
14,9.60

14
10 == δδ

F7 F8 F9 F16

8 10 8 14.1

1.50
1.40,9.60

1.40
10 == δδ

Table 2: Croisement

Observons le résultat de cette méthode sur l’exemple de la figure 3. Nous pouvons voir, à la deuxième étape, que
la cellule grisée est sélectionnée car la somme des coefficients est maximale. Les poids des arêtes (via une
fonction de pondération temporaire) de γX et γA sont nuls car chaque arête a été utilisée en totalité. Les
coefficients de la ligne et de la colonne sont de nouveau calculés. Le résultat est zéro car X et A n’ont plus rien
en commun. Les coefficients étant nuls, les cellules sont considérées traitées (cellules hachurées). A la troisième
étape, une seule cellule reste à traiter. Aucun calcul des coefficients δ0 et δ1 n’est alors nécessaire car toutes les
cellules de la ligne et de la colonne sont traitées.
A chaque étape de construction, comment déterminer quels ensembles de faces doivent être croiser. Ce problème
est fondamental car le croisement d’un ensemble de faces de AG et d’un ensemble de faces de NG est d’une part
très coûteux et d’autre part cela peut engendrer des pertes d’appariement, comme le montre la figure 3.
Les croisements permettent de savoir à l’étape i de la réévaluation quel ensemble de faces de AG et quel
ensemble de faces de NG doivent être croisés. Ces ensembles sont déterminés selon les croisements obtenus à
l’étape précédente. A l’étape i, les faces à croiser sont les feuilles de AG et de NG apparues à l’étape i. Les faces
feuilles et leurs pères sont liés par des liens de recouvrement dont la valeur excède un seuil choisi. Pour cela,
seuls les recouvrements apparus au niveau des feuilles de NG sont nécessaires pour déterminer quelles faces sont
à croiser. Le seuil ε∈[0,1] définit la précision du recouvrement. Au moins un des coefficients δ0 et δ1 doit être
supérieur à ε pour représenter un lien de recouvrement inter-graphe valide. Un seuil ε=0 signifie que tous les
recouvrements sont représentés et qu’ainsi la perte d’appariement est évitée durant la réévaluation.
Réciproquement, un seuil proche de ε=1 signifie que seuls les liens correspondant à une ressemblance quasi-
totale sont conservés.
Observons l’évolution de la réévaluation au cours de différentes étapes de la figure 3. Nous choisissons dans cet
exemple ε=0.15, ce qui permet d’éliminer les croisements qui ne sont pas significatifs. Le choix de ce coefficient
dépend de la précision souhaitée pour l’appariement topologique. Initialement, à la première étape de la
réévaluation, une identification entre les entités invariantes est effectuée (voir section 4.1.2.1) et est symbolisée
par le lien en pointillé entre les faces A de AG et de NG (voir figure 6).

0.2
0.09

0.8
1

1
0.890.96

1
1

0.93

X

YP

C

B

F

D

A
E

H
G

L
K

I
J

A
Q S

R

1
0.94

1
1

V

T

U

0.94
1

0.03
0.24 0.96

0.87
0.25
0.76

0.3
0.11

0.71
0.86

0.62
1

 Figure 6: Liens de recouvrement après réévaluation

A la deuxième étape de la réévaluation, la face A est scindée en deux nouvelles faces P et Q. La face A de NG,
ancêtre de ces faces, est liée par un lien de recouvrement (lien d’identification dans ce cas particulier car cette
face est invariante) à la face A de AG dont les feuilles, apparues à la deuxième étape, sont les faces B et C. Les
faces P et Q doivent dont être croisées avec les faces B et C. Le croisement de ces faces donne le résultat suivant.
Les coefficients δ0 et δ1 correspondant au calcul de recouvrement des faces P et C sont inférieurs au seuil
ε=0.15. Le lien de recouvrement entre P et C n’est donc pas représenté. Seuls les recouvrements apparus au
niveau des feuilles de NG seront nécessaires pour déterminer quels ensembles de faces seront à croiser à l’étape
suivante. Le lien entre les faces A de AG et NG peut donc être supprimé. Les liens de recouvrement obtenus

Voisinage
topologique pondéré
de Fy.

Sous-chemin partiel
des circuits des faces
Fa et Fy maximisant
σ
(ici σ=14).

après la deuxième étape de réévaluation sont représentés dans la figure 6 par des arcs valués par le couple (δ0,δ1)
entre les nœuds B, C et P, Q.
A la troisième étape de réévaluation, la face Q est scindée en deux nouvelles faces R et S. La face Q, ancêtre de
ces deux faces, possède un lien de recouvrement avec la face C de AG dont les feuilles, apparues à la troisième
étape, sont les faces D et E. Les faces R et S doivent donc être croisées avec les faces D et E.
Enfin, la totalité du graphe, obtenu après la quatrième étape de réévaluation, est présenté dans la figure 6.

Step 1
B

6 7 8 9 10 11 12 1 2 21
1 5 2 5 3 5 4 7 10 2

C
2 3 4 5 6 22
5 7 4 5 1 2

P
6 7 8 9 10 11 12 1 2
21
2 5 2 5 3 5 4 7 10.7 2 44

44
7.45

44

1

0

=

=

δ

δ

24
6

7.45
6

1

0

=

=

δ

δ

Q
 2 3 4 5 22
4.3 7 4 5 2

44
3.4

3.22
3.4

1

0

=

=

δ

δ

24
3.22

3.22
3.22

1

0

=

=

δ

δ

Step 2
B

6 7 8 9 10 11 12 1 2 21
0 0 0 0 0 0 0 0 0 0

C
2 3 4 5 6 22
5 7 4 5 1 2

P
6 7 8 9 10 11 12 1 2
21
1 0 0 0 0 0 0 0 0.7 0 44

44
7.45

44

1

0

=

=

δ

δ

24
7.1

7.45
7.1

1

0

=

=

δ

δ

Q
 2 3 4 5 22
4.3 7 4 5 2

44
0

3.22
0

1

0

=

=

δ

δ

24
3.22

3.22
3.22

1

0

=

=

δ

δ

Step 3
B

6 7 8 9 10 11 12 1 2 21
0 0 0 0 0 0 0 0 0 0

C
 2 3 4 5 6 22
0.7 0 0 0 1 0

P
6 7 8 9 10 11 12 1 2
21
1 0 0 0 0 0 0 0 0.7 0 44

44
7.45

44

1

0

=

=

δ

δ

24
7.1

7.45
7.1

1

0

=

=

δ

δ

Q
2 3 4 5 22
0 0 0 0 0

44
0

3.22
0

1

0

=

=

δ

δ

24
3.22

3.22
3.22

1

0

=

=

δ

δ

Step 4
B

6 7 8 9 10 11 12 1 2 21
0 0 0 0 0 0 0 0 0 0

C
2 3 4 5 6 22
0 0 0 0 0 0

P
6 7 8 9 10 11 12 1 2 21
0 0 0 0 0 0 0 0 0 0

44
44

7.45
44

1

0

=

=

δ

δ

24
7.1

7.45
7.1

1

0

=

=

δ

δ

Q
2 3 4 5 22
0 0 0 0 0

44
0

3.22
0

1

0

=

=

δ

δ

24
3.22

3.22
3.22

1

0

=

=

δ

δ

4.2.1.2. Calcul d’appariement spécifique
Le calcul de recouvrement précédent est générique dans la mesure où il évalue et quantifie différents
appariements possibles tout en laissant à une méthode plus spécifique le choix d’un appariement particulier
répondant aux besoins propres à une application.
Les deux méthodes présentées dans cette section sont des exemples de calcul d’appariement spécifique fondés
sur les recouvrements génériques.
A chaque étape de réévaluation, nous calculons, selon les liens de recouvrement, l’appariement des entités
apparues à cette étape. Si nous considérons l’ensemble E des arcs valués représentant les liens de recouvrement
entre l’ancien et le nouveau graphe à cette étape, nous obtenons un graphe bipartite G={AG, NG, E}. Un
appariement spécifique correspond alors à un graphe bipartite G’={AG, NG, E’} où E’ est un sous-ensemble de
E et les arcs de E’ représentent l’appariement spécifique des nœuds.
Une méthode, permettant de déterminer quels arcs de G doivent être conservés dans G’, consiste à maximiser la
somme des coefficients δ0 et δ1 présents sur les arcs de E’. En effet, plus la somme est grande, plus
l’appariement correspond à une identification topologique exacte. Pour cela, nous affectons à chaque nœud i de

G’ un coefficient)(
i noeudsdu

 liens les tousj
10∑

=

+= jji δδδ . Pour le nœud i, ce coefficient correspond à la qualité de

l’appariement de son voisinage topologique. Ensuite, le graphe G’ maximisant la somme ∑
=

=Φ
G' graph the

 of nodesi

iδ

correspond au meilleur appariement réalisable.

1.01

2

1.94

1.83

1.94

2

1.94

1.62

1.57

1.83

2.58

1.62

1.94

X

YP

C

B

F

D

A
E

H

G

L

K

I

J

A
Q S

R

V

T

U

Figure 7: Liens de recouvrement après réévaluation

Un exemple d’appariement spécifique reposant sur la méthode précédente consiste à construire G’ tel que tous
les chemins de E’ sont de longueur inférieure ou égale à un. Cela signifie que l’appariement fera correspondre à
une face au plus une face.
Un autre exemple d’appariement spécifique reposant sur la méthode précédente consiste à construire G’ tel que
tous les chemins de E’ sont de longueur inférieure ou égale à deux. D’un point de vue sémantique, cela signifie
qu’une face de AG (resp. NG) peut être appariée sur plusieurs faces de NG (resp. AG). Ce choix est
mutuellement exclusif. Utilisons cette méthode avec l’exemple de la figure 3. Pour les nœuds apparus dans le
graphe à la dernière étape de réévaluation, la maximisation de Φ conduit au graphe G’ de la figure 7, où les
coefficients δi de chaque nœud sont représentés et où les liens en pointillé sont des liens d’appariement.
Ces relations d’appariement sont enregistrées dans le graphe bipartite à chaque étape de réévaluation. On
remarque que les faces K et J de AG sont appariées avec la même face X de NG.

4.2.2. Autres méthodes d’appariement
L’appariement des faces étant robuste, les autres entités (loops, arêtes, sommets, etc.) peuvent être nommées en
termes de faces et d’ensembles de faces. La caractérisation de ces entités peut être effectuée de façon analogue à
la méthode proposée par Chen [5]. Par exemple, une arête sera caractérisée par ses deux faces adjacentes et par
les listes ordonnées des faces aux extrémités, ainsi qu’une orientation dépendant de la feature permettant de lever
certaines ambiguïtés topologiques.

5. CONCLUSION
Nous proposons un mécanisme de nomination persistante associé à une structure hiérarchique permettant
d’enregistrer l’évolution historique des invariants facilement identifiables à chaque geste de construction. La
méthode d’appariement proposée utilise une pondération des voisinages topologiques pour caractériser
précisément chaque entité. Cette méthode se décompose en deux étapes fondamentales : premièrement, le calcul
des recouvrements génériques permet d’évaluer les recouvrements topologiques entre les faces de l’ancien
graphe (AG) et les faces du nouveau graphe (NG), et secondement, le calcul d’appariement spécifique
permettant de déterminer un appariement adapté à la sémantique d’une opération.
Cette décomposition est fondamentale car elle permet de distinguer la partie générique et la partie spécifique
d’une méthode d’appariement. La méthode de calcul générique des recouvrements présente de nombreux
avantages. En premier lieu, il s’agit d’une méthode globale d’appariement topologique dans la mesure où elle
met en jeu deux ensembles de faces pour déterminer le meilleur appariement pour toutes les faces. De plus, cette
méthode permet à chaque étape de déterminer quelles sont les faces qu’il est nécessaire de croiser. Enfin, elle
répond au problème de la perte d’appariement qui est étroitement lié à un appariement spécifique.

REFERENCES

[1] Agbodan, D., Marcheix, D., Pierra, G. A Data Model Architecture For Parametrics in Journal for
Geometry and Graphics, Vol.3, N°.1, pp.17-38, 1999.

[2] Agbodan, D., Marcheix, D., Pierra, G. Persistent Naming for Parametric Models in WSCG’2000,
Vol., pp.17-38, 2000.

[3] Bouma, W., Fudos, I., Hoffmann, C.M., Cai, J., Paige, R. Geometric constraint solver in Computer-
Aided Design, vol. 27, n° 6, pp 487-501, June 1995.

[4] Capolylas, V., Chen, X., Hoffman, C.M. Generic naming in generative, constraint-based design in
Computer-Aided Design Vol. 28 pp. 17-26.

[5] Chen, X. Representation, Evaluation and Editing of Feature-Based and Constraint-Based design.
Ph.D. thesis, Department of Computer Sciences, Purdue University, West Lafayette, Indiana, 1995.

[6] Hoffmann, C.M., Juan, R. EREP: an editable high-level representation for geometric design and
analysis in Technical Report CER-92-24, Department of Computer Sciences, Purdue University,
West Lafayette, Indiana, 1993.

[7] ISO 10303-224: 1999, Industrial Automation Systems and Integration - Product Data
Representation and Exchange - Part 224: Application protocol: Mechanical product definition for
process planing using machining features, ISO, Geneva, 1994.

[8] Kripac, J. A mechanism for persistently naming topological entities in history-based parametric
solid models (Topological ID System) in Proceedings of Solid Modeling’95, Salt Lake City, Utah
USA, pp.21-30, 1995.

[9] Laakko, T., Mäntylä, M. Incremental constraint modeling in a feature modeling system in Computer
Graphics forum, Vol.15, N°3, EUROGRAPHICS’96, Poitiers, France, pp.366-376, 1996.

[10] Pierra, G., Potier, J.C., Girard, P. The EBP system: Example Based Programming for parametric
design, Workshop on Graphic and Modeling In Science and Technology, Coimbra, Springer Verlag.
27-28 June 1994.

[11] Pierra, G., Ait-Ameur, Y., Besnard, F., Girard, P., Potier, J.C. A general framework for parametric
product model within STEP and Part Library in European Conference Product Data Technology,
London, 18-19 April 1996.

[12] Raghothama, S., Shapiro, V. Boundary Representation Variance in Parametric Solid Modeling in
Report SAL 1997-1, Spatial Automation Laboratory, University of Wisconsin-Madison, 1997.

[13] Shah, J.J., Mäntylä, M. Parametric and feature-based CAD/CAM : Concepts, Techniques,
Applications, John Wiley and Sons Inc., july 1995

[14] Solano, L., Brunet, P. Constructive Constraint-based model for parametric CAD systems in
Computer-Aided Design, Vol.26, N°8, pp.614-621, 1994.

Textures de dilatation pour la génération de plis

Jean Combaz Fabrice Neyret

iMAGIS, Laboratoire GRAVIR
INRIA Rhone-Alpes

38334 Saint Ismier Cedex
Jean.Combaz@imag.fr, Fabrice.Neyret@imag.fr

http://www-imagis.imag.fr/Membres/Jean.Combaz/

FIG. 1 – Exemples de quelques plissements générés par notre outil.

Résumé : Nous introduisons ici les textures de dilatations pour ajouter des détails à une surface. Dans
cet article nous nous intéressons plus particulièrement aux plis. L’utilisateur peint les attributs de dilatation sur
la surface (l’intensité et la direction de dilatation, la longueur d’onde et la régularité des plis) à l’aide d’outils
interactifs ou procéduraux. le système génère alors les plis, fronces ou cloques qui en résultent en calculant un
nouvel équilibre de la surface. Les résultats montrent que cet outil permet au graphiste de contrôler facilement
l’aspect des plis et drapés en ajoutant localement de la surface, ce qui est proche de la manière de penser des
sculpteurs.

Mots-clés : modélisation de surfaces, interface utilisateur, modélisation procédurale , plis, croissance, détails,
imperfections.

1 Introduction

Les drapés et les plis peuvent se former dans de nombreuses situations (voir Figure 2), depuis l’action de la
gravité ou des frottements sur les tissus jusqu’à la croissance de surfaces élastiques contraintes (par exemple de
vieilles couches de peinture, le développement de surfaces biologiques ou géologiques). La séquence des actions
qui a pu générer une surface plissée donnée peut être très complexe, voir inconnue (comme pour un lit défait) et
l’état initial de la surface très artificiel (comme pour un vêtement). En conséquence, la simulation physique de ces
objets, qui suppose la connaissance de l’état initial et des forces agissantes, est souvent difficile à mettre en oeuvre.

Pourtant les artistes traditionnels savent peindre et sculpter ces drapés, sans pour autant avoir à définir état
intitial et forces ni à simuler la physique. De plus différentes situations peuvent conduire à des formes similaires.
ce qui autorise les artistes à se reposer sur de nombreuses intuitions pour interpréter les formes qu’ils ont dans
l’esprit ou devant les yeux. Par exemple les artistes créent de nouvelles formes ou en modifient des existantes en
ajoutant ou en supprimant de la matière plutôt qu’en considérant un état initial idéal et appliquant une série de
forces pour la modéliser.

Notre but est alors de faciliter le travail du graphiste en lui permettant de ‘peindre’ des déformations comme
les plis ou les drapés. Notre approche consiste à partir d’un état initial, qui est une approximation de la forme que
l’on veut créer (comme un cylindre dans le cas de la nappe de la Figure 2, ou un corps pour des vêtements). Cela
ressemble à la première ébauche du sculpteur ou du peintre. Puis nous introduisons un nouveau concept: ajouter
de la matière pour la modélisation de surface en considérant des opérateurs de dilatation ou contraction, isotropes

ou anisotropes. Le contrôle peut se faire soit de manière interactive, soit procéduralement. Notre système génère
alors des plis en trouvant un nouvel équilibre pour la surface, ce qui est facilité par le fait que l’état initial est
géométriquement proche de l’état final.

Notre système possède des similitudes avec un simulateur physique; il n’a cependant pas besoin de simuler la
dynamique. De plus, nous raffinons la surface et effectuons les calculs seulement là ou c’est nécessaire, c’est à dire
là où l’utilisateur ajoute des plis. Dans cet article nous montrons plusieurs applications de ce principe afin d’en
illustrer l’utilité.

Notre article, qui est une reprise de notre article paru à Pacific Graphics cette année (cf. [CN02]), se compose
de cinq sections. Le paragraphe 2 passe en revue les travaux existant sur la modélisation de détails et la simulation
des plis. Puis nous décrirons notre concept de texture de dilatation du point de vue de l’utilisateur dans la section 3
ainsi que du point de vue technique dans la section 4. Nous discuterons alors nos résultats dans la section 5 puis
nous conclurons.

2 État de l’art

Il existe de nombreuses manières de créer les détails géométriques nécessaires au réalisme des objets de
synthèse. Cela inclut deux aspects: comment définir et contrôler ces détails, et comment les représenter.

La définition de ces détails peut se faire par:

- des outils interactifs qui permettent à l’utilisateur de définir explicitement les détails, comme les déformations
de forme libre (FFD) [SP86, Coq90] ou de peindre directement ces détails sur la surface [HH90];

- des outils procéduraux qui permettent à l’utilisateur de contrôler les paramètres d’un générateur automatique
de détails. Ce générateur peut être alors soit générique [Per85, EMP

�

94, FF80] soit spécialisé [FLCB95, PHM,
Pru93, BB90, WNH97];

- des outils de simulation qui reproduisent des lois physiques. Ils sont particulièrement utilisés pour les vêtements
[TF88, BHW94, BW98] ou la création de certaines structures biologiques [FMP92, WK91, Tur91].

Ces détails peuvent alors être représentés par:

- les moyens classiques pour représenter une surface comme les maillages polygonaux;
- les cartes de déplacement (littéralement displacement maps), i.e. textures qui encodent le relief et qui peuvent

être converties en géométrie au moment du rendu [WMF
�

00, GSS99];
- les textures volumiques [KK89, Ney98] et les hypertextures [PH89] qui n’encodent pas les détails d’une manière

surfacique;
- les cartes pour le plaquage de normales (littéralement bump maps) [Bli78] qui modifient l’aspect de la géométrie

en ne changeant que l’illumination.
Des transitions entre ces différentes représentations sont définies dans [BM93, COM98].

L’idée de simuler une croissance a déjà été introduit dans le cadre d’objets biologiques [WFM01, PHM, Pru93].
La forme de surfaces élastiques comme les vêtements est généralement obtenue au moyen de simulations phy-
siques [TF88, BHW94, BW98], mais certains outils géométriques peuvent être utilisés pour imiter la physique
[DKT98]. Comme D’Arcy Thompson [Tho17] le suggère il y a de nombreuses approches possibles pour expliquer
une forme donnée.

Les outils interactifs comme Maya Artisan sont pratiques pour l’utilisateur mais ils demandent la modélisation
explicite des formes ce qui peut être très rébarbatif pour les détails. Les outils de simulation génèrent des formes
réalistes, mais cela peut parfois prendre beaucoup de temps pour obtenir la forme finale. De plus l’utilisateur
doit définir un état initial, les paramètres physiques du matériau ainsi que les forces agissantes, ce qui n’est pas
toujours connu: un sculpteur reproduisant le modèle qu’il a dans son esprit ou devant les yeux ne peut pas le
décrire facilement en temps qu’expérience de mécanique. Les outils procéduraux permettent un haut niveau de
contrôle ce qui est très pratique pour l’utilisateur; par contre de tels outils ont surtout été proposés dans le cadre
des textures [Per85, EMP

�

94] et seulement peu d’entre eux sont utilisés pour créer de la géométrie.

Notre but est de créer des formes géométriques ressemblant au résultat d’une simulation physique, tout en
laissant à l’utilisateur un haut niveau de contrôle des détails générés, comme s’il utilisait un outil procédural.
Nous allons surtout nous concentrer sur la génération de ces détails. Notre implémentation est pour le moment

FIG. 2 – Quelques drapés et plis rencontrés dans la réalité: des vêtements réels ou sculptés, un chouchou, des
plissements de lave, une nappe, de la peau, un vieille couche de peinture, des plis de macadam et une bâche en
plastique posée sur le sol.

limitée à une représentation sous forme de maillages polygonaux, mais on pourrait adapter notre modèle à d’autres
représentations comme les cartes de déplacements ou de normales. Dans cet article, nous allons nous intéresser
aux drapés et aux plis qui sont très utilisés dans dans l’art classique, mais aussi très difficiles à modéliser avec les
outils actuels de la synthèse d’image.

3 Les Textures de dilatation du point de vue de l’utilisateur

Le principe est de permettre à l’utilisateur de contrôler les paramètres de haut niveau, soit globalement soit en
peignant leurs variations sur la surface. Le solveur (qui est une partie de notre système de modélisation) modifie
alors le maillage pour générer un nouvel équilibre de notre surface, en ajoutant des détails -des plis-. Ce résultat
est calculé soit interactivement, soit en différé, selon la complexité de la tache. La Figure 3 illustre une session
interactive.

Les premières poignées de contrôle correspondent à la dilatation: l’utilisateur contrôle la magnitude et la direc-
tion de la dilatation, et fournit aussi d’autres informations comme la longueur d’onde désirée ainsi que la régularité
des plis. La dilatation est donnée par un champ de tenseurs, que l’on peut représenter localement par une ellipse
(dilatation d’un cercle en ellipse). Dans le cas particulier d’une dilatation unidirectionnelle, on peut représenter ce
champ de tenseurs par un champ de vecteurs.

Une autre série de poignées contrôle les degrés de liberté de la surface. Dans notre implémentation nous pou-
vons fixer la position de certaines zones de la surface (selon un axe, selon un plan ou totalement), rajouter des
forces, prendre en compte la collision avec d’autres objets pour contraindre la surface.

Les paramètres qui correspondent aux premiers moyens de contrôle sont assez semblables aux shaders des
outils de rendu puissants. Ils peuvent être spécifiés de différentes manières suivant qu’ils soient uniformes ou non
sur la surface, et suivant la façon dont l’utilisateur préfère les contrôler. De plus ces paramètres peuvent être sca-
laires, vectoriels ou tensoriels. Dans notre implémentation nous laissons l’utilisateur les contrôler interactivement,
procéduralement ou par l’intermédiaire de cartes (textures). Les cartes qui n’encodent pas des paramètres sca-
laires peuvent être considérés comme une collection de cartes scalaires (que l’on pourra éditer avec les logiciels
classiques de dessin), ou comme des cartes vectorielles. Tout comme avec les shaders, le contexte d’utilisation

FIG. 3 – dessin interactif de plis sur une couche de peinture autour d’un écrou (voir Figure 2). L’ellipse foncée
représente la magnitude et la direction de la dilatation qu’applique l’outil à la surface. L’orientation de l’outil suit
le chemin de la souris.

est conditionné par la complexité et la qualité désirée. Une simple édition de la surface peut-être faite interacti-
vement alors que les formes assez complexes ont intérêt à être construites grâce à des textures ou une définition
procédurale.

4 Les Textures de dilatation du point de vue technique

Comme cela a été mentionné dans l’introduction, définir l’équilibre d’une surface connaissant les contraintes
qui s’y exercent est un problème standard de mécanique (théorie des coques) pour lequel de nombreuses solutions
existent pour sa résolution (par exemple grâce aux éléments finis). Nous décrivons ici notre implémentation d’un
modèle simplifié qui utilise des techniques déjà existantes.

Premièrement nous utilisons un maillage triangulaire pour représenter la surface sur laquelle on veut rajouter
les détails. Nous définissons un état de référence par une longueur

���
pour chaque arête, et la courbure moyenne� � pour chaque point. On considère les valeurs

���
comme les longueurs au repos des arêtes, que l’on va modifier

selon la croissance. Ceci est donc un état virtuel de référence, car on peut seulement l’atteindre localement (rien
ne garantit l’existence réelle d’une telle surface). Après avoir appliqué la dilatation ou la contraction définie par
l’utilisateur sur les

���
, un solveur itératif se charge de calculer un nouvel équilibre de la surface. Chaque itération

déplace les points pour faire décroı̂tre les tensions dans la surface. Ces tensions -ou contraintes- sont obtenues en
comparant localement la présente configuration de la surface avec l’état de référence. Par la suite nous noterons

�
la

longueur d’une arête et � la courbure moyenne mesurée sur la surface. Notre surface peut être orientée, autorisant
une croissance selon une face privilégiée (par exemple si la surface est sensée être une frontière délimitant un
volume). Nous définissons alors une normale orientée

��
en chaque point de la surface.

Voici un aperçu de notre algorithme qui sera décrit en détails dans les sections suivantes :

- application de la dilatation (ou de la contraction) par la modification des longueurs à vide
� �

;

- optimisation locale du maillage virtuel (possibilité d’ajouter et de supprimer des arêtes);
- itérer des petits déplacements � �	

qui vont diminuer les contraintes.

Dans le cas de dilatations importantes, cet algorithme doit être adapté. Nous en reparlerons dans la section 4.5.

4.1 Dilatation

La dilatation agit sur la longueur au repos des arêtes: soit un tenseur de dilatation donné
 , alors l’arête
����

voit sa longueur multipliée par un facteur

� ����
�
 ����
. En pratique on a un champ de tenseur de dilatation
������ ��� et

on intègre ce tenseur le long de l’arête pour avoir une valeur moyenne. On peut aussi utiliser une représentation
MIP-mapping de la texture de dilatation.

4.2 Optimisation du maillage

Alors que le maillage initial peut être grossier, la génération de petits détails demande un maillage relative-
ment fin. Nous subdivisons alors le maillage suivant la longueur d’onde des plis requise, ainsi que le gradient des
paramètres locaux. De plus les triangles trop allongés sont éliminés afin de maintenir une triangulation de bonne

qualité. Ceci est important en pratique pour des raisons de stabilité et de performance dans le solveur. Nous avons
implémenté la permutation, la subdivision et l’effacement d’arêtes (voir Figure 4) en utilisant un critère inspiré des
maillage de Delaunay appliqué aux surface gauches (cf [WW94]). On permute les arêtes pour rendre maximum
le plus petit des angles des triangles. On subdivise les arêtes dont la longueur ou l’angle entre les normales de ses
sommets excède un seuil (ces seuils sont définies par l’utilisateur), de plus on insère des points là où les gradients
de dilatations sont trop importants afin de garder une bonne précision dans la simulation. L’effacement des arêtes
est effectué dans le cas contraire et en utilisant des seuils plus petits afin d’assurer un hystérésis entre ces deux
opérations (cela permet de garder une certaine stabilité dans la configuration du maillage).

FIG. 4 – Permutation, subdivision et effacement d’arêtes.

4.3 Évaluation des contraintes

On calcule tout d’abord la déformation subie en passant de l’état de référence à l’état courant de la surface,
l’état de référence étant définie par les longueurs à vide et l’état courant (déformé) par la position des points.
On utilise pour cela le tenseur des déformations de Green-Lagrange (4.1) plutôt que celui de Cauchy car il est
plus adapté aux grandes déformations mais reste assez simple à évaluer (cf. [DDCB01] pour la discussion des ces
choix). Nous évaluons ce tenseur pour chaque triangle. Il est représenté par une matrice ����� :

��� ���	��
 ��
��
�� ���
��
�� ����� ���	� (4.1)

où � est la fonction de Kronecker 1 et � ��� , ���) est un repère local de l’élément. Ce tenseur donne la déformation
entre le triangle dans l’état de référence (défini par ses longueurs au repos) et l’état présent.

Le tenseur des contraintes � peut alors en être déduit en utilisant la loi de Hook (en supposant que l’on a affaire
à un matériau élastique linéaire et isotrope), permettant d’obtenir les forces en chaque sommet:��
��! #"���� ��$&%'�)(*� (4.2)

où (représente la rigidité de la surface et � mesure son incompressibilité. Pour plus de détails, voir [OH99] où le
problème a été exposé en 3D (éléments finis explicites). Puisque nous avons une surface gauche, nous nous sommes
restreints à un problème à deux dimensions, puis l’avons adapté à des surfaces courbes. Les forces qui expriment
la déformation tangentielle de la surface sont déduites de � A chaque noeud + on somme les contributions

�	-, � des
triangle . qui ont le sommet + en commun, où:

�	 , �/
 �10 �32� 45�76 � �� � �58 6 �
�59 6 � �;: , � � 8 ��: , � � 9 �;��� 8 9 (4.3)

0 � 2 est l’aire du triangle . , : , � la représentation sous forme de vecteurs de sa fonction de base linéaire associée
au sommet < (ce vecteur dépend uniquement des longueurs au repos) et

�� � la position 3D du sommet < . La somme
des

�	 , � est alors projetée dans le plan tangent.

Puis nous ajoutons des forces de courbure
�	/=

et des forces normales de contrainte
�	/>

.
�	-=

est une force de
rappel qui tend à lisser la surface en limitant la différence de courbure avec l’état de référence.

�	 >
est une force

créatrice de plis qui traduit la compression de la surface en un déplacement suivant la normale. C’est aussi grâce
à cette force que l’on contrôle la forme des plis. Afin d’éviter la complexité de la théorie des coques, nous avons
utilisé des simplifications inspirées par [DMSB99]. Nous avons choisi :�	 =
 � . =�? � � � � � � ��

(4.4)�	 >
 ��.A@ f � � � � � �B%'.A@�C �ED�F ��
(4.5)

1. GEH I est égale à 1 si i=j et à 0 sinon.

� et
��

sont calculés en utilisant la même interpolation des points voisins que [DMSB99]. . = and .A@ sont deux
constantes. .A@�C est un biais qui permet de pousser la surface dans une direction privilégiée (

��
or -

��
). Si aucune

direction n’est préférée, .)@ C peut être égale à zéro, mais il est préférable de la fixer à de faibles valeurs aléatoires
pour chaque points: cela évite des problèmes dans le cas de surfaces rigoureusement plates. D�F est le taux de
compression surfacique de la cellule entourant le point considéré. On a:

D�F
 ���������	�
��� 0 � C � 0 ������
���	�
��� 0 � C (4.6)

où 0 � et 0 sont les aires des triangles dans l’état au repos et courant (déduites des longueurs des arêtes
� � C et

� �).� � � � est une fonction qui contrôle la forme des plis; nous expliquons comment la choisir dans la section suivante.

Notons que toutes ces forces sont relativement indépendantes de la discrétisation: elles sont évaluées plus
précisément dans le cas de triangles plus petits et presque équilatéraux, mais il n’y a pas de biais. Si une surface
en équilibre est subdivisée, sa forme va être conservée (si l’on excepte quelques petites erreurs numériques).

4.4 Contrôle de la forme des plis

On introduit ��� ��� �
 � � � � et �
=��
� �
 : � ��� � où : est le noyau d’un filtre de diffusion anisotrope non uniforme

(cf [DF95] pour plus d’information sur les filtres différentiels). On choisit alors
� � � � � � �
�� � � � � où � � � est une

sigmoı̈de 2. Pour des � � assez grands nous voulons juste savoir dans quelle direction la surface doit être poussée.
Maintenant illustrons le choix du filtre en 1D en prenant

: ��� �

 � �
�� ��� ����%�� �
 � �
�� � � (4.7)

où � � � �&
 �
��
� 8 � � . La fonction g permet de lisser plus ou moins un signal u suivant sa fréquence (c’est un filtre

passe bande: le signal n’est pas lissé s’il a pour pulsation �). A l’équilibre � � reste stationnaire, donc : � � � �
�� .
Cela arrive si ��� %�� � � � =��� � �
 � , i.e. pour un signal harmonique de pulsation � . Ainsi si nous voulons des plis d’une
longueur d’onde � , on doit choisir �1
"!�$# . Remarquons que si �%� est nul, il est aussi stationnaire, d’où la nécessité
de prendre . @ C non nul pour initier un premier mouvement et créer de la courbure (et rendre ainsi � � différent de
zéro). En fait nous utilisons un opérateur anisotrope, c’est à dire que nous appliquons le même filtre (4.7) mais
dans deux directions et avec deux valeurs de � différentes. Dans une première direction (celle du plis) � � �'& � va
contrôler sa régularité, et dans la direction orthogonale � � � � � contrôlera la longueur d’onde des plis (cf Figure 5).

ΛΛ

λλ

ΛΛ

λλ

ΛΛ
λλ

FIG. 5 – Réglage de la longueur d’onde � et de la régularité & .

4.5 Modification de l’algorithme dans le cas de grandes dilatations

Si le taux de dilatation est raisonnable, augmenter la longueur au repos des arêtes en un seul pas est suffisant.
Sinon il vaut mieux itérer, c’est à dire appliquer successivement des dilatations partielles. Et dans le cas de très
grandes dilatations (pour la morphogénèse, ce qui dépasse le sujet de cet article) il est nécessaire d’ajouter de la
plasticité afin d’éviter que des contraintes qui n’arrivent pas à se dissiper ne s’accumulent. La plasticité revient
à atténuer la mémoire que l’on avait de l’état initial. Cela est réalisé en relaxant la longueur au repos: à chaque
fois que l’on obtient un équilibre,

���
est remplacée par �)(��* � ��� % * � . Cela peut aussi être utile d’ajouter de la

plasticité dans le cadre de la modélisation de détails, surtout si la texture de dilatation est trop complexe pour que
les contraintes ne se dissipent, sinon les plis peuvent sembler trop distordus.

2. Une sigmoı̈de est une fonction monotone croissante variant entre -1 et 1 avec une transition rapide en 0.

4.6 Optimisations

Dans notre implémentation nous utilisons plusieurs classes d’optimisations:

- Comme nous l’avons mentionné dans la section 4.2, nous adaptons le maillage au besoin de la simulation.

- Notre solveur utilise différents pas de déplacements pour chaque points, ceci afin de consacrer du temps de
calcul seulement là où c’est nécessaire. Cette adaptation a été faite dans l’esprit de [DDCB01]: on calcule
le pas maximum tolérable pour chaque point. Soit � le plus petit d’entre eux. Si un point nécessite un pas
������� ��� � � ��� �

�
��� , nous ne recalculons ses forces que pour les itérations dont le numéro est un multiple de ��� .

- Dans le cas d’une utilisation interactive, nous définissons un morceau de surface actif en dehors duquel aucun
calcul n’est effectué: l’outil interactif dilate ou contracte une surface circulaire limitée; Nous considérons alors
une portion de surface circulaire légèrement plus grande dans laquelle l’aspect de la surface pourrait être affecté.
On active alors la simulation que dans cette zone. Un décompteur est attaché à chaque point de la zone et l’on
désactive les points actifs dont le compteur a atteint zéro.

5 Résultats

Dans la Figure 6, nous montrons une dilatation unidirectionnelle uniforme d’une surface carrée dont les bords
gauche et droite sont attachés. Nous avons fait l’expérience avec une petite longueur d’onde et une petite régularité,
et avec une plus grande longueur d’onde et régularité. En comparaison, on peut voir sur la gauche une bâche en
plastique réelle. Sur la droite, des fronces ont été simplement obtenues en peignant d’étroites bandes dans la texture
de dilatation. Dans l’image de droite de la Figure 1 nous avons utilisé un taux croissant de dilatation du haut vers
le bas et introduit une force de gravité ainsi qu’une détection de collision avec le sol (un plan horizontal), tous les
bords étant attachés: cela produit des plis positifs, séparés de zones relativement plates.

FIG. 6 – Plis réguliers (à gauche une image d’une bâche en plastique réelle); Fronces.

Dans la Figure 7, une dilatation circulaire unidirectionnelle est appliquée à une couronne de surface (la texture
de dilatation est montrée à gauche), avec plusieurs longueurs d’ondes et différentes régularités: sur la gauche la
longueur d’onde et la régularité sont pratiquement nulles, ce qui donne un motif presque aléatoire. Sur la droite
elles sont plus importantes et le motif montre alors des plis beaucoup plus organisés.

FIG. 7 – Plis sur une couronne de surface

La Figure 8 montre un chouchou calculé avec différents taux de dilatation. Il est obtenu en dilatant un tore
comme indiqué dans la Figure de gauche. Comme dans la réalité, la surface doit être contrainte pour éviter d’ob-
tenir un simple tore plus grand: dans la réalité un anneau en caoutchouc est insèré à l’intérieur; Nous réalisons
l’équivalent en rajoutant un tore rigide à l’intérieur de notre surface torique mobile (i.e. une détection de colli-
sion empêche le grand tore de trop s’agrandir au lieu de plisser). D’autres solutions peuvent être utilisées dans

le même but: dans l’image du milieu de la Figure 1 nous avons défini plusieurs bandes rigides sur la surface (ce
qui est plus ou moins équivalent avec ce qui se fait avec les vrais vêtements). On peut remarquer que malgré le
fait qu’il n’y ait pas de tests d’auto-collision, le lissage de la courbure suffit à éviter les collisions locales (une
déformation purement géométrique comme avec les textures de déplacement n’aurait pas pu le faire). Mais si l’on
ne fait aucun test, des plis distants peuvent néanmoins s’intersecter. Cependant cela n’apparaı̂t que quand le taux
de dilatation dépasse un facteur de 3 (cf Figure 9). Une dilatation plus importante du chouchou dans la Figure 8
aurait probablement montré des auto-collisions.

FIG. 8 – Un chouchou obtenu à partir d’un tore

FIG. 9 – Pour des dilatations importantes (typiquement supérieur à 3) des plis voisins peuvent s’intersecter.

Les temps de calcul avec notre implémentation vont de quelques secondes dans le cas d’une édition interactive
(cf Figure 3) à plus d’une demi-heure sur un Pentium III à 700 MHz pour l’image du milieu de la Figure 1
(le maillage compte à peu près 50000 points). De meilleurs performances devraient être obtenues avec un solveur
plus efficace, par exemple basé sur des méthodes implicites (voir [BW98, DMSB99]).

Bien que les objectifs de cet article soient limités à la modélisation de détails sur une surface, nous avons
expérimenté des textures de dilatation plus fantaisistes, qui affectent la forme de la surface dans sa globalité. Dans
nos travaux futurs, cela nous permettra d’aller vers des méthodes de morphogénèse pour modéliser des formes
complexes. Nous présentons ici quelques résultats préliminaires: la Figure 10 montre une forme ressemblant à un
cerveau obtenue à partir d’une dilatation isotrope sur une sphère. Une texture (montrée à droite) contenant des
taches de dilatation isotropes est appliquée à un carré, et donne l’ensemble des cloques au milieu de la Figure 10.
Un autre exemple de résultat montre dans la Figure 11 un carré se courber après avoir été soumis à une dilatation
isotrope limitée à certaines zones (La texture correspondante est visible au milieu).

FIG. 10 – Circonvolutions et cloques

FIG. 11 – Croissance non uniforme d’un carré

6 Conclusion

Nous avons introduit le concept des textures de dilatation, lesquelles permettent à l’utilisateur de spécifier
l’aspect des plis sur une surface avec un contrôle à haut niveau (i.e. sans avoir à définir explicitement les plis
comme cela serait fait avec des cartes de déplacement ou une modélisation directe). L’utilisateur spécifie les zones
de plis, un taux et une direction de dilatation et les possibles contraintes qui peuvent s’exercer sur la surface.
L’utilisateur peut utiliser un outil interactif de dessin des plis, ou passer par une carte des dilatations (qu’il définit
soit explicitement, soit procéduralement). Bien que le calcul de l’équilibre possède beaucoup de similitudes avec les
solveurs de simulation physique, notre approche est plus compatible avec les connaissances et les souhaits que peut
avoir un artiste: l’utilisateur n’a besoin de connaı̂tre que le genre de forme qu’il veut obtenir, et non pas l’historique
des forces qu’il faudrait appliquer en réalité pour obtenir le résultat (beaucoup de sculptures baroques ont d’ailleurs
des plis très exagérés qui ne sont probablement pas physiques, et même des surfaces non développables).

En ce qui concerne les travaux futurs, nous allons inclure les auto-collisions dans notre implémentation pour
empêcher les plis de s’intersecter. Nous voudrions aussi étudier la génération direct de textures pour le placage de
normales (afin d’éviter d’obtenir une géométrie trop lourde, si l’objet doit être observé de loin). Notre but à plus
long terme est d’expérimenter la morphogénèse, c’est à dire le modélisation de formes qui sont principalement le
résultat de phénomènes de croissance. Comme cela implique des taux de dilatation d’un autre ordre, nous sommes
particulièrement intéressé par la définition procédurale de textures de dilatation, qui auraient par exemple des
propriétés fractales.

Références

[BB90] Norman I. Badler and Welton Becket. Imperfection for realistic image synthesis. Journal of Visualization and
Computer Animation, 1(1):26–32, August 1990.

[BHW94] David E. Breen, Donald H. House, and Michael J. Wozny. Predicting the drape of woven cloth using interacting
particles. In Proceedings of SIGGRAPH 94, pages 365–372. ACM SIGGRAPH / ACM Press, July 1994.

[Bli78] James F. Blinn. Simulation of wrinkled surfaces. In Computer Graphics (SIGGRAPH ’78 Proceedings), volume
12(3), pages 286–292, August 1978.

[BM93] Barry G. Becker and Nelson L. Max. Smooth transitions between bump rendering algorithms. In James T. Kajiya,
editor, Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 183–190, August 1993.

[BW98] David Baraff and Andrew P. Witkin. Large steps in cloth simulation. In Proceedings of SIGGRAPH 98, Computer
Graphics Proceedings, Annual Conference Series, pages 43–54. ACM SIGGRAPH / Addison Wesley, July 1998.

[CN02] Jean Combaz and Fabrice Neyret. Painting folds using expansion textures. In Pacific Graphics 2002 Proceedings,
pages 176–183, October 2002.

[COM98] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving simplification. Proceedings of SIG-
GRAPH 98, pages 115–122, July 1998.

[Coq90] Sabine Coquillart. Extended free-form deformation: A sculpturing tool for 3D geometric modeling. In Forest
Baskett, editor, Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 187–196, August 1990.

[DDCB01] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. Dynamic real-time deformations using
space & time adaptive sampling. In Proceedings of ACM SIGGRAPH 2001, pages 31–36. ACM Press / ACM
SIGGRAPH, August 2001.

[DF95] Rachid Deriche and Olivier Faugeras. Les EDP en traitement des images et vision par ordinateur. Technical
Report RR-2697, Inria, Institut National de Recherche en Informatique et en Automatique, 1995.

[DKT98] Tony D. DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in character animation. In Proceedings
of SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, pages 85–94. ACM SIGGRAPH,
July 1998.

[DMSB99] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. Implicit fairing of irregular meshes using
diffusion and curvature flow. In Proceedings of SIGGRAPH 99, pages 317–324. ACM SIGGRAPH, August 1999.

[EMP � 94] David Ebert, Kent Musgrave, Darwyn Peachey, Ken Perlin, and Worley. Texturing and Modeling: A Procedural
Approach. Academic Press, October 1994. ISBN 0-12-228760-6.

[FF80] Alain Fournier and Don Fussell. Stochastic modeling in computer graphics. Computer Graphics (Proceedings of
SIGGRAPH 80), 14(3):108, July 1980. Held in Seattle, Washington.

[FLCB95] Kurt W. Fleischer, David H. Laidlaw, Bena L. Currin, and Alan H. Barr. Cellular texture generation. Computer
Graphics, 29(Annual Conference Series):239–248, 1995.

[FMP92] Deborah R. Fowler, Hans Meinhardt, and Przemyslaw Prusinkiewicz. Modeling seashells. In Catmull, editor,
Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 379–388, July 1992.

[GSS99] Igor Guskov, Wim Sweldens, and Peter Schröder. Multiresolution signal processing for meshes. In Proceedings
of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, pages 325–334, Los Angeles,
California, August 1999. ACM SIGGRAPH / Addison Wesley Longman.

[HH90] Pat Hanrahan and Paul E. Haeberli. Direct WYSIWYG painting and texturing on 3D shapes. In Forest Baskett,
editor, Computer Graphics (SIGGRAPH 90 Proceedings), volume 24, pages 215–223, August 1990.

[KK89] James T. Kajiya and Timothy L. Kay. Rendering fur with three dimensional textures. In Jeffrey Lane, editor,
Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23(3), pages 271–280, July 1989.

[Ney98] Fabrice Neyret. Modeling animating and rendering complex scenes using volumetric textures. IEEE Transactions
on Visualization and Computer Graphics, 4(1):55–70, January–March 1998. ISSN 1077-2626.

[OH99] J.F. O’Brien and J.K. Hodgins. Graphical modeling and animation of brittle fracture. In SIGGRAPH’99 Confe-
rence Proceedings, pages 137–146. ACM SIGGRAPH, 1999.

[Per85] Ken Perlin. An image synthesizer. In B. A. Barsky, editor, Computer Graphics (SIGGRAPH ’85 Proceedings),
volume 19(3), pages 287–296, July 1985.

[PH89] Ken Perlin and Eric M. Hoffert. Hypertexture. In Jeffrey Lane, editor, Computer Graphics (SIGGRAPH ’89
Proceedings), volume 23(3), pages 253–262, July 1989.

[PHM] Przemyslaw Prusinkiewicz, Mark Hammel, and Radomı́r Mech. Visual models of morphogenesis: A guided tour.
http://www.cpsc.ucalgary.ca/Redirect/bmv/vmm-deluxe/.

[Pru93] Przemyslaw Prusinkiewicz. Modelling and visualization of biological structures. Graphics Interface ’93, pages
128–137, May 1993. Held in Toronto, Ontario, Canada.

[SP86] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geometric models. In David C. Evans
and Russell J. Athay, editors, Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 151–160,
August 1986.

[TF88] D. Terzopoulos and K. Fleisher. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In SIGGRA-
PH’88 Conference Proceedings, pages 269–278, 1988.

[Tho17] D’Arcy Wentworth Thompson. On Growth and Form. Cambridge University Press, Cambridge, 1917.

[Tur91] Greg Turk. Generating textures for arbitrary surfaces using reaction-diffusion. In Thomas W. Sederberg, editor,
Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 289–298, July 1991.

[WFM01] Marcelo Walter, Alain Fournier, and Daniel Menevaux. Integrating shape and pattern in mammalian models. In
Proceedings of SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, pages 317–326.
ACM Press / ACM SIGGRAPH, August 2001.

[WK91] Andrew Witkin and Michael Kass. Reaction-diffusion textures. In Thomas W. Sederberg, editor, Computer
Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 299–308, July 1991.

[WMF � 00] Xiaochuan Corina Wang, Jérome Maillot, Eugene L. Fiume, Victor Ng-Thow-Hing, Andrew Woo, and Sanjay
Bakshi. Feature-based displacement mapping. Rendering Techniques 2000: 11th Eurographics Workshop on
Rendering, pages 257–268, June 2000.

[WNH97] Tien-Tsin Wong, Wai-Yin Ng, and Pheng-Ann Heng. A geometry dependent texture generation framework for
simulating surface imperfections. In Eurographics Rendering Workshop 1997, pages 139–150, St. Etienne, France,
June 1997. Eurographics / Springer Wien. ISBN 3-211-83001-4.

[WW94] William Welch and Andrew Witkin. Free-form shape design using triangulated surfaces. In Proceedings of
SIGGRAPH 94, Computer Graphics Proceedings, Annual Conference Series, pages 247–256. ACM SIGGRAPH
/ ACM Press, July 1994.

PeintureVirtuelle : modélisationet interaction

Anaı̈sAtencia, Jean-JacquesBourdin

Laboratoired’IntelligenceArtificielle
Universit́eParis8
2, ruedela Liberté

93526Saint-DenisCedex, FRANCE
anais@ai.univ-paris8.fr, jj@ai.univ-paris8.fr

Résuḿe : Nous proposons un modèle de peinture virtuelle intégrant non seulement la simulation physique mais
aussi le geste du peintre et son positionnement. Ce modèle inclut les déplacements (aller-retour) indispensables à
la peinture impressionniste. Nous verrons que les effets de zooms liés à des capteurs améliorent l’interactivité du
modèle.

Mots-clés: rendunonphotoŕealiste,peinturevirtuelle,hauterésolution,palettegraphique.

1 Intr oduction

Un desaxesderechercheenrendunonphotoŕealiste(NPR)[GG01] estdesimulerlesstylesdepeintureens’ins-
pirantdeseffetsdespeinturesimpressionnistes[Hae90, Her98, Mei96, Lit97]. De nombreuxtravauxdepeinture
virtuellenemod́elisentqu’uneffet commeparexemplela peintureà l’eau [CAS

�
97]. Nousprésentonsunmod̀ele

depeinturevirtuelle plusgéńeralqui permetd’intégrerlesdifférentsartsgraphiques: huile,aquarelle,encre,gra-
phite.. . Nousutiliseronsnéanmoinsle termegéńeriquede peinturecar il correspond̀a notreexemplerécurrent
et au modele plus géńeral. L’application intègreaussila simulationde l’action de peindre.Peindre,c’est une
successiondegestesfins et mesuŕes,degrandscoupsdebrosses[Her98], dedéplacementset dechangementsde
perspectiveset d’éclairage.Nousrecŕeonsle mouvementde recul quepeutavoir un peintrepour visualiserson
œuvre.Ce mouvementestmod́elisé à l’aide d’une successionde zoomsarrièreou avant.Ceszoomssontcom-
mand́esvia uneinterfacebaśeesur la positionet les mouvementsde l’utilisateur. Notre but estquel’utilisateur
puissevisualiserl’image et travailler de la mêmemanìerequedanssonatelier. En utilisant unetablettewacom
avecvisualiation(detypecintiq [Wac]),demêmequesurla toile, il peintdirectementsurl’image.Lesdifférentes
étapesdecetravail sontdonc: unesimulationphysiquedela peinture,un syst̀emedechangementdepointdevue
etuneinterface.Nousprésenteronsdansunpremiertempsle mod̀elephysique,puisl’interfacehommemachineet
enfinnousdétailleronslestechniquesutiliséespourla détectiondela positiondel’utilisateuret pourleszooms.

2 Modèlephysique

Danscettepartie,nousdétaillonsle mod̀ele3D depeinturecréeparSobczyketal. [SBB02b] quenousutilisons.Ce
mod̀eledepeinturevirtuelleutilisedesimagesentrèshauterésolution[SBB02a,Cai00]. Il s’inspiredesméthodes
deCurtis[CAS

�
97] etBuchanan[SB99a, SB99b, SB99c, SB00]. FredoDurand[Dur02] anotéquela peinturevir-

tuelleétaitplusqu’unesimpleprojection3D d’uneimage2D. La peinturea uneépaisseur. Le mod̀eledeSobczyk
prendencomptetrois élémentsdela peinture: le support,lesinstrumentset le médium.
– Le support estl’objet surlequelon peint.Nousavonsdéfini différentssupportsutilisésparun peintre: le bois,

le métal, le papierou la toile. À chaquesupportcorrespondplusieurscaracteristiquescommela couleuret le
tauxd’absorptiondela peinture.ChezSobczyk,le supportestrepŕesent́ecommeunobjet3D. Il estconstitúede
cellules.Unesc̀enecomporte5 � ����� cellules.

– Le mod̀elegèreles différentsinstruments utiliséspar un peintrecommele pinceauou le couteau.À chaque
outil onappliqueunedirection,uneforceet unequantit́edepeinture.

– Le médium correspond̀a cequi estappliqúe : charbondu crayon,pâteà peinture,vernis,encre.. . Il estdéfini
parunecouleuretun facteurdeviscosit́e.

La paletteprenden comptel’interaction entrele supportet le médium.En fonction de la force appliqúeeaux
pinceaux,le supportpeutêtrealtéré.Surle support,nousappliquonsplusieurscouchesdepeinture.Cesdifférentes
couchesaugmententl’ épaisseurde la cellule. Chaquecellule est donc caracteriśee par une épaisseurvariable.

Le tableauestalorsun paysageet estcod́e commeun objet OpenGL. Nouspouvonsvisualiserla peintureselon
différentspoint devueouavecdifférentśeclairages.

Pourpasserd’un détail à l’image danssonensemble,nousavonsbesoind’outils et detechniquessṕecifiques.

3 Interface hommemachine

Une fois que la toile virtuelle est crééecommeun paysage3D nousdevons fournir les outils permettantde la
visualiserenprenantencomptele positionnementet lesmouvementsdel’utilisateur.
Nousavonschoisiun syst̀emenonintrusif c’est-̀a-direun syst̀emequi laissel’utilisateur libre desesmouvements
et nenécessitepasdeportersurla têtele materieldecapture[Col99]. Il esteneffet difficile deréaliserdesgestes
naturelset spontańessi l’on doit porterun équipementpourlesmesures.Un syt̀emenonintrusif permetdelaisser
l’utilisateur libre desesmouvements.Il estaussiimportantquel’utilisateur nesoit pasgêńe danssonactivité par
dubruit ou leseventuelsdéplacementsdel’outil decapture.

Notre but estquel’utilisateur puissevisualiserl’image de la mêmemanìerequ’il regarderaitun tableau.Plusla
peintureestéloigńeedel’observateuret pluslescontourss’estompent.Par exemple,lorsqu’onregardeun tableau
impressionnisteenprenantdu recul,lescontoursn’apparaissentplusetcequi nesemblaitn’êtrequedestachesde
rougeet debleudevient un violet. Avecl’ éloignement,le cerveauopèrela synth̀eseet il restituelescouleursqui
sontjuxtapośeessurla toile selonleslois optiquesdeleur compĺementarit́e.

Les premiersvisiteursdesexpositionsimpressionnistesmettaientle nezsur les tableaux,commeils le faisaient
pourlespeinturesminiaturesdeMeissonier[Gom90]. Ils nepouvaientpercevoir qu’unmélangeconfusdecouleurs
pośeesau hasard.Il faudraun peude tempspour quele public comprennequepour appŕecierunepeintureim-
pressionnisteil estnecessairedeprendredu recul.De loin, un tableaucomme[Sis73] estquasimentphotoŕealiste.
Sur la mêmeidée,avecnotrepalettel’utilisateur doit pouvoir passerdemanìeretrèssimplede l’image dansson
ensemblèaundétaildecetteimage.Parexempledansle Bal du Moulin de la Galette de Renoir [Ren76], l’utilisa-
teurdoit pouvoir passerdu tableaudanssonensembleaucoupleaufond sur le banc.L’utilisateurpourraalorsse
demandersi cecoupleestenphasededisputeou deséduction.

Lesimagessur lesquellesnoustravaillonssontentrèshauterésolution(30 pixelsrepŕesentant1 millimètre)et en
trèshautedéfinition (6000� 9000)selonlessouhaitsexprimésà Eurographics[ABB

�
01]. Onnepeutdoncvisua-

liser sur un écrand’ordinateurqu’unepartiede l’image. Pourpouvoir visualiserles imagestrèshautedéfinition
dansleur ensemblesurl’ écran,on appliquedeszoomsarrièressurunepartieousurl’ensembledel’image.
Nousavonsbesoind’une interfacesimpleet intuitive pour utiliser leszooms.L’un desmoyensles plus naturels
estde retranscrirele mouvementde l’utilisateur devant la tablette.En fonctiondu mouvementavantarrièreet de
la distanceparcourueparl’utilisateur, onappliqueun zoom.

Le principedecetteinterfaceest:
– quandl’utilisateur s’approchedel’ écran,on effectueunzoomavantsurl’image.
– quandl’utilisateur recule,on effectueun zoomarrièresurl’image.
Nousallonsmaintenantprésentercetteinterface.

4 Techniquedezoom

Le syst̀emedezoomestcompośededeuxparties: la mesurededistanceet le calculdu zoomad́equat.C’estdans
cetordrequenoustraiteronscesdeuxparties.

4.1 Détectionde la position

Nousutilisonsdestélémètresà ultrasonspourdéterminerla positiondel’utilisateur. Cestélémètressontbaśessur
la mesuredu tempsécouĺe entrel’ émissiond’un ultrasonet le retourde l’ écho.L’onde ultrasonsepropageà la
vitessedu son.Dèsqu’un obstacleest rencontŕe, l’ échorevient. Le chronom̀etres’interromptà la réceptiondu
signal.L’utilisation destélémètresà ultrasonsposecertainsproblèmes:
– précision.Lesmesuresnesontpastrèsprécises.

– interférence.Si l’utilisateur fait desgestesbrusquesou passesamaindevantsonvisage,lesmesuressontpara-
sitées.

– obstacles.Quandnousmesuronsdesgrandesdistances,riennedoit setrouverentrelestélémètreset l’utilisateur.
– minima.Nousnepouvonsdétecterprécisementlespositionstrèsprochesde l’ écrancar les télémètresnevont

pasmesurerla positiondesyeuxmaiscelledu front.
Nousavonspositionńe cestélémètressur la partiesuṕerieuredela tablette.Afin des’affranchirdesperturbations
exterieures,nouslançonsunesériedecinqmesuressurdeuxtélémètrespuisnouseffectuonsuncalculdemoyenne.
Mêmeainsi le problèmedu minima restepośe, nouseffectuonsdonc un calibrage.L’utilisateur détermineles
positions“proche” et “loin” et il calibresesproprespositions“proche” et “loin”. Ensuiteon calculel’image à
afficher en fonction du calibragede l’image, du calibragede la positionde l’utilisateur, du mouvementet de la
distanceparcourueparl’utilisateur. Le ratiodedistanceobtenuesertdevaleurd’entréeduzoom.Dansunpremier
temps,enconsid́erantla sc̀eneàafficher, nousavonsutilisé lesvariationsdepointdevued’OpenGL.

Pour l’instant, notre interfacea seulementbesoinde connâıtre le positionnementde l’utilisateur par rapport à
l’ écran.Maisnousenvisageonsdemettreenplacedessyst̀emesdecaptureduregardà l’aide d’unecaḿera[SD02,
SYW96] pourtraiterseulementla partiedel’image quel’utilisateur regarde.

FIG. 1 – Zoomaléatoire surun détail du Bal du Moulin dela Galette

4.2 Zooms

Les applicationsde zoomsdéjà existantessont essentiellementbaśeessur un calcul de moyenne.Elles ont un
syst̀emed’antialliassagequi semblepréjudiciableau traitementqu’on effectuesur les images.Par exemple,un
lissagesur l’ Églised’AuverssurOisedeVanGogh[Gog90] dénaturela toile. Danscetableau,le rapprochement
descouleursvert et bleupour l’herbe,bleuvif et noir pour le ciel, bleuet rougepour le toit créentdeseffetsde
saturationet de stridencegéńerateursde malaise.Avec un zoomqui lissecetteimage,le contrastedescouleurs
estatt́enúe et la violencequi traversela toile originaledisparait,lescouleursapparaissentuniformes,l’ étirement
nerveuxde la toucheestestomṕe. Pouréviter cela,nousavonsécrit nospropreszooms.Ceszoomsprennenten
comptelescaract́eristiquesdedifférentsmod̀elesdecouleurs(HSV, RGB.. .)

Principedeceszoomsarrières: un zoomarrière4 repŕesentela divisionpar4 desdimensionsdel’image.

FIG. 2 – Zoommoyenne surundétail duBal du Moulin dela Galette

Soient �	� l’image d’origineet ��
 l’imagezooḿee.Le zoom � estunetransformation:
�

� ���������

16 pixelsde � � sontrepŕesent́espar1 pixel de �
 . Pourchaquegroupede4 � 4 pixelsde � � , sontappliqúesdes
algorithmespourobtenirla valeurla plusrepŕesentative.Pourle moment,nousappliquonscesalgorithmessurdes
matricesdisjointes.

Nousavonsclasśe noszoomsencat́egorie:
– leszoomsqui sélectionnentlesdonńeesdemanìerearbitraire.Enprenantla valeurcentrale,unevaleuraléatoire

ou une valeur différentepour chaquematrice.Avec ces zooms,l’image a un aspectflou et granuleux(cf.
image1).

– leszoomsqui recherchentdesvaleurscommunes.Oncalculela valeurmoyenne,la valeurmédianequi partagent
la matriceendeuxpartiesd’égalefréquenceoula valeurla plusfréquenteprésentedansunematrice.Lesimages
resultantesdeceszoomssontmoinscontrast́eesquelesimagesoriginales(cf. image2).

– leszoomsqui sélectionnentlesvaleursextrêmes.Ongardela valeurmaximum,la valeurminimumouoncalcule
la moyenneextrêmepourchaquematrice.Ceszoomsmodifientlescouleurs.Enprenantlesvaleursmaximums,
onaugmentele contraste(cf. image3).

Onchoisitcesdiffèrentszoomsenfonctiondescaract́eristiquesqu’onveutfaireressortirsurl’image.Enprennant
lesvaleursmoyennesdel’image,nousdiminuonsle contrastealorsqu’ensélectionnantlesdonńeesextrêmesnous
modifionslescouleurs.Par exemplepour l’ Églised’AuverssurOisedeVanGogh,nousutiliseronsun zoomqui
renforcel’oppositiondescouleurs.Noussélectionnonsdansle syst̀emedecouleurHSV, lesvaleursmoyennesde
H et lesvaleursmaximumsdeS et deV. L’image4 présentele résultatcezoomappliqúesurun détail du tableau
de l’ Églised’Auverssur Oisede Van Gogh.La versionpapierde cet article étantimpriméeen noir et blanc,le
lecteurtrouverala versioncouleurdesimagesen[Ate02].

5 Conclusion

L’utilisateurdenotresyst̀emepeutappliquersestouchesdepeintureauplusprèsetens’éloignantdel’ écranobtenir
unevueglobaledu tableau.Nousavonsvu commentestdétect́eela positiondel’utilisateur à l’aide detélémètres

FIG. 3 – Zoommaximum surun détail du Bal du Moulin dela Galette

FIG. 4 – Zoomsurun détail del´Eglised’AuverssurOise

à ultrasonset de quellemanìeresontappliqúesles zooms.Les télémètresà ultrasonsne sontpastrèspréciset
comportentdenombreuxinconvénients.Nousallonsprochainementtesternotresyst̀emeavecdestélémètresinfra-
rougespouravoir desmesuresplusprécises.Noustravaillonssurla miseenplacedezoomsen3D qui permettront
devisualiserle volumedel’image.Un syst̀emedecapturedu regarddoit également̂etreexpériment́e.Cesyst̀eme
nouspermettrad’appliquerdeszoomssur la partie regard́eepar l’utilisateur. Un de nos axesde rechercheest
d’améliorer la visualisationdesimages,en mod́elisantles effets de craquelureou de vernisquenouspercevons
lorsquenousregardonsunetoile.

Références

[ABB
�

01] A. Atencia,J.-J.Bourdin,V. Boyer, T. Pissard,andD. Sobczyk.Scalableimpressionistrendering.In
Eurographics 2001, 2001.

[Ate02] AnäısAtencia.Pageweb,2002.
http ://www.ai.univ-paris8.fr/anais.

[Cai00] R. Caillou. Principlesof computergraphics: theexperienceof a classa user. Proceedings of EURO-
GRAPHICS’00, September2000.

[CAS
�

97] C.J.Curtis,S.E.Anderson,JE.Seim,KW. Fleischer, andDH. Salesin.Computer-generatedwatercolor.
Proceedings of SIGGRAPH’97, pages421–430,August1997.

[Col99] C. Collet. Captureet suivi du regardparun syst̀emedevision dansle contexte de la communication
homme-machine.Master’s thesis,EcoleNormaleSuṕerieurdeCachan,September1999.

[Dur02] F. Durand.An invitationto discusscomputerdepiction.NPAR 2002 : Second International Symposium
on Non-Photorealistic Animation and Rendering, June2002.

[GG01] B. GoochandA. Gooch.Non-Photorealistic Rendering. A K Peters,2001.

[Gog90] VincentVanGogh.L’ Églised’AuverssurOise,1890.
http ://www.abcgallery.com/V/vangogh/vangogh43.html.

[Gom90] E. Gombrich.Histoire de l’art. Flammarion,1990.

[Hae90] Paul E. Haeberli.Paintby numbers: Abstractimagerepresentations.Proceedings of SIGGRAPH’90,
August1990.

[Her98] A. Hertzmann. Painterly renderingwith curved brushstrokes of multiples sizes. Proceedings of
SIGGRAPH’98, July1998.

[Lit97] P. Litwinowicz. Processingimagesandvideo for an impressionisteffect. Proceedings of SIGGRA-
PH’97, pages407–414,August1997.

[Mei96] B. Meier. Painterlyrenderingfor animation.Proceedings of SIGGRAPH’96, pages477–484,August
1996.

[Ren76] Pierre-AugusteRenoir. Bal duMoulin dela galette,1876.
http ://www.abcgallery.com/R/renoir/renoir86.html.

[SB99a] M.C. SousaandJ.W. Buchanan.Computer-generatedgraphitepencil renderingof 3d polygonalmo-
dels.Proceedings of EUROGRAPHICS’99, September1999.

[SB99b] M.C. SousaandJ.W. Buchanan.Computer-generatedpencil drawing. Western Computer Graphics
Symposium, March1999.

[SB99c] M.C. SousaandJ.W. Buchanan.Observationalmodelof blendersanderasersin computer-generated
pencilrendering.Proceedings of Graphics Interface, June1999.

[SB00] M.C. SousaandJ.W. Buchanan.Observationalmodelof graphitepencilmaterials.Computer Graphics
Forum, 19(1),March2000.

[SBB02a] D. Sobczyk,V. Boyer, andJ.-J.Bourdin. Impressionistrendering,a high resolutionapproach.3DD :
International Workshop on 3D Digitization, February2002.

[SBB02b] D. Sobczyk,V. Boyer, andJ.-J.Bourdin. Virtual painting: Model andresults.ICCVG’02, September
2002.

[SD02] A. SantellaandD. DeCarlo. Abstactedpainterlyrenderingsusingeye-trackingdata. NPAR 2002 :
Second International Symposium on Non-Photorealistic Animation and Rendering, pages75–82,Fe-
bruary2002.

[Sis73] A. Sisley. Chemindela Machine,Louveciennes,1873.
http ://www.abcgallery.com/S/sisley/sisley14.html.

[SYW96] R. Stiefelhagen,J.Yang,andA. Waibel. A modelbasedgasetrackingsystem.Proc. of IEEE Interna-
tional Joint Symposia on Intelligence and Systems, pages304–310,November1996.

[Wac] Wacom.
http ://www.wacom.com.

Visualisation par surfels des textures volumiques

G. Guennebaud, M. Paulin
[guenneba|paulin]@irit.fr

IRIT-UPS 118 route de Narbonne 31062 Toulouse - Cedex 4

Résumé : Dans cet article, nous présentons une méthode permettant la visualisation en temps réel de scènes
complexes ayant un caractère répétitif. De telles scènes peuvent être avantageusement représentées par des textures
volumiques. Malheureusement la technique de visualisation temps réel de celle-ci (adaptation de l’algorithme de
Lacroute [LL94]) ne permet pas de gérer des motifs très précis (mémoire limitée des cartes graphiques). De
plus, des artefacts apparaissent lors des changements de direction des tranches. Nous avons donc adapté à la
visualisation des textures volumiques, une technique de rendu hybride entre le rendu à base d’images et le rendu
à base de points, . Le motif de référence est alors représenté par un LDC Tree. Une technique permettant de
visualiser une telle structure de données a déjà été proposée, mais la déformation des texels implique de revoir
l’algorithme de projection ainsi que les différents tests de visibilités. L’intérêt d’une telle approche est de permettre
la manipulation de motifs de références beaucoup plus précis, tout en accroissant la qualité du rendu.

Mots-clés : Rendu à base d’images, Rendu à base de points, Textures volumiques, Temps réel.

1 Introduction

Quels que soient les outils utilisés lors de la modélisation d’un objet ou d’une scène, il est courant de passer par une
représentation polygonale pour l’affichage. La principale raison est que ce type de représentation est directement
exploitable et affichable par le matériel graphique. Par contre, le nombre de polygones générés est souvent très
impressionnant pour des surfaces complexes (de l’ordre du million pour des arbres par exemple). A partir de cette
remarque, il devient impossible de pouvoir visualiser en temps réel une forêt complète.

Un maillage de polygones est en fait une représentation très lourde à manipuler lorsque ceux-ci tentent d’approcher
un objet complexe. En effet, la géométrie est donnée de manière beaucoup trop explicite et de plus, il existe un
lien de connectivité beaucoup trop fort entre les primitives représentant l’objet. Cela rend la réduction du nombre
de polygones très délicate dès que l’objet représenté devient trop complexe. Un algorithme de niveau de détails
devient alors impraticable. Il devient donc intéressant de chercher une représentation alternative de ces objets
complexes afin de rendre leur manipulation plus compacte et d’accélérer leur visualisation.

Quelques solutions ont déjà été proposées, avec en particulier le rendu à base d’images. L’objet est alors représenté
par un ensemble d’images contenant au minimum une information colorimétrique mais aussi une information de
profondeur et parfois même une information sur le matériau. A mi-chemin entre les représentations à base d’images
et les représentations polygonales, on trouve ce que l’on appelle le rendu à base de points. Ici, l’objet est représenté
par un ensemble d’échantillons ponctuels appartenant à sa surface ; on parle de surfels. On peut également citer
les textures volumiques, qui permettent de représenter efficacement les scènes présentant un caractère répétitif,
comme une forêt. Malheureusement la technique de visualisation temps réel de celle-ci présentent de nombreux
inconvénients (voir section 3).

Afin de pallier à ces inconvénients, nous proposons une nouvelle manière de visualiser ces textures volumiques.
Cela passe bien sùr par une nouvelle représentation des texels. Le choix s’est porté sur une représentation à base
de points qui suscite un grand engouement depuis quelques années (voir section 2.1).

2 Travaux antérieurs

2.1 Rendu à base de points

La possibilité d’utiliser des particules pour rendre un objet solide a été initialement suggérée par M. Levoy et
T. Whitted en 1985 dans [LW85] où ils présentent les problèmes fondamentaux comme la reconstruction de la

surface, la visibilité et le rendu de surfaces semi-transparentes. Mais ce n’est qu’en 1998 que J.P. Grossman et
Dally reprirent cette idée [GD98] et formalisèrent pour la première fois l’utilisation de points comme primitive de
rendu.

Les objets sont représentés par un ensemble d’échantillons ponctuels appartenant à leur surface. En fait, ces
échantillons sont communément appelés surfels pour “élément de surface” (“surface element” en anglais). Ce
terme a été introduit mathématiquement par Herman en 92 [Her92], mais Pfister et al. proposent une nouvelle
définition plus adaptée à notre cas. D’après Pfister, un surfel est un n-tuple de dimension 0 avec des attributs de
forme et de matière qui approxime localement la surface d’un objet. De plus, les surfels ne contiennent aucune
connectivité explicite avec leurs voisins, ce qui en fait une représentation très souple à manipuler.

Pour ce qui est des structures de données, on peut citer la hiérarchie de sphères englobantes présentée avec le
système QSplat dans [RL00] et le LDC Tree présenté avec les surfels dans [PZvBG00]. Ces deux structures
possèdent deux caractéristiques fondamentales. La première est qu’elles sont multi-résolutions, ce qui permet
d’ajuster le nombre de surfels à projeter en fonction de l’éloignement de la caméra. La deuxième est que les points
sont stockés par blocs et de manière hiérarchique, ce qui rend ces tests de visibilité encore plus efficaces. Ces tests
sont au nombre de trois et ont été proposés par Grossman [GD98] :

1. Un test classique de fenêtrage.

2. Un test basé sur les “cônes de visibilité” (équivalent de l’élimination des faces arrières).

3. Un test basé sur les “masques de visibilités” (gérant les problèmes d’auto occlusion).

Il existe deux manières d’aborder la reconstruction de la surface. Une première approche est de travailler dans l’es-
pace image [GD98, PZvBG00]. Avec ce type d’algorithme, il est possible de prendre en compte des surfaces semi-
transpentes (utilisation d’un A-buffer), par contre seule une implémentation logicielle est actuellement possible.
Pour bénéficier d’une accélération par le matériel graphique il est nécessaire d’exprimer cette reconstruction dans
l’espace objet [RL00, KV01]. Cependant, aucune des techniques précédentes ne supporte un anti-aliassage pour
les modèles ayant une texture complexe. Pour répondre à ce manque, Pfister et al. reprennent le concept du filtrage
pondéré elliptique de Heckbert [GH86] nommé EWA (Elliptical Weighted Average), et l’appliquent au splatting
de surface en formulant les noyaux de reconstruction dans l’espace image [ZPvBG01]. Récemment Liu Ren et
al. [RPZ02] parviennent à exprimer ces noyaux dans l’espace objet et tirent ainsi bénéfice d’une implémentation
possible avec OpenGL.

2.2 Textures volumiques

Introduites par Kajiya et Kay en 1989 [KK89], puis développées par F. Neyret [Ney95], les textures volumiques
utilisent 3 niveaux différents pour représenter l’information :

1. Les grandes variations, comme la surface d’une colline ou le dos d’un animal, sont codées par une description
géométrique classique (mailles de polygones, carreaux de Bézier, surface NURBS, ...).

2. Le niveau de détail moyen, comme l’herbe ou les poils, qui sont concentrés au voisinage de la surface, est
codé en utilisant un volume de référence stocké une seule fois et plaqué répétitivement, à la manière d’une
texture 2D. Une instance de ce volume de référence est appelée texel.

3. Le niveau de détail fin, comme les microscopiques variations de chaque objet, sont codées par un modèle de
réflexion stocké dans chaque voxel. Ce niveau correspond au niveau du pixel.

Il s’agit d’un modèle multi-échelle. Les textures volumiques peuvent être vue comme une extension des textures
2D traditionnelles. Au lieu de plaquer une image, forcément plane, on va plaquer une donnée volumique appelée
texel. Ce plaquage est donc paramétré par les classiques coordonnées de texture 2D et par un vecteur de hauteur.
Ce vecteur permet de déformer les texels en les coiffant par rapport à la surface par exemple (voir figure 1). Les
texels forment une véritable couche sur la surface de la géométrie sous-jacente.

Au départ, la visualisation d’un texel passait par un algorithme de lancé de rayon. Le volume de référence étant
modélisé par un octree, le rendu d’un texel ressemble beaucoup au rendu volumique. Mais, contrairement au rendu
volumique, les texels ne contiennent pas une densité mais plutôt une probabilité d’occultation ainsi qu’un modèle
de réflectance. Par la suite, la méthode de visualisation interactive de volume développée en 1994 par Lacroute
et Levoy [LL94] a été adaptée aux textures volumiques [MN98]. Cette approche consiste à stocker le volume de
référence par tranches. Trois séries de tranches sont extraites du volume dans trois directions orthogonales. Lors
du rendu, une des piles de tranches est sélectionnée en fonction de la direction de visée. Les tranches sont ensuite

FIG. 1 – Spécification des textures volumiques

rendues par la carte graphique comme des polygones texturés. L’éclairage dynamique peut être pris en compte en
stockant également des cartes de normales et en utilisant la même technique que pour le bump-mapping. L’utilisa-
tion du mipmapping permet de conserver le caractère multi-résolution des textures volumiques. Remarquons que
les dernières cartes graphiques permettent l’utilisation de texture 3D. Il n’est donc plus nécessaire de stocker trois
fois le volume de référence.

Un dernier point concerne l’animation des textures volumiques. En effet, il est possible d’animer les texels de trois
manières différentes (et indépendantes) :

1. Déformer la surface sur laquelle se trouvent les texels.

2. Déformer l’orientation des vecteurs de hauteur se trouvant sur chaque sommet de la surface (par exemple
pour simuler du vent dans l’herbe).

3. Animer le volume de référence à la manière d’un dessin animé (pré-calcul d’une série de volumes de
référence).

Par contre, l’animation du volume de référence reste quand même très coûteuse en mémoire.

3 Une nouvelle représentation des textures volumiques

L’idée de proposer une nouvelle méthode de visualisation temps réel des textures volumiques vient du fait que la
méthode initialement proposée présente quelques limites : artefacts lors des changements de tranches, impossibi-
lité d’obtenir un ombrage correct, animation du texel de référence quasi impossible. Mais surtout, le volume de
référence est stocké entièrement, et même plusieurs fois. La mémoire texture des cartes graphiques étant limitée,
on est restreint à des volumes de

�������
voir

����	
�
(en compressant les données stockées).

Il nous faut donc trouver une nouvelle représentation plus compacte, tout en conservant l’aspect multi-résolution.
Nous avons choisi une approche par surfels qui semble bien appropriée puisque seuls les points appartenant à la
surface de l’objet représenté sont conservés. De plus, en utilisant une structure de données tel que le LDC Tree
nous avons une représentation complètement multi-résolution de notre motif de référence. Le choix du LDC Tree
est d’autant plus judicieux qu’il permet d’avoir une approche incrémentale de la projection des surfels, ce qui est
impossible avec la hiérarchie de sphère englobante.

Nos techniques d’aquisition et de rendu d’un LDC Tree sont largement inspirées des travaux de Pfister et al. et de
ceux de Grossman. Nous allons donc nous contenter de présenter ces deux phases dans les grandes lignes (sections
4 et 6) afin de nous concentrer sur l’adaptation aux textures volumiques (section 5).

4 Le LDC Tree et son acquisition

4.1 Contenants de base : les LDI

LDI est une abréviation pour � Layered Depth Image � [SGS98]. Comme son nom l’indique, il s’agit d’images
stockées en couches, où chaque pixel contient une information de profondeur. Cette information de profondeur est
relative au modèle de la caméra liée au plan image. Dans notre cas il s’agit d’une caméra à projection parallèle.

Un LDI est donc une matrice 2D (une image) où chaque pixel stocke la liste des intersections entre le rayon lui
correspondant et la scène (figure 2). D’où la notion de couche. Dans notre cas, il s’agit d’une liste de surfels.

Les avantages de ce stockage sont multiples. Tout d’abord, certains attributs des surfels deviennent implicites,
comme leurs coordonnées (x,y) et leur diamètre, ce qui entraine une certaine compacité. Un second point concerne
l’efficacité. En effet, le stockage des surfels dans une grille régulière permet d’avoir une approche incrémentale de
la projection [Gro98].

4.2 Pour un meilleur échantillonnage : le LDC

En fait, une seule LDI ne permet pas de représenter correctement tout un objet. En effet, les zones de la surface
tangentes par rapport à la direction � de la LDI sont très mal échantillonnées. Une solution possible est d’utiliser
trois LDI orthogonales entre elles. Cet arrangement est appelé un LDC, abréviation de � Layered Depth Cube � ,
et est illustré figure 2. Un LDC est aussi appelé bloc.

FIG. 2 – Un LDC composé de 3 LDI avec leur repère
����������	�

respectif. Le rayon associé au pixel
�
������

de la LDI
grisée intersecte 4 fois l’objet, ce pixel contient donc 4 surfels. Sont également mentionnées la largeur � , la hauteur�

ainsi que la profondeur � du bloc. Une des trois LDI joue donc un rôle particulier : son repère est aussi celui du
bloc.

4.3 Hiérarchique et multi-résolution : le LDC tree

Le LDC tree peut être vu comme une sorte d’octree ou chaque noeud est un LDC (ou plus généralement un bloc).
Dans cette section nous allons voir comment construire une telle hiérarchie.

Pour la construction d’un LDC tree, nous partons d’un grand LDC contenant entièrement l’objet voulu. Ce LDC est
subdivisé en un certain nombre de petits blocs de taille � � (on suppose, pour simplifier, que les blocs sont cubiques,
donc ��� � �������). Ces blocs forment les feuilles de l’octree. Le niveau supérieur est construit en fusionnant
8 blocs adjacents (fils) pour former un seul bloc (père) de même taille � � mais dont l’espace � entre les pixels est
double. Pour la fusion des fils, notre approche est différente de celle de Pfister. Rappelons qu’ils se contentaient de
recopier les adresses des listes de surfels d’un pixel sur deux. C’est pour cela qu’ils utilisent plusieurs niveaux de
texture. Dans notre cas, un bloc temporaire de taille

� � �
 � est créé par concaténation des huit fils. Puis, la réduction
de la résolution est réalisée, comme pour une image, en faisant la moyenne des pixels des LDI quatre par quatre.
Mais ici les pixels contiennent une liste de surfels. Les surfels des quatre listes à fusionner sont d’abord mis en
correspondance (en comparant leur valeur �) puis fusionnés en faisant les moyennes de leurs attributs (profondeur,
couleur, normale). Les niveaux supérieurs de la hiérarchie sont construits ainsi de suite jusqu’à obtenir un seul
bloc, la racine, représentant à lui seul tout l’objet mais à une très faible résolution.

5 Des surfels aux textures volumiques

Dans cette section nous allons voir comment adapter le rendu classique d’un LDC Tree lorsque celui-ci représente
un texel. Pour cela nous proposons une nouvelle manière d’exprimer la déformation des texels (section 5.1) qui va
nous permettre d’intégrer cette déformation au sein de notre propre algorithme de projection incrémentale (section
5.2). Enfin, nous aborderons le problème de la visibilité en essayant d’adapter les tests déjà proposés (section 5.3).

5.1 Déformation des texels

La forme et position d’un motif appliqué à la surface d’un objet est complètement définie par la donnée de la
position des 4 coins du texel en contact avec la surface de l’objet et des 4 vecteurs hauteurs en ces points (voir
figure 3).

FIG. 3 – Paramétrisation de la déformation d’un texel par les quatres sommets ����� � et les vecteurs hauteurs
� ��� � .

Cette déformation ne peut pas être exprimée à l’aide d’une matrice de transformation. En effet, on ne peut la
décomposer en une succession de rotations, mises à l’échelle et translations. Nous allons donc voir comment elle
peut être exprimée. Soit � un point du motif de référence de coordonnée

��� ��� � �
 exprimées dans le repère local du
texel. Nous supposons de plus que le motif est normalisé, c’est à dire de largeur 1, de hauteur 1 et de profondeur
1. Soit �� , l’image de � par la déformation. Le calcul de �� peut être effectué de la manière suivante :

Calcul de �
	�� � (resp.
� 	�� �) résultat de l’interpolation bilinéaire des �
��� � (resp.

� ��� �),
�
� � ��
���� ����� �
���

), par les coeffi-
cients

�
et

�
:

��	�� � ����� ��� ��� � ��� ��� ��� � ����� � �
� �
 � �!� � � ��� � ����� � �����
�
� 	�� � ����� ��� ��� � ��� ��� ��� � � ��� � � � �
 � �!� ��� ��� � � �
� � � ���

 (5.1)

Où �!� � � est la fonction d’interpolation linéaire : ��� ��� ��" ��# ��$
 � � ��% "�
&#('�"&$
. On a alors :

�� � ��	�� � ' � �)� � (5.2)

A ce stade, plusieurs remarques s’imposent. Tout d’abord, le calcul de �*)� � et
�)� � peut être réalisé par la géométrie

support des texels, dans le cas de surface paramétrique notamment. Dans ce cas, le résultat d’un motif déformé ne
correspond pas à la figure 3 et le motif épousera complètement la surface. D’autre part, dans le cadre de la figure 3,
il est possible de considérer le carreau

� �
��� � �
�+� � ����� � �
���
 comme un carreau de Bézier à partir duquel il est facile
de calculer �)� � et

� 	�� � . Cela a pour conséquence de lisser la surface de l’objet. Dans la suite, nous allons rester
dans le cadre de la figure 3, les deux possibilités précédentes pouvant être facilement adaptées par la suite.

5.2 Algorithme de projection

Commençons par remarquer que la forme d’un bloc au sein du motif déformé est similaire à celle du motif tout
entier représenté figure 3. La position des quatres coins ����� � et les vecteurs hauteurs

� ��� � d’un bloc sont obtenus

facilement à partir de ses paramètres (position au sein du motif et dimensions) et des équations 5.2 et 5.1. Nous
sommes donc en mesure de projeter les surfels d’un bloc : soit

��� ��� � �
 les coordonnées du
	 �������� surfel

� ��� ��� �
stocké en

�
������

dans la LDI. A partir de l’équation 5.2, on obtient

� �� � �� � ��
 , coordonnées de
� ��� ��� � dans le repère

objet et après déformation. Il ne reste plus qu’à appliquer la transformation de modélisation et la projection en
perspective conique pour obtenir les coordonnées

�	� ��

de
� ��� ��� � dans l’espace image. Par contre, l’implémentation

directe de cette méthode n’est pas vraiment envisageable, puisqu’elle demande un nombre bien trop important
d’opérations par surfel à projeter.

Dans les sections précédentes, nous avons vu qu’il était possible de tirer bénéfice de la cohérence spatiale entre
les surfels due à leur stockage dans une grille régulière. Nous allons donc tenter la même approche que Grossman,
mais en tenant compte de la déformation du bloc. De plus, nous allons considérer uniquement le LDI des blocs
dont la référence correspond au carreau

� � ��� � � �+� � � �
� � � ���
 . Pour les autres, il suffit de faire subir une rotation à la
figure 3, le carreau

� � ��� � � �+� � � ��� � � ���
 ne se retrouvant plus appliqué à la surface de l’objet.

FIG. 4 – Illustration des différents incréments. Ce shéma s’applique aussi bien au vecteur � , qu’aux vecteurs
�

, �
et � .
Afin de simplifier l’écriture des formules, nous allons nous placer dans une ligne

�
et considérer un seul surfel par

“pixel”
��������

. Nous considérons donc le surfel
� � , de coordonnées

��� � � � � � � �
 dans le bloc :�
 � �� �
� �

��
��� ' �

�
 �
� �
��� ��� �

��
(5.3)

Où, � est l’origine du bloc courant dans le repère du LDC Tree, � la distance entre deux pixels et

�
��� ��� � la profondeur

du
	 �������� surfel stocké en

��������

. Il est donc intéressant d’insérer la translation par � et la mise à l’échelle par

� dans la matrice de modélisation active ; soit � la matrice 4x4 résultante que l’on décompose en une matrice
3x3 orthogonale

#
(représentant une rotation et mise à l’échelle) et un vecteur de translation � . Pour simplifier

l’écriture, posons : �
� � ��	�� � ��� et
� � � � 	�� � ��� . Dans le repère de la caméra, on a :�
 ���
�����
� ��

��
� #

�
 �� �
�� �
�� �

��
' � � # � �
� ' � � � �
 ' � (5.4)

Soit
�	� � ��
 �
 les coordonnées de

� � dans l’espace image :� � ���! �#" ��% ����
� ��%$�&
 � �'�% �#" ��% ����

� ���$�& (5.5)

Où, est la taille de l’image et (�) renvoie la partie entière. En insérant 5.2 dans 5.5 et en posant :�
� � # ��� ' � et ��� � # � �
On obtient finalement :� � �*�+ � " ��% � � �
 	 ' � � � � �
 	� � �
�, ' � � � �
�
�, $�&
 � �*�+ � " ��% � � �
 � ' � � � � �
 �� � �
�, ' � � � ���
�, $�& (5.6)

Lors du parcours d’une ligne
�

(voir figure 4, on a donc :�
� � �
� � � '
d ��� ��� � �*� � � '

d ��� (5.7)

Où les deux incréments introduits sont égaux à :

d ��� � #
d ��� d �
� � #

d
� �

L’indice
�

des incréments est là pour signifier qu’il dépend de la ligne parcourue. Par la suite, on introduira donc
des incréments de saut ligne pour ces incréments. d ��� (resp. d

� �) est l’incrément permettant de passer de �
� � � à
��� (resp. de

� � � � à
� �). Eux aussi dépendent de la ligne parcourue et nous verrons qu’il n’est pas nécessaire de

les calculer explicitement. Maintenant, voyons comment passer d’une ligne à la suivante. Tout d’abord, que se
passe-t-il pour les vecteurs � et � :� ��� � ��� ��� � � � ' #

d � � ��� � ��� ��� � � � '�#
d
�

(5.8)

Où, d � (resp. d
�

) est l’incrément permettant le calcul de � 	�� � (resp.
�)� �) lors du passage d’une ligne à la suivante

avec
� � �

, c’est à dire :

� 	 � � � ����� � � 	 � � � � ' d � � 	 � � � ����� � � 	 � � � � ' d
�

Avec :

d � � ����� % ������ d
� �

� �
� % � ����
Où, rappellons le,

�
est la hauteur du bloc. Il ne reste plus qu’à incrémenter les incréments d �*� et d ��� :

d ��� � d ��� � � ' #
dd � d ��� � d ��� � � ' #

dd
�

(5.9)

Ici, dd � (resp. dd
�

) est l’incrément de l’incrément d ��� (resp. d
� �). Pour illustrer tous ces incréments on peut se

référer à la figure 4. Ces derniers sont obtenus par :

dd � � �
��� % ����� % �
�+� ' �����
� � dd

� �
� ��� % � ��� % � � � ' � ���

� �
Pour résumer, après initialisation des différents constantes et variables, le rendu d’un bloc s’effectue très sim-
plement et à peu de frais. Un incrément selon

�
est réalisé par les équations 5.7, (2 additions vectorielles). La

projection d’un surfel, equations 5.6, nécessite 2 multiplications vectorielles, 1 inversion et 2 additions vectoriels.
Le passage d’une ligne à suivante est réalisé par les equations 5.8 et 5.9 pour un total de 4 additions vectorielles.
Bien sùr, la prise en compte de la déformation ajoute un coût de calcul supplémentaire mais qui, au final, reste tout
à fait raisonnable, d’autant plus qu’il s’agit de calcul vectoriel et donc directement optimisable par l’utilisation des
instructions flottantes SIMD des derniers processeurs PC.

5.3 Visibilité

Nous venons de voir que la prise en compte de la déformation du LDC Tree nécessite de revoir à la base la
projection des surfels. Maintenant qu’en est-il des tests de visibilité ?
Pour le fenêtrage, pas de problème, il suffit de calculer la boite englobante du bloc une fois déformé.
Pour ce qui est des masques et cônes de visibilité, les choses se compliquent. Ici nous allons nous contenter de
présenter le problème pour les masques de visibilité, le cas des cônes de visibité étant semblable. Une description
détaillé de leur fonctionnement peut être trouvé dans [Gro98], mais rapellons tout de même qu’un masque de
visibilité est un masque de � bits (typiquement � � �����

) où chaque bit correspond à un triangle résultant de la
subdivision régulière de la sphère en � triangles. Un masque est calculé pour chaque bloc de tel sorte que

	 ��������
bit vaut

�
si et seulement si le bloc est visible (à partir d’un point de vue hors de l’enveloppe convexe de l’objet)

d’une direction correspondant au
	 �������� triangle. Au moment du rendu, un masque est calculé pour le volume de

visualisation. Il suffit alors de réaliser un
� � logique entre les deux masques pour savoir si le bloc est visible ou

non.

La difficulté est qu’il est tout à fait possible que, pour une position et orientation de la caméra données, une partie
du motif soit caché par lui-même et devienne tout à fait visible suite à la déformation. Cette partie, équivalente

(a) (b) (c) (d)

FIG. 5 – Illustration de la déformation des masques de visibilité (en 2D). (a) motif non déformé avec en grisé les
directions à partir desquelles le bloc matérialisé par un point est visible. (b) masque de visibilité associé au bloc.
(c) déformation du masque de visibilité et reprojection sur la partition de l’espace des directions. (d) une fois le
motif déformé, les directions valides pour le bloc correspondent bien au masque précédemment calculé. Masque
avant la transformation : 0011 0000 0000 0011 Masque après la transformation : 1111 0000 0000 0110

à un bloc, risque alors d’être éliminée par le test des masques de visibilité. Cela vient du fait que l’espace des
directions est aussi perturbé par la déformation. Il faut donc faire subir une transformation au masque avant le
test. Cette transformation peut être calculée de la manière suivante. Tout d’abord, la pseudo-sphère représentant
les 128 partitions de l’espace des directions est positionnée au centre du bloc. Des 128 triangles approximant la
sphère, seuls ceux correspondant aux bits du masque égaux à 1 sont conservés. Puis, la déformation (équations 5.2
et 5.1) est appliquée aux sommets des triangles qui sont ensuite reprojetés sur la pseudo-sphère afin d’en déduire
le nouveau masque (figure 5).

Si en théorie tout cela semble fonctionner, le passage à la pratique reste problématique car la démarche qui vient
d’être exposée est beaucoup trop lourde en terme de coût de calcul. Un test de visibilité doit être extrêmement
rapide à exécuter pour être valide, sinon il ne fait que ralentir le processus de rendu. L’idée pourrait être de prendre
en compte la cohérence temporelle de la déformation des texels. En effet, il est raisonnable de faire l’hypothèse
que la forme d’un texel varie lentement au cours du temps. Il est alors possible de stocker, pour chaque bloc de
chaque texel, le nouveau masque de visibilité et de les mettre à jour seulement lorsque cela est nécessaire. On se
retrouve alors avec un problème de coût mémoire dès que le nombre de texels est grand. Rappelons que dans la
pratique seul un texel servant de référence est stocké puis instancié et déformé lors du rendu.

Une implémentation efficace des masques de visibilité prenant en compte la déformation du motif serait d’au-
tant plus souhaitable que les textures volumiques permettent d’en exprimer toute la puissance. En effet, prenons
l’exemple d’une forêt modélisée avec l’aide des textures volumiques. Il est alors astucieux de construire un motif
représentant plusieurs arbres. Par exemple, un au centre et un deuxième réparti dans les quatre coins. En calculant
les masques de visibilité sur un tel motif, ceux-ci sont alors capables de gérer les interactions avec les arbres voisins
et pas seulement pour l’arbre lui-même.

6 Rendu

6.1 Calcul de l’éclairage

Le calcul correct de l’éclairage nécessite tout d’abord d’appliquer la déformation également aux normales. Expri-
mer quelle est la transformation que subit la normale d’un surfel quelconque du texel est loin d’être évident. Nous
prosons donc une astuce qui consiste à prendre un point situé sur la normale du surfel courant et à une distance
� (� étant suffisement petit) de celui-ci. Soit � les coordonnée du surfels courant,

��
sa normale et ��� le point

correspondant. On a :

��� � �
�� ' � d’ou : ���� � �����	��

��� � ������

��� ' � � � , ' � ,
 � ������

��� � ������

��� (6.1)

Le calcul direct de ���� avec les équations 5.1 et 5.2 est possible mais couteux. Cela dit, comme pour l’algorithme
de projection, il est possible d’avoir une approche incrémentale de ce calcul :
En remarqant que :

�!� ��� ��" ' � ��# ��$
 � �!� ��� ��" ��# ��$
 ' � ��$ % #

et �!� ��� ��" ��# '�� ��$ ' �
 � ��� ��� ��" ��# ��$
 ' ��� ��� ��" ��� � �
 (6.2)

On arrive à :

��
� � �� '���� ' � � , �
��� � ��� ' � � , ' � � ,
���� (6.3)

Avec :

��� � � � � ��� ��� � � 	 � � ���
� % �����
 � � �
��� % �
� �
�
 � � 	 �!� � � � � � � � �
�+� % �����
 � � �
��� % �����
�
 '
� � � 	 � � � �
��� ' ����� % ���
� % ��� �
 (6.4)

���
étant calculé de la même manière. Le vecteur normal �� non normalisé est alors égal à :

� �� � �� % �� � � � � ' � � , �
� � � � � ' � � , ' � � ,
�� � (6.5)

Au premier abord cette expression parait beaucoup plus compliquée que le calcul direct de ���� avec les équations
5.1 et 5.2. Mais en fait, de nombreux termes sont des constantes qui peuvent être précalculées et les interpolations
linéaires apparaissant dans les expressions de

�	�
et
���

peuvent être calculées de manière incrémentale. De plus,
le calcul de

�
���)� ��� est déjà réalisé lors de la projection incrémentale du surfel (section 5.2) et les

� ��
��� � terme en
� � dans les expressions de

���
et
���

sont négligeables. Finalement, le nombre de multiplication a été divisé par 2
par rapport au calcul direct de �� � . Il reste le problème du choix de la valeur à donner à � . Dans la pratique, prendre
� égale à la distance entre deux pixels du bloc courant semble être un bon choix.

Le calcul de l’éclairage est alors effectué une fois que tous les surfels ont été projetés, mais avant la reconstruction
comme dans [GD98]. En fait, n’importe quel modèle d’illuminaton peut être utilisé, tout dépend de la manière
dont les matériaux sont représentés. Pour faire simple et efficace, nous utilisons un modèle de Phong. Pour ce
qui est des ombres portées, celle-ci peuvent être calculées très simplement par la technique des “shadows maps”
[WTRDHS87].

6.2 Reconstruction de la surface

Pour ce qui est de la reconstruction de la surface, nous avons simplement adapté la méthode de Grossman à notre
problème. Si cette méthode est loin d’être la meilleure en terme de qualité, elle a comme avantages d’être simple
et très rapide. Ici, les surfels sont projetés sur un seul pixel de l’image. La détection des trous est alors réalisée
par une hiérarchie de Z-buffer à résolution décroissante. Lors de la projection d’un bloc, le z-buffer ayant une
résolution suffisement faible pour qu’il n’y ait pas de trou est activé et utilisé conjointement avec le z-buffer qui
est à la résolution de l’image. Une fois que tous les surfels sont projetés, cette hiérarchie de z-buffer va permettre
de filtrer les pixels situés en avant plan de ceux situés en arrière plan (en comparant la profondeur du pixel avec
la profondeur correspondante stocké par les z-buffer de résolution inférieure). Le résultat est un poids compris
entre 0 et 1 qui est affecté à chaque pixel. Ce sont ces poids qui vont permetre la reconstruction des
 trous � par
interpolation, celle-ci étant réalisée par un algorithme dit ”pull-push”.

6.3 Intégration avec une scène OpenGL

Puisqu’il ne semble pas raisonnable de modéliser une scène complète uniquement avec une représentation ponc-
tuelle (que ce soit par l’intérmédiaire des textures volumiques ou non), et que l’algorithme de rendu présenté est
indépendant de toute bibliothèque graphique, il serait intéressant de pouvoir intégrer nos objets dans une scène
rendue par OpenGL. La solution est de récuperer le tampon de profondeur après le rendu OpenGL et avant la
projection de nos surfels. Il serait également possible de récuper en même temps le tampon chromatique, mais il
est plus efficace de mettre à jour une texture OpenGL à partir de l’image résultant de la reconstruction, puis de
l’afficher en rendant un polygone recouvrant tout l’écran. Lors de ce dernier rendu et selon les capacités de la carte
graphique, il est possible de faire réaliser par cette dernière de nombreuses opérations couteuses :

– Calcul de l’éclairage dans le cas où nos objets sont diffus et que la source de lumière est située à l’infini (cas
d’une forêt en plein jour) : utilisation d’une deuxième texture représentant la carte des normales (reconstruite en
même temps que la carte colorimétrique) et des pixels shaders).

– Normalisation des normales par une texture cubique et l’utilisation des “textures shaders”.
– Gérer la visibilité entre nos objets et les objets rendu avec OpenGL en utilisatant les “textures shaders” et une

autre texture représentant notre carte de profondeur. Il n’est alors plus nécessaire de récupérer le tampon de
profondeur calculé par OpenGL (opération coûteuse).

– Calcul de l’éclairage avec des matériaux non nécessairement diffus et des sources ponctuels grace aux “frag-
ments shaders” disponible sur la futur NV30.

7 Résultats

Les tests ont été réalisés sur un Atlhon 1Ghz disposant de 256Mo de mémoire et d’une carte graphique GeForceII
MX. Pour ce qui est de l’implémentation, notons que seule la partie concernant la projection incrémentale d’une
LDI (et la transformation et normalisation des normales) a été optimisée par l’utilisation du jeu d’instructions
3DNow !. L’algorithme de reconstruction traitant des données vectorielles (couleurs RGBA et normales), on peut
estimer que l’utilisation du jeu d’instructions SSE diminurait les temps de reconstruction par 4. Les images de la
figures 6 ont été obtenues à partir d’un motif contenant un seul arbre et d’une résolution de

� � � �
(les feuilles du

LDC Tree sont au nombre de
	 � �

et contiennent trois LDI d’une résolution de
� �). Cet arbre a été habillé avec la

méthode présentée par Maritaud dans [MDG00] et est représenté par 1.2 millions de surfels. Au niveau du coût de
stockage, ce motif nécessite à peu près 30Mo d’espace disque (2 millions de surfels et 40 milles noeuds pour le
LDC Tree entier). La scène complète (2000 arbres) nécessitent de 0.3s à 1s (selon le point de vue) de temps de
calcul réparti de la manière suivante :

– Recupération du tampon de profondeur : 0.05s
– Reconstruction : de 0 à 0.6s selon la distance entre les surfels dans l’espace image. :

– 70% pour la phase de recherche des trous et de calcul des poids.
– 30% pour l’algorithme pull-push

– Rendu des LDC Tree :
– 10% pour le parcours de la hiérarchie incluant les tests de visibilité et l’initialisation de la projection incrémentale

d’une LDI.
– 90% pour la projection des surfels

– Calcul de l’illumination et rendu OpenGL : 0.024s

FIG. 6 – Images types

8 Conclusion

Le principal intérêt de cet article est de montrer qu’une représentation par surfels est particulierement bien adaptée
à la visualisation des textures volumiques. Cependant, il reste encore de nombreux points à améliorer. Le premier
concerne les tests de visibilité. Comme nous l’avons vu, il semble très difficile d’adapter de manière efficace les
tests déjà proposés par Grossman. Il serait donc interressant de proposer de nouveaux tests qui soient plus adaptés
aux objets subissant une déformation comme les textures volumiques ou bien les objets animés par squelette...
Un second point est que l’algorithme de reconstruction utilisé ici est d’assez mauvaise qualité. Son gros avantage
est qu’il n’y a aucune rastérisation des surfels projetés, ce qui permet une implémentation logicielle très efficace.
Actuellement, le meilleur algorithme de reconstruction est celui proposé par Pfister et al. qui s’appuie sur le filtrage
EWA [ZPvBG01] (c’est le seul à proposer un filtrage anisotrope). De plus, une implémentation utilisant le matériel
graphique a déjà été proposée [RPZ02]. L’avenir passe donc sans doute par l’utilisation de cette technique de
reconstruction. A priori, cela ne semble pas trop difficile puisque la déformation des texels peut facilement être
implémentée au niveau des vertex programmes au prix d’une trentaine d’instructions supplémentaires.

Références

[GD98] J. P. Grossman and W. J. Dally. Point sample rendering. Rendering Techniques 98, pages 181–192,
June 1998.

[GH86] N. Greene and P. Heckbert. Creating raster omnimax images from multiple perspective views using
the ellipticalweighted average filter. IEEE Computer Graphics & Applications, 6(6) :21–27, June
1986.

[Gro98] J. P. Grossman. Point sample rendering. Master’s thesis, Department of Electrical Engineering and
Computer Science, MIT, August 1998.

[Her92] G. T. Herman. Discrete multidimensional jordan surfaces. CVGIP : Graphical Modeling and
Image Processing, 54(6) :507–515, November 1992.

[KK89] James T. Kajiya and Timothy L. Kay. Rendering fur with three dimensional textures. In Procee-
dings of SIGRAPH 89, volume 23, pages 271–280, August 1989.

[KV01] Aravind Kalaih and Amitabh Varshney. Differential point rendering. In Proceedings of 12th
Eurographics Workshop on Rendering, pages 139–150, June 2001.

[LL94] Philipe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp factorization of the
viewing transformation. In Proceedings of SIGRAPH’94, pages 451–458, July 1994.

[LW85] Marc Levoy and Turner Whitted. The use of points as display primitive. Technical Report TR
85-022, 1985.

[MDG00] K. Maritaud, J.M. Dischler, and D. Ghazanferpour. Rendu réaliste d’arbres à courte distance. In
AFIG’00, December 2000.

[MN98] Alexandre Meyer and Fabrice Neyret. Textures volumiques interactives. In AFIG’98, pages 261–
270, Dec 1998.

[Ney95] Fabrice Neyret. A general and multiscale model for volumetric textures. In Wayne A. Davis and
Przemyslaw Prusinkiewicz, editors, Graphics Interface ’95, pages 83–91, May 1995.

[PZvBG00] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels : Surface elements as rendering primi-
tives. In Proceedings of SIGGRAPH 2000, pages 335–342, July 2000.

[RL00] S. Rusinkiewicz and M. Levoy. Qsplat : A multiresolution point rendering system for large meshes.
In Proceedings of SIGGRAPH’2000, pages 343–352, July 2000.

[RPZ02] L. Ren, H. Pfister, and M. Zwicker. Object space ewa surface splatting : A hardware accelerated
approach to high quality point rendering. In Proceedings of Eurographics 2002., 2002.

[SGS98] Jonathan Shade, Steven J. Gortler, and Richar Szeliski. Layered depth image. In Proceedings of
SIGRAPH 98, pages 231–242, July 1998.

[WTRDHS87] Robert L. Cook William T. Reeves David H. Salesin. Rendering antialiased shadows with depth
maps. Computer Graphics (SIGGRAPH 87 Proceedings), 21(4) :283–291, July 1987.

[ZPvBG01] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In Proceedings of SIGGRAPH
2001, August 2001.

Écrasement de photons pour l’illumination globale

F. Lavignotte, M. Paulin

IRIT
Université Paul Sabatier
118, route de Narbonne
31062 Toulouse Cedex

lavignot,paulin@irit.fr

Résumé : Dans cet article, une méthode basée image est présentée pour accélérer le calcul de l’éclairement global
dans une scène virtuelle. L’éclairement est reconstruit après une phase de lancer de photons. Le principe est de
reconstruire l’éclairement en écrasant les photons sur la surface à laquelle ils appartiennent. Cet écrasement est
réalisé dans l’espace image. Par conséquent, la phase de reconstruction est indépendante de la complexité de
la scène. Cette reconstruction par écrasement est accélérée par le matériel graphique ce qui permet d’avoir des
temps de calcul réduit même pour un grand nombre de photons. Diverses solutions sont apportées pour que la
reconstruction reste précise malgré les limites du matériel graphique. Enfin, nous présentons un lancer de rayon
modifié pour prendre en compte notre méthode et qui permet de calculer efficacement une image de l’éclairement
complet.

Mots-clés : Illumination globale, Rendu basé image, Rendu accéléré

1 Introduction

Pour obtenir des images photo réalistes à partir de la description virtuelle d’une scène, il est nécessaire d’utiliser
un modèle d’éclairage physiquement réaliste. De nombreux travaux ont porté sur ce domaine en commençant par
les travaux de Goral et al. présentés dès 1984 [GTGB84], limités aux transferts diffus. Kajiya a posé les bases
du modèle en proposant l’équation du rendu qui définit la luminance en un point [Kaj86]. Il a aussi proposé
une méthode de résolution par des méthodes de type Monte Carlo qui consiste à échantillonner les chemins de
transfert lumineux partant de l’oeil ou des lumières. Un échantillonnage adapté de ces chemins permet de prendre
en compte de nombreux effets complexes de l’éclairage comme les caustiques, les ombres douces, les réflections
sur une surface rugueuse, et l’éclairage diffus indirect [Laf96], [VG95] [VG97]. Cependant, les méthodes de type
Monte Carlo, bien que très élégantes, ne sont pas encore sorties des applications de recherche du fait de leur très
lente convergence et donc de la nécessité de tracer un grand nombre de chemins pour éliminer le bruit sur l’image.

Des méthodes multi-passes ont donc été proposées pour résoudre le problème d’efficacité des méthodes pures.
L’équation du transfert lumineux est découpée alors en différentes parties, et chacune de ces parties est résolue
avec différent algorithmes. L’éclairage direct et spéculaire est généralement pris en compte par un lancer de rayon
classique, la radiosité peut être utilisée pour prendre en compte l’éclairage diffus indirect [CRMT91] ou le lancer de
photons pour prendre en compte les caustiques [Hec90]. Le problème de ces travaux est de stocker leur contribution
à l’éclairage sur des textures ou un maillage, et donc d’être dépendant de la complexité de la scène. D’autres travaux
récents ont été proposés comme les cartes de photons [Jen96], ou les vecteurs d’éclairement [SP01] pour l’éclairage
indirect. Ces travaux opèrent directement dans l’espace image et s’adapte donc mieux à des scènes complexes.

Dans cet article, nous proposons une méthode pour calculer directement une image de l’éclairement qui prend
en compte l’éclairage diffus et les caustiques. Cette méthode est décomposé en deux passes, la première consiste
en un lancer de photons, et la seconde en une reconstruction sur l’image de l’éclairement basé sur la technique
d’écrasement de photons proposé initialement par Sturzlinger et Bastos [SB97]. Nous étendons cette technique à
des scènes complexes et essayons de résoudre le problème de précision de la méthode limitée par les contraintes
du matériel graphique. Dans un premier temps, nous posons le problème de manière à l’adapter au manque de
précision des calculs quand on travaille directement sur le tampon de couleur. Puis, nous proposons une méthode
pour réduire un artefact visuel important tel que le biais sur les bords des surfaces. Enfin, les différents détails de
mise en oeuvre sur la génération actuelle de cartes graphiques sont présentés. Un des intérêts de cette méthode
est de pouvoir gérer facilement un grand nombre de photons puisque l’accès aux photons est linéaire durant la
reconstruction, on peut facilement le cacher sur le disque dur. L’autre intérêt est d’être de s’adapter plus facilement

aux scènes complexes. Finalement, nous présentons un algorithme basé sur un lancer de rayon adapté à l’utilisation
de notre méthode de calcul de l’éclairement diffus basé image.

2 Écrasement de photons

2.1 Estimation de densité

Dans ce paragraphe, nous allons décrire rapidement le principe de reconstruction de l’éclairement à partir d’un
ensemble de photons et de l’estimation de densité. La reconstruction est basée sur l’estimation de densité et cette
théorie est utilisé dans de nombreux travaux : radiosité [Wal98], textures d’éclairement indirects [Mys97], textures
de caustiques [Hec90] [GDW00], et cartes de photons [Jen96].

Le lancer de photons consiste à tracer des chemins lumineux aléatoires à partir des sources lumineuses. Le nom
de photon est un peu trompeur puisque le but n’est pas de simuler le comportement corpusculaire de la lumière.
Les photons sont en fait les sommets des chemins aléatoires générés depuis les sources lumineuses. Au final, une
position ,un poids ou énergie et une direction sont associés à chaque photon.

Une fois le lancer de photons accompli, un ensemble de photons est obtenu. L’éclairement est alors reconstruit à
partir de cet ensemble. Heckbert le premier a noté que c’était équivalent à un problème d’estimation de densité
[Hec90]. En effet, la distribution des photons suit une densité de probabilité proportionnelle à l’éclairement :

���������
	��
 �������
	���
 �������
	���� (2.1)

L’intégration de l’éclairement peut être remplacée par ��� avec � le nombre total de photons et � le poids transporté
par un photon. Cette densité de probabilité est totalement inconnue, donc une estimation non paramétrique est
utilisée comme l’estimateur de densité par noyau [Sil86].

La méthode d’estimation de densité par noyau construit une densité estimée �� à partir d’un ensemble de � points��� ����� � � �"!
générés par � :

�������	�� #��$
%
!& '
(�*) � �,+ � '

$ 	 (2.2)

où � est la dimension de � ,) �-�
	 est une fonction noyau unitaire, symétrique et généralement égale à zéro si. � .0/ # , $ est le paramètre de lissage.

Une propriété très intéressante de l’estimateur à noyau est le compromis entre la variance et le biais contrôlé par le
paramètre de lissage. En effet, le biais est proportionnel à $21 et la variance proportionnelle à ��$�3 �

[Sil86].

Pour notre problème, les équations (2.1) et (2.2) sont combinés pour nous donner un estimateur pour l’éclairement
à chaque point :

 �������
	�� �$ 1
!& '
(�) � �"+ � '

$ 	 (2.3)

2.2 Principe

Notre but est de reconstruire efficacement l’éclairement à chaque pixel en utilisant l’estimateur (2.3). Cet estimateur
peut être vu comme la somme de la contribution de chaque photon

�
, la contribution d’un photon étant égale à :

45� � 	6� �$ 1) � ��+ �
$ 	 (2.4)

En fait, la contribution d’un photon est nulle si sa distance au point d’estimation est supérieure à $. La contribu-
tion non nulle d’un photon aux points d’une surface forme alors un disque de rayon $ centré sur sa position

�
.

L’estimation dans l’espace image revient donc à ajouter la contribution du photon à chaque pixel recouvert par
la projection de son disque sur l’image. Cette projection de la contribution du photon est exacte si la surface est
plane, pour une surface quelconque cela reste une approximation. Dans ce cas, la contribution est en quelque sorte

FIG. 1 – Écrasements de photons à 0.05% (Gauche), 1% (Milieu) et 100% (Droite).

écrasée sur la surface. Cette approximation est correcte si la courbure de la surface varie peu et si la taille du disque
est peu importante, un exemple d’écrasement de photons, arrêté à différentes étapes, est montré sur la figure 1.

De plus, dans une scène avec plusieurs surfaces, la contribution du photon ne doit pas être ajouté à tous les pixels
recouvert par le disque. En effet, la surface visible d’un pixel peut appartenir à une surface différente de la surface
d’intersection du photon, donc la contribution est ajouté seulement si la surface visible du pixel correspond à la
surface intersectée par le photon.

Le fait d’ajouter la contribution du photon au pixel revient donc à projeter un disque sur l’image, cela correspond
à un processus de rastérisation et peut être effectué avec une libraire graphique comme OpenGL. La contribution
d’un photon est alors rendue avec un quadrilatère texturé et coloré. La texture correspond à la fonction noyau
discrétisée (qui a la forme d’un disque) et la couleur est égale au poids du photon divisé par $ 1 . Le résultat de
leur modulation est alors égale à la contribution du photon. Le quadrilatère est rendu avec le mélange activé pour
ajouter la contribution à chaque pixel recouvert par le quadrilatère. Il faut aussi éviter d’ajouter cette contribution
aux pixels n’ayant pas la même surface visible, la mise en oeuvre de ce processus est décrite dans le paragraphe
(3.2).

2.3 Précision des calculs

Le principe de l’écrasement de photons est assez simple mais une mise en oeuvre efficace sur une carte graphique
accélérée pose un certain nombre de problèmes. Le tampon de couleur est utilisé pour ajouter la contribution
des photons. Malheureusement, la précision du tampon de couleur est limité à huit bits par composante sur les
cartes graphiques courantes. Les précédents travaux [SB97] travaillaient avec un tampon de couleur douze bits et
des problèmes de quantification étaient présents sur les images. En effet, l’écrasement de photons nécessite une
précision très importante, le nombre de contributions par pixel est de l’ordre de cinq cents à mille sur les scènes
que nous avons testé.

Pour pouvoir utiliser des tampons avec une précision limitée un certain nombre de choix doivent être fait. Tout
d’abord, nous allons choisir un noyau constant) ����	"� �

� . Cette limitation n’est pas aussi réductrice qu’il n’y
parait. Il a été démontré [Sil86] que l’efficacité de ce noyau par rapport au noyau optimal est de

� � ��� . C’est à dire
que pour avoir une estimation de qualité comparable avec � points et le noyau optimal, il faut ��� � � ��� points avec
un noyau constant.

Si on considère que le paramètre de lissage $ et le poids ou l’énergie � de chaque photon est constant, il nous suffit
pour estimer l’éclairement du nombre de contributions �

'
� en chaque pixel �
	 ��� 	 . L’éclairement est donc calculé

par :

 �-� '
� 	6� �

'
� �

 $ 1 (2.5)

Cette formule exige que le poids et le paramètre de lissage soit constant par photon. En fait puisque la recons-
truction est effectuée par surface, le paramètre de lissage est choisi constant par surface. Il est choisi avec cette

FIG. 2 – Comparaison de deux images rendues sans réduction du biais sur les bords (Gauche) et avec (Droite)
Noter les régions plus sombres sur les bords et les petites surfaces

heuristique souvent utilisé [SWH � 95] [SB97] :

$ ��� � �
�

où
�

est l’aire de la surface, � le nombre de photons sur la surface et � une constante définie par l’utilisateur
généralement comprise entre 20 et 30.

2.4 Biais sur les bords

L’estimateur de densité par noyau assume que le support de la probabilité de densité est infini. Dans notre cas, le
support correspond à une surface qui peut être fermée. Du coup, des fuites d’énergies apparaissent du fait que l’on
sous estime l’éclairement sur les bords des surfaces ouvertes. Cette sous estimation est aussi très apparente sur
les surfaces dont l’aire est inférieure au support du noyau, voir Figure 2. Ce problème peut être résolu en divisant
l’estimateur en � par

���
�
 $ 1 où

���
est l’aire de l’intersection entre le support de l’estimateur en � et la surface

visible en � . Le support de l’estimateur est un disque de rayon $ centré en � . La surface est projetée sur ce disque
et l’aire d’intersection est alors calculée.

FIG. 3 – Calcul de l’aire d’intersection entre un triangle et un disque

Nous allons présenter ici le calcul de l’aire de la zone d’intersection entre en triangle et un disque. Le triangle est
clippé par rapport au cercle. Le résultat est un polygone à n sommets. Si � � �

, soit le triangle est en dehors du
cercle, soit il englobe le cercle. On vérifie alors si le centre du disque est dans le triangle, si c’est le cas alors l’aire
d’intersection est égale à l’aire du disque, sinon elle est égale à zéro. Si � ��� , l’aire est alors l’aire d’intersection
du demi plan formé par le segment. Si � / � , l’aire d’intersection est alors l’aire de ce polygone (en gris clair
sur la Figure 3) plus l’aire d’intersection des demi plans formés par les nouveaux segments (en gris foncé sur la

Figure 3). On appelle nouveaux segments les segments qui ne sont pas colinéaire aux trois segments initiaux du
triangle. Ces nouveaux segments définissent chacun un demi plan.

A partir de l’aire d’intersection entre un triangle et un disque, on peut calculer l’aire d’intersection pour une surface
représentée par un maillage triangulaire connecté. Il suffit de récupérer le triangle qui contient le point d’estimation,
dans notre cas les pixels. L’aire d’intersection avec ce triangle est alors calculée, et en même temps pour chaque
arête du triangle on calcule son intersection avec le disque. Il suffit après d’ajouter l’aire d’intersection des triangles
qui partagent les arêtes qui intersectent le disque. Pour éviter les cycles sur le maillage, il faut marquer les triangles
déjà visités.

Un autre intérêt de ce calcul est d’obtenir une meilleure approximation pour les surfaces non planes. En effet, le
fait de représenter la contribution d’un photon reste une approximation pour ce genre de surface. Ainsi, l’aire du
disque projeté sur la surface ne correspond pas réellement à
 $21 . En calculant précisément l’aire couverte par le
noyau pour réduire le biais sur les bords, l’erreur est réduite pour les surfaces non planes.

3 Mise en oeuvre

3.1 Poids constant

Pour l’instant, nous avons considéré que le poids de chaque photon est constant. Pour pouvoir réaliser cela, plu-
sieurs conditions doivent être satisfaites. Tout d’abord, nous allons rappeler les équations qui permettent de calculer
le poids ��� d’un photon généré d’une source lumineuse dans une direction � pour une longueur d’onde donné :

� � � ��� ����� � ���
	��	��
��
� � � �-��� � 	 (3.1)

avec � � la fonction de densité de probabilité utilisée pour sélectionner � et � . Cette fonction doit être choisi égale
à

���� � � ��� ������������ �! , avec "�#� la puissance totale des sources lumineuses pour la longueur d’onde � . Ainsi, le poids de

chaque photon généré d’une source lumineuse est constant.

Puis, le photon est tracé dans la scène et à chaque intersection avec une surface, le photon est soit réfléchi, soit
absorbé. S’il est réfléchi, son nouveau poids �%$� est :

� $ � � & �-��� � ���
	��	��
'� $� (�� � $ 	 ���
avec

&
la FDRB en � , � la direction du photon, ��$ la nouvelle direction du photon sélectionnée avec la densité de

probabilité ��(et � $ l’angle entre � et � $. Si
&

est réversible, ��(peut être choisi proportionnelle à
& ����� � � �)����
)� $

et le poids du photon reste constant après réflection. Il existe des modèles de FDRB réversible tel que le modèle de
Phong modifié [LW94] ou le modèle de Ward [War92]. Donc en utilisant ces modèles de FDRB, un poids constant
par longueur d’onde est obtenu pour chaque photon.

Il est donc possible d’obtenir un poids constant pour chaque longueur d’onde. Dans notre cas, nous travaillons
en tri-chromatique RVB, il nous faudra alors générer les photons et reconstruire l’éclairement pour les trois com-
posantes. Le fait de générer les photons de manière totalement indépendante pour chaque composante pose des
problèmes. En effet, les trois composantes sont corrélées et donc les séparer artificiellement entraı̂ne une plus
grande variance.

La méthode classique est donc de choisir d’abord une composante, puis une source lumineuse par rapport à cette
composante etc... La méthode que nous avons mise en oeuvre est différente, chaque photon va transporter un triplé
au lieu d’un seul poids. Pour réaliser cela, une source lumineuse est choisie pour chaque composante mais à partir
de la même variable aléatoire. Deux ou trois des sources lumineuses sélectionnées peuvent être identiques. Le
photon sera alors lancé des sources lumineuses avec un triplé �-4 � � 4 # � 4 �5	 , les 4 	 pouvant prendre comme valeur 0
ou 1. Si par exemple, le tirage des sources lumineuses nous a donné trois fois la même source lumineuse, le photon
sera tracé de cette source avec le triplé (1,1,1). Évidemment, les chances d’avoir des sources lumineuses identiques
est d’autant plus grande que la distribution d’émission des sources est identique. Après avoir rencontré une surface,
le photon va être absorbé ou réfléchi selon la valeur de la FDRB en ce point. La probabilité d’absorption ou de
réflexion est faite pour chaque composante mais toujours avec la même variable aléatoire, le triplé étant modifié

selon le résultat du tirage. Donc, au final, le poids du photon est représenté par un triplé binaire, pour avoir son
poids il suffit multiplier ce masque avec le poids constant � . Cette solution permet d’améliorer grandement la
qualité de l’image et l’efficacité de la méthode sur les scènes testées où il est vrai les types de luminaires différents
sont peu nombreux.

3.2 Rendu accéléré

Le rendu du photon doit être restreint à la partie visible de sa surface. Nous présentons ici la mise en oeuvre de ce
comportement avec la librairie graphique OpenGL.

Tout d’abord, il nous faut obtenir un tampon d’identificateur, c’est à dire avoir pour chaque pixel de l’image un
identificateur de la surface visible en ce pixel. Cela peut être obtenu en rendant chaque surface de la scène avec une
couleur égale à son identificateur et en activant l’élimination des parties cachées avec le tampon de profondeur.

Une fois obtenu le tampon d’identificateur, il faut maintenant pouvoir réaliser une opération de comparaison entre
l’identificateur de surface du photon et celui des pixels. Cette opération doit se dérouler lors des opérations sur
les fragments, c’est à dire par pixel. En effet quand OpenGL rastérise une primitive géométrique, celle ci est
décomposé en fragments. Un fragment correspond à un pixel recouvert par la projection de la primitive sur l’image.
Une série d’opérations est réalisée sur ces fragments avant d’arriver au tampon de couleur. En particulier, le test
de stencil peut être utilisé pour comparer une valeur référence avec la valeur stencil du pixel. Malheureusement, le
tampon de stencil est limité à huit bits et permet donc d’effectuer une comparaison pour seulement 255 identifica-
teurs de surfaces différents.

Une autre possibilité consiste à utiliser les opérations programmables sur les fragments. Différentes instructions
sont fournies aux programmeurs pour modifier la couleur RVBA du fragment à partir de différentes entrées, telles
que la couleur primaire interpolée ou la couleur correspondant à une unité de texture. En particulier, nous allons
modifier la composante alpha pour utiliser le test alpha pour restreindre le rendu à la surface visible. Notre but est
donc de générer un alpha égal à 1 si la surface visible et la surface du photon sont égale, et une valeur différente
de 1 sinon.

Pour réaliser cela, il faut en entrée du programme sur les fragments l’identificateur de surface visible des pixels. Le
tampon d’identificateur est donc chargé comme une texture. On veut pour chaque fragment l’identificateur du pixel
correspondant, il faut donc que les coordonnées du texel soit les mêmes que les coordonnées du pixel. Pour cela,
les coordonnées de texture pour chaque sommet du quadrilatère sont les mêmes que la position de ces sommets,
et la matrice de transformation du repère scène vers l’image est chargée comme matrice de texture. En OpenGL,
le repère image est défini entre -1 et 1, il faut donc appliquer une dernière transformation pour passer au repère de
texture entre 0 et 1. L’identificateur de surface du photon est passé comme couleur des sommets. An niveau, du
programme de fragments, on a donc en entrée l’identificateur de photon et du pixel. La comparaison de ces deux
valeurs se fait en utilisant des instructions conditionnelles qui permettent de modifier la valeur d’un registre par
rapport à un test sur un autre registre.

3.3 Dépassement de capacité

Le problème de reconstruction a été simplifié de manière à se ramener à un simple comptage de la projection
des photons. Un problème se pose encore, ce nombre peut dépasser la précision du tampon de couleur. En effet,
le tampon de couleur est limité sur les cartes graphiques courantes à huit bits par composante. Une première
solution est d’ajouter périodiquement le contenu du tampon de couleur à un tampon plus précis. En OpenGL, le
tampon d’accumulation permet effectivement de réaliser cela. Si le tampon d’accumulation n’est pas accéléré, il
est toujours possible d’émuler son fonctionnement en lisant le tampon de couleur et en ajoutant son contenu à un
tableau géré par l’application. Le problème reste à savoir quand il est nécessaire d’ajouter le contenu de tampon de
couleur, et il n’est pas évident de définir une heuristique pour réaliser cela.

Une deuxième solution reste possible, utiliser le test et les opérations sur le stencil pour avoir au final 16 bits de
précision. En OpenGL, le tampon de stencil est modifié par des opérations qui dépendent du résultat du test de
stencil. Il existe différentes opérations et plus particulièrement une opération qui incrémente de un la valeur dans
le tampon de stencil, et une autre qui met à zéro cette valeur. Ces opérations peuvent donc être configuré de manière
à faire fonctionner les opérations de stencil comme un compteur des 8 bits de poids faible avec les 8 bits de poids
fort dans le tampon de couleur :

– Test de stencil : la valeur du tampon de stencil doit être égal à 255
– Si le test rate : on incrémente la valeur du stencil
– Si le test réussit : on met à zéro la valeur

Si le test réussit, le fragment arrive jusqu’au tampon de couleur. Le tampon de couleur est alors incrémenté de 1,
puisque le mélange est activé et que la couleur du fragment est 1. Au final après avoir rendu tous les photons, il
suffit de récupérer dans deux tableaux le tampon de stencil et le tampon de couleur pour reconstruire le nombre de
contributions à ce pixel. Le désavantage de cette méthode est de devoir rendre les photons séparément. En effet, il
n’est plus possible de compter les trois composantes en même temps, seulement une valeur peut être compté. En
utilisant la technique présentée dans le paragraphe 3.1, nous comptons d’abord les photons avec un triplé (1,1,1),
puis (1,1,0), etc.. Le nombre de contributions est alors ajouté en prenant compte le triplé.

4 Lancer de rayon basé image

Une image de l’éclairement diffus est obtenue par la méthode présentée précédemment. A partir de l’éclairement,
la luminance diffuse peut être obtenu facilement en combinant avec la partie diffuse de la fdrb. En utilisant la
notation d’Heckbert [Hec90], l’image obtenu représente donc les chemins de type

� ��� . � 	����
 . Pour calculer
tous les chemins lumineux possibles, nous devons ajouter à notre méthode un algorithme qui calcule les chemins� ��� . � 	�� �
 .

En fait, nous allons calculé la luminance en trois parties :

1. L’éclairage direct
� ��� . � 	
 est calculé avec un lancer de rayon stochastique [SWZ96]

2. L’éclairage indirect diffus
� ��� . � 	 � �
 est calculé avec notre méthode d’écrasement de photons, en n’écrasant

que les photons qui ont au moins un rebond.

3. L’éclairage indirect spéculaire
� ��� . � 	 � �
 est calculé en échantillonnant les chemins de type

� ��� . � 	���� � �

avec un lancer de rayon basé image.

Les chemins de type
� ��� . � 		��� � �
 sont échantillonnés en traçant un chemin spéculaire à partir de l’oeil

� �
 , à
chaque intersection avec une surface on récupère l’éclairement diffus

� ��� . � 	���� . L’éclairement diffus est calculé
en écrasant les photons. Le problème est que nous avons besoin dans ce cas de l’éclairage diffus en divers points
de la scène. Notre méthode ne peut calculer qu’une image ce qui ne couvre pas tous les points de la scène.

Nous avons décidé d’utiliser des images de profondeur multi couches communément appelées LDI [SGHS98]
pour stocker l’éclairement. Un pixel d’une LDI est une liste d’échantillons de la scène correspondant aux point
d’intersection des surfaces rencontrés par un rayon tracé à partir du centre du pixel. Comme dans [LR], trois
LDI sont utilisées correspondant à une vue orthographique des trois directions orthogonales de la scène. Cette
représentation est complète dans le sens que nous sommes assurés d’avoir un échantillon pour chaque surface de
la scène quelque soit son orientation à condition que la taille de la surface soit supérieure à la résolution spatiale
des LDI.

L’objectif est d’utiliser l’écrasement de photons pour reconstruire l’éclairement dans une LDI. Une première
méthode est tout simplement d’écraser les photons pour chaque couche des LDI. En effet, une couche de LDI
représente une image. Malheureusement, cette méthode n’est pas du tout efficace pour des scènes complexes. Il
peut en effet y avoir jusqu’à une cinquantaine de couches de profondeur. De plus, ces couches consistent parfois
en très peu de pixels, l’image résultante est donc pleine de trous.

Une méthode différente est donc proposée. Dans un premier temps, les LDI sont construites mais sans calculer
l’éclairement, avec uniquement les informations géométriques telles que la profondeur. On marque tous les pixels
du LDI comme étant non initialisé au niveau de l’éclairement. Lorsque le lancer de rayon interroge les LDI pour
récupérer une valeur en un point de l’éclairement indirect, on regarde si les pixels correspondants aux points sont
initialisés. Si ce n’est pas le cas, une image d’éclairement est calculé dans la direction incidente de l’interrogation.
Cette image est alors reprojeté sur les LDI pour remplir la valeur d’éclairement des pixels du LDI. Ainsi, la
cohérence spatiale des directions spéculaires est pris en compte et permet de diminuer grandement le coût par
rapport à un calcul direct du LDI.

FIG. 4 – Ecrasement de photons combinés avec le lancer de rayon. Noter la réflection de la caustique sur l’anneau.

5 Résultats

Dans ce paragraphe, quelques résultats avec différentes scènes MGF sont présentées. Tous les résultats ont été
obtenues sous Linux sur un AtlhonXP 1,6 GHz avec 512 Mo de RAM et une carte graphique GeForce4 Ti 4600.

– Caustics : une scène très simple avec des caustiques
– Conference : une salle de conférence, géométriquement complexe (environ 100 000 triangles) et avec un grand

nombre de sources lumineuses étendues.
– Cabin : un chalet avec plusieurs pièces (environ 45 000 triangles)

Scène LP NP EP1 EP2 EP3 RI
Caustics 7.02s 1830901 1.14s 4.44s 9.5s 0.6s
Conference 41.89s 1601516 0.96s 3.25s 6.61s 1.5s
Cabin 22.27s 1882184 0.75s 2.15s 4.52s 1.2s

TAB. 1 – Résultats sur trois scènes, LP : lancer de photons, NP : nombre total de photons, EP1, EP2, EP3 :
écrasement de photons respectivement pour une image 256x256, 512x512 et 1024x1024 , RI : reconstruction de
l’image 512x512

Le tableau 1 présente les temps de reconstruction de l’éclairement
� ��� . � 	����
 , pour un million de photons

générés des sources lumineuses. Plusieurs observations peuvent être faites sur ces résulats. Tout d’abord, la phase
de reconstruction d’image correspond à construction de l’irradiance à partir de la formule 2.5, et surtout de la
correction du biais sur les bords. C’est cette correction qui prend le plus de temps puisque cela implique des calculs
géométriques pour chaque pixel de l’image. En effet, la cohérence spatiale au niveau de l’image n’est actuellement
pas pris en compte, c’est pour cette raison que les temps n’ont été montrés que pour une taille d’image puisque la
complexité de cette phase varie linéairement avec le nombre de pixels. Enfin, la phase d’écrasement de photons
est indépendante de la complexité de la scène et dépendante de la taille de l’image ce qui est un résultat tout à fait
logique. Les différences au niveau des trois scènes s’expliquent par le fait que sur la scène simple l’image engloble
toute la scène, donc tous les photons sont effectivement écrasés ce qui accroit le travail de la carte graphique.
Globalement, la complexité de la phase d’écrasement de photons est proportionnelle aux nombres de photons fois
la taille moyenne sur l’image de leur écrasement.

Ainsi sur le tableau 2, nous avons représenté les différents temps pour cent mille et un million de photons sur
la même scène mais avec différentes valeurs de la constante � qui contrôle le paramêtre de lissage (voir para-
graphe 2.3) donc la taille de l’écrasement des photons. En fait, la constante � est choisie généralement entre 20 et
30, en dessous l’image est trop bruitée et au dessus le résultat est trop lisse.

Enfin, dans le tableau 3, nous présentons quelques résultats pour le lancer de rayon basé image. La taille des LDIs
est de 256x256 pour les trois scènes. Les LDI sont construites en utilisant un tracé de rayon modifié. La première

Constante 15 30 60
Temps (1e5) 0.77s 2.34s 8.47s
Temps (1e6) 2.04s 4.67s 10.65s

TAB. 2 – Temps pour différentes valeurs de la constante �
scène a été calculé en lancer de rayon avec 9 rayons pour les ombres et les réflections, les deux autres scènes avec
36 rayons pour les ombres et les réflections.

Scène EP EL LR
Caustics 10.8s 18s 21.7s
Conference 39s 35s 95.8s
Cabin 23.76s 83s 325.73s

TAB. 3 – Résultat sur trois scènes avec le lancer de rayon basé image, EP : lancer de photons et écrasement de
photons pour l’image de l’irradiance indirect, EL : écrasement de photons pour remplir le LDI, LR : lancer de
rayon

6 Conclusion

Nous venons de présenter une nouvelle méthode basée image pour l’éclairement global. Le principal intérêt de
notre méthode est de tirer parti de la puissance des cartes graphiques sans sacrifier la précision de la simulation.
Pour l’instant, nous sommes encore partiellement dépendant de la complexité de la scène pour la résolution du
biais sur les bords. Mais avec les nouvelles possibilités des prochaines cartes graphiques, une méthode qui travaille
entièrement dans l’espace image est envisageable et souhaitable. Il sera aussi important de tirer parti du gain
en flexibilité pour améliorer la qualité de la reconstruction en utilisant des méthodes adaptatives d’estimation de
densité. Un autre point à approfondir est l’utilisation de LDI. Pour l’instant , nous nous servons de LDI uniquement
pour stocker l’éclairement dans la scène. Il est aussi possible de tracer un rayon au sein d’une LDI pour récupérer un
échantillon de la scène correspondant à l’intersection avec ce rayon. Cela pourrait accélérer le calcul des réflections
brillantes qui ont besoin de moins de précision que les réflections de type mirroir.

Références

[CRMT91] Shenchang Eric Chen, Holly E. Rushmeier, Gavin Miller, and Douglass Turner. A Progressive Multi-
Pass Method for Global Illumination. In Computer Graphics (ACM SIGGRAPH ’91 Proceedings),
volume 25, pages 164–174, July 1991.

[GDW00] Xavier Granier, George Drettakis, and Bruce Walter. Fast global illumination including specular
effects. In B. Peroche and H. Rushmeier, editors, Rendering Techniques 2000 (Proceedings of the
Eleventh Eurographics Workshop on Rendering), pages 47–58, New York, NY, 2000. Springer Wien.

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. Modelling the
Interaction of Light Between Diffuse Surfaces. In Computer Graphics (ACM SIGGRAPH ’84 Pro-
ceedings), volume 18, pages 212–222, July 1984.

[Hec90] Paul Heckbert. Adaptive Radiosity Textures for Bidirectional Ray Tracing. In Computer Graphics
(ACM SIGGRAPH ’90 Proceedings), volume 24, pages 145–154, August 1990.

[Jen96] Henrik Wann Jensen. Global Illumination Using Photon Maps. In Rendering Techniques ’96 (Pro-
ceedings of the Seventh Eurographics Workshop on Rendering), pages 21–30, New York, NY, 1996.
Springer-Verlag/Wien.

[Kaj86] James T. Kajiya. The Rendering Equation. In Computer Graphics (ACM SIGGRAPH ’86 Procee-
dings), volume 20, pages 143–150, August 1986.

[Laf96] Eric Lafortune. Mathematical Models and Monte Carlo Algorithms for Physically Based Rendering.
Ph.D. thesis, Leuven, Belgium, February 1996.

[LR] Dani Lischinski and Ari Rappoport. Image-based rendering for non-diffuse synthetic scenes. In
Rendering Techniques ’98 (Proceedings of the Ninth Eurographics Workshop on Rendering), pages
301–314.

[LW94] Eric P. Lafortune and Yves D. Willems. Using the Modified Phong BRDF for Physically Based Ren-
dering. Technical Report CW197, Department of Computer Science, Katholieke Universiteit Leuven,
Leuven, Belgium, November 1994.

[Mys97] Karol Myszkowski. Lighting reconstruction using fast and adaptive density estimation techniques.
In Julie Dorsey and Philipp Slusallek, editors, Rendering Techniques ’97 (Proceedings of the Eighth
Eurographics Workshop on Rendering), pages 251–262, New York, NY, 1997. Springer Wien. ISBN
3-211-83001-4.

[SB97] Wolfgang Sturzlinger and Rui Bastos. Interactive rendering of globally illuminated glossy scenes.
In Julie Dorsey and Philipp Slusallek, editors, Rendering Techniques ’97 (Proceedings of the Eighth
Eurographics Workshop on Rendering), pages 93–102, New York, NY, 1997. Springer Wien. ISBN
3-211-83001-4.

[SGHS98] Jonathan W. Shade, Steven J. Gortler, Li-Wei He, and Richard Szeliski. Layered depth images. Com-
puter Graphics, 32(Annual Conference Series) :231–242, 1998.

[Sil86] B.W. Silverman. Density estimation for statistics and data analysis. Chapman and Hall, New York
NY, 1986.

[SP01] X. Serpaggi and B. Peroche. An adaptive method for indirect illumination using light vectors. In
Computer Graphics Forum (Proceedings of Eurographics 2001), volume 20, pages C–278–C–287,
September 2001.

[SWH � 95] Peter Shirley, Bretton Wade, Philip M. Hubbard, David Zareski, Bruce Walter, and Donald P. Green-
berg. Global Illumination via Density Estimation. In P. M. Hanrahan and W. Purgathofer, editors,
Rendering Techniques ’95 (Proceedings of the Sixth Eurographics Workshop on Rendering), pages
219–230, New York, NY, 1995. Springer-Verlag.

[SWZ96] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte Carlo Techniques for Direct Lighting
Calculations. ACM Transactions on Graphics, 15(1) :1–36, January 1996.

[VG95] Eric Veach and Leonidas J. Guibas. Optimally Combining Sampling Techniques for Monte Carlo
Rendering. In Computer Graphics Proceedings, Annual Conference Series, 1995 (ACM SIGGRAPH
’95 Proceedings), pages 419–428, 1995.

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Computer Graphics (ACM SIG-
GRAPH ’97 Proceedings), volume 31, pages 65–76, 1997.

[Wal98] Bruce Johnathan Walter. Density Estimation Techniques for Global Illumination. PhD thesis, Program
of Computer Graphics, Cornell University, Ithaca, NY, August 1998.

[War92] Gregory J. Ward. Measuring and Modeling Anisotropic Reflection. In Computer Graphics (ACM
SIGGRAPH ’92 Proceedings), volume 26, pages 265–272, July 1992.

Optimisation à base de flot de graphe pour l’acquisition
d’informations 3D à partir de séquences d’images

Sylvain Paris, François Sillion

iMAGIS - GRAVIR / IMAG - INRIA †

655, avenue de l’Europe, Montbonnot 38334 Saint Ismier CEDEX

{sylvain.paris|francois.sillion}@imag.fr

Résumé : On se propose de montrer comment on peut appliquer la technique de ”flot de graphe” pour résoudre
certains problèmes complexes d’optimisation. Cette technique est utilisée pour l’acquisition d’informations 3D à
partir de plusieurs points de vue. On montre notamment comment – grâce à un graphe particuliers – il est possible
de minimiser une famille d’énergies qui permettent d’atteindre des résultats plus précis que les cartes de disparité
obtenues jusqu’à présent sur ce type de problème. Cette nouvelle approche offre aussi la possibilité de prendre en
compte les discontinuités des objets avec lesquels on souhaite travailler. Les résultats ainsi obtenus sont exposés.

Mots-clés : Flot de graphe, coupure de graphe, optimisation, reconstruction 3D

1 Introduction

Nous nous sommes intéressés au problème de l’acquisition d’informations tridimensionnelles à partir d’une courte
séquence d’images. Notre objectif est de “remplir” des environnements virtuels auxquels manquent la plupart du
temps les petits détails essentiels au réalisme comme une boı̂te aux lettres, un banc public ou des passants. Ce sont
ces objets dont nous souhaitons obtenir un modèle à l’aide de la séquence.

Au cours de notre algorithme, nous devons déterminer la position de la surface des objets de manière à ce que
cette surface soit cohérente par rapport aux images de la séquence tout en présentant une certaine régularité car la
plupart des objets ont une surface lisse – au moins localement. Ce type de compromis se représente classiquement
sous forme d’une fonction d’énergie qui contient un terme en rapport avec la régularité et un terme en rapport
avec la cohérence. Pour le terme de régularité nous avons choisi une pénalité sur les dérivées de la surface et nous
obtenons le terme de cohérence des étapes précédentes de notre algorithme qui est décrit dans [PS02]. Or il se
trouve que ce terme a a priori très peu de propriétés mathématiques qui peuvent servir de base aux techniques
classiques d’optimisation. Les techniques à base de flot de graphe sont alors apparues comme une solution à ce
problème. Nous allons donc présenter une technique d’optimisation adaptée à une famille d’énergies qui englobe
notre problème.

Dans la section 2 nous allons observer les principaux travaux existants sur le problème de la reconstruction 3D
pour examiner quelle technique d’optimisation est employée en nous attardant sur les techniques à base de flot de
graphe. Ensuite dans la section 3 nous introduirons la notion de flot de graphe. Nous continuerons dans la section 4
en présentant comment cette notion peut être utile pour résoudre des problèmes d’optimisation. Dans la section 5
nous étudierons l’application de cette technique à notre problème d’acquisition d’informations 3D. Nous finirons
par la section 6 où l’on présente quelques résultats et par la section 7 qui conclue cet article.

2 Travaux existants

Toute une famille de méthodes de reconstruction est basée sur la discrétisation de l’espace en voxels ; la plus connue
est le Space Carving introduit par Kutulakos et Seitz [KS99] dont de nombreuses variantes ont été dérivées. Pour
plus de détails, on pourra lire le tour d’horizon proposé par Slabaugh et al. [SCMS01] qui regroupe la plupart
d’entre elles. Pour toutes ces méthodes, l’évaluation de la présence ou non d’un voxel se fait uniquement selon
la cohérence par rapport aux images, aucune contrainte de régularité n’est prise en compte il n’y a donc aucune

† iMAGIS est un projet commun CNRS, INPG, INRIA, UJF.

optimisation d’effectuée. Ces techniques sont donc très sensibles à la qualité des images initiales et à l’ambiguité
résultant du faible angle de vue dont nous disposons dans nos courtes séquences d’images.

On peut ensuite citer les techniques travaillant le long des lignes épipolaires pour créer des cartes de dispa-
rité [OK93, OK85, IB94, UKG98]. Ces méthodes introduisent naturellement des contraintes de régularité le long
de des lignes épipolaires et obtiennent ainsi des résulats même pour un faible angle de vue. Néanmoins elles
présentent deux restrictions principales : il est difficile d’introduire une régularité entre deux lignes épipolaires et
les cartes de disparité obtenues ont une faible précision en profondeur, les objets reconstruits sont généralement
plats. Koch et al. [KPV98] améliorent la précision en utilisant un filtre de Kalman mais n’introduisent toujours pas
de régularité entre lignes épipolaires.

Faugeras et Keriven [FK98] proposent une méthode à base de courbes de niveaux qui fait évoluer une surface dans
l’espace de manière à s’approcher de plus en plus de la surface de l’objet à reconstruire. Grâce aux courbes de
niveaux, cette technique optimise un compromis entre la cohérence par rapport aux images et la régularité de la
surface finale. Néanmoins, elle nécessite des images de très bonne qualité et des points de vue très distants pour
obtenir des résultats satisfaisants.

Viennent ensuite les méthodes à base de flots de graphes. Roy et Cox [RC98] ont introduit leur technique comme
une généralisation des méthodes travaillant sur les lignes épipolaires pour construire des cartes de disparités. Leur
méthode montre qu’un flot de graphe permet d’étendre le processus d’optimisation à toute l’image. Ils constatent
aussi que leur processus a des propriétés de régularisation similaires aux techniques à base de lignes épipolaires.
Cette technique a été par la suite formalisée par Veksler [Vek99] puis Kolmogorov et Zabih [KZ01, KZ02a, KZ02b]
sous la forme d’un problème de labellisation visant à construire une carte de disparité. Chaque label est une valeur
de disparité possible. Un label est associé à chaque pixel de manière à minimiser une énergie qui tient compte
du voisinage du pixel pour avoir un résultat final régulier. Ces méthodes ont deux limitations, la première est
qu’elles construisent des cartes de disparité qui ont toujours le défaut d’aplatir les objets ; la seconde est que,
comme la fonction de pénalité entre deux voisins de labels différents n’est pas nécessairement convexe, la mini-
misation de l’énergie est un problème NP-complet dont on obtient finalement qu’une approximation. Par contre,
Ishikawa [Ish00] propose l’étude du cas où cette fonction est convexe et décrit un graphe qui permet d’obtenir le
résultat exact. Toutefois la méthode de stéréovision qu’il expose ne peut pas se généraliser aisément à une séquence
d’images et n’utilise qu’une pénalité linéaire. Une méthode pour utiliser trois caméras a été proposée par Buehler
et al.[BGCM02] mais celle-ci ne s’étend pas non plus à une séquence d’images.

Contribution

La technique que nous allons décrire se propose de formuler le problème d’optimisation sous une forme nouvelle
qui exhibe le rôle de la configuration géométrique et d’y adapter une méthode de flot de graphe qui tire partie des
fonctions de pénalité convexes. Ainsi il sera possible de travailler à partir de séquences d’images et d’obtenir des
modèles plus précis que les cartes de disparités produites jusqu’à présent.

3 Flot de graphe

Le problème du flot de graphe est un problème classique d’algorithmique. Initialement, il s’agit de la formula-
tion d’un problème simple d’écoulement d’eau dans un réseau de tuyaux. On présente dans un premier temps ce
problème pour donner l’intuition de ce que représente la formulation théorique qui suit.

3.1 Écoulement d’eau dans un réseau

Le problème que l’on se pose est le suivant. Étant donnés une source d’eau de débit infini, un puits de contenance
infinie et un réseau de tuyaux reliant la source au puits, on cherche le flot maximum que l’on peut faire passer à
travers le réseau. Comme le débit de la source et la contenance du puits sont infinis, le flot maximum est uniquement
contraint par le réseau. Intuitivement, on peut voir le réseau comme un barrage entre la source et le puits qui ne
laisse passer qu’un certain débit.

Si maintenant on cherche à comprendre pourquoi le réseau restreint le flot, on peut se convaincre que le réseau
contient un goulot d’étranglement. Considérons un ensemble de tuyaux qui sépare la source du puits. Pour aller de
la source au puits, l’eau doit nécessairement emprunter l’un de ces tuyaux. Donc dans le meilleur des cas, si tous

ces tuyaux sont pleins d’eau, le flot sera égal à la somme de leurs capacités. Le goulot d’étranglement correspond
alors à un ensemble de tuyaux qui sépare la source du puits dont la somme des capacités est minimale.

Remarquons, pour finir avec cet exemple, que si le flot est maximum à travers le réseau, on est dans le cas où tous
les tuyaux du goulot d’étranglement sont pleins. La valeur du flot maximum est par conséquent égale à la capacité
minimale d’un ensemble séparateur. Trouver l’une ou l’autre de ces valeurs sont donc deux problèmes liés.

3.2 Formulation théorique

On considère un graphe orienté connexe G composé d’un ensemble de sommets S et d’un ensemble d’arcs orientés
A ∈ S2. On distingue deux sommets particuliers : la source s et le puits p. Pour un sommet x, on définit
l’ensemble des arcs entrants Ae(x) et celui des arcs sortants As(x) :

Ae(x) = {a ∈ A / ∃y ∈ S, a = (y, x)}
As(x) = {a ∈ A / ∃y ∈ S, a = (x, y)}

On définit une fonction capacité qui associe à un arc a un réel positif Cap(a) et une fonction flot qui lui associe
un autre réel positif Flot(a). On dit que le flot est valide si :

∀a ∈ A Flot(a) ≤ Cap(a) (3.1)

∀x ∈ S\{s, p}
∑

ae∈Ae(x)

Flot(ae) =
∑

as∈As(x)

Flot(as) (3.2)

s et p étant exclus de la contrainte 3.2, pour simplifier la suite des définitions, on suppose Ae(s) = As(p) = ø.

Dans l’exemple précédent, G est le réseau, A l’ensemble des tuyaux et S l’ensemble des jonctions entre tuyaux.
La fonction de capacité indique le débit maximum dans tuyau, celle de flot donne le flot effectif dans un tuyau. Le
flot est valide si toute l’eau qui arrive à une jonction en repart (équation (3.2)) et si le flot dans un tuyau n’est pas
supérieur à son débit maximum (équation (3.1)).

À partir de maintenant, on ne considère plus que des flots valides.

À une fonction de flot donnée, on associe une valeur que l’on appellera flot de graphe (ou simplement flot si cela
ne prête pas à ambiguité) :

Flot(G) =
∑

a∈As(s)
Flot(a) (3.3)

On définit une coupure CG de G comme la partition de S en deux ensembles connexes Ss et Sp tels que s ∈ Ss
et p ∈ Sp. On associe à cette coupure une valeur Coup(CG) (que l’on appellera aussi coupure quand cela ne crée
pas d’ambiguité) :

Coup(CG) =
∑

(x,y)∈(Ss×Sp)

Cap(x, y) (3.4)

et on dira qu’un arc (x, y) est coupé si (x, y) ∈ (Ss × Sp).

Par la suite, on s’intéressera à la coupure de valeur minimale. Pour cela, on a le théorème suivant qui constituera
la base de la méthode proposée.

Théorème “Flot maximum - coupure minimale” : Étant donnés un graphe G, une source s, un puits p et une
fonction de capacité Cap, on a la relation suivante entre le flot maximal atteint sur l’ensemble des fonctions de flot
valides et la coupure de valeur minimale :

maxFlot(G) = minCoup(CG) (3.5)

Par rapport à l’exemple initial, ce théorème est simplement la formalisation du fait qu’il ne peut pas passer plus
d’eau à travers le réseau que le goulot d’étranglement ne le permet.

On trouvera la démonstration du théorème dans [FF62]. L’intérêt majeure de ce résultat est de montrer qu’en
utilisant des algorithmes qui calculent le flot maximum [GR97, CG97] on a accès à la coupure minimale.

4 Minimisation d’énergie

L’idée à la base de la méthode que l’on propose est de créer un graphe de manière à ce qu’une coupure représente
une fonction et la valeur de cette coupure représente une énergie associée à cette fonction. En trouvant la coupure
minimale, on aura donc calculé la fonction qui minimise cette énergie. On commence par un exemple simple pour
illustrer le concept. On étudie ensuite les cas à deux dimensions et à trois dimensions.

4.1 Exemple simple

Prenons trois points x1, x2 et x3, une fonction f qui peut prendre deux valeurs y1 et y2. Pour définir une énergie
sur f , on introduit une fonction de coût c(x, y) > 0 qui représente l’énergie du choix f(x) = y et une fonction de
pénalité p(f(xi), f(xi+1)) pour i ∈ {1, 2} qui représente notre souhait d’avoir des valeurs de f similaire pour des
points proches. p(f(xi), f(xi+1)) est nulle si f(xi) = f(xi+1) et vaut p0 > 0 sinon.

On cherche f qui minimise :

E(f) =

3∑

i=1

c(xi, f(xi)) +

2∑

i=1

p(f(xi), f(xi+1)) (4.1)

s

p

(x ,y) (x ,y)

(x ,y) (x ,y) (x ,y)

(x ,y)1 1 1 1

1 2

2

2 2 2

3

3

p0 p0

p0 p0

p0 p0

c(x ,y) c(x ,y)

c(x ,y) c(x ,y) c(x ,y)

c(x ,y)
1 1 1 1

1 2

2

2 2 2

3

3

FIG. 1 – Un graphe simple. À gauche, les positions possibles pour f et la structure du graphe en pointillés (les
positions sont associées à des arcs verticaux). Au milieu, le graphe avec les capacités des arcs. À droite, un exemple
de coupure.

On construit un graphe tel qu’indiqué sur la figure 1. La base du graphe est une grille dont les arcs sont bidirection-
nels. À chaque position (x, y) on associe un arc vertical avec la capacité c(x, y), les arc horizontaux correspondent
à la fonction de penalité. Les arcs qui relient la source à la grille et la grille au puits ont une capacité infinie.

Si on étudie maintenant une coupure pour ce graphe (figure 1-droite), on peut faire les remarques suivantes :
– si elle coupe un arc qui est lié à la source ou au puits, elle aura une valeur infinie donc ne sera pas minimale ;
– si on exclut ces coupures infinies, comme une coupure crée une partition des sommets, elle doit forcément passer

par au moins un arc dont l’abscisse est xi pour i ∈ {1, 2, 3} ;
– une coupure minimale ne coupe qu’un seul arc d’abscisse xi car une coupure coupant deux tels arcs aura une

valeur plus élevée que si elle ne coupait que l’un des deux.
Une coupure qui satisfait ces trois remarques est dite potentiellement minimale : elle ne coupe aucun arc infini et
ne coupe qu’un et un seul arc d’abscisse xi.

Par conséquent, on peut construire une fonction f à partir d’une coupure potentiellement minimale : à partir de
chaque arc (xi, yj) on déduit un point f(xi) = yj . Inversement, à partir d’une fonction f , on construit une coupure
potentiellement minimale en coupant uniquement les arcs (xi, yj) tels que f(xi) = yj . Observons pour finir, la
valeur d’une telle coupure : les arcs verticaux coupés forment exactement la somme

∑3
i=1 c(xi, f(xi)) et les arcs

horizontaux coupés la somme
∑2
i=1 p(f(xi), f(xi+1)) de l’énergie (4.1).

En conclusion, en calculant la coupure minimale du graphe en figure 1, on trouve la fonction f0 = argminf E(f).

Avant de passer à un cas plus complexe, observons quelques points importants.
– Nous avons un calcul direct du résultat, nous n’avons utilisé aucune technique type descente de gradient suscep-

tible de se bloquer dans un minimum local. Nous sommes assurés d’avoir le minimum global de l’énergie.

– On peut exprimer la pénalité p0 sous la forme α
∣∣∣∆f(xi)

∆xi

∣∣∣ ce qui offre une interprétation géométrique de la

pénalité : on pénalise proportionnellement à la pente de f .
– La fonction de pénalité p et le coefficient α peuvent aussi être fonction de xi. Cela permet d’introduire des

contraintes plus souples, on peut affecter par exemple une pénalité plus importante au cas f(x1) 6= f(x2) qu’au
cas f(x2) 6= f(x3) ce qui se traduit par α(x1) > α(x2).

4.2 Étude en deux dimensions

Après cet exemple simple, nous pouvons étendre la méthode à une fonction plus générale en deux dimensions.
Considérons une fonction f réelle d’un intervalle [a, b] dans un intervalle [c, d], une fonction de coût c(x, y) et
un coefficient de pénalité α(x). On définit de manière similaire une énergie E qui est d’autant plus faible que la
fonction f prend des valeurs de faible coût tout en ayant des valeurs voisines proches les unes des autres.

E(f) =

∫ b

a

(
c(x, f(x)) + α(x)

∣∣∣∣
df

dx
(x)

∣∣∣∣
)
dx (4.2)

Nous allons montrer comment trouver la fonction f0 qui minimise cette énergie à une discrétisation près. En effet,
comme nous utilisons des graphes, nous ne pouvons traiter que des cas discrets. Néanmoins, il est toujours possible
de discrétiser plus finement pour obtenir des résultats plus précis. Nous découpons par conséquent l’intervalle [a, b]
en nx − 1 sous-intervalles de même longueur ∆x pour obtenir nx points x1, x2,... xnx . Nous faisons de même
pour [c, d] pour obtenir ny points y1, y2,... yny espacés de ∆y. L’énergie discrète correspondant à (4.2) est alors :

Ed(f) =

nx∑

i=1

c(xi, f(xi)) +

nx−1∑

i=1

α(xi)

∣∣∣∣
∆f(xi)

∆x

∣∣∣∣ (4.3)

c(x ,y)1 2

s

p

α(x)2

∆y
∆x

FIG. 2 – À gauche : graphe correspondant à l’énergie (4.3). À droite : situation où deux coupures ont exactement
la même valeur : trois arcs de coût (les carrés) et 2 arcs de pénalité (les ronds).

On obtient une énergie très similaire à celle obtenue en (4.1). On procède par conséquent de la même manière :
on utilise un graphe basée sur une grille (figure 2-gauche) où les arcs verticaux représentent la fonction de coût
c(x, y) et les arcs horizontaux la pénalité α(x) ∆y

∆x pour les valeurs disctinctes. On introduit de manière totalement
similaire les coupures potentiellement minimales et on leur associe à chacune une fonction f . La conclusion étant
que la fonction f0 associée à la coupure minimale réalise : f0 = argminfEd.

Observons à nouveau quelques détails sur la méthode.
– Ce problème se résoud très bien grâce à la programmation dynamique [Bel57], il ne s’agit encore que d’un cas

d’étude.
– La formulation (4.2) exhibe la géométrie du problème : l’élément d’intégration dx explicite la mesure employée.

Si on change la configuration géométrique – par un changement d’échelle par exemple – il est aisé de recalculer
les différentes grandeurs de (4.3) en fonction de cette nouvelle configuration.

– La seule contrainte pour la fonction de coût est de pouvoir la discrétiser donc qu’elle soit continue par morceaux.
– En regardant l’énergie (4.2), la fonction f0 doit être continûment dérivable sauf sur les points où α(x) = 0.
– Comme précédemment, on trouve un minimum global de manière certaine.
– On a montré la méthode sur un domaine 2D rectangulaire mais il est tout à fait possible de travailler sur un

domaine plus général. Il suffit alors de discrétiser ce domaine selon une grille et de relier les nœuds de la limite
supérieure à la source et ceux de la limite inférieure au puits.

– Comme la pénalité est simplement proportionnelle à la pente de la coupure, dans les zones où les fonctions de
coût et de pénalité sont constantes, on peut trouver plusieurs coupures de même valeur car un palier ou une pente
“douce” ont la même énergie (figure 2-droite). A priori, vu que l’on impose une pénalité aux valeurs distinctes,
on souhaite obtenir la pente douce alors qu’en pratique les algorithmes donnent toujours le palier.

Une pénalité non-linéaire

La dernière remarque soulève un problème important : on obtient des paliers malgré l’introduction dans l’énergie
d’une composante visant à limiter les variations de la fonction solution. La linéarité de la pénalité est à l’origine
de ce phénomène car elle ne différencie pas une importante variation de plusieurs petites. Nous proposons par
conséquent une structure de graphe permettant une pénalité strictement convexe : il sera alors plus pénalisant pour
la fonction de faire un palier que de faire une variation régulière. Ishikawa [Ish00] propose une méthode générale
pour obtenir une fonction de pénalité convexe à une constante près sur la pénalité, ce qui ne peut être génant que
dans le cas d’un échantillonnage irrégulier. Nous proposons toutefois une autre méthode qui n’introduit pas de
constante sur la pénalité et suffit à avoir une fonction de pénalité strictement convexe.

Le graphe est construit à partir de l’élément de base de la figure 3 : l’arc vertical de coût est remplacé par quatre
arcs mineurs de capacité moitié et on introduit un nouveau coefficient de pénalité β dit secondaire. Il correspond à
la capacité des arcs de pénalités reliant les milieux de deux arcs verticaux adjacents. On appellera α le coefficient
principal pour éviter les ambiguités.

α(x) ∆y
∆x

β(x) ∆y
∆x

c(x,y)

2

α+β

α
∆x ∆x

FIG. 3 – À gauche : l’élément de base utilisé. Au milieu : la fonction de pénalité pconv correspondante. À droite :
une variation continue est moins pénalisée qu’un palier : elle coupe une pénalité secondaire de moins (triangle).

Le processus qui permet d’obtenir une fonction de pénalité pconv strictement convexe est le suivant : si lors d’un
pas unitaire ∆x, la fonction varie de q pas ∆y, la coupure coupe seulement q − 1 arcs principaux (ou aucun si
q ≤ 1) et q arcs secondaires car elle peut “passer au milieu des arcs de coût mineurs” (voir la figure 3-droite). On
obtient donc la fonction de pénalité pconv de la figure 3-milieu. On notera que l’on coupe toujours les arcs de coût
mineur par paire, ce qui rétablit la fonction de coût intiale.

On a finalement construit un graphe qui permet de calculer l’énergie :

Edconv(f) =

nx∑

i=1

c(xi, f(xi)) +

nx−1∑

i=1

pconv

(∣∣∣∣
∆f(xi)

∆x

∣∣∣∣
)

(4.4)

Grâce à Edconv, les variations progressives sont maintenant favorisées par rapport aux paliers. Il faut néanmoins
remarquer les points suivants.

– Avec le graphe tel qu’il est présenté, il peut être moins pénalisant pour une coupure de couper deux arcs de coût
mineurs que de couper un arc de pénalité secondaire. Pour éviter ce problème, on peut soit ajouter une constante
à la fonction de coût, ce qui présente les mêmes restrictions qu’une constante sur la fonction de pénalité, soit
utiliser les arcs de contrainte proposés par Ishikawa[Ish00] qui permettent d’éliminer cette constante.

– L’énergie Edconv n’a pas directement d’équivalent en continu car pconv dépend du pas de discrétisation. Toutefois,
si β = 0, Edconv = Ed et Edconv correspond alors à E . On peut donc avoir une approximation discrète de E qui
favorise les variations progressives aussi bonne que l’on souhaite en prenant β aussi petit que nécessaire.

4.3 Étude en trois dimensions

Pour le cas en trois dimensions, on cherche une fonction f définie sur un rectangle [ax, bx] × [ay, by], qui prend
ses valeurs dans [c, d] et qui minimise l’énergie :

E(f) =

bx∫

ax

by∫

ay

(
c(x, y, f(x, y)) + αx(x, y)

∣∣∣∣
df

dx
(x, y)

∣∣∣∣+ αy(x, y)

∣∣∣∣
df

dy
(x, y)

∣∣∣∣
)
dx dy (4.5)

Nous proposons un procédé totalement équivalent au cas en deux dimensions, nous utilisons simplement une
grille en trois dimensions comme base du graphe. Les restrictions à un plan x = Cx ou y = Cy (avec Cx
et Cy constantes) sont simplement des graphes à deux dimensions tels que présentés précedemment. Pour une
pénalité linéaire, on obtient par conséquent l’élément de base de la figure 4-gauche. Cette pénalité donne toujours
des paliers dans les résultats, on préfère utiliser une approximation par une pénalité strictement convexe, ce qui
conduit à l’élément décrit dans la figure 4-droite. On note simplement que maintenant les arcs de coût mineurs sont
coupés par groupes de quatre, ce qui implique qu’ils aient une capacité 1

4c(x, y, z).

FIG. 4 – Gauche : l’élément de base utilisé pour une
pénalité linéaire. Droite : pour une pénalité convexe.

FIG. 5 – Exemple de cartes de discontinuité uti-
lisées (gauche : αx, droite : αy)

Il est important de noter les deux points suivants qui n’apparaissaient pas dans les études précédentes :

– le procédé est anisotrope car il dépend des axes x et y,
– le problème que l’on résout n’a plus de solution avec des techniques de programmation dynamique. La dis-

cussion n’entre pas dans le cadre de cet article, l’idée sous-jacente étant que la fonction est définie sur deux
variables et que cela empêche un parcours récursif de l’espace des fonctions solutions.

4.4 Extensions

La méthode présentée permet quelques extensions utiles que l’on présente mais pour lesquelles on ne donne pas
de détails techniques par soucis de concision.

D + 1 dimensions : De façon totalement similaire, on peut trouver des fonctions à D variables minimisant des
énergies dans un espace à D + 1 dimensions.

E(f) =

∫ (
c(X, f(X)) +

D∑

i=1

αxi(X)

∣∣∣∣
df

dxi
(X)

∣∣∣∣

)
dX avec X = (x1, x2, ..., xD)

Fonctions périodiques : On peut traiter des fonctions périodiques (selon x par exemple) simplement ajoutant des
arcs de pénalité entre les noeuds d’abscisse nx et ceux d’abscisse 1.

Différentes mesures : On peut utiliser d’autres mesures. Pour une fonction définie en coordonnées cylindriques
(r, θ, z) par exemple, l’élément d’intégration est r dr dθ dz, on peut distribuer le r sur les fonctions de coût
et de pénalité et se ramener au cas d’une fonction périodique en θ.

Approximation locale : L’algorithme de résolution de flot n’étant pas linéaire par rapport aux nombres de noeuds
de la grille, il peut être utile d’avoir une approximation linéaire du résultat. Pour cela, pour chaque point X
où est définie la fonction f on résout le problème d’optimisation sur un voisinage de X et on associe à f(X)
la valeur ainsi trouvée. On ne donnera pas ici l’étude complète de cette approximation, on notera simplement
que sur des cas pratiques de taille moyenne, les temps de calcul sont similaires au calcul exact. On réservera
donc cette approximation au problème de taille importante.

5 Application à la reconstruction 3D

On se propose d’appliquer la méthode d’optimisation proposée dans le cadre de l’algorithme de reconstruction
3D décrit dans [PS02]. On ne décrira pas l’ensemble de l’algorithme mais uniquement le cadre dans lequel nous
utilisons le flot de graphe.

5.1 Contexte d’utilisation

La reconstruction que nous proposons travaillent à partir d’une courte séquences d’images très proches les unes
des autres. Comme la séquence est courte, l’angle de vue sur les objets à reconstruire est très faible et induit une
forte ambiguité sur la profondeur des points reconstruits. Comme la méthode d’optimisation à base de graphes
trouve le minimum global, nous arrivons à lever cette ambiguité.

En pratique, nous travaillons dans un ensemble de voxels qui constitue la discrétisation de l’espace nécessaire
à notre méthode. À chaque voxel (x, y, z), nous avons associé une valeur V (x, y, z) qui est d’autant plus faible
que le voxel est vu de manière similaire dans toutes les images. Dans l’hypothèse d’objets lambertiens, nous
recherchons les faibles valeurs de V car alors la couleur d’un objet ne dépend pas du point de vue. Toutefois les
images d’entrée n’ayant pas nécessairement une qualité parfaite et à cause de l’ambiguité sur la profondeur déjà
évoquée, nous ne pouvons prendre comme surface de l’objet reconstruit la surface qui minimise uniquement V car
elle risque d’être fortement discontinue. Il faut introduire un terme de régularisation et ainsi obtenir une surface
qui à la fois est cohérente par rapport aux images et possède une certaine continuité. Nous sommes donc dans le
cadre de l’optimisation présentée.

Pour finir, nous n’imposons pas une contrainte de continuité sur l’ensemble de la surface reconstruite car l’objet
reconstruit peut très bien présenter des discontinuités. Grâce à l’éclairage, nous savons que ces discontinuités
engendrent des variations d’ombrage donc des variations de couleur dans les images. Nous relâchons donc les
contraintes de continuité le long des lignes de changement de couleur.

5.2 Application de la méthode

Tout d’abord, l’utilisateur fixe une pénalité de discontinuité αmax qui doit être appliquée sur les zones de cou-
leur uniforme. Ensuite, à partir des images initiales, nous détectons les discontinuités de couleur horinzontales et
verticales et construisons ainsi les fonctions de pénalité αx et αy (figure 5) qui évoluent entre 0 (sur les fortes dis-
continuités de couleur) et αmax (dans les zones de couleur uniforme). Une fois que nous avons ces deux fonctions,
nous pouvons adapter l’énergie (4.2) à notre besoin, avec V comme fonction de coût et D le support de la fonction
recherchée :

E(f) =

∫∫

D

(
V (x, y, f(x, y)) + αx(x, y)

∣∣∣∣
df

dx
(x, y)

∣∣∣∣+ αy(x, y)

∣∣∣∣
df

dy
(x, y)

∣∣∣∣
)
dx dy (5.1)

5.3 Améliorations obtenues

Sans cette méthode qui permet d’optimiser la position de la surface dans son ensemble, nous étions obligés de
procéder à une optimisation “ligne par ligne” comme beaucoup d’autres méthodes [OK85, OK93, IB94, KPV98,
UKG98]. Cela nous obligeait à avoir de forts traitements dans la suite du processus pour assurer un régularité d’une
ligne à l’autre. Cela avait pour conséquence de “gommer” de nombreux détails de la surface de l’objet (le nez sur
un visage par exemple).

Maintenant les traitements qui suivent sont beaucoup plus restreints : on se contente de former une surface à partir
de la fonction solution et de la lisser légèrement pour supprimer l’aliassage dû à la discrétisation. Les petits détails
sont ainsi conservés.

De plus, le “découpage” en ligne introduisait arbitrairement une séparation entre les directions x et y qui subissaient
des traitements différents au cours du processus de reconstruction. Maintenant, ces deux directions sont traitées de
manière équivalente ce qui est plus satisfaisant.

6 Résultats

La figure 6 illustre les résultats obtenus sur trois séquences d’images différentes. Pour juger de ces résultats, il est
important de noter la résolution des images utilisées. Par exemple, le visage de l’homme ne couvre dans chaque
image qu’une surface d’environ 40× 40 pixels. Malgré cela, on remarquera les nombreux détails qui apparaissent

dans les modèles géométriques : les touches du clavier, les plis du lampion, le nez de l’homme, le contenu de sa
malette, etc.

40 images en 692x46123 images en 640x48011 images en 800x600

FIG. 6 – Résultats sur trois séquences d’images. La première ligne présente une image, la résolution et la longueur
de la séquence, la deuxième montre le modèle obtenu sans texture et la troisième le modèle avec texture.

La phase d’optimisation pour le calcul de ces modèles a nécessité de 30 minutes à presque 2 heures selon les
modèles sur un processeur MIPS R12000 à 400MHz et un espace mémoire de 300 méga-octets à 700 méga-octets.
Ces chiffres qui peuvent paraı̂tre importants sont à relativiser sachant que l’optimisation se fait sur un espace
contenant de 1 à 10 millions de voxels et que chaque voxel introduit dans le graphe 5 sommets et 24 arcs (voir
la figure 4-gauche). De plus, en remarquant que le nombre d’arcs est proportionel à celui de sommets, le calcul
de la coupure minimale est en O(n2,5) [CG97]. Bien qu’il soit souvent difficile de connaı̂tre la taille des graphes
utilisés, à notre connaissance, les implémentations actuelles ne dépassent l’ordre de grandeur de 100 000 sommets
et 300 000 arcs [KZ02a].

Implémentation

Pour traiter de tels graphes, nous avons apporté une attention particulière à la gestion de la mémoire :
– les relations de voisinage entre sommets et arcs ne sont pas stockées mais calculées à chaque requête,
– seules les fonctions c, α et β sont stockées ce qui évitent de stocker la capacité de chaque arc,
– un arc double (s1, s2) permet normalement au flot de “tourner” : il peut exister un flot non nul de s1 vers s2 et de
s2 vers s1, en supprimant la partie “tournante” de ce flot, on peut stocker les flots des deux arcs qui composent
(s1, s2) sur une seule variable, le signe indiquant la direction du flot.

Nous avons aussi implémenté les heuristiques proposées par Cherkassky et al. [CG97] ce qui nous a permis d’at-
teindre des temps de calcul inférieurs à 24 heures.

7 Conclusion

Nous venons de décrire une nouvelle technique d’optimisation qui s’applique à un ensemble d’énergies que nous
avons caractérier. Cette technique apporte les contributions suivantes :
– une formulation continue du problème à résoudre exhibant le rôle de la géométrie de la configuration,
– la résolution exacte d’une discrétisation de ce problème,
– la mise en évidence d’ambiguités ainsi qu’une technique pour les résoudre,
– un graphe original pour représenter certaines fonctions de pénalité convexes,
– l’application de ces résultats à problème d’acquisition 3D à partir d’une courte séquence d’images grâce à une

implémentation supportant des graphes de taille très importante.
Grâce à cette méthode nous avons montré que nous pouvons construire des modèles tridimensionnels avec une
précision supérieure à celle offerte classiquement par les cartes de disparité et sur des modèles qui nécessitent un
volume important de données.

Travaux futurs
Nous pensons que la méthode peut encore être améliorée pour encore mieux reconstruire les surfaces courbes.
Nous souhaitons aussi explorer plus précisément les extensions que nous proposons dans la section 4.4.

Références

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[BGCM02] C. Buehler, S. Gortler, M. Cohen, and L. McMillan. Minimal surfaces for stereo. In ECCV, 2002.

[CG97] B. Cherkassky and A. Goldberg. On implementing the push-relabel method for the maximum flow
problem. Algorithmica, 19(4) :390–410, 1997.

[FF62] L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, 1962.

[FK98] Olivier Faugeras and Renaud Keriven. Variational principles, surface evolution, PDE’s, level set
methods and the stereo problem. IEEE Transactions on Image Processing, 1998.

[GR97] A. Goldberg and S. Rao. Length functions for flow computations. Technical Report 97-055, NEC
Research Institute, Inc., 1997.

[IB94] S. Intille and A. Bobick. Disparity-space images and large occlusion stereo. In ECCV, 1994.

[Ish00] H. Ishikawa. Global Optimization Using Embedded Graphs. PhD thesis, New York University, 2000.

[KPV98] R. Koch, M. Pollefeys, and L. Van Gool. Multi viewpoint stereo from uncalibrated video sequences.
Lecture Notes in Computer Science, 1406, 1998.

[KS99] K. Kutulakos and S. Seitz. A theory of shape by space carving. In ICCV, 1999.

[KZ01] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions using graph cuts. In
ICCV, 2001.

[KZ02a] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. In ECCV, 2002.

[KZ02b] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts ? In ECCV,
2002.

[OK85] Y. Ohta and T. Kanade. Stereo by intra- and inter-scanline search using dynamic programming. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 7 :139–154, 1985.

[OK93] M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(4) :353–63, 1993.

[PS02] S. Paris and F. Sillion. Robust acquisition of 3d informations from short image sequences. In Pacific
Graphics, 2002.

[RC98] S. Roy and I. Cox. A maximum-flow formulation of the n-camera stereo correspondence problem. In
ICCV, 1998.

[SCMS01] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer. A survey of methods for volumetric scene
reconstruction from photographs. In VolumeGraphics, 2001.

[UKG98] M. Ulvklo, H. Knutsson, and G. Granlund. Depth segmentation and occluded scene reconstruction
using ego-motion. Proc. SPIE Vol. 3387, p. 112-123, Visual Information Processing VII, 1998.

[Vek99] O. Veksler. Efficient Graph-Based Energy Minimization Methods in Computer Vision. PhD thesis,
Cornell University, 1999.

Détection de collisions entre objets rigides convexes
autonomes

J. Dequidt, L. Grisoni, P. Meseure, C. Chaillou

LIFL - Université de Lille 1
Bât M3, 59655 Villeneuve d’Ascq cedex�

dequidt,grisoni,meseure,chaillou � @lifl.fr

Résumé : Dans cet article, nous proposons une méthode complète de traitement de collisions. Elle est constituée
de différentes étapes qui permettent de détecter de plus en plus finement les collisions entre objets rigides convexes.
La dernière étape fournit des informations nécessaires à la génération d’une force de pénalités. Ce framework est
compatible avec des objets autonomes (objets capables de gèrer leur propre comportement).

Mots-clés : Objets rigides convexes, détection de collision, distance d’interpénétration, forces de pénalités.

1 Introduction

Une application de réalité virtuelle régie par une simulation physique implique généralement un traitement sys-
tématique, chaque itération comprenant classiquement une étape de détection de collisions, une étape faisant un bi-
lan des forces appliquées sur chaque objet, puis une intégration des équations du mouvement et/ou de déformation
qui régissent le comportement de chaque objet. La détermination des collisions est donc une étape importante de
ce traitement, et d’autant plus délicate qu’une version naı̈ve impliquerait de tester la collision potentielle de toutes
les paires d’objets de la scène (et donc un nombre �������
	 de couples, � désignant ici le nombre d’objets de la
scène), le traitement de chaque paire impliquant lui aussi un traitement de complexité quadratique en fonction du
nombre de primitives géométriques utilisées pour définir les objets.

Pour les interactions entre objets, il existe deux types d’algorithmes : les algorithmes de contact ou les algorithmes
d’interpénétrations. La première catégorie d’algorithmes garantit de ne pas violer la contrainte de contact mais
implique de nombreux calculs et se limite aux objets rigides [RKC02]. L’autre catégorie d’algorithmes nécessite
d’évaluer la force d’interpénétration qui permet, dans le bilan des forces, d’introduire une force de répulsion. C’est
à ce deuxième cadre d’étude que nous nous intéressons.

La détection de collisions est un sujet qui a été largement étudié car il concerne un grand nombre de disciplines,
comme par exemple la robotique (planification de trajectoires), l’IHM et la synthèse d’images. La majorité des
travaux se sont penchés sur une détection de collisions entre objets rigides convexes (la détection de collisions
entre objets concaves peut être ramenée à une détection entre objets convexes par une décomposition de l’objet en
parties convexes). Cependant ces méthodes reposent sur une architecture centralisée. Le projet AlCOVe de l’équipe
Graphix du LIFL a pour objectif de réaliser une plate-forme de simulation physique collaborative. La principale
caractéristique de cette plate-forme est d’avoir une architecture totalement distribuée (absence de serveur). La
simulation des objets doit donc être répartie sur un ensemble de machines. Pour cela, on se base sur la notion
d’objets autonomes, capables de déterminer leur propre comportement dans l’environnement. Il est donc nécessaire
de s’assurer que chaque étape de la simulation physique puisse être réalisée de manière autonome par les objets.
Nous proposons donc une méthode de traitements de collisions qui s’affanchit de l’hypothèse d’une architecture
centralisée et qui permet, pour le traitement des collisions, de rendre chaque objet autonome.

Cet article s’articule de la manière suivante : la section 2 présente les principales méthodes de détection connues
et utilisées ainsi que les algorithmes donnant une distance permettant de séparer deux objets. La section 3 expose
notre modèle de détection et détaille son originalité par rapport aux méthodes existantes.

2 Etat de l’art

De nombreux travaux ont été réalisés pour déterminer les collisions entre objets convexes. Un très grand nombre
se sont intéressés à la détection de collisions exactes entre deux polyèdres et d’autres aux moyens d’accélérer cette

détection. Cependant peu de travaux se sont penchés sur l’élaboration d’un framework complet de détection de
collisions i.e. comment combiner des principes d’accélérations et une détection exacte afin d’obtenir une méthode
complète et performante. Zachmann [Zac01] explique que ce framework (qu’il désigne par le terme pipeline) doit
être composé de filtres de plus en plus précis (et donc de plus en plus lourds en calcul) qui permettent de réduire le
nombre de tests de collisions exactes à effectuer. Dans cette section, nous présentons les méthodes les plus utilisées
pour la détection, puis celles permettant de calculer la distance d’interpénétration de deux objets en collision. Enfin
nous évoquons les frameworks existants.

2.1 Détection de collisions

Détecter si deux objets sont en intersection peut se faire à différents ”grains”. Au niveau le plus fin de l’objet lui-
même, on parle de détection exacte. Un autre choix est d’utiliser une approximation plus ou moins fine de l’objet
et dans ce cas, la détection est faite entre volumes englobants. Nous présentons tout d’abord les algorithmes de
détection exacte puis nous donnons un aperçu des concepts permettant d’accélérer ce traitement (avec par exemple
une détection entre volumes englobants).

2.1.1 Détections exactes

Pour déterminer si deux objets convexes � et � sont interpénétrés, il existe plusieurs familles d’approches :� déterminer s’il existe un plan partitionnant l’espace en deux demi-espaces, l’un contenant � , l’autre � . C’est la
solution proposée par Chung [Chu96] et van den Bergen [vdB98] (méthodes itératives).� calculer la distance entre ces deux objets. Si elle est inférieure ou égale à zéro, il y a collision [LC91, GJK88]

L’algorithme proposé par Lin et Canny [LC91] consiste à déterminer les éléments (i.e. sommet, arête, facette) de
� et de � permettant d’obtenir la plus petite distance. A partir d’un couple (���� , ����) d’éléments de � et � , on
cherche par utilisation des régions de Voronoı̈ un nouveau couple (�
	� , ��	�) plus proche. Cet algorithme est répété
itérativement jusqu’à ce qu’un un minimum local soit trouvé (qui est un minimum global grâce à la convexité
de l’objet). Cet algorithme peut être optimisé en mémorisant le dernier couple trouvé. La cohérence temporelle 1

permet alors d’espérer une convergence en temps constant ����� 	 . Une fois que ce couple est trouvé, la distance
euclidienne entre les deux objets est la plus petite distance entre le couple d’éléments trouvés.

Cependant, il est possible de calculer la distance de manière moins directe en passant par la différence de Min-
kowski (notée
) qui est définie de la manière suivante :

������������������������ �"!���� �$#
Cette différence est convexe lorsque les objets � et � sont convexes. L’intérêt de cette différence est que l’on
ramène le calcul de la distance entre deux objets à la distance entre
 et l’origine. De plus si l’origine se trouve à
l’intérieur de
 les objets sont en collision.

B A
O O

A−B

FIG. 1 – Différence de Minkowski de deux objets convexes.

Cependant la construction de cette différence est en � � �&% 	 (où � et % sont les nombres de sommets de � et
de �). Pour éviter une construction explicite de
 , on peut utiliser les points de supports. Le point de support
d’un polyèdre � par rapport à un vecteur '(donné est le point) � �*'(appartenant à � tel que le produit scalaire
'(,+) � � (soit maximal. Une propriété sur les points de support énonce qu’un point de support de la différence de
Minkowski peut facilement être obtenu à partir des points de support de � et de � suivant la formule suivante :
).- �*'(/�) � �0'(1�2) � �3�4'(. Cette propriété est un des points de départ de l’algorithme 576�8 [GJK88]. En effet,

1les objets ont des d éplacements faibles entre chaque pas de temps

cet algorithme itératif construit à chaque étape un simplexe 2 en se basant sur cette propriété, ce nouveau simplexe
étant plus proche de l’origine que le simplexe précédent. Cet algorithme converge en � � � 	 (où n est le nombre de
sommets de
).

O

v

w = s(v)

FIG. 2 – Point de support d’un objet convexe selon une direction (.

2.1.2 Accélérer la détection

Lorsque l’application contient un nombre d’objets relativement élevé, il devient impossible d’utiliser ces algo-
rithmes sur la totalité des couples. L’idée est donc d’éliminer rapidement par des critères simples les couples
d’objets ne pouvant entrer en collision. Ces techniques sont nombreuses [LG98, JTT01, Mes02] et peuvent être
regroupées en 2 catégories : les techniques de broad phase et les techniques de narrow phase :
� Les techniques de broad phase vont considérer l’ensemble des objets de la scène et vont déterminer les collisions

potentielles. Dans cette catégorie, on trouve des méthodes de partitionnement spatial, que ce soit en grilles de
voxels (grille régulière), en BSP-Trees ou Octrees. Il existe aussi des méthodes qui utilisent la position des
objets dans l’espace ou leur déplacement. La plus performante est le Sweep And Prune [CLMP95] qui consiste
à projeter les objets sur les 3 axes (� , � , �). On obtient ainsi des intervalles et si les intervalles appartenant à deux
objets sont disjoints alors les objets correspondant sont disjoints eux aussi.� Les accélerations de type narrow phase travaillent uniquement sur des couples d’objets. Il est courant d’utiliser
des volumes simples (ou des hiérarchies des volumes simples) approximant les objets dont on veut résoudre
les collisions. Ces volumes peuvent être englobant et dans ce cas si les volumes englobants sont disjoints, les
objets le sont aussi. Mais on peut aussi construire des volumes simples englobés par les objets, qui s’ils sont en
collision implique que les objets sont aussi en collision. Généralement, la narrow phase s’achève par une phase
de détection exacte décrite dans 2.1.1.

Enveloppe Convexe

Rapidité de la détection

Sphere AxisAligned Spherical Shell

Qualité de l’approximation

Bounding Box Bounding Box
Oriented8−DOP

FIG. 3 – Quelques exemples de volumes englobants.

Cette sous-section a mis en évidence les principaux algorithmes permettant de déterminer si deux objets étaient en
intersection et les techniques permettant d’accélérer cette détection. Cependant, nous n’avons pas assez d’informa-
tions pour séparer de manière correcte ces objets. Ce point est traité dans la section suivante.

2.2 Distance d’interpénétration

Lorsque deux objets sont en collision, il est nécessaire d’estimer le degré d’interpénétration de ces deux objets.
Pour cela, on définit la distance d’interpénétration 3 : c’est la norme du plus petit vecteur (i.e. de plus petite norme)
qui permet par translation d’avoir les objets en contact (et seulement en contact). Cette distance d’interpénétration
peut être facilement obtenue avec la différence de Minkowski : c’est la plus petite distance entre
 et l’origine
(avec cette fois l’origine se trouvant à l’intérieur de
).

2enveloppe convexe d’au plus ����� points pour un espace de dimension �
3aussi not ée MTD : Minimum Translational Distance

Cameron propose dans [Cam97] de borner cette distance à partir du dernier simplexe fourni par l’algorithme GJK.
Cette méthode est directe, cependant la borne obtenue n’est pas assez précise dans la majorité des cas. Joukhadar
[JSL99] utilise un algorithme incrémental qui applique l’algrithme GJK après avoir translaté un des deux objets
selon un certain vecteur. Cela lui permet de déterminer la distance d’interpénétration mais aussi la direction de
contact. Les inconvénients de cette méthode sont sa lenteur de convergence (même si elle peut être réduite par
utilisation de la cohérence temporelle) et le fait que la résolution soit une méthode de recherche locale (le mini-
mum trouvé ne sera pas forcément le minimum global). L’algorithme DEEP [KLM02] est aussi un algorithme de
recherche locale. Kim calcule de manière implicite la différence de Minkowski en utilisant l’espace dual de l’es-
pace objet (i.e. l’espace des normales). En parcourant la surface de la différence de Minkowski, il obtient le couple
d’éléments donnant la distance d’interpénétration. Cet algorithme même s’il possède de bonnes performances,
connaı̂t des problèmes de convergence (liés à la recherche locale). La méthode que nous avons implémentée est
celle de van den Bergen [vdB01]. Elle utilise en entrée le simplexe fourni par la dernière itération de l’algorithme
GJK. Par la suite, elle va raffiner cette approximation de
 jusqu’à obtenir une bonne approximation de la distance
d’interpénétration. L’algorithme assure une convergence rapide (moins rapide que DEEP [KLM02]) mais possède
des problèmes de précision dans certains cas.

2.3 Pipelines existants

Comme nous l’avons signalé en introduction, rares sont les travaux concernant un framework complet de détection
de collision. Zachmann [Zac01] propose d’utiliser une hiérarchie de volumes englobants de type � -DOP associée
à une méthode de détection probabiliste.
Lin [LMCG96] construit un pipeline beaucoup plus étoffé qui implique de calculer un certain nombre de struc-
tures : chaque objet possède un volume englobant de type AABB 4, une hiérarchie de volumes englobants de type
OBB 5 et une enveloppe convexe. La broad phase est réduite à l’application de l’algorithme de Sweep And Prune
sur les AABB. La narrow phase détermine tout d’abord si les enveloppes convexes des objets sont en intersection
(à l’aide des régions de Voronoı̈). Dans le cas d’une collision entre enveloppes convexes, on détecte si les hiérarchie
d’OBB sont en intersection. Enfin la détection exacte se fait entre triangles dont les OBB s’interpénétrent.
La méthode de Chung [Chu96] propose, pour la broad phase d’utiliser une décomposition spatiale régulière en
grille de voxels suivie d’un Sweep And Prune sur des boı̂tes alignées par rapport aux axes. Les deux étapes sui-
vantes dans le pipieline sont incluses dans la narrow phase. On recherche tout d’abord de manière itérative un axe
séparateur (pour déterminer s’il y a collision ou non). S’il y a collision, l’algorithme GJK est appliqué sur la frame
précédant la collision afin d’estimer la distance d’interpénétration.

Les pipelines [Zac01, LMCG96] ne se limitent pas aux objets convexes. Cependant le framework proposé dans
[Zac01] est assez rudimentaire puisqu’il estla juxtaposition d’une détection de type hiérarchie de volumes englo-
bants et d’une détection exacte. [LMCG96] est beaucoup plus intéressant d’une part car la broad phase est très
efficace et d’autre part car la narrow phase est très complète mais elle requiert beaucoup de calculs (notamment
pour la détection entre hiérarchies de OBB). L’inconvénient principal de [Zac01, LMCG96] est qu’aucune estima-
tion de la distance d’interpénétration n’est fournie contrairement à la méthode de Chung [Chu96]. Cette méthode
est très efficace mais elle peut être optimisée car on trouve dans les deux dernières étapes une redondance de
certains calculs.

3 Traitement de collisions

Le framework que nous exposons doit être plus complet et plus cohérent que ceux existants en garantissant une
détection rapide, exacte et qui donne la distance d’interpénétration dans le cas de collisions. Nous détaillons tout
d’abord notre pipeline puis nous présentons quelques résultats.

3.1 Le framework en détail

Comme les pipelines présentés précédemment, notre framework est constitué de deux phases distinctes : une broad
phase (qui s’applique sur tous les objets de la scène) et une narrow phase (qui ne fonctionne que sur des couples

4Axis Aligned Bounding Box
5Oriented Bounding Box

d’objets). Nous allons détailler ces deux phases constitutives de notre framework (voir figure 4).

Répartition des
objets dans les
zone de l’espace

Application d’un
algorithme de
Sweep and Prune
sur des 18−DOP

Recherche d’une
axe séparateur
(ISA−GJK)

Calcul de la MTD
(Expanding Polytope
Algorithm)

Narrow Phase

: traitement au niveau des objets

: traitement au niveau des zones

Broad Phase

FIG. 4 – Pipeline de traitement de collisions.

3.1.1 Broad Phase

Cette première partie consiste à éliminer rapidement les couples d’objets qui ne sont pas en collision. Pour cela,
nous subdivisions la totalité de l’espace en un certain nombre de cellules régulières. Dans chacune de ces zones
se trouve un agent. Ces agents ont pour objectif de permettre un traitement plus rapide de la broad phase dans le
cas d’environnements répartis : soit par un traitement parallèle (pour un environnement synchrone) soit de manière
complètement autonome (pour un environnement asynchrone). La méthode la plus efficace de broad phase lorsque
le nombre d’objets est elevé (plus d’une centaine d’objets) est le Sweep And Prune [CLMP95]. Cependant, il est
couramment utilisé avec des AABB ce qui génère un nombre trop important de collisions potentielles (i.e. le rap-
port collisions potentielles sur collisions exactes est très elevé). L’idée est donc d’utiliser un volume englobant qui
approxime mieux les objets, dont la détection et la construction soit rapide et qui soit compatible avec l’utilisation
du Sweep And Prune. Nous avons donc choisi les � -DOP de [KHM � 98, Zac98]. Ces volumes sont des extensions
de AABB à �

���
axes (on peut considérer les AABB comme des 6-DOP). Plus � est grand et meilleure est l’ap-

proximation des volumes, mais plus coûteuse est la détection de ces volumes. C’est pourquoi nous nous sommes
tournés vers les 18-DOP qui allie une assez bonne approximation de l’objet et dont la détection est assez rapide.
La construction de ce genre de volume et leur mise à jour sont faites de manière rapide en utilisant les points de
support définis en 2.1.1 : on calcule les points de supports des 9 axes et de leurs opposés ce qui nous permet d’ob-
tenir les 18 paramètres du volume englobant. Ainsi par l’utilisation, dans chacune des zones, d’un algorithme de
Sweep And Prune sur des 18- DOP, nous avons une broad phase rapide et qui génère beaucoup moins de collisions
potentielles que l’algorithme classique basé sur des AABB. En sortie de cet étage du pipeline, les agents envoient
à chaque objet l’identifiant des objets avec lesquels il est entré en collision. Chaque objet reçoit donc une liste
d’identifiants et indique sa position courante à tous les objets désignés dans la liste d’identifiants (voir figure 5).

3.1.2 Narrow Phase

A partir des indications de position obtenues dans la phase précédente, chaque corps va résoudre ses collisions.
Pour cela, il applique une variante de l’algorithme GJK : l’ISA-GJK [vdB98]. ISA-GJK (ISA pour Incremantal
Separating Axis) comme son nom l’indique ne détermine pas la distance entre deux objets mais cherche l’existence
d’un axe séparateur. Cet algorithme est très robuste, possède une convergence très rapide en temps constant (avec
l’utilisation de la cohérence temporelle) et de meilleures performances que celui de Lin-Canny [LC91].
Si aucun axe séparateur n’a été trouvé, la dernière étape du framework est activée. La distance d’interpénétration est
calculée en utilisant l’algorithme de van den Bergen [vdB01] qui par raffinement progressif d’une approximation de
la différence de Minkowski peut déterminer une estimation de la MTD. A partir de cette distance d’interpénétration,
il est possible de calculer une composante vectorielle permettant de déterminer la force de réaction (i.e. force de
pénalité) en assimilant ce vecteur à l’allongement d’un ressort possédant une certaine raideur � (soit une expression
de la force '� � � � + '� où '� est une estimation de l’interpénétration).
Comme on peut le constater, si on considère deux objets en collision, la détection et le traitement associé sont
calculés séparément par les deux objets concernés (i.e. � va traiter sa collision avec � et � sa collision avec �).
Si la simulation est synchrone les forces de pénalités sont identiques (mais de sens opposé). Par contre, pour une
simulation asynchrone où chaque corps fonctionne à une fréquence qui lui est propre, il est possible que la position

de � reçue par � ne soit pas la dernière calculée et donc les forces de pénalités générées ne sont pas nécessairement
symétriques. Par conséquent, le principe d’action / réaction n’est pas nécessairement garanti.

Corps J

Corps K

Agent de zone

L

I

Corps I Corps L

1. Envoi des paramètres du 18−DOP

2. Reception d’une liste d’identifiants

3. Envoi de la position courante aux corps

figurant dans la liste

12

33

FIG. 5 – Informations échangées lors de la détection de collisions.

3.2 Résultats

La méthode proposée est naturelle et cohérente dans l’enchaı̂nement des différentes étapes. Notre Broad Phase
permet de réduire sensiblement les couples d’objets à tester par l’utilisation de volumes englobants approximant
de manière assez fine les objets. De même l’utilisation des points de support n’ajoute qu’un faible surcoût à la
construction de � -DOP par rapport à des volumes englobants plus simples. Les deux étapes de la phase de détection
exacte s’imbriquent de manière logique et permettent de réutiliser certains calculs effectués par l’étage précédent
(ex : l’obtention de la première approximation de
 se fait lors de la recherche d’un axe séparateur).

Pour illustrer notre framework, nous avons choisi de simuler de manière très simple des corps rigides. A chaque
pas de temps, les collisions sont résolues (i.e. calcul des forces de pénalités), un bilan de forces est effectué et les
équations de mouvements sont intégrées (à l’aide de la méthode numérique d’Euler), afin de déterminer la position
et la vitesse des objets. Cette résolution mécanique est faite elle aussi de manière autonome par chaque objet. La
figure 6 montre des sphères tombant en chute libre sur quelques briques fixes. Les tests montrent que le temps de
calcul moyen pour la résolution mécanique d’un système de 200 objets est de 16 ms sur un pentium IV 2Ghz (41
ms pour 600 objets).

FIG. 6 – Simulation de corps rigides convexes.

Une autre particularité de notre framework est que nous n’avons pas opté pour une approche centralisée. Le fait
que chaque objet détecte les collisions exactes avec d’autres objets sans passer par un serveur permet un portage
dans un environnement virtuel distribué. Dans le cas où une telle implémentation était réalisée, les choix effectués
pour notre framework ne sont pas en contradiction avec les contraintes d’un environnement réparti. Notamment,
la stratégie d’avoir des volumes englobants assez complexes permet de réduire les nombres de messages échangés
entre objets et aussi de diminuer le nombre de tests de détection exacte. De plus la résolution des collisions se
faisant au niveau de chaque objet composant la scène, il est possible de rendre chaque objet autonome (l’objet
résoud lui même ses collisions, ses équations de mouvement . . .) et donc d’engendrer un simulateur complétement
distribué.

4 Conclusion

Dans cet article, nous avons présenté un modèle complet de traitements de collision. Ce modèle détermine les
collisions et permet de générer des forces de pénalités en réponse à une collision. Il se limite à l’heure actuelle aux
objets convexes et rigides mais est extensible aux objets déformables. Pour cela, il est nécessaire de complexifier le
pipeline soit en utilisant la méthode de Fisher [FL01] qui permet de déterminer la distance d’interpénétration d’ob-
jets déformables en se basant sur les champs de distance et sur l’approche Level-Set [OS88]. Une autre possibilité
est de sélectionner les facettes potentiellement en collision (voir [JSL99]).

Ce framework est le premier pas vers une simulation physique répartie. De nombreux problèmes existent encore
pour avoir une simulation répartie effective : par exemple la gestion des interactions, la gestion de contraintes
entre objets (i.e. objets articulés). De même la simulation devant se faire à une fréquence élevée (proche du kHz),
de nombreux choix doivent être effectués pour garantir une simulation réaliste avec les limitations matérielles
actuelles (temps de latence et bande-passante des réseaux).

Références

[Cam97] S. Cameron. Enhancing GJK : Computing minimum and pentration distances between convex poly-
hedra. In International Conference on Robotics and Automation, pages 3112–3117, 1997.

[Chu96] K. Chung. An Efficient Collision Detection Algorithm for Polytopes in Virtual Environment. PhD
thesis, Department of Computer Science, University of Hong Kong, 1996.

[CLMP95] J. Cohen, M.C. Lin, D. Manocha, and M.K. Ponamgi. I-collide : An interactive and exact collision
detection system for large-scale environments. In ACM interactive 3D Graphics Conference, pages
189–196, 1995.

[FL01] S. Fisher and M.C. Lin. Fast penetration depth estimation for elastic bodies using deformed distance
field. In Intelligent Robots and Systems, 2001.

[GJK88] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A fast procedure for computing the distance between
complex objects in three-dimensional space. In IEEE Journal of Robotics and Automation, volume
RA-4, pages 193–203, 1988.

[JSL99] A. Joukhadar, A. Scheuer, and C. Laugier. Fast contact detection between moving deformable poly-
hedra. In IEEE-RSJ Intelligent Robots and Systems, 1999.

[JTT01] P. Jiménez, F. Thomas, and C. Torras. 3D collision detection : A survey. In Computer Graphics,
volume 25, pages 269–285, 2001.

[KHM � 98] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. Efficient collision detection
using bounding volume hierarchies of k-DOPs. In T-VCG(4), pages 21–36, 1998.

[KLM02] Y.J. Kim, M.C. Lin, and D. Manocha. Deep : Dual-space expansion for estimating penetration depth
between convex polytopes. In IEEE International Conference on Robotics and Automation, Mai 2002.

[LC91] M.C. Lin and J.F. Canny. A fast algorithm for incremental distance calculation. In IEEE International
Conference on Robotics and Automation, 1991.

[LG98] M.C. Lin and S. Gottschalk. Collision detection between geometric models : A survey. In IMA
Conference on Mathematics of Surfaces, 1998.

[LMCG96] M.C. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision Detection : Algorithms and Applica-
tions. In Algorithms for robotics motion and manipulation, pages 129–142, 1996.

[Mes02] P. Meseure. Animation basée sur la physique pour les environnements intéractifs temps réel : habili-
tation à diriger des recherches. Université des Sciences et Technologies de Lille, 2002.

[OS88] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed : Algorithms based on
Hamilton-Jacobi formulations. In Journal of Computational Physics, volume 79, pages 12–49, 1988.

[RKC02] S. Redon, A. Kheddar, and S. Coquillart. Fast continuous collision detection between rigid bodies. In
Eurographics, 2002.

[vdB98] G. van den Bergen. A fast and robust GJK implementation for collision detection of convex objects.
In Journal of Graphic Tools, volume 4(2), pages 7–25, 1998.

[vdB01] G. van den Bergen. Proximity queries and penetration depth computation on 3D game object. In
Game Developers Conference, 2001.

[Zac98] G. Zachmann. Rapid collision detection by dynamically aligned DOP-trees. In Proceedings of IEEE,
VRAIS, 1998.

[Zac01] G. Zachmann. Optimizing the collision detection pipeline. In First International Game Technology
Conference (GTEC), 2001.

Modélisation de sable 3D – Visualisation par structuration
du flux

C. Guilbaud, A. Luciani

Laboratoire ICA/INPG
38031 Grenoble cédex

Claire.Guilbaud@imag.fr, Annie.Luciani@imag.fr

Résumé : Un phénomène naturel se compose d’un ensemble de dynamiques complexes, de formes variables
ainsi que d’une topologie en perpétuel mouvement. Tous ces composants le caractérisent. Pour modéliser un
ensemble de phénomènes naturels, nous utilisons CORDIS-ANIMA un modeleur-simulateur générique basé sur
les interactions entre particules. A l’aide de peu de paramètres, il est alors possible de créer une large gamme
de phénomènes, sans connaître la physique sous-jacente. Nous modélisons des modèles allant du sable aux
fluides turbulents. Les résultats des simulations sont constitués de l’ensemble des coordonnées des points
mobiles du modèle physique. Ces points sont dispersés dans l’espace ; ils décrivent le flux de matière – ils ne
sont pas sur la surface du phénomène modélisé. La visualisation des modèles n’est pas simple. Nous avons mis
au point une méthode de construction par structuration du flux à partir d’informations partielles. Cette méthode
nous a permis de calculer de nouvelles informations. Ainsi nous avons pu caractériser le flux de matière.

Mots-clés : Animation par ordinateur, modèle physique particulaire, modélisation de phénomènes naturels,
visualisation d’un nuage de points, surfaces implicites

1. Introduction
Modéliser un phénomène naturel, c’est reproduire ses dynamiques, sa forme qui permettent à un observateur de
l’identifier sans peine. La méthode de modélisation choisie doit être robuste et générique pour être à même de
simuler les dynamiques caractéristiques d’un phénomène. Plusieurs études se sont intéressées au développement
de telles méthodes. Peu d’entre elles sont parvenues à réaliser un modeleur unique pour l’ensemble des
phénomènes naturels. Au sein du laboratoire ICA, nous développons depuis de nombreuses années un modeleur-
simulateur physique particulaire appelé CORDIS-ANIMA.

Ce modeleur est une méthode de modélisation physique, qui construit un objet physique, sans obligatoirement
d’équivalent réel, en termes de réseau composé de masses ponctuelles et d’interactions. Le résultat d’une telle
modélisation est un ensemble de points mobiles (appelées masses ponctuelles dans l’espace de modélisation,
puis particules dans l’espace de visualisation) interagissant les uns avec les autres.

Notre savoir acquis au cours des années de développement du modeleur-simulateur, nous a permis de constater
qu’un observateur est apte à reconnaître un phénomène simulé complexe par la simple visualisation des points
du modèle physique, et cela même si ces points ne sont pas sur la surface de l’objet modélisé mais le constituent.
Visualiser de telles données n’est pas chose simple, car nous devons élaborer un volume présentant les
dynamiques et formes caractéristiques, si complexes soit-elles, du phénomène modélisé.

L’article se décompose ainsi : dans un premier temps nous expliquerons le formalisme CORDIS-ANIMA ainsi
que la façon dont nous avons modélisé du sable. Ensuite, nous décrirons la méthode de structuration du flux qui
permet d’obtenir des plus amples informations sur le nuage de points décrivant la simulation.

2. Modélisation par système physique particulaire

2.1. Travaux antérieurs
Logan et al. [LWA94] distinguent deux grandes classes de méthodes de modélisation : les méthodes contraintes
et les méthodes physiques. Les méthodes physiques se scindent en deux catégories :
� Les méthodes qui résolvent les lois de la dynamique du phénomène (comme les CFD « Computational

Fluid Dynamics), que l’on appellera modélisation de la physique. Elles sont en règle générale associée à
un type de phénomène ;

� Les méthodes qui simulent le comportement physique des phénomènes, que l’on appellera modélisation
physique. Elles peuvent modéliser un ensemble de phénomènes en gardant le même paradigme.

La modélisation physique est plus générique que les autres méthodes de modélisation, dans le sens où à partir
d’un même formalisme, il est possible en faisant varier un ensemble de paramètres d’obtenir une large gamme de
phénomènes. Dès 1973, Greenspan [Gre73] s’est penché sur la mise au point d’un modeleur générique pour
simuler l’ensemble des états possibles de la matière. Un objet, un phénomène est alors représenté en termes de
masses et d’interactions (interactions représentant la loi de potentielle non dissipative, la loi de Lennard-Jones).
Les études postérieures aux travaux de Greenspan se distinguent par la manière dont est exprimée l’interaction
(analytique ou discrète), et l’existence ou non d’un terme dissipatif.

Pour simuler un comportement thermo-conducteur, Terzopoulos et al. [TPF89] se servent d’une liaison élastique
non-linéaire. Tonnesen [Ton91] a mis au point un système particulaire où l’évolution de l’interaction dépend
d’une énergie thermale. Miller et Pearce [MP89] ont préféré adopter la loi de Lennard-Jones en introduisant dans
la méthode un terme dissipatif. Dans le même temps, Luciani et al. [LJFCR91, LHM95, LHVD95, Luc00] ont
montré qu’il est possible d’implémenter un modeleur générique unique à partir d’une expression discrète de la
loi d’interaction et de la présence d’un terme dissipatif. Le modeleur-simulateur, CORDIS-ANIMA, utilise une
interaction non-linéaire pour simuler des matériaux, des objets physiques, des phénomènes naturels.

2.2. Le formalisme CORDIS-ANIMA
CORDIS-ANIMA est un modeleur-simulateur physique particulaire qui emploie la loi de Newton pour faire
évoluer un objet physique. L’objet est matérialisé par un réseau de masses ponctuelles (MAT) et d’interactions
viscoélastiques non-linéaires (LIA). Un LIA comporte 4 paramètres pour exprimer le comportement recherché :
une élasticité K, et son seuil SK, une viscosité Z et son seuil SZ. Le seuil élastique ou visqueux s’exprime comme
une distance entre les masses ponctuelles reliées par une interaction. Si la distance entre deux masses ponctuelles
est supérieure ou inférieure au seuil de l’interaction non-linéaire, alors l’élasticité ou la viscosité n’aura pas la
même valeur.

Modéliser un phénomène naturel, c’est définir un modèle topologique du flux (spécification du nombre de MAT,
de la manière dont ils sont reliés par des LIA, caractérisation des paramètres des LIA) ainsi que de son
environnement physique. Un modèle topologique est un réseau de masses ponctuelles interconnectées par des
liaisons viscoélastiques non-linéaires. Ce sont les paramètres des LIA qui vont régir le comportement du réseau.
Ainsi il est possible d’obtenir une large gamme de phénomènes naturels sans avoir à connaître la physique sous-
jacente des phénomènes.
Le résultat d’une simulation est, pour chaque instant simulé, l’ensemble des coordonnées des masses ponctuelles.
Ces informations sont assimilables à un ensemble de points mobiles, dispersés dans l’espace sans information de
topologie. Nous disposons uniquement de ces informations car nous avons voulu séparer la phase de
modélisation de la phase de visualisation du processus d’animation par ordinateur.

2.3. Les modèles de sable
Nous avons réalisé un ensemble de modèles tridimensionnels de phénomènes naturels tels que les pâtes, le gel,
mais nous ne présenterons ici que les modèles de sable. D’autres modèles ont été réalisés en 2D (pâte, fluide
turbulent, fumée), et sont expliqués dans [LHVD95] et [Luc00]. Les modèles présentés ici sont basés sur des
études préalablement faites par d’autres chercheurs en deux dimensions [LHM95].

Un tas de sable est une structure triangulaire, qui à mesure qu’elle augmente de taille se divise en sous-tas
séparés par des lignes de force de cisaillement. Le tas s’accroît sous l’action de deux comportements chaotiques
qui caractérisent une situation instable. Le premier est une avalanche de surface qui se produit lorsque les pentes

F

X

MAT
- F

X1 X2

F
LIA K

Z

SK

SZ Un objet CORDIS-ANIMA

Fig. 1 : le formalisme CORDIS-ANIMA

du tas de sable ont un angle supérieur à un angle caractéristique ; la seconde, une avalanche interne, advient
lorsque les sous-tas sont instables et nécessitent une réorganisation de l’ensemble du tas.
Pour obtenir la formation d’un tas de sable le sol doit être rugueux ou l’environnement physique doit comporter
des murs qui stoppe l’étalement du sable sur le sol lisse. Nous présentons ici deux modèles de sable, l’un à sol
lisse, l’autre à sol rugueux. Ces deux modèles ont des caractéristiques, du point de vue de la modélisation,
communes : la matière est constituée d’un ensemble de masses ponctuelles reliées entre elles par une interaction
élastique. Seule la nature du sol que le flux va atteindre change.

Les résultats que nous présentons ici sont tridimensionnels. Les mêmes modèles ont été fait en deux dimensions ;
ils nous ont permis de mettre au point les modèles 3D. Les modèles physiques 2D de sable s’écoulant sur un sol
lisse ou sur un sol rugueux sont satisfaisants.

2.3.1. Modèle de sable à sol rugueux
L’environnement physique du modèle est composé d’un entonnoir et d’un sol rugueux. L’entonnoir est constitué
d’un ensemble de MAT dégénérés (la position qu’ils renvoient est toujours la même quelles que soient les forces
qui leur sont appliquées) positionnés de manière à former le haut d’un sablier (forme triangulaire ; 4 fois 4
MAT). Le sol rugueux est représenté par un ensemble de MAT dégénérés de positions fixes placés de manière
aléatoire en ordonnée pour se situer de part et d’un plan horizontal (576 MAT). La schématisation du modèle
physique se trouve à la Fig. 3.
Le flux de matière est composé d’un ensemble de MAT (500 MAT) reliés les uns aux autres par des interactions
élastiques. Ici les masses ponctuelles sont reliées deux à deux, c’est à dire que si il y a n masses ponctuelles,
l’une d’entre elle est reliée aux n-1 autres, on parle alors d’agglomérat. Les masses ponctuelles sont initialement
placées entre les MAT dégénérés symbolisant l’entonnoir : elles sont agencées de manière triangulaire.

Fig. 3 : Modèle physique à sol

rugueux Fig. 4 : Image à t=300 Fig. 5 : Image à t=530

2.3.2. Modèle de sable à sol lisse
L’environnement physique du modèle est composé d’un entonnoir, d’un sol lisse ainsi que de quatre parois.
L’entonnoir est constitué de 8 MAT dégénérés, le sol d’un seul MAT dégénéré, une paroi d’un MAT dégénéré.
Le flux de matière est composé d’un ensemble de MAT (900 MAT) interconnectés en agglomérat par des
liaisons élastiques.

Fig. 2 : Caractéristiques dynamiques du sable

Fig. 6 : Modèle physique à sol
lisse

Fig. 7 : Modèle 1 -
Image à t=450

Fig. 8 : Modèle 1
- Image à t=700

Fig. 9 :
Modèle 2 -

Image à t=466

Fig. 10 :
Modèle 2 -

Image à t=800

2.3.3. Conclusion
L’analyse des modèles 3D est complexe lorsqu’il s’agit d’apprécier des dynamiques internes et les types de
réarrangements à stabilité limite. Le type d’interaction entre la 2D et la 3D est identique, nous espérions alors
que les comportements dynamiques se ressemblent. Cela n’a pas été le cas dans le modèle à sol lisse : le nombre
de masses ponctuelles constituant le flux de matière a été diminué, le tas résultant a donc couvert une surface
moins importante, or les parois n’ont pas été rapprochées pour contenir les masses ponctuelles du flux. Le
modèle ne ressemble plus alors à du sable, mais plutôt à de l’eau. Nous avons donc réalisé un second modèle où
les parois sont plus proches. Le flux est alors correctement stoppé par les parois, le comportement de sable est ici
intact. Néanmoins la forme du tas à sa base ne correspond pas à la réalité. Le modèle 3D du sable sur sol
rugueux fonctionne comme nous nous y attendions malgré l’immobilisation d’une partie des masses ponctuelles
dans l’entonnoir (formations de voûtes). Cependant nous ne pouvons distinguer d’effondrements internes, mais
le tas est correctement formé.

Les études ont montré que pour obtenir un modèle de sable avec une formation de tas satisfaisante, surtout en
trois dimensions, il faut que le sol soit rugueux. Car c’est l’interaction des masses ponctuelles avec le sol
rugueux qui provoque le développement de l’amoncellement. Néanmoins, dans le but d’optimiser le temps de
calculs des simulations, nous avons élaboré deux modèles de sable 3D à sol lisse. Le premier comporte des
parois trop éloignées de la région d’évolution du flux de matière. On s’aperçoit alors que le modèle ne semble
plus être un modèle de sable mais plutôt un modèle d’eau. Ce soucis de modélisation va nous permettre de
mettre au point des modèles d’état intermédiaire entre le sable et l’eau. De plus, cela nous a montré que
l’environnement physique joue un rôle important sur le comportement dynamique de l’ objet physique.

3. Visualisation
Comme on peut le voir sur les images Fig. 4, Fig. 5, Fig. 7, Fig. 8, Fig. 9, Fig. 10, le résultat des simulations est
un ensemble de points mobiles dispersés dans l’espace sans aucune information de structure.

3.1. Travaux antérieurs
Pour savoir comment nous allions habiller le nuage de points issu de la simulation, nous nous sommes
intéressées à différentes méthodes de simulation de phénomène naturel et à des méthodes de construction de
volume à partir d’un ensemble de points.

La seconde catégorie est composée de méthodes de reconstruction. Une méthode de reconstruction élabore une
surface à partir d’un ensemble de points représentant la surface de l’objet à visualiser. Hoppe [Hop94] propose
une méthode automatique de reconstruction de surface lisse à partir de données non bruitées et non organisées.
Dans un premier temps, il estime la surface initiale puis optimise et lisse le maillage. Avec le même type de
données initiales, Guo [GMW97] propose une méthode de reconstruction de surface en construisant un premier
maillage à l’aide d’un graphe de voisinage (« alpha-shapes »), puis en le simplifiant. Ce type de méthode ne peut
nous servir pour visualiser nos modèles car nos points n’étant pas répartis à la surface du flux, peu d’entre eux
peuvent servir comme base à la construction d’un maillage, ce qui aboutirait à une surface pas assez détaillée.
Les méthodes de reconstruction ne s’appliquent pas uniquement à des données éparpillées en surface de l’objet.
Nullans [Nul98] reconstruit des structures géologiques à partir de données hétérogènes et incomplètes. Il
assemble ses données selon leur diagramme de Voronoï. Le diagramme de Delaunay, dual du diagramme de

Voronoï, initialement bi-dimensionnel, a été entendu à la 3D par Joe [Joe91]. Les diagrammes de Voronoï
donnent à chaque germe un espace propre. L’approche de Nullans serait intéressante pour nous, mais
contrairement à lui nous ne disposons pas de suffisamment d’informations (nature géologique des germes qui
caractérise les germes aux bords et à l’intérieur de la portion de sol en étude) pour organiser de manière adéquate
nos points.

Les méthodes de simulation de phénomènes naturels effectuent pour la plupart la phase de modélisation et la
phase de visualisation en parallèle. Tonnesen [Ton91] utilise des surfaces implicites pour habiller ses modèles de
liquides simulés sur un système de particules sensibles à la chaleur. Gareau [Gar97], Stam [Sta97], Stora et al.
[SACNG99] utilisent aussi une combinaison système particulaire-surfaces implicites pour visualiser leurs
modèles. Foster et al. [FF01] utilise une méthode de génération de contour à partir de fonctions implicites pour
représenter des liquides.

Toutes ces méthodes obtiennent un volume ou une surface pour l’objet qu’elles ont à représenter à partir de
points. Or dans tous les cas, elles disposent d’informations supplémentaires permettant de caractériser au mieux
l’objet à visualiser. Nous ne disposons pas de suffisamment d’informations morphologiques pour faire de même.
Nous devons chercher davantage d’informations à partir d’un nuage de points pour être à même de l’habiller. La
relation spatiale entre les particules de la matière évolue de manière complexe et change continuellement dans le
temps.

3.2. Structuration du flux
Etant donné que lors des observations des résultats des simulations nous réalisons implicitement une
structuration du flux, nous souhaitons faire de même pour visualiser le nuage de points représentant la matière.
Donner une structure à un ensemble de particules sans information de topologie permet de caractériser le
positionnement des particules les unes par rapport aux autres, par rapport à une surface implicitement définie.

Nous construisons dans un premier temps, un graphe qui s’apparente à un graphe de voisinage. Il connecte deux
particules dont l’éloignement est inférieur à une distance donnée (Section 3.2.1). De ce graphe, nous dégageons
un ensemble d’informations pertinentes (Section 3.2.2) qui nous permettront d’analyser un nuage de points
(Section 3.2.3).

3.2.1. Graphe de voisinage
Lors de la conception d’un modèle physique, chaque interaction entre particules est définie par 4 paramètres,
dont deux sont des indications des distances. Ces deux variables déterminent, suite à un ensemble de calculs, les
positions des masses ponctuelles les unes par rapport aux autres. La distance entre particules varie au cours de la
simulation. Nous extrayons une structure pour un nuage de points à partir uniquement de l’évolution des
particules du flux, sans avoir d’information complémentaire sur le modèle physique.

Un graphe de voisinage attribue à chaque particule un voisinage. Il met en avant les singularités dynamiques du
phénomène. Il est constitué d’un ensemble de connexions qui relient deux particules lorsque la distance qui les
sépare est inférieure à un certain seuil. Ce seuil correspond à la distance moyenne entre couples de particules sur
toute la longueur de la simulation divisée par un scalaire. Ce scalaire correspond à la finesse des dynamiques du
phénomène (une sorte de caractérisation du niveau de détails).

Un graphe sera satisfaisant si le nombre de connexions est nécessaire et suffisant pour décrire le nuage de
particules, sans masquer de dynamiques, de formes. Nous obtenons les résultats présentés à la Fig. 11 sur nos
différents modèles de sable. En deux dimensions, on y détecte bien la formation d’un tas triangulaire
caractéristique de l’écoulement de sable. Les singularités sont correctement représentées et visibles. Le graphe
de voisinage représente d’une manière satisfaisante l’évolution des différentes dynamiques du phénomène. Les
graphes de sable se caractérisent par un maillage régulier quasi-triangulaire. Les graphes de voisinage
tridimensionnels sont difficiles à analyser. Cependant, on retrouve la structure habituelle d’un tas de sable (sauf
pour le modèle de sable à sol lisse dont les parois sont trop éloignées).

Modèle à sol lisse Modèle à sol rugueux

Modèle 3D à sol lisse – Parois éloignées Modèle 3D à sol lisse – Parois proches

Modèle 3D à sol rugueux

Fig. 11 : Quelques exemples de graphes de voisinage

3.2.2. Vecteur voisin moyen
Le graphe de voisinage est une manière de décrire la structure d’un nuage de points. Néanmoins il ne produit pas
de surface ou de volume. Il nous faut donc calculer des informations permettant de révéler la distribution des
particules dans l’espace. Les graphes de voisinages font apparaître des zones dépeuplées de particules, des
régions sans connexions alors que mentalement nous en avions construites. La structure d’un flux de matière est
constitué de sous-structures. Cette organisation traduit des caractéristiques pertinentes pour des dynamiques
données.

Un vecteur voisin moyen est, pour une particule, la moyenne des différentes connexions - utilisées comme des
vecteurs - de son voisinage. Il définit le gradient de la densité, dont l’opposé pointe vers l’extérieur de la
structure principale (le flux) et des sous-structures. Cela est visible sur les images de la Fig. 13. Toutefois,
comme pour l’analyse du graphe de voisinage en trois dimensions, une exploration approfondie du vecteur
voisin moyen pour les modèles 3D est délicate. Toutefois nous remarquons que certaines particules ont un
vecteur voisin moyen non nul tandis que pour d’autres, il est quasiment inexistant. Cela donne des informations
sur la répartition des particules dans le nuage de points.

Fig. 12 : Définition d'un vecteur voisin moyen

Vecteur voisin moyen Connexions

Modèle à sol lisse Modèle à sol rugueux Modèle 3D à sol lisse – Parois éloignées

Modèle 2D à sol lisse – Parois proches Modèle 3D à sol rugueux

Fig. 13 : Quelques exemples de vecteurs voisins moyens

3.2.3. Répartition des particules dans le flux
Le vecteur voisin moyen est une classification initiale des particules (internes ou en bordure de flux). A partir de
cette notion et du graphe de voisinage, nous avons établi un ensemble de règles pour déterminer la position d’une
particule par rapport à la distribution des points dans l’espace. Nous avons fait un ensemble d’essais sur
différents types de phénomènes (pas uniquement des phénomènes « élastiques »). Il en est ressorti que les
particules que nous qualifions visuellement comme faisant partie de l’intérieur de la matière comportent plus de
voisines et ont un vecteur voisin moyen quasiment nul. Pourtant certaines particules répondant à ces critères ne
sont pas à l’intérieur du flux mais sur sa surface. L’observation des résultats et la modification des règles de base
s’est effectué sur des indices subjectifs.

Comme on peut le voir (Fig. 14), les résultats sont satisfaisants : les particules sont correctement « étiquetées »
suivant leur position dans le nuage de points (en blanc les particules internes, en noir les particules de surface).
La structure régulière des tas de sable est manifeste. Si l’on ne visualise que les particules désignées comme
étant en surface du nuage, le phénomène est reconnaissable sans peine.

Modèle à sol lisse Modèle à sol rugueux Modèle 3D à sol lisse – Parois éloignées

Modèle 2D à sol lisse – Parois proches Modèle 3D à sol rugueux

Fig. 14 : Quelques exemples de caractérisation de particules

4. Conclusion
Nous proposons des modèles de sable réalisés à l’aide de CORDIS-ANIMA, un modeleur-simulateur physique
particulaire. Une fois l’environnement physique du modèle déterminé, il faut caractériser le comportement du
flux de matière à l’aide de quatre paramètres (élasticité, viscosité, seuil élasticité, seuil viscosité). Le sable est un
modèle dont les dynamiques pertinentes apparaissent avec des interactions entre masses ponctuelles purement
élastiques. Ici nous ne proposons qu’un seul type de phénomène, mais nous avons réalisé d’autres modèles
représentant des mouvements visqueux (pâte), et des modèles de morphogenèse.

Le résultat des simulations des modèles de sable à sol lisse ou à sol rugueux 2D et 3D sont les coordonnées des
masses ponctuelles formant le modèle physique (masses de l’environnement ou de la matière) à chaque instant
simulé. Nous ne disposons alors pas d’informations suffisantes permettant de construire un volume ou une
surface pour ce nuage de particules dispersées dans l’espace. C’est pourquoi, nous avons analysé l’évolution des
particules les unes par rapport aux autres pour caractériser la distribution des particules dans l’espace et pouvoir
ainsi définir un volume.

Nous construisons un graphe de voisinage qui structure le flux en définissant pour chaque particule de la matière
un voisinage. Ce graphe permet de mettre en avant les singularités des phénomènes représentés. Il présente une
structure quasi-régulière de forme triangulaire. Cette information est insuffisante pour étudier la répartition d’une
particule dans le nuage de points. Nous avons cherché à caractériser le positionnement des particules dans le
nuage de points par le calcul de vecteurs voisins moyens. L’examen des images résultats montre que les
particules que nous situons mentalement en bordure de surface ont un vecteur voisin moyen non nul, dirigé vers
le centre de la matière. Avec cette nouvelle information pertinente, nous avons établi un ensemble de règles qui
nous a permis de différencier les particules en bordure de surface, de celles à l’intérieur de la matière.

La dernière étape à réaliser serait la mise en place d’une méthode de rendu basée sur ces informations
nouvellement acquise. Le volume, ou surface, construit ne devra en aucun cas masqué les différentes
caractéristiques dynamiques et de forme du phénomène modélisé.

Références

[FF01] N. Foster, R. Fedkiw. Pratical animation of liquids. Computer Graphics, Proceedings of
SIGGRAPH’2001. pp15--22. August 2001.

[Gre73] D. Greenspan. Discrete Models. Editor Addison-Wesley. reading in applied mathematics. 1973.

[Gar97] A. Gareau. Utilisation des systèmes de particules pour la simulation de phénomènes naturels –
Présentation d’une architecture permettant l’intégration de systèmes animés hétérogènes. Thèse de
l’université de Lyon 1. 1997.

[GMW97] B. Guo, J.P. Menon, B. Wilette. Surface reconstruction using alpha-shapes. RC 20689, IBM
Research Center. Yorktown Heights. January 1997.

[Hop94] Hugues Hoppe. Surface reconstruction from unorganized points. PhD thesis. University of
Washington (USA). 1994.

[Joe91] B. Joe. Construction of three-dimensional Delaunay triangulations using local transformations.
Computer Aided Design, vol. 8, n°2, pp 123-142. May 1991.

[LWA94] L.P. Logan, D.P.M. Wills, N.J. Avis. Deformable objects in virtual environnements. 2nd UK VR-
SIG Conference. Silicon Graphics Reality Center, Theale (UK). December 1994.

[LJFCR91] A. Luciani., S. Jimenez., J.L. Florens., C. Cadoz., and O. Raoult. Computational physics: a modeler
simulator for animated physical objects. Proceedings of the European Computer Graphics
Conference and Exhibition. Vienne, Austria. September 1991. Ed. Elsevier.

[LHM95] A. Luciani, A. Habibi, and E. Manzotti. A multi-scale physical model of granular materials.
Proceedings of Graphics Interface'95.

[LHVD95] A. Luciani, A. Habibi, A. Vapillon, and Y. Duroc. A physical model of turbulent fluids. Computer
Animation and Simulation, Eurographics'95, September 1995.

[Luc00] A. Luciani. From granular avalanches to fluid turbulences through oozing pastes - A mesoscopic
physically-based particle model. Proceedings of GraphiCon. (10):282—289. August 2000. Moscow,
Russia.

[Nul98] S. Nullans. Reconstruction géométrique de formes – Application à la géologie. Thèse de l’université
de Sophia-Antipolis. Décembre 1998.

[MP89] G. Miller A. Pearce. Globular Dynamics: a Connected Particle System for Animating Viscous
Fluids. Computers and Graphics, 13(3):305—309. 1989. also in SIGGRAPH'89 Course notes
number 30.

[Sta97] J. Stam. A general animation framework for gaseous phenomena. ERCIM Research Reports
ERCIM-01/97-R047, ERCIM, VTT. Jaunary 1997.

[SACNG99] D. Stora, P.O.Agliati, M.P. Cani, F. Neyret, and J.D. Gascuel. Animating Lava Flows.
Graphics Interface (GI'99) Proceedings. Pages 203-210. June 1999.

[TPF89] D. Terzopoulos, J. Platt, K. Fleisher. Heating and melting deformable models (from goop to glop).
Graphics Interface'89. pp219—226. June 1989. London, Ontario.

[Ton91] D. Tonnesen. Modelling liquids and solids using thermal particles. Graphics Interface'91. pp255—
262. June 1991. Calgary, AL.

Animation efficace de solides en contact par modèle physique

Galizzi Olivier & Faure François

iMAGIS-GRAVIR/IMAG 655 av. de l’Europe, 38330 Montbonnot

Olivier.Galizzi@imag.fr

Résumé : Dans cet article, nous proposons une nouvelle approche au problème du calcul de réponses aux col-
lisions permettant de manipuler interactivement plusieurs centaines de solides en contact. La méthode proposée
est de type corrective, en ce sens ou elle intervient après le calcul des nouveaux états des solides selon les lois de
Newton et sans tenir compte des collisions. Des contraintes sont ensuite appliquées, permettant de supprimer les
interpénétrations et de corriger vitesses et accélérations des solides. Les trois corrections se font de façon itérative
à l’aide d’un nouvel algorithme dérivé des algorithmes d’optimisation de la famille des gradients conjugués. Un
tel algorithme de résolution nous permet de plus de régler un compromis entre précision et rapidité des calculs
et ainsi de réaliser des animations peu précises mais rapides ou au contraire plus exactes mais également plus
lentes.

Mots-clés : simulation solides contacts

1 Introduction

La simulation de solides par modèle physique couvre un vaste champ d’application allant des effets spéciaux
cinématographiques, aux programmes de jeux vidéos en passant par toutes sortes de simulations de type éboulement
rocheux ou destruction d’empilements. Les scènes de la vie quotidienne sont également composées, pour la plu-
part, d’un grand nombre d’objets solides, articulés ou non et soumis aux lois de la gravité. Les méthodes d’anima-
tion par modèle physique permettent la conception d’animation réalistes de ce type de scènes, difficiles à générer
par la main d’un animateur. C’est pourquoi ce domaine a été déjà largement exploré durant les quinze dernières
années. Cependant les méthodes actuelles de simulation de solides par modèle physique se heurtent à la com-
plexité des algorithmes utilisés (en

���������
voire

���	��
��
où
�

est le nombre de solides en jeu dans la simulation).
Leurs performances deviennent donc catastrophiques dès lors que ce nombre s’accroı̂t de trop, et elles deviennent
alors inutilisables pour des applications temps réel. Une nouvelle approche est donc nécessaire afin de palier à ce
problème qu’est la trop grande complexité des scènes, avec pour objectif, de réaliser des simulations perceptuel-
lement convaincantes, c’est à dire où les trajectoires des solides sont réalistes à l’œil même si elles ne sont pas
physiquement parlant exactes.

Les problèmes majeurs auquels se sont heurtés toute une génération de chercheurs sont principalement la stabilité
des simulations, notamment aux empilements de solides, mais également la lenteur des algorithmes utilisés étant
donné leur complexité. Cependant de grands progrès ont déjà été faits depuis les premières méthodes dites de
pénalité présentées en 1988 par Moore et Wilhelms dans [MW88] où des ressorts de longueur à vide nulle étaient
placés ente deux solides en collision permettant ainsi de les faire ressortir de cet état incohérent. Les plus grandes
avancées restent pourtant récentes. Ainsi c’est en 2000 seulement dans [Mir00] que Mirtich fut capable de gérer
un grand nombre de solides en un temps raisonnable mais il supposait qu’ils étaient relativement bien espacés et
répartis dans l’espace. En 2001, dans [MS01] Milenkovic proposa, lui, de synchroniser toutes les collisions ainsi
que leur traitement à la fin de chaque pas de temps. Tous les états des solides en collisions étaient alors corrigés
en même temps à l’aide d’algorithmes d’optimisation minimisant une énergie cinétique. Pour la première fois qua-
siment, une solution très stable au problème de l’animation de solides par modèle physique fut proposée. Ainsi
Milenkovic fut capable d’empiler dix cubes les uns sur les autres. Cependant la méthode utilisée restait encore
relativement lente et non interactive (1 image par seconde).

Stabilité ou rapidité personne n’a encore été capable de concilier ces deux aspects importants de la simulation de
solides par modèle physique, d’où notre travail sur ces deux points essentiels.

2 Prérequis

2.1 Notations

Voici les quelques conventions et notations adoptées pour la rédaction de cet article :

– les lettres en caractères gras majuscules représentent des matrices
– les lettres en caractères gras minuscules représentent des vecteurs
– les lettres en caractères standard minuscules représentent des scalaires

De plus on pose
 comme étant la matrice ou le vecteur nul de la taille appropriée.

Voici également les conventions utilisées pour manipuler les différents composants des solides notés ��� :

– le centre de gravité est noté � �
– les points situés sur la surface du solide sont notés ��� , ��������� , ���
– les coordonnées, la vitesse et l’accélération d’un point ��� sont notées respectivement ��� , ��� , !���
2.2 La mécanique du solide

L’animation par modèle physique de solides peut être mathématiquement formulée comme étant l’intégration sur
le temps des équations différentielles suivantes : " ��# $ � �$&% ' !" ��# $)(� �$&% (2.1)* !+ #-, . � '0/�1 2 #3, 4 � (2.2)

Les équations 2.1 traduisent la relation entre positions et vitesses ainsi qu’entre vitesses et accélération des so-
lides. Les relations 2.2 traduisent les lois de Newton-Euler, où * est la masse du solide considéré, 5 . � la somme
des forces exercées sur le solide (gravité, forces de contraintes, forces élastiques ou visqueuses ...), /�1 la matrice
d’inertie du solide et 5 4 � la somme des couples appliqués au solide.

Nous modélisons la vitesse d’un solide au sein de son repère local par le vecteur de dimension six noté + � #6 " �87 2 �87:9<; ou " � dénote la vitesse à l’origine et 2 � la vitesse angulaire du solide �=� . De même l’accélération
peut être exprimée comme le vecteur !+ � # 6 " 7� 2 7� 9 . La vitesse et l’accélération d’un point ��� lié au solide �=�
s’expriment comme le montrent les relations 2.3 et 2.4. ��> # " >@? 2 >BA " >C�D> (2.3)!��> # !" >@?E 2 >BA " >C�D>F? 2 >GA � 2 >HA " >���> � (2.4)IKJ !��> # ILJ !" >@? � " >���>BA I � J 2 >@? IKJ 2 >BA � 2 >HA " >C�D> � (2.5)IKJ � !� >NM !��O � # P�> !+ >NMQP O�!+ O�? 4R>SMT4 O (2.6)

L’accélération du point �U� projetée sur une direction de contrainte I (voir équation 2.5) peut également s’écrireI !�V� #WP �X!+ �Y? 4 � ou P � # 6 I 7 � " >��D>BA I � 7 9 . Dans le cas de solides en collision, cette direction I et celle portée
par le vecteur d’extraction modélisé lors de la détection de collisions (voir figure 1). À partir de cette formulation,
il est facile de trouver l’accélération de pénétration des deux solides � � et � � aux points � � et � � comme le montre
la relation 2.6.

3 Formalisation des contraintes

3.1 Ecriture des contraintes

Comme mentionné dans l’introduction, nous utilisons des contraintes afin de corriger les états de solides et re-
mettre le système dans un état cohérent. Dans cette section, nous montrons comment poser les contraintes pour la

FIG. 1 – Modélisation d’une collision. Dû à l’intégration discrète du temps, les solides ne sont pas en contact mais
en interpénétration. Le vecteur Z tel qu’il est représenté est appelé vecteur d’extraction.

correction des accélérations des solides. L’objectif est d’annuler l’accélération de pénétration entre deux solides � �
et � � en collision. Pour cela on va donc chercher, en partant des valeurs de !� > et !��O , les valeurs corrigées !� ><[]_^�^
et !��O []_^�^ satisfaisant la contrainte 3.1. I � !� ><[]_^�^LM !��O [`\X^�^ � #
 (3.1)

On va donc chercher les ab!�K> et ab!� O tels que en posant :!�D> []_^�^)# !�D> M ac!��> et !� O [`\X^�^)# !� O M ab!� O
on ait la condition 3.1 à vrai. Pour cela, on veut donc que :I � !�D> []_^�^LM !� O [`\X^�^ � # I � !�D> M ac!��> M !� O ?dab!� O � #

C’est à dire que : I � ab!�D> M ac!� O � # I � !�D> M !� O �
Soit en utilisant la relation 2.6 : P�> !+ > ? 4e>NM�P O�!+ O Mf4 O #gP�> ah!+ >NM�P O&ai!+ O
En remarquant que : !+ > #ijlk >> .]mon�p et !+ O #ijlk >O .]mon�p (3.2)

Et en notant : q #sr j > tt j OCu 'sv # 6 P > M�P O 9ah!+ #wr ah!+ >ah!+ O u '0x # x �LM x �
On peut écrire : y j k > . mon�p ? 4B# y ai!+ (3.3)

Or on sait que : ah!+ >z# j k >� y 7�|{ �_�} ~�� �
force { �_� exprimée en ���} ~�� �

variation d’accélération induite en � � par { �X�
(3.4)

Et de même pour ah!+ O , où { �X� (respectivement M { �X�) est une force appliquée au point �=� (respectivement ���)
selon une direction qui est la direction

�
de pénétration.

Le problème n’est plus alors de trouver ab!�K> et ab!� O mais le scalaire { �_� vérifiant le système d’équation suivant :y j k > y 7 ._> O # M y j k >�� mon�p ? 4 (3.5)# M accélération de pénétration de � � et � �# M erreur à corriger

On peut noter que la force { �X� ne travaille pas, c’est à dire qu’elle ne génère pas de mouvement. Elle est là,
uniquement pour garantir la contrainte posée (i.e. annuler l’accélération de pénétration) : elle correspond, en fait,
au multiplicateur de lagrange de cette même contrainte.

3.2 Cas général

Dans le cas général de
�

solides en jeu dans la simulation, les matrices
y

et j sont de la forme 3.6 et 3.7.

y # �������� � P � � M�P�� �� P�� � � M�PC� �� � � � � �� � � PC� � M�P��PC� � � M�P�� � �
������� (3.6)

j # diag(
q � , q � , ����� ,

q �) (3.7)

La matrice j est de taille �R�QA��&� ou � est le nombre de solides, et
y

a pour taille x AT�R� ou x est le nombre
de contraintes. Le blocs nuls sont représentés par des � . Sur chaque lignes de

y
seulement P � et P�� sont non nuls

lorsque les solides �=� et �=� ont un point de collision détecté. Chaque ligne correspond donc à une contrainte et les
blocs non nuls aux solides contraints.

Dans le cas général la correction des accélérations revient à résoudre un système linéaire de la forme � .N#i�
ou � # y j k > y 7 et � égal à

y j k > � m�n�p ? 4 . Le vecteur . est composé de forces exprimées en �R� J *fJ � k � et
correspond au vecteur des multiplicateurs de lagrange associés aux contraintes (de façon similaire à la méthode de
Baraff exposée dans [Bar96] mais appliqué ici au cas des solides en contact et non pas seulement au cas des solides
articulés).

4 Résolution de �Q� Mz� �� ¢¡¤£¦¥
4.1 Gradient bi-conjugué modifié

La matrice � # y j k > y 7 de notre système est relativement large. Elle se compose en effet, d’autant de colonnes
qu’ils y a de solides en jeu dans la simulation, et, d’autant de ligne qu’il y a de contraintes, donc de collisions.
Ses dimensions exèdent donc souvent plusieurs centaines de lignes et colonnes. Pour être à même de résoudre
un tel système plusieurs fois par seconde afin d’atteindre notre objectif de temps réel, une approche classique est
impossible. Nous avons donc développé un nouvel algorithme basé sur l’algorithme d’optimisation du gradient
bi-conjugué (voir [PTVF93] chapitre Sparse Linear Systems pages 83 à 89) qui résoud un système d’équations
linéaires � . ? �f#
 par minimisation itérative de

� � . ? � � � . Cet algorithme itératif effectue comme seul calcul
coûteux, deux produits matrices vecteurs par itérations, ce qui nous permet d’exploiter au mieux le fait que

y
etj k > sont creuses alors que � ne l’est pas. Nous effectuons pour cela, le produit � { en trois étapes

���	���
en ne

calculant jamais explicitement � .

Cependant des conditions supplémentaires doivent être ajoutées au système afin de prendre en compte le sens
physique des grandeurs manipulées (d’où l’inégalité à la place du signe égal dans le titre de la section). Considérons
un ensemble fini de collisions entre deux solides ��� et ��� , modélisées chacunes par deux points �D� > et ��� O et un
vecteur d’extraction I � # ��� > M �V� O donnant une direction normale au contact et selon lequel le mouvement est
contraint. Soit §¨� # I � J � !���ª© M !����« � l’accélération de pénétration de �V� et ��� et { � la force de contact agissant entre
ces mêmes corps selon l’axe I � (voir figure 1).

FIG. 2 – Dans le cas sans frottement deux cas de figures exclusifs sont possible. ��� et ��� ne peuvent pas se
rapprocher (§¨�D¬ct) mais sont libres de s’éloigner l’un de l’autre (§­�K®ct). D’un autre coté, les forces de contacts{ � sont toujours répulsives (par convention on dira { �¯®lt � . Bien évidemment, soit les deux corps sont dans un
état de contact actif et leur accélération de pénétration est nulle mais il existe une force répulsive donc positive
qui maintient le contact et empêche une plus profonde pénétration (à gauche), soit les deux corps ne sont plus en
contact et aucune force n’agit entre eux mais leur accélération relative est positive et non nulle (à droite).

Pour chaque collision ° , les trois contraintes expliquées figure 2 se résument respectivement par les trois conditions
suivantes : § � ®dt { � ®ht { � § ��# t
Or, puisque §¨� et { � sont contraintes positives pour tout ° , on a :{ �	§e� # tS± . ;V² #

Le problème du calcul des forces de contact peut donc se ramener à la formulation suivante, connue sous le nom
de problème linéaire complémentaire (LCP) :³´ µ � . ? � ®
. ®
. 7 � � . ? � � #
 (4.1)

C’est lors de la résolution de ce LCP qu’entre en jeu notre algorithme, basé sur celui du gradient bi-conjugé, et qui
peut prendre en compte ces nouvelles conditions. Nous utilisons pour cela la notion d’ensemble actif. Considérons
un ensemble de

�
collisions. Nous dirons pour chaque contact qu’il est soit actif et { �D®ct ' §e� # t soit inactif et§e�|®3t ' { � # t selon les conditions qu’il vérifie. Nous construisons donc deux partitions, nommées ¶ pour actif

et ·&¶ pour inactif. Au début de chaque résolution, nous avons choisi pour heuristique de mettre tous les contacts
dans la classe ¶ . Les itérations du gradient, ne sont maintenant effectuées que sur les équations appartenant à la
classe ¶ . Ces deux classes peuvent cependant évoluer lors de la résolution du système, donc au fil des itérations.
En effet, comme le montre la figure 3, l’algorithme de gradient cherche à faire le meilleur compromis, afin de
satisfaire au mieux toutes les équations. Cependant, il n’est pas toujours possible de les satisfaire toutes en même
temps. A chaque itération, et pour chaque contrainte, nous appliquons donc l’automate représenté figure 4. Ainsi,
pour chaque contact de la classe ¶ , si la force associée est devenue attractive ({ � ¬¸t), nous passons ce contact
dans la classe ·R¶ et nous n’en tenons plus compte. Au contraire, si pour un contact de la classe ·&¶ , nous détectons
que l’accélération de pénétration devient négative (§ � ¬¹t), alors nous repassons ce contact dans la classe ¶ .
Bien évidemment, pour chaque itération où il y a eu un changement de classe, l’algorithme du gradient doit être
redémarré, car la dimension du système a changé par l’ajout ou la suppression d’une ou plusieurs contraintes (i.e.
d’équations). Comme solution initiale du nouveau système, nous utilisons alors simplement la valeur calculée lors
de la dernière itération.

L’avantage de notre méthode est qu’elle intervient au coeur même de l’algorithme du gradient. Nous construisons
en effet, les partitions ¶ et ·R¶ à la volée et n’avons ainsi pas besoin de résoudre un sytème d’équations linéaires en-
tier à chaque itération pour les mettre à jour, comme cela a été le cas jusqu’a présent (voir algorithmes ci-dessous).

Jusqu’à présent : résolution d’un sytème entier avant de pouvoir mettre à jour les partitions ¶ et ·&¶ . chaque
résolution de � . ? �º#
 est en

���	� � � et l’on fait au minimum
���	���

itérations d’où un algorithme au mieux en���	�=�C�
. ³»»»»»»»»´ »»»»»»»»µ

Procedure resoudreSysteme1
initialisation.`���½¼¢#

Tantque pas resolu faire. ��mo¾ = resoudre � . ? �f#
 sur ¶ � ® �������C�¿�. ��mo¾ = . ���½¼ ?ºÀ � . ��mo¾ MT. �C�Á¼ �

(¶ , ·R¶) = mise à jour de (¶ , ·R¶)

Où À est le plus grand pas qu’il est possible d’effectuer tout en respectant les inégalités.

Notre algorithme : Mise à jour de ¶ et ·R¶ à chaque itération du gradient bi-conjugué. À chaque itération (1
itération = chercher direction + longueur pas) on met à jour les partitions. On effectue donc

���	���
itérations en���	���

d’ou un algorithme en
���	� � � au maximum.³»»»»»»»»»»»»»»»»´ »»»»»»»»»»»»»»»»µ

Procedure resoudreSysteme2
initialisation.]���½¼¢#

Tantque pas resolu faire

d = nouvelle direction de recherche
�]�������X�Â

= longueur du pas à effectuer{ ��ÃÅÄ = {�Æ_ÇÉÈ ? Â�Ê
(¶��&ÃÅÄ , ·&¶N��ÃÅÄ) = mise à jour de (¶ , ·&¶)
Si ¶ ��ÃÅÄbË# ¶ alors

réinitialisation
(¶ , ·R¶) = (¶ ��ÃÅÄ , ·R¶ ��Ã_Ä)

Où
Â

est la longueur du pas standard du gradient bi-conjugué.

FIG. 3 – L’algorithme de gradient conjugué cherche un meilleur compromis satisfaisant au mieux toutes les condi-
tions. Dans cet exemple au cours de la résolution une force deviendra inévitablement attractive : notre algorithme
va donc la transférer dans la classe ·&¶ .

FIG. 4 – Automate de transition entre les classes ¶ et ·&¶
5 Performance et convergence

5.1 Convergence

Etant donné que les forces solutions du système � .S#i� correspondent aux multiplicateurs de lagrange associés
aux contraintes, l’algorithme converge vers une solution unique si et seulement si la matrice � # y j k > y 7 est
définie positive. Ce n’est pas toujours le cas, notamment lorsque se créent des cycles (par exemple une chaine
fermée de solides articulés), pourtant nous n’avons pas remarqué de problèmes liés à cette non unicité de la solution
dans les scènes que nous avons manipulées.

Quoi qu’il en soit, et c’est le point principal, notre algorithme nécéssite très peu d’itérations pour converger vers
un résultat visuellement correct. En effet, un algorithme de type gradient conjugué trouve la solution exacte d’un
système en autant d’itérations qu’il y a d’inconnues. Or dans notre cas, pour un système contenant près de 300
inconnues (i.e. 300 collisions), une dizaine d’itérations peuvent suffir pour obtenir un résultat très correct. Chaque
itération s’effectuant en temps linéaire, notre algorithme qui a une complexité au pire en

���	� � � voit donc cette
complexité descendre très près de

���	���
.

5.2 Performance

Voici quelques résultats de performance que nous avons obtenus pour différents types de simulation (des captures
d’écran des simulations correspondantes sont fournies en annexe A) : on notera que les solides sont constitués
d’assemblages de sphères pour simplifier la détection de collisions, ce qui n’affecte en rien la validité de notre
méthode étant donné que la dynamique d’un solide ne dépend pas de sa géométrie.Ì

solides - sphères
Ì

collisions fps

Pendule 11 - 61 10 300
125 sphères 126 - 126 250 45
216 sphères 217 - 217 400 20
343 sphères 344 - 344 700 10

Chaine 13 - 361 30 50
Tourniquet 126 - 602 700 10

Pile 14 - 405 120 30

TAB. 1 – Complexité de quelques scènes et efficacité de la méthode (captures d’écran sont disponibles annexe A).

6 Application à la correction des positions et vitesses

Afin de calculer la correction à effectuer sur les accélérations des solides nous avons procédé comme suit :.Í# forces { � à appliquer au niveau de chaque collision selon l’axe de contraintey 7 .Í# forces { � exprimées au centre de gravité ��� des solidesj k > y 7 .Í# variations d’accélérations linéaires et angulaires induites en �&� par les { �y j k > y 7 .Í# variations d’accélérations de pénétration induites aux points de collisions pas les { �
Et l’on résoud le système suivant :y j k > y 7 . ? 4B# - erreur sur les accélérations

Pour la correction des vitesses, on a montré que l’on peut procèder de même, en résolvant le système suivant :y j k > y 7�Î ? 4 # y (+# M erreur sur les vitesses (6.1)

où Î est un vecteur d’impulsions (�R� J *WJ � k �) et va permettre d’appliquer une variation instantanée de vitesse sur
les solides selon le même schéma que précédemment :Î # impulsions Î � à appliquer au niveau de chaque collision selon l’axe de contraintey 7 Î # impulsions Î � exprimées au centre de gravité ��� des solidesj k > y 7DÎ # variations de vitesses linéaires et angulaires induites en �&� par les Î �y j k > y 7 Î # variations de vitesse de pénétration induites aux points de collisions pas les Î �
Pour ce qui est de la correction des positions, les contraintes sont maintenant géométriques et l’on va travailler sur
des approximations. En effet, afin de pouvoir corriger l’orientation et la position des solides il est nécéssaire de
linéariser les rotations. Nous manipulons donc, dans ce dernier cas, un vecteur Ï d’action de déplacement (�R� J *)
qui vont induire des déplacements instantanés sur les solides afin de les faire ressortir de leur état d’interpénétration.
Ceci peut se formuler comme suit :y j k > y 7 Ï # I � � >¯M ��O �# M profondeurs pénétrations (6.2)

On remarquera que la correction que nous apportons sur les positions, vitesses et accélérations, se calcule de
manière analogue et résolvant un système d’équations linéaires du typey j k > y 7|Ð #ÑMFÒ&Ó�Ó�Ò Z Ó
où Ð est respectivement un vecteur d’actions de déplacement, un vecteur d’impulsions et un vecteur d’accélérations.
Nous avons donc un seul et même algorithme pour les trois corrections.

La gestion du rebond se fait via le modèle de Poisson, simplement en remplaçant le vecteur Î calculé, par le vecteur�XÔ ?ÖÕ � Î , où t�×hÕ@× Ô est le coefficient de rebond.

7 Extension aux solides articulés

L’extension du simulateur à la gestion des solides articulés ne pose pas de problème particulier avec notre méthode.
Par exemple, une liaison de type point-point se modélise avec trois contraintes scalaires dont chaque direction est
alignée sur un des trois axes principaux I , Ø et Ù d’un repère orthogonal (voir figure 5). Pour simplifier les calculs
le repère choisi est tout simplement le repère du monde.

La résolution de ces contraintes se fait en même temps que celles associées aux collisions et notre algorithme reste
globalement inchangé, à la différence près que ces contraintes doivent toujours rester dans la classe ACTIF. En
effet, une articulation n’a pas lieu de ce désolidariser et donc les deux points ��� et ��� de se décoller.

FIG. 5 – Les repères locaux des contraintes point sur point sont alignés avec les axes du monde. Les points � � et� � appartenant respectivement aux solides 1 et 2 doivent être maintenus confondus et leur vitesse ainsi que leur
accélération relative doivent être nulles. Idem pour les point � � et �
 .
8 Extension au frottement adhérent

Un exemple simple de frottement adhérent est celui d’une boule roulant sans glisser sur un plan : c’est une simpli-
fication du frottement de Coulomb où les objets peuvent glisser les uns sur les autres. Il suffit pour le prendre en
compte dans notre méthode, de construire non plus une contrainte normale par collision mais trois : une normale et
deux dans le plan tangent au contact. On procède ensuite de la même façon qu’auparavant mais avec trois fois plus
de contraintes. On garantit ainsi, en plus du cas sans frottement que la vitesse et accélération de pénétration des
deux solides en jeu est nulle non seulement dans la direction I , mais aussi dans les deux directions tangentielles
orthogonales Ø et Ù .
9 Répartition de la charge de calcul

Nous nous sommes posé la question de savoir quelle est la répartition optimale en nombre d’itérations sur les
positions, vitesses et accélérations, à distribuer, selon un budget de calcul exprimé lui aussi en nombre d’itérations.
En partant du principe que notre critère de qualité définissant une bonne simulation est la distance de pénétration
moyenne des solides après correction des positions, on va parcourir l’espace constitué des différentes répartitions
et trouver le minimum de la fonction ainsi parcourue. L’espace des paramètres de réglage a trois dimensions :
nombres d’itérations sur les positions, sur les vitesses et sur les accélérations mais leur somme étant constante, le
domaine de définition de notre fonction est sur deux dimensions et a une forme triangulaire comme le montre la
figure 6. La figure 7 montre les résultats obtenus pour la répartition optimale de 30 itérations pour la scène appelée

FIG. 6 – Domaine de définition de la fonction représentant l’erreur sur les positions en fonction du nombre
d’itérations attribuées pour la correction des positions, des vitesses et des accélérations

tourniquet (voir annexe A). On remarque que si on ne corrige pas du tout les positions ou les vitesses, l’erreur
diverge. Par contre on remarque également que trop corriger les positions (voir zone 1) ne garantit pas forcément
un bon résultat car les erreurs engendrées sur les vitesses deviennent tellement grandes qu’elles se répercutent
irrémédiablement sur les positions. Tout miser sur la correction des accélérations (voir zone 2) engendre le même
problème. La vallée traversant le centre du triangle contient des répartitions beaucoup plus satisfaisantes avec un
point optimal (en magenta) correspondant à la répartition optimale pour cet exemple.

FIG. 7 – Graphique montrant l’erreur commise sur la correction de position en fonction de la répartition de 30
itérations. En bleu on peut voir l’ensemble des paramètres faisant diverger le programme et en magenta le point
optimal

Cette rapide étude de la répartition montre qu’il est nécessaire de corriger un minimum les positions afin essen-
tiellement de supprimer les dérives dues aux erreurs numériques et à l’intégration discrète du temps. Cependant,
l’essentiel des calculs doit être concentré sur la correction des vitesses.

10 Bilan et perspective

L’algorithme présenté ici fonctionne très bien pour de nombreux types de simulations et peut être utilisé pour des
applications diverses et variées, comme la simulation d’éboulis ou de chute de pierre, pour les jeux de constructions
ou encore les scènes ”alimentaires” (objets en contact dans un bol...). La rapidité du calcul de réponse aux collisions
en fait un outil parfait pour la simulation temps réel d’un grand nombre de corps (plusieurs centaines) avec un
grand nombre de collisions (plusieurs centaines également). Le système de compromis entre efficacité et rapidité
de calcul accroı̂t cette possibilité et l’étend même à la simulation non temps réel d’un très grand nombres de corps
(plusieurs milliers), possibilité facilitée par une complexité en mémoire linéaire (car les matrices sont creuses et
sont donc stockées sous forme de graphe). L’étude de la répartition optimale va de plus permettre de dégager une
loi qui nous servira à construire un unique paramètre de réglage de ce compromis. Ainsi un non spécialiste pourra
facilement manipuler notre algorithme qui pour l’instant nécessite le réglage de nombreuses valeurs.

Les tests montrent que la répartition du temps de calcul optimal est relativement non conventionnelle et nécessite
des corrections en position ce qui est très rarement fait dans les méthodes de simulation de solides par modèle
physique. La correction des vitesses est quant à elle prépondérante, ce qui confirme la tendance dans ce domaine,
d’autant plus que c’est elle qui donne son réalisme à la simulation.

Cependant, et vous l’aurez remarqué, nous ne gérons pas encore le modèle de frottement de Coulomb qui est plus
réaliste que le modèle statique déjà implémenté. Nous avons tout de même déjà obtenu quelques résultats, sans
pour autant avoir reproduit tous les cas de figures possibles, en discrétisant le cône de Coulomb en une pyramide
à base polygonale pour pouvoir appliquer des contraintes linéaires sur les composantes normales et tangentielles
des forces.

Dans un dernier temps, nous intégrerons à notre méthode un module performant de détection de collisions entre
polyèdres. Pour l’instant, avec une détection tout à fait naı̈ve c’est en entre 50 et 80 pourcents du temps de calcul
total qui est perdu dans cette étape.

A Quelques images

Tourniquet : 36 barres de 6 sphères,10 tores de 10 sphères et 36 sphères dans un cube Pile : 13 tores de 30 sphères

316 spheres : 316 spheres dans une sphère creuse Chaine : 12 tores de 30 sphères

Pendule : pendule articulé composé de 12 barres rigides de 6 sphères chacunes

Références

[Bar89] David Baraff. Analytical methods for dy-
namic simulation of non-penetrating rigid
bodies. Computer Graphics, 23(3) :223–
232, 1989.

[Bar91] David Baraff. Coping with friction for non-
penetrating rigid body simulation. Compu-
ter Graphics, 25(4) :31–40, 1991.

[Bar94] David Baraff. Fast contact force computa-
tion for nonpenetrating rigid bodies. Com-
puter Graphics, 28(Annual Conference Se-
ries) :23–34, 1994.

[Bar96] David Baraff. Linear-time dynamics using
Lagrange multipliers. Computer Graphics,
30(Annual Conference Series) :137–146,
1996.

[BtDP Ú 02] B. Brogliato, AA ten Dam, L Paoli, F Ge-
not, and M Abadie. Numerical simulation
of finite dimensional multibody nonsmooth
mechanical systems, march 2002.

[Fau99] Francois Faure. Fast physically-based si-
mulation of nonpenetrating rigid bodies.
unpublished, january 1999.

[Fle00] R. Fletcher. Practical Methods of Optimi-
zation. Wiley, may 2000.

[Hah88] James K. Hahn. Realistic animation
of rigid bodies. Computer Graphics,
22(4) :299–308, 1988.

[MC94] Brian Mirtich and John F. Canny. Impulse-
based dynamic simulation, 1994.

[MC95] Brian Mirtich and John F. Canny. Impulse-
based simulation of rigid bodies. In Sym-
posium on Interactive 3D Graphics, pages
181–188, 1995.

[Mir96a] B. Mirtich. Hybrid simulation : combining
constraints and impulses, 1996. Technical
Report, Department of Computer Science,
University of California, Berkeley.

[Mir96b] Brian Mirtich. Fast and accurate computa-
tion of polyhedral mass properties. Journal
of Graphics Tools : JGT, 1(2) :31–50, 1996.

[Mir98] B. Mirtich. Rigid body contact : Colli-
sion detection to force computation, 1998.
Technical Report TR-98-01, Mitsubishi
Electrical Research Laboratory.

[Mir00] Brian Mirtich. Timewarp rigid body si-
mulation. In Kurt Akeley, editor, Sig-
graph 2000, Computer Graphics Procee-
dings, pages 193–200. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman,
2000.

[MS01] Victor J. Milenkovic and Harald Schmidl.
Optimization-based animation. Compu-
ter Graphics Proceedings, (Annual Confe-
rence Series) :37–46, 2001.

[MW88] Matthew Moore and James Wilhelms. Col-
lision detection and response for com-
puter animation. Computer Graphics,
22(4) :289–298, 1988.

[PTVF93] William H. Press, Saul A. Teukolsky,
William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipies in C : The Art Of
Scientific Computing. Cambride University
Press, january 1993.

[RB94] E. Rimon and J. Burdick. Mobility of bo-
dies in contact - I : A new 2nd order mobi-
lity index for multiple-finger grasps, 1994.
Submitted to IEEE Trans. on Robotics and
Automation.

[SS98] J. Sauer and E. Sch. A constraint based
approach to rigid body dynamics for vir-
tual reality applications, 1998. Proceedings
of the ACM Symposium on Virtual Reality
Software and Technology.

[WB97] Andrew Witkin and David Baraff. Physi-
cally based modeling : Principles and prac-
tice, 1997. Siggraph ’97 Course notes.

OpenMASK:
{Multi-threaded | Modular} Animation

and Simulation {Kernel | Kit}:
un bref survol

David Margery, Bruno Arnaldi, Alain Chauffaut, Stéphane Donikian et Thierry Duval

Irisa, Campus de Beaulieu, 35042 Rennes Cedex, France
David.Margery@irisa.fr

Résumé : Dans cet article, nous présentons OpenMASK, un noyau d’animation et de simulation multi activités
qui est aussi une plate-forme pour le développement et l’exécution d’applications modulaires dans le domaine
de l’animation, de la simulation et de la réalité virtuelle. OpenMASK est le résultat d’un compromis original
entre la performance, l’abstraction et la modularité permettant de répondre aux besoins d’une grande variété
d’applications de réalité virtuelle, y compris dans des contextes d’exécution distribuée. Cet article présente les
objectifs, les concepts, les notions de base et la performance de la version publique 1 d’OpenMASK.

Mots-clés : Simulation interactive, réalité virtuelle distribuée, boite à outil pour la réalité virtuelle

1 Introduction

Les applications des technologies de la réalité virtuelle sont nombreuses et prometteuses. Néanmoins, leur
usage reste à ce jour encore relativement limité à cause de la complexité d’intégration dans un même logiciel
de tous les composants logiciels et matériels nécessaires. En effet, pour une application donnée, le savoir faire,
et donc le code, provenant de différente spécialités doit être assemblé sans nuire à la performance globale. En
effet, les utilisateurs des technologies de la réalité virtuelle demandent toujours plus de réalisme et d’interactivité
parce que les deux promesses de la réalité virtuelle sont celles d’une grande richesse de retour sensoriel et d’outils
d’interaction puissants.

Cependant, afin d’être utiles, ce retour sensoriel et cette interaction doivent être calculés dans un intervalle de
temps contraint, ce qui n’est pas toujours compatible avec le temps de calcul des simulations sous-jacentes. En
effet, la réalité virtuelle est souvent utilisée pour interagir avec des simulations qui sont elles-mêmes coûteuses en
temps de calcul, ce qui conduit à l’utilisation du parallélisme ou de la distribution pour réduire celui-ci. Ce facteur
doit être pris en compte dès la conception d’un environnement pour la programmation et l’exécution d’applications
de réalité virtuelle.

1.1 Problématique et résultats présentés

Un problème fondamental en réalité virtuelle est donc de concilier performance, multi-résolution des temps
de calcul et abstraction. La performance est centrale à la richesse d’interaction et du retour sensoriel. La multi-
résolution est importante parce que les applications de réalité virtuelle doivent coordonner des cycles de calcul
de granularité différente. Mais on ne peut négliger l’abstraction, parce qu’intégrer dans la même application des
composants logiciels d’origines différentes implique une abstraction commune à ces logiciels. Dans cet article
nous présentons une telle abstraction : OpenMASK. OpenMASK est une plate-forme pour le développement et
l’exécution d’applications modulaires dans le domaine de l’animation, de la simulation et de la réalité virtuelle.
Elle est déjà utilisée au sein du projet Siames de l’Irisa, pour des applications de travail collaboratif (fig.2), de
simulation mécanique et d’animation comportementale (fig.1). L’utilisation d’une même plate-forme pour ces
programmes aux contraintes différentes est à notre sens un résultat significatif, puisqu’il démontre la possibilité de
réutilisation de composants logiciels et donc qu’il abaisse le coût logiciel lié à l’utilisation de la réalité virtuelle. De
plus, en utilisant la distribution non seulement à des fins de collaboration mais aussi pour améliorer la performance,
la richesse des environnements virtuels produits s’en trouve augmentée.

1. voir http://www.openmask.org pour les détails

FIG. 1 – Une simulation comportementale et une simulation mécanique utilisant OpenMASK

1.2 Travaux connexes

Il y a de nombreuses boîtes à outils pour la réalité virtuelle. Que ce soit les premières boîtes à outils telles que
MR-Toolkit[SG93] ou des plus récentes telles que VR-Juggler[JBBCN98], CAVERNSoft[KYN+00], Avango[Tra99],
ou Maverick[RJM+99], l’objectif principal semble toujours d’abstraire le matériel pour le programmeur, permet-
tant ainsi le changement de matériel, soit pendant l’exécution soit entre deux exécutions du programme. Ce travail
est nécessaire, mais en général il ne fournit pas au programmeur un cadre conceptuel, forçant soit une reconcep-
tion de la structure de l’application à chaque nouvelle application, soit l’utilisation du cadre conceptuel très basique
fourni avec la boite à outils. Par conséquent, ces boîtes à outils, bien qu’utiles pour un développement plus rapide,
n’aident pas à structurer l’application en composants qui pourraient facilement être réutilisés.

Dans le domaine de la réalité virtuelle distribuée, des cadres conceptuels plus complexes ont été proposés, parce
qu’ils deviennent nécessaires pour pouvoir assurer la cohérence à travers le réseau avec de bonnes performances.
Ceux-ci, qu’ils soient indépendants (Aviary[WHH+92], VEOS[BC94] ou Spline[BWA96]) ou basés sur une des
boîtes à outils présentées ci-dessus (Environment Manager au-dessus de MR-Toolkit[WGS95] ou Deva[SJJA00]),
se préoccupent davantage de la structuration de l’environnement virtuel que de la structuration logicielle de l’appli-
cation. C’est pourquoi les cadres conceptuels proposés ne sont adaptés qu’à une classe limitée d’environnements
virtuels. De plus, ces projets favorisent l’abstraction à la performance. Néanmoins, ces abstractions ont grande-
ment influencées notre travail parce qu’elles cherchent toutes à définir les abstractions de base nécessaires dans
une application de réalité virtuelle, et dont certaines sont déjà présentes dans GASP[SATR98, TD00b, TD00a], le
prédécesseur d’OpenMASK.

Dans le même contexte de réalité virtuelle distribuée, des recherches visant la performance ont concentré
leur attention sur l’infrastructure logicielle sous-jacente nécessaire à une distribution performante d’un environne-
ment virtuel. La performance de ces systèmes distribués (la série MASSIVE [GB95, CJD00], la série NPSNET
[MDM+95, CMBZ00] ou Community Place[LHMM97]) est basée sur un relâchement de la cohérence des dif-
férentes copies de l’environnement virtuel et sur la limitation du nombre d’objets impliqués dans les algorithmes
de maintient de la cohérence. Là encore, les résultats obtenus ne sont applicables qu’à condition d’avoir prévu les
objets explicitement pour la distribution. Dans OpenMASK, nous utilisons la cohérence relâché contrainte (dé-
crite dans [Mar01]), mais en utilisant des informations systèmes pour limiter le nombre d’objets, une stratégie ne
limitant pas le nombre possible d’applications.

Un dernier domaine connexe est le vaste domaine de la réutilisation de code, et plus spécifiquement de la
construction d’une infrastructure logicielle capable de charger, décharger, connecter et découvrir des composants
logiciels. Cette approche est relativement récente dans le cadre de la réalité virtuelle avec des prototypes tels
que JADE[MJM00], Bamboo[Wat00] ou NPSNET-V[CMBZ00]. Une telle dynamicité n’est pas possible avec
OpenMASK, qui doit avoir la connaissance a priori de tous les composants logiciels utilisés par une application
donnée. Cependant, la notion de composants logiciels d’OpenMASK est beaucoup plus structurée que l’approche
très fondamentale des projets cités précédemment, et ce parce qu’ils se placent à un niveau plus abstrait.

OpenMASK est donc notre contribution à la recherche du meilleur compromis possible lors de la conception

d’un environnement de développement et d’exécution pour la réalité virtuelle qui prenne en compte les problé-
matiques de performances, d’abstraction et de distribution. Cet article est structuré de la façon suivante. Dans
la prochaine section, les concepts de base d’OpenMASK sont présentés. Dans la section 3, nous présentons les
politiques d’ordonnancement des objets de simulation d’OpenMASK (l’unité de modularité, composant logiciel
d’OpenMASK) puis dans la section 4 les outils pour permettre la communication et donc l’interaction entre ces
objets. La gestion de ces objets est ensuite présentée dans la section 5 avant que soient expliqués les principes et
les performances du noyau d’exécution distribué.

2 Présentation générale d’OpenMASK

2.1 Objectifs de conception

L’objectif principal d’OpenMASK est de fournir un noyau d’animation et de simulation :

1. indépendant du niveau d’animation (descriptive, générative or comportementale) utilisé ;

2. indépendant du style de programmation de l’animation (réactive, orienté agent, objets actifs . . .) utilisé ;

3. indépendant de la bibliothèque de rendu utilisée ;

4. capable d’utiliser plusieurs activités en parallèle pour le calcul de la simulation ;

5. indépendant du type d’exécution multi-activité utilisé (calcul distribué ou calcul parallèle).

Ces deux derniers points ont particulièrement influencés la conception du noyau d’OpenMASK, puisque notre
objectif a été de permettre un parallélisme et une distribution performante. De plus, définir les objets manipulés par
le noyau revient à privilégier une certaine granularité de l’animation et donc certains niveaux et styles d’animation.

Cependant, il convient de noter que les choix de conception sont davantage biaisés en faveur de l’exécution
multi-activité qu’en faveur d’un niveau ou d’un style d’animation particulier. De plus, les outils fournis avec Open-
MASK ont pour objectif de permettre à un programmeur l’expression de ses algorithmes d’animation dans le style
naturel à ceux-ci, afin de permettre au noyau de manipuler des objets ayant une sémantique forte, et donc de faire
des optimisations pertinentes.

Dans cet article, les termes simulation et animation sont utilisés avec un sens légèrement différent. Le terme
simulation est utilisé lorsque le résultat produit (qui peut ne pas être visuel) est plus important que le temps mis à
le produire, alors que le terme animation est utilisé pour des simulations interactives pour lesquelles l’interactivité
est un aspect clé de l’application. Nous croyons que les mêmes composants logiciels devraient pouvoir être utilisés
pour ces deux types d’applications, avec des optimisations différentes effectuées par le noyau en fonction du
contexte d’utilisation. Cependant, dans cet article, nous ne nous intéresserons que très peu au contexte d’exécution
et c’est pourquoi nous y discutons de la simulation d’objets de simulation sans présumer du contexte de leur
utilisation.

FIG. 2 – Une application de réalité virtuelle coopérative

2.2 Concepts de base d’OpenMASK

Dans OpenMASK, la brique de base pour construire une application est l’objet de simulation. C’est au sein de
l’objet de simulation que tout le code décrivant l’évolution de l’objet et son interaction avec les autres objets est

localisé. Les deux questions qui se posent sont donc les suivantes:

1. Quand le code de l’objet est-il exécuté? C’est la question de l’activation de l’objet.

2. Comment les objets communiquent-ils entre eux? C’est la question de la communication.

Une troisième question se pose : quelle est la granularité de l’objet de simulation? Ou encore, qu’anime un objet
de simulation? Il s’agit d’une question à laquelle OpenMASK ne répond pas, puisque que l’objectif est de réaliser
un noyau d’animation et de simulation qui soit le plus général possible. L’expérience d’utilisation d’OpenMASK
montre que la granularité d’un objet de simulation varie d’un humanoïde virtuel complet avec ses comportements à
une sphère inerte et ce dans la même application. Le meilleur exemple de la flexibilité et de la généralité du concept
d’objet de simulation est que le rendu des environnements virtuels conçus au sein du projet Siames est réalisé à
travers un objet de simulation appelé OpenMASK-3DVis 2 et qui gère le rendu sur dispositif immersif (workbench
ou reality center) aussi bien que sur une station de travail, avec ou sans stéréo-vision.

3 Activation de l’évolution des objets

Chaque objet de simulation peut avoir le calcul de son évolution déclenché par deux méthodes. La première,
la méthode compute est appelée à une certaine fréquence pour tous les objets dans l’état actif (voir fig 3 pour
un diagramme des états possibles) ayant une fréquence non-nulle. La seconde méthode est liée au traitement des
événements. Pour les objets dans l’état suspendu, le traitement des événements se fait au rythme de réception
des événements, soit au maximum à la fréquence du contrôleur. Pour les objets dans l’état actif, le traitement des
événements a lieu à la fréquence d’activation de l’objet par défaut, mais il est possible de le faire à la fréquence du
contrôleur.

stopped running

initialdestroyed

suspended

MaskSuspend

MaskResume

MaskStart / init ()MaskDelete

MaskRestart /

init()

finish()

MaskStop / finish ()

MaskStop /
BB B A B BA B

pas de simulation

cycle de simulation

FIG. 3 – Diagramme des états possibles d’un objet de simulation et cycles d’activation dans OpenMASK

3.1 Politique d’ordonnancement

L’unité minimal d’ordonnancement d’OpenMASK est le pas de simulation (voir fig 3, où la fréquence de A est
de 10Hz et celle de B 30Hz). Toute tâche ordonnancée est exécutée dans les limites d’un pas de simulation. Du
point de vue de l’ordonnancement, OpenMASK est un système synchrone : aucun objet ne peut être ordonnancé
2 fois pendant le calcul d’un autre objet. Ce dernier point est souvent mal compris, parce que les objets peuvent
avoir des fréquences différentes.

Pour calculer les structures d’ordonnancement, le contrôleur calcule le pgcd et le ppcm des fréquences non
nulles de tous les objets de simulation. Le pgcd est alors la fréquence d’un cycle de simulation et le ppcm la
fréquence d’un pas de simulation. On obtient alors, du point de vue de l’ordonnanceur un certain nombre de pas
de simulation dans un cycle de simulation. Pour un objet ayant la fréquence d’un cycle de simulation, il sera
ordonnancé sur le premier pas de simulation 3 de chaque cycle (la cas de l’objet A de la figure 3). Cependant, un

2. Aussi disponible à l’adresse www.openmask.org
3. Un choix arbitraire d’implémentation

pas de simulation ne peut commencer que lorsque le calcul de tous les objets ordonnancés sur le pas de simulation
précédant ont terminé leur calcul.

La conséquence la plus gênante de cette stratégie d’ordonnancement est de faire varier le temps de calcul pour
chaque pas de simulation en fonction du nombre et de la nature des objets ordonnancés à chaque pas. Même si
du point de vue des objets simulés le temps s’écoule régulièrement, du point de vue d’un observateur extérieur à
la simulation le temps peut s’écouler par à coups. C’est pourquoi il faut écrire les applications utilisant des objets
fonctionnant à différentes fréquences de manière prudente, sinon le résultat obtenu pourrait être différent de celui
attendu.

Dans un avenir proche, ce problème doit être réduit à cause du besoin de faire coopérer dans une même ap-
plication des objets ayant des fréquences d’ordre de grandeur différent (retour haptique et visuel par exemple).
Cependant, à cause des racines synchrones d’OpenMASK, la résolution de ce problème n’est pas triviale.

4 Gestion des objets

4.1 Les classes de base pour la gestion des objets

Plusieurs classes sont utilisées par OpenMASK pour la gestion des objets. Les objets de simulation sont connus
entre eux grâce au descripteur d’objet (objectDescriptor), qui est une donnée qui n’évolue pas et qui contient le
nom de l’objet, sa classe, et ses paramètres d’ordonnancement et de configuration.

Le contrôleur PsController est l’objet responsable pour toutes les fonctions globales à la simulation, en par-
ticulier pour la création, l’ordonnancement et la destruction des objets. Par ailleurs, le contrôleur est l’objet qui
maintient une date de simulation globale à la simulation.

Le contrôleur ne manipule pas directement les objets de simulation, sauf lors de leur création et de leur destruc-
tion. Pour toutes les autres opérations, le contrôleur manipule un PsObjectHandle dans lequel sont stockés toutes
les données d’un objet liées à l’exécution. Lors de l’utilisation d’un noyau distribué, un référentiel est utilisé pour
manipuler la version de référence de l’objet de simulation (celle qui effectue les calculs), et un miroir est utilisé
lorsqu’un contrôleur manipule une copie de l’objet pour permettre la communication entre objets simulé sur des
nœuds différents.

4.2 L’arbre de simulation

Pour une application donnée, les objets de simulation sont structurés dans un arbre de simulation. L’objet racine
de cet arbre est le contrôleur, mais le reste de la sémantique de l’arbre de simulation est laissé au concepteur d’ap-
plication. Il y a deux fonctionnalités d’OpenMASK dont le comportement change en fonction de la structuration
de l’arbre de simulation.

1. la création d’objet, puisque l’interprétation de la chaîne de caractères représentant la classe de l’objet à créer
est faite récursivement à partir de l’objet père de l’objet à créer. Les prochaines versions d’OpenMASK
pourrait faire la distinction entre le créateur d’un objet et le père de celui ci pour l’interprétation de cette
chaîne de caractère, influant sur le type exact de l’objet créé.

2. les fonctions de recherche d’un objet. L’arbre de simulation permet de faire des recherches globales ou
limités à un sous-arbre, aux frères ou encore au fils dans l’arbre de simulation.

Il convient pour finir de noter que l’arbre de simulation est une notion totalement différente de l’arbre d’héritage
ou du graphe de scène.

4.3 La création d’objets

Les objets de simulation d’OpenMASK peuvent être créés soit :

1. statiquement : leur description est faite dans l’arbre de simulation paramètre du contrôleur à la création ;

2. dynamiquement, à l’initiative du programmeur ;

3. dynamiquement, en fonction des besoins des autres objets. Ceci est vrai en particulier dans le cas de l’exé-
cution distribuée, puisque des objets miroirs sont créés au besoin pour communiquer avec les objets de
simulation de référence.

Le C++ ne fournit pas de méthodes pour créer un objet à partir de la chaîne de caractère décrivant sa classe.
C’est pourquoi nous utilisons un mécanisme spécifique : tous les objets, y compris le contrôleur ont une liste des
classes d’objets qu’ils sont capables de créer. Pour chacune de ces classes, l’objet possède un pointeur sur un objet
de type PsObjectCreator dont l’appel à une méthode spécifique provoque l’instanciation d’un nouvel objet.

5 La communication entre les objets de simulation

Il y a de nombreux outils sous OpenMASK pour faire communiquer les objets entre eux. Seulement, il faut
se limiter aux outils fournis par le noyau d’OpenMASK afin de profiter des propriétés de calcul parallèle d’Open-
MASK. En particulier, ceci implique que l’appel de méthodes entre objets de simulation est à proscrire, sauf dans
certains contextes particuliers.

La raison de ce choix est que l’exécution multi-activité introduit des problèmes d’intégrité des données. Un
noyau tel que celui d’OpenMASK peut gérer ces problèmes en protégeant les données de façon à éviter au pro-
grammeur d’objet de simulation de devoir comprendre le paradigme d’exécution multi-activité utilisé. Par contre,
le noyau ne peut intercepter les appels de méthodes fait entre les objets de simulation (à moins d’introduire une
indirection par précompilation du programme) et c’est pourquoi ceux-ci sont interdits.

Ce choix constitue le compromis de conception fondamental d’OpenMASK. De ce choix dérive les bonnes
propriétés pour le calcul parallèle d’une simulation, mais aussi les quelques contraintes de programmation. D’un
point de vue théorique, ce compromis s’exprime de la façon suivante : un objet ne peut avoir son exécution in-
terrompue par l’attente du résultat d’une requête faite auprès d’un autre objet. De plus, il ne peut y avoir 2 flots
d’exécution actifs simultanément au sein d’un même objet sans être programmés explicitement.

OpenMASK distingue plusieurs styles de communication entre les objets de simulation. La communication
standard permet à un objet de lire les attributs d’un autre objet de manière régulière. Un objet de simulation
rend ses attributs lisibles par les autres objets de simulation en les plaçant dans des sorties ou des paramètres de
contrôle, et il sont généralement lus à travers des entrées. L’autre moyen de communication se fait à travers des
signaux émis par un objet, et reçus soit directement, soit à travers des auditeurs d’événements et sont conçus pour
une communication sporadique. De ces notions est dérivée celle d’événement qui permet la communication entre
deux objets spécifiés à l’avance et permet l’échange de requêtes entre les objets de simulation.

5.1 Les sorties

Une sortie est utilisée pour rendre public un attribut (une position par exemple) d’un objet de simulation dont
la valeur a toujours un sens : quel que soit le moment ou cet attribut sera lu, la valeur lue doit avoir un sens. C’est
pourquoi l’interpolation et l’extrapolation des valeurs d’une sortie sont légitimes, même si la sémantique de la
valeur rendue publique dans la sortie ne se prête pas bien aux méthodes numériques classiques d’interpolation
ou d’extrapolation fournit par le noyau d’OpenMASK. Par conséquent, il est possible d’associer un polateur (un
objet réalisant l’extrapolation et l’interpolation) dédié à chaque sortie. Il convient de voir la déclaration d’une
sortie comme une déclaration d’interface. Alors que les méthodologies de programmation objet recommandent
de protéger les données d’un objet et de ne rendre public que ses attributs, avec OpenMASK c’est l’opposé qui
est recommandée. Un objet rend publiques certaines de ces données, et protège les méthodes qui sont utilisées
pour calculer son évolution. Pour cette raison, la création de sortie ne doit être faite que dans le constructeur de
l’objet de simulation, le noyau supposant que l’interface d’un objet est constante après sa création. De plus, cette
contrainte garantit que cette interface est totalement préservée par héritage. La construction d’une sortie nécessite
3 paramètres :

1. le type de valeurs de la sortie (c’est un paramètre template)

2. le nom de la sortie

3. (optionnel) un polateur. Si aucun polateur n’est spécifié, le polateur par défaut associé au type est utilisé.

Le polateur le plus simple est appelé polateur naïf, et est pertinent pour tout les types de données, puisqu’il ne
peut calculer que des valeurs de la file de valeur conservant l’historique de la sortie. Les autres polateurs se servent
de cet historique pour calculer les valeurs demandées.

La liste de toutes les sorties d’un objet de simulation est stockée dans une table des sorties qui est accessible
par tous les autres objets afin de permettre la découverte dynamique des propriétés d’un objet. Cette forme simple
de réflexivité est importante pour intégrer dans une même application des objets conçus pour des applications
différentes et donc avec des graphes d’héritage indépendants.

5.2 Les paramètres de contrôle

Un paramètre de contrôle est une sortie spéciale pour 2 raisons. La première, c’est que tout objet de simulation
peut tenter de changer la valeur d’un paramètre de contrôle, et la seconde est qu’un paramètre de contrôle n’est pas
référencé dans la table des sorties mais dans une table annexe, la table de paramètre de contrôle. Cependant, il est
tout a fait possible de brancher une entrée à un paramètre de contrôle.

Lorsqu’un objet autre que le propriétaire du paramètre de contrôle tente de changer la valeur de celui-ci, un
événement valué est envoyé au propriétaire. Cette événement est interprété par défaut par un auditeur d’événement
qui va remplacer la valeur du paramètre de contrôle par la nouvelle valeur. Mais il est bien-sûr possible de changer
ce comportement par défaut en surchargeant l’auditeur d’événement (voir le paragraphe 5.5).

5.3 Les entrées

Une entrée est utilisée pour établir un chemin de données entre une sortie d’un autre objet et l’objet de simu-
lation propriétaire de l’entrée. Une fois établi, ce chemin de donnée donne accès à la valeur de la sortie à laquelle
l’entrée est branchée. Il y a deux type d’entrées :

1. les entrées privées : le branchement de ces entrées aux sorties d’un autre objet peut seulement être fait à la
demande du propriétaire de l’entrée.

2. les entrées publiques : elles ont les même propriétés que les entrées privées, mais acceptent aussi des bran-
chement fait à l’initiative du propriétaire de la sortie sur laquelle elles sont branchés. Par le même mécanisme
que celui utilisé pour changer la valeur d’un paramètre de contrôle, lorsqu’une sortie prend l’initiative d’un
branchement sur une entrée publique, cela provoque l’envoi d’un événement demandant le branchement qui
est par défaut accepté par un auditeur d’événement associé à l’entrée, mais qui peut être surchargé.

5.3.1 Lecture d’une entrée

La méthode par défaut pour lire une entrée est d’utiliser la méthodeget(). Cette méthode accepte un argument
optionnel qui correspond à un retard entre la date de simulation courante et la date de la valeur renvoyée par
la méthode get. Par exemple, get(0) renverra une valeur calculée par la sortie à l’aide de son polateur et
correspondant à une valeur pour la date courante. Il est possible que cette valeur soit une valeur exacte ou une
extrapolation. De même, get(20) renverra une valeur calculée pour correspondre à la valeur de la sortie 20 ms
secondes avant la date courante. S’il est important que la valeur lue par l’entrée corresponde à une valeur produite
par le propriétaire de la sortie, il faut utiliser la méthode getLastExactValue().

En utilisant une entrée sensible, un service de plus haut niveau est fourni : la détection de nouvelles valeurs
produites sur la sortie à laquelle l’entrée est branchée. Il devient ainsi possible de savoir si une nouvelle valeur a
été produite sans la lire et la manipuler (pour la comparer à l’ancienne valeur lue par exemple). En utilisant une
entrée sensible signalante, une évolution de l’entrée sensible, un événement est envoyé au propriétaire de l’entrée
lorsque la valeur de la sortie change.

5.4 Les signaux

Un signal est une information émise par un objet (ou par le noyau pour les signaux systèmes) dans l’environ-
nement. Les signaux sont différenciés entre eux par des identifiants (la signature du signal) et il est possible de leur

associer une valeur.

Les objets voulant être informé de l’émission d’un signal donné doivent s’enregistrer pour recevoir le signal.
Si l’objet ne s’intéresse qu’aux signaux émis par un objet particulier, l’enregistrement à lieu auprès de cet objet,
sinon il faut s’enregistrer auprès du contrôleur de la simulation. Lorsqu’un signal est émis par un objet, celui est
transformé en événement envoyé à tous ceux qui ont manifesté de l’intérêt dans un signal avec la même signature.
Par défaut la signature de l’événement envoyé est celle du signal émis, mais il est possible de donner un prototype
d’événement à envoyer lors de l’enregistrement afin de spécifier la signature de l’événement reçu en réaction au
signal émis.

Ainsi, en utilisant des signaux et des entrées sensibles signalante, il est possible d’utiliser un mode de program-
mation réactif pour faire communiquer les objets d’OpenMASK.

5.5 Événements, événements valués et auditeurs d’événement

Un événement est une structure de donnée composée de l’émetteur, le destinataire, la signature et la date
d’émission de l’événement. Un événement valué est un événement auquel un champ de donnée supplémentaire (de
n’importe quel type compatible avec OpenMASK) a été ajouté permettant à un événement de porter une valeur.

Le traitement des événements est fait au niveau de l’object handle (see 4.1) qui est la structure de données
permettant au contrôleur de la simulation de manipuler des objets de simulation. Les événements reçus sont triés à
leur arrivée selon leur date d’émission puis leur ordre d’arrivée.

Le fait pour un objet de simulation de réagir d’une façon prédéterminée à un certain nombre d’événements
peut faire partie de son interface, et doit donc être préservé à travers l’héritage et être visible par réflection. Les
auditeurs d’événements sont des objets remplissant ce rôle. Ils encapsulent des fragments de code qui sont associés
à certains événements et qui sont automatiquement appelés lorsque ces événements sont reçus par l’objet. En tant
qu’éléments de l’interface d’un objet ils doivent être construits dans le constructeur de l’objet de simulation.

6 Distribution et Parallélisme

Tout dans la conception d’OpenMASK a été fait pour permettre une distribution aisé des calculs, puisque
toutes les interaction entre les objets on lieu à travers le noyau ou en utilisant des objets construit par le noyau. En
particulier, les objets de simulation n’ont pas à être retouchés pour pouvoir être utiliser par un contrôleur distribué,
puisque tous les problèmes d’intégrité des données sont à gérer au niveau des outils fournit par le contrôleur.

En supposant que le nombre d’objets de simulation à distribuer soit au moins d’une ordre de grandeur supérieur
au nombre de processeurs disponibles, l’algorithme d’équilibrage de charge le plus simple (round robin) produit
des résultats tout à fait acceptables.

C’est pourquoi les problèmes à résoudre lors de la distribution et de la parallélisation sont la cohérence de
l’environnement virtuel et l’intégrité des données. L’intégrité des données est un problème devant être résolu par
le contrôleur parallèle et la cohérence par le contrôleur distribué.

6.1 Le contrôleur parallèle

Le contrôleur parallèle (utile pour les machines multiprocesseur) est une adaptation directe du contrôleur
classique. Ce contrôleur ordonnance les objets de simulation sur un des processeurs 4, en utilisant une stratégie
d’allocation équilibrant le nombre d’objets ordonnancé sur chaque processeur. Puisque les sortie gèrent une file
d’historique des valeurs, l’exclusion mutuelle entre l’écriture d’une nouvelle donnée et la lecture des valeurs de la
sortie pour garantir l’intégrité des données est réglée de manière triviale.

Les résultats obtenus avec le contrôleur parallèle sont très dépendant de l’utilisation de la mémoire dynamique
utilisée par l’application et ces différents modules, puisque l’allocation est un point de contention au niveau du sys-
tème. Les résultats présenté dans le tableau 1, un cinquième des objets utilisent fortement l’allocation dynamique

4. En utilisant un thread par processeur

pour leur structures de données internes. L’application test est ici une simulation urbaine simulant 30 véhicules,
avec leur simulation mécanique et comportementale associée. 5 objets de simulation sont utilisés pour chaque vé-
hicule, et la simulation complète utilise 187 objets de simulation une fois l’animation du décor (en particulier des
feux de circulation) prise en compte.

nombre d’activités temps d’exécution en s accélération
1 23,378 1
2 13,387 1,75
3 10,605 2,20
4 8,941 2,61

TAB. 1 – Accélération obtenue sur une machine SMP à 4 processeurs

6.2 Le contrôleur distribué

Les principes utilisés pour le contrôleur distribué ont déjà été présenté dans [SATR98, TD00b, Mar01] et
peuvent être résumé en 2 points :

1. Chaque fois qu’un objet de simulation a besoin d’accéder aux données publiques d’un objet simulé sur un
autre nœud, une copie locale appelée miroir est crée. Elle est alors synchronisée à chaque pas de temps avec
la version originale appelé référentiel.

2. Le cohérence et la synchronisation de tous les nœuds est réalisée à l’aide d’un algorithme original qui permet
la parallélisation du calcul d’un pas de simulation et le transfert sur le réseau des informations de mises à
jour. Un paramètre de cet algorithme mettant en œuvre une cohérence relâchée contrainte, la latence, permet
de borner le nombre de pas de simulation qu’un nœud peut faire sans avoir reçu des informations de mise à
jour suffisamment récentes.

nombre de nœuds temps d’exécution (ms) accélération
1 91 882 1
2 64 500 1.42
3 51 800 1.77
4 46 000 1.99
5 40 000 2.29

TAB. 2 – Accélération obtenu en utilisant le contrôleur distribué au-dessus de PVM

7 Conclusion

Dans cet article, nous avons présenté un survol d’OpenMASK, une plate-forme pour la conception modu-
laire d’applications d’animation et de simulation pouvant utiliser des noyaux d’exécution parallèle ou distribué,
disponible en téléchargement. Cette plate-forme pour les applications de réalité virtuelle cherche à combiner abs-
traction, performance, distribution et réutilisation de composants logiciels dans le domaine de la réalité virtuelle,
sans limiter le domaine d’application.

Nous croyons qu’OpenMASK représente un compromis intéressant, puisqu’il est déjà utilisé comme plate-
forme logicielle pour différents programme de recherche. Ces programmes incluent des applications de réalité
virtuelle coopérative, d’interaction utilisateur en environnement virtuel, de retour haptique, de simulation compor-
tementale, de capture de mouvement et de contrôle de mouvement. OpenMASK est en particulier utilisé au sein
de Perf-RV.

Références

[BC94] W. Bricken and G. Coco. The VEOS project. Presence, 3(2):111–129, 1994.

[BWA96] J. Barrus, R. Waters, and D. Anderson. Locales and beacons: Precise and efficient support for large
multi-user virtual environments. Proceedings of VRAIS’96, Santa Clara CA, pages 204–213, 1996.

[CJD00] C. Greenhalg, J. Purbrick, and D. Snowdon. Inside mASSIVE-3: Flexible support for data consistency
and world structuring. In Collaborative Virtual Environments, number 1-58113-303-0, pages 139–
146. ACM, september 2000.

[CMBZ00] Michael Capps, Don McGregor, Don Brutzman, and Michael Zyda. Projects in VR: NPSNET-V:
A new beginning for dynamically extensible virtual environments. IEEE Computer Graphics and
Applications, 20(5):12–15, September/October 2000.

[GB95] C. Greenhalgh and S. Benford. MASSIVE: A distributed virtual reality system incorporating spatial
trading. In Proceedings of the 15th International Conference on Distributed Computing Systems
(ICDCS’95), pages 27–35, Los Alamitos, CA, USA, May30 June–2 1995. IEEE Computer Society
Press.

[JBBCN98] C. Just, A. Bierbaum, A. Baker, and C. Cruz-Neira. Vr juggler: A framework for virtual reality
development. In Proceedings of the 2nd International Immersive Projection Technology Workshop,
1998.

[KYN+00] K. Park, Y. Cho, N. Krishnaprasad, C. Scharver, M. Lewis, J. Leigh, and A. Johnson. Cavernsoft g2:
A toolkit for high performance tele-immersive collaboration. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology 2000, pages pp. 8–15, Oct 22-25 2000.

[LHMM97] Rodger Lea, Yasuaki Honda, Kouichi Matsuda, and Satoru Matsuda. Community place: Architecture
and performance. In Rikk Carey and Paul Strauss, editors, VRML 97: Second Symposium on the
Virtual Reality Modeling Language, New York City, NY, February 1997. ACM SIGGRAPH / ACM
SIGCOMM, ACM Press. ISBN 0-89791-886-x.

[Mar01] David Margery. Environnement logiciel temps-réel distribué pour la simulation sur réseau de PC.
PhD thesis, Université de Rennes 1, 2001.

[MDM+95] M. R. Macedonia, D. P. Brutzmann, M. J. Zyda, D. R. Pratt, P. T. Barham, J. Falby, and J. Locke.
NPSNET: A multi-player 3D virtual environment over the internet. In Pat Hanrahan and Jim Winget,
editors, 1995 Symposium on Interactive 3D Graphics, pages 93–94. ACM SIGGRAPH, apr 1995.
ISBN 0-89791-736-7.

[MJM00] M. Oliveira, J. Crowcroft, and M. Slater. Componant framework infrstructure for virtual environ-
ments. In Collaborative Virtual Environments, number 1-58113-303-0, pages 139–146. ACM, sep-
tember 2000.

[RJM+99] R. Hubbold, J. Cook, M. Keates, S. Gibson, T. Howard, A. Murta, A. West, and S. Pettifer.
Gnu/maverik a micro-kernel for large-scale virtual environments. In VRST99, December 1999.

[SATR98] S. Donikian, A. Chauffaut, T. Duval, and R. Kulpa. Gasp: from modular programming to distributed
execution. In Computer Animation’98, IEEE, Philadelphia, USA, pages 79–87, june 1998.

[SG93] C. Shaw and M. Green. The MR toolkit peers package and experiment. Proceedings of VRAIS’93,
pages 463–469, 1993.

[SJJA00] S. Pettifer, J. Cook, J. Marsh, and A. West. Deva3: Architecture for a large-scale distributed virtual
reality system. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology
2000, Oct 22-25 2000.

[TD00a] T. Duval and D. Margery. Building objects and interactors for collaborative interactions with
gasp. In Proceedings of the Third International Conference on Collaborative Virtual Environments
(CVE’2000), pages 129–138. ACM, September 2000.

[TD00b] T. Duval and D. Margery. Using gasp for collaborative interactions within 3d virtual worlds. In
Proceedings of the Second International Conference on Virtual Worlds (VW’2000), Paris, France,
july 2000. Springer LNCS/AI.

[Tra99] Henrik Tramberend. Avango: A distributed virtual reality framework. In Proc. Of the IEEE Virtual
Reality 1999. IEEE, march 1999.

[Wat00] Kent Watsen. Bamboo: A platform and language independant mechanism enabling dynamically
reconfigurable applications. présenté au 4th Annual Workshop on Distributed System Aspects of
Sharing a Virtual Reality, September 2000.

[WGS95] Q. Wang, M. Green, and C. Shaw. EM - an environment manager for building networked virtual
environments. Proceedings of VRAIS’95, 1995.

[WHH+92] A. West, T. Howard, R. Hubbold, A. Murta, D. Snowdon, and D. Butler. AVIARY - A generic virtual
reality interface for real applications. Proceedings of Virtual Reality Systems, London, 1992.

Arr ondi d’ar êtes:
de la topologieà la

� �
-continuit é

Franck Ledoux � , Laurent Fuchs �
� LaMI, UMR 8042,523PlacedesTerrasses,91000Évry Cedex

� IRCOM-SIC,UMR 6615,SP2MI,86962FuturoscopeCedex
fledoux@lami.univ-evry.fr, fuchs@sic.sp2mi.univ-poitiers.fr

Résuḿe : L’opération d’arrondi d’arêtesdansdesobjetssurfaciquesconsisteà remplacerdesarêtesvivespar
dessurfacesaux formesarrondies.Nousen proposonsune version géńerale qui permetde traiter un nombre
quelconqued’arêtesdansun objet avecdesarrondis différentspour chaquearête et l’ éclatementou non des
sommetsincidents.Cetteapprocheestrenduepossiblepar l’utilisation d’unestructure topologiquesous-jacente
qui permetd’isoler et d’identifier le traitement̀a effectuerau niveaudessommetsincidentsauxarêtesà arrondir.
Unefois la topologie du nouvelobjetdétermińe,nouslui associonsunegéoḿetrie à l’aide desurfacesdeBézier
triangulaireset quadrangulaires.Pour touteslesconfigurations,la ��� -continuit́eestassuŕeeentre cesdifférentes
surfacesenprêtantuneattentiontouteparticulièreauxrégionsqui remplacentlessommetsincidentsauxarêtesà
arrondir.

Mots-clés: Arrondi d’arêtes,topologie,plongementlinéaireet surfacique,��� -continuit́e,surfacesdeBézier.

1 Intr oduction

En mod́elisationgéoḿetrique,L’arrondi d’arêtesconsistèa remplacerlesarêtesvivesd’un objetpardessurfaces
planesou arrondiespour obtenirun objet plus lisse.Cetteopérationest fréquemmentutiliséecar la plupartdes
objetsdela vie couranteposs̀edentdesformesarrondiespourdesraisonsd’esth́etisme,desécurit́e ou deproćed́e
defabrication.Bien quecetteopérationsoit largement́etudíee[VMV94], il n’existeà notreconnaissanceaucune
solutionréellementgéńeraleausensquel’on puissearrondirn’importequellearêted’un objetavecdesparam̀etres
propres̀achaquearête.Parexemple,consid́eronsl’objet dela figure1 �	� qui esttypiquedesdifficultésrencontŕees
lors de l’arrondi d’arêtes.Nousn’arrondissonsqueles arêtesen traits grasavec desarrondisplus ou moinsim-
portants.En remplaçant cesarêtespar desfacesplanes,nousobtenonsl’objet de la figure 1 �	
 . Si maintenant,
nousintroduisonsdessurfacesarrondies,nousobtenonsl’objet dela figure1 ��� . Danslesdeuxcas,le problème
majeurestle traitement̀a effectuersur lessommetsincidentsauxarêtesarrondies.Cetraitementestconditionńe
parla topologiedel’objet encessommets.

PSfragreplacements

�
 �
FIG. 1 – Arrondi dequatrearêtesd’un objetgéoḿetrique.

L’importancedela topologieauxextrémit́esdesarêtesjustifiel’utilisation d’un mod̀elegéoḿetriquetenantcompte
de la topologiede l’objet. Danscecadre,un objet géoḿetriqueestrepŕesent́e enmettanten évidencesatopolo-
gie, c’est-̀a-diresasubdivision en sommets,arêtes,faces,etc.La géoḿetrie (courbeset surfaces)d’un objet est
alorsobtenueenassociantunegéoḿetrieà chaquéelémentdela subdivision.On associeparexempleunecourbe
à unearêteet unesurfaceà uneface.Cetteassociationestappeĺeeun plongement. Cetterepŕesentationdesob-
jets permetde découperles opérationsen deuxparties,l’une topologiquequi modifie la structuredesobjets,et
l’autregéoḿetriquequi modifieleursplongements.Cedécoupageassureentreautresd’obtenirdesdéfinitionsplus
géńeralesdesopérationsde transformation[Elt94] et de réduireles tempsde calcul et les risquesd’erreurs.En

effet, la présenced’unestructuretopologiquepermetdeconstruiredesobjetscomplexesconstitúesdenombreuses
primitivessimplestoutenconservantunacc̀esefficaceàchacunedecesprimitives.

Dansle casdesfigures1 �	� et1 �	
 , nousparlonsd’objetsfilaires.LestravauxdeH. ELTER et L. FUCHS [EF94,
Elt94] définissentuneopérationd’arrondid’arêtessurcetyped’objets,entenantcomptedela topologie.Ennous
basantsur lesalgorithmesdévelopṕesdansleurstravaux,nousavonsétudíe lesprincipesgéńerauxdel’opération
d’arrondi d’arêtesquenousavonsensuitegéńeraliśeevia unedéfinition plus abstraite[Led02]. Nousobtenons
uneplus grandesouplessedansle choix desparam̀etres,uneextensionaux objetsvolumiqueset la déclinaison
deplusieursversionsd’arrondi.Le travail d’abstractionquenousavonseffectúe permetdenesesoucierd’aucun
détail d’implantation,ce qui facilite la géńeralisationdesalgorithmes.Nousprésentonsle résultatde ce travail
dansla premìeresectiondecetarticleenintroduisantl’opérationd’arrondid’arêtesd’objetsfilaires.

Dansla secondepartiedecetarticle,nousplongeonslesfacesintroduiteslorsdel’opérationd’arrondipardessur-
facesdeBézier, cequi nouspermetd’obtenirdesrésultatstelsquecelui dela figure1 ��� . Nostravauxs’appuient
sur ceuxde T. V ÁRADY et A. L. ROCKWOOD [VR95, VR97] qui fournissentuneopérationd’arrondi d’arêtes
avecéclatementdessommets.L’introductiondesurfacesparaḿetriquesamèneà seposerla questiondela gestion
de la continuit́e, tout en conservant la géńeralit́e de l’approcheavec plongementlinéaire.En l’occurrence,nous
proposonsuneméthodegéńeraled’arrondid’arêtesavecplongementsurfaciqueassurantla ��� -continuit́e[Far02].
La partie topologiquede cetteopérationest similaire à celle de l’opérationd’arrondi d’arêtessur les objetsfi-
laires.Quantà la partiegéoḿetrique,elle s’inscrit parmi les méthodesde réseaux[Fjä86, Chi88, SN91,EF94]
qui consistent̀a définir dessurfacesen assurantle degré de continuit́e nécessaireentreelles.L’approchede T.
V ÁRADY et A. L. ROCKWOOD [VR95, VR97] fournit la ��� -continuit́e maisne traitequ’un seultyped’arrondi
en introduisantunegestionintéressantedessurfacesqui remplacentlessommetsincidentsauxarêtesà arrondir.
Nousétendonscetteapprochepourobteniruneopérationgéńerale.

L’implantationde l’arrondi d’arêtesquenousproposonsesteffectúeeen consid́erantle mod̀ele topologiquedes
n-G-cartes[Lie91]. Le mod̀ele de plongementestun simpleplongementlinéairequi donneunerepŕesentation
“filaire” desobjets,ouunplongementsurfaciqueutilisantlessurfacesdeBézier. Cetteimplantationestréaliśeeau
seindu modeleurMoka [Vid01].

Danscetarticle,nousneprésentonsqu’intuitivementnotreméthoded’arrondid’arêtes.Le lecteurintéresśepourra
toutefoisseréférerà [Led02] où l’ensembledesdétailstechniquessontdévelopṕes.

2 Arr ondi avecplongementlinéaire

Nousproposonsuneméthodelocaled’arrondi d’arêtespermettant̀a l’utilisateur de sélectionnerles arêtesqu’il
veutarrondirdansun objet, la façon dont il veut lesarrondiret s’il veutaussiarrondirlessommetsincidents.La
difficulté inhérenteà cetyped’approchessesituedansle traitementdessommetsincidentsauxarêtesà arrondir.
Il faut pouvoir définir de façon syst́ematique,homog̀eneet pertinentele traitementà effectueren tout sommet,
et ce quelquesoit le nombred’arêtesincidenteset les param̀etresd’arrondischoisis.La priseen comptede la
topologiede l’objet géoḿetriqueau sein du mod̀ele de repŕesentationest donc primordiale.Pourtant,à notre
connaissance,seulsles travaux de H. ELTER et L. FUCHS s’appuientréellementsur la présenced’un mod̀ele
topologique[EL94, Elt94]. C’estsurcestravauxquesontbaśeslesrésultatsprésent́esdanscettesection.

CommeH. ELTER et L. FUCHS, nousséparonsaumaximumlestraitementsgéoḿetriqueset topologiques,cequi
favorisela géńeralit́e de notreapproche.Nouscommenc¸onscettesectionen présentantintuitivementle résultat
attendu.Le point importantde la constructioneffectúeeestle traitementtopologiqueauxsommetsincidentsaux
arêtesà arrondir. Nousintroduisonsensuitelestraitementstopologiquesetgéoḿetriquesréellementeffectúes.

2.1 Construction intuiti ve

Arrondir unearête isoléedansun objet polyédriqueestunetâcherelativementaiśee à conditionde traiter avec
attentionsessommetsincidents.Par contre,leschosessecompliquentdèsquel’on arronditplusieursarêtes.De
manìeregéńerale,le problèmepośe revient à déterminerla topologied’une facequi remplaceraun sommetin-
cidentà
 arêtesparmi lesquelles� arêtessontarrondies(����
). Il faut ajouterà celaqueles arêtesne sont
pastoutesarrondiesde la mêmefaçon et que le sommetlui-mêmepeut êtrearrondi.Ce problèmetrèsgéńeral
n’esthabituellementquepartiellementrésolu,deshypoth̀eseśetantfaitespourneconsid́ererquecertainesconfi-

gurations[Fjä86, Chi88, SN91, VR97]. L’approchedeH. ELTER et L. FUCHS fournit unesolutionplusgéńerale
car ils permettentd’arrondir autantd’arêtesquel’on souhaite,maissouscertainesconditionstout de même.En
l’occurrence,sur la figure2 �	� , lesarêtesdecoupe��� � et ��� � qui définissentl’influencedel’arrondi del’ arêteà
arrondir � � sursesfacesincidentesdoiventêtreparall̀elesà l’arête � � . Pournotrepart,nouslevonscettecontrainte
enpermettantparexempleà l’arête ����� denepasêtreparall̀eleà l’arête ��� . Deplus,nousajoutonsdesparam̀etres
permettantd’arrondirlessommetsincidentsauxarêtesàarrondir. Onparled’éclatementdesommet. Pourunsom-
met incident à unearête à arrondir, on définit pour chacunede sesarêtesincidentes,un point d’éclatementqui
caract́erisel’ éclatementdu sommetinitial relativementà cettearête.Dansle casdu sommet� , si l’on n’arrondis-
saitpassesarêtesincidentesetquel’on disposaitd’un pointd’éclatementpourchacuned’elles,le sommet� serait
remplaćeparunefacetriangulairedont lessommetsseraientlespointsd’éclatement.Surla figure2 �	� , un point
d’éclatementestassocíe ausommet� relativement̀a l’arête � � . Le sommet� estappeĺeun sommet̀a arrondir.

arete de coupe
arete à arrondir

point d’éclatement

arete de liaison

arete de profil

PSfragreplacements

� � �

��

�

� � �

�

� �

� � ��

�
� �

�

��

�

!
"$#&%

')(' ('*('�+ ' +

'�,

' ,

'�,

'�-.('/-0(
'�-1+

'�-1+

'�- ,

'�- , '�- ,

'�23('�23(

'�23(

'�2 +'�2 +

'�2�,

'�2�,

FIG. 2 – Déterminationdela zoned’influenceenun sommet̀a arrondir.

Enunsommet̀aarrondir, plusieursarrondisd’arêtespeuventserencontreret la topologiedela facequi remplacera
cesommetestalorssousl’influenceconjugúeedeplusieursarrondis.La démarchepréconiśeeestdedéterminer
pourchaquearêtelaplusgrandezonepourlaquellenousmâıtrisonscompl̀etementsoncomportement.Consid́erons
la figure2 �	� qui repŕesenteun cubedontnousvoulonsarrondirlesarêtes� � , ��4 et ��� . L’arête ��� estarrondiede
façon nonhomog̀eneet le sommet� estéclat́e dansla directionde ��� .
Commenc¸onsparl’arête � � etdéterminonsla plusgrandezonepourlaquellenoussavonsdéfinir sonarrondi(voir
figure 2 �	
). Si l’arête � � avait ét́e la seuleà arrondir, nousaurionscouṕe le cubepar unesurfacereposantsur
les arêtesde coupe ��� � et ��� � . De façon analogue,commenc¸onsla coupede l’arête � � par l’extrémit́e oppośee
à � , commel’indique la flèche.Nousmâıtrisonscette“coupe” tant que l’on ne rencontrepasun autrearrondi
agissantsurunemêmefacequel’arrondi de � � . En l’occurrence,l’arrondi de � � rencontrecelui de ��4 puiscelui
de ��� . L’influencede la zoned’arrondi de � � sur la facecontenantl’arête ��� � s’arrêtedoncau point � qui est
l’intersectiondesarêtes��� � et ����4 (voir figure2 �	
). Nousfermonsla surfaced’arrondiassocíeeà l’arête � � en
reliant le point � aupoint
 qui estsur l’arête ��� � (voir figure2 ���). Cepoint estobtenueneffectuantun report
del’arête ��� � . Il tientainsicomptedela prédominancedel’arrondi de � 4 .
Intéressons-nousmaintenant̀a l’arrondi de l’arête ��� . Au voisinagede � , il estsousl’influence desarrondisde� � et ��4 et de l’ éclatementde � dansla directionde ��� . Afin de déterminerla zoned’influenceau sommet,on
compareles positionsdespoints 5 , 6 et 7 . Dansle casprésent,le point le plus éloigńe de � est le point 5
qui caract́erisel’influencedel’ éclatementde � (voir figure2 ���). Pourconstruirela surfaced’arrondiassocíeeà
l’arête � � , on posedonclespoints � et 8 commel’intersectionde ��� � et dela translat́eede ��� � d’unepart,et de��� � et de la translat́eede �/� 4 d’autrepart.Enfin, on proc̀edede mêmepour l’arête � 4 pourobtenir le résultatde
la figure2 �	9 . On obtientau final unesurfaceà cinq côtéssur la figure 2 �	: . Cettesurfaceestappeĺeela zone
d’influencemaximaleau sommetS. Les arêtes ; ��<=
?> , ; �@<=8A> et ; �?<B9C> sontappeĺeesdesarêtesde profil et les

arêtes;
D<B�E> et ; 8F<B9C> sontappeĺesdesarêtesdeliaison.

La constructiongéoḿetriquequenousvenonsd’effectuersesyst́ematiseà toutesles configurationspossibles.Il
suffit pourceladeseplacerdansuncadretopologiqueetd’effectuerquelquescalculssimplesd’intersectionsetde
reportsd’arêtes.

2.2 Construction pratique

Baśesurlanotiondezoned’influencemaximale,notrealgorithmesedécomposeendeuxétapes: lapremìere,pure-
menttopologique,consistèacréerunetopologiegéńerique; la secondéetape,̀ala fois topologiqueetgéoḿetrique,
supprimecertainesarêtesdela topologiegéńeriquetoutencalculantle plongementdesommets.Cedécoupagepri-
vil égiela topologieet permetd’obteniruneopérationextensibleautraitementd’objetsdedimensionssuṕerieures
(i.e.desvolumes).

2.2.1 Topologiegénérique

PSfragreplacements

� �
 �

�

FIG. 3 – Chanfreinaged’un sommetet d’unearête.

Consid́eronsunsommet̀aarrondir � incidentà
 arêtesdont � sontarrondies(�G�H
). Selonlapositiondesarêtes
decoupeet l’amplitudedel’ éclatementde � , la faceà introduireà la placede � peutavoir entre� et �&IJ
 côtés.
Dansle casminimal,seuleslesarêtesdeprofil sontintroduites.Dansle casmaximal,lesarêtesdeprofil et toutes
lesarêtesdeliaisonsontprésentes.La démarchepréconiśeeparH. ELTER et L. FUCHS et quenousadoptonsici,
estdecréertouteslesarêtesdeliaisonpossiblespuisdesupprimercellesqui sontinutiles.La topologiecontenant
touteslesarêtesdeprofil etdeliaisonestappeĺeetopologiegéńerique. L’obtentiondecettetopologieestaiśeedès
lors quel’on disposede l’opérationdechanfreinagequi estuneopérationpurementtopologique[Elt94, Led02].
Étantdonńeeunesubdivision � de dimension
 , chanfreinerunede sescellules,notée � , consisteà remplacer
cettecelluleparunecellulededimension
 dont le nombredecellulesdedimension
J�LK la bordantestégalau
nombredecellulesdedimension
 incidentes̀a � . Parexemple,surla figure3, le sommet� incidentà trois faces
estremplaćeparunefaceà trois côtésen
 , et l’arête � incidenteà deuxfacesestremplaćeeparunefaceà deux
côtésen � .

PSfragreplacements

�
 �
� �

FIG. 4 – Obtentiondela topologiegéńerique.

À l’aide du chanfreinage,la topologiegéńeriques’obtientsimplementen chanfreinantles arêtesà arrondirpuis
les sommetincidentsà cesarêtes.Ainsi, sur la figure 4, nousarrondissonstrois arêtesparmi cinq. Partantde la
configuration� , nouschanfreinonsles trois arêtesdésigńespour obtenir la configuration
 , à partir de laquelle
nouschanfreinonsle sommet� pour obtenir la configuration� qui correspond̀a la topologiegéńerique.Cette
dernìerecomportelesarêtesdeprofil nécessairesainsiquetouteslesarêtesdeliaisonpossibles.

2.2.2 Topologieeffectiveet plongement

Unefois la topologiegéńeriquecréée,il fautencoredéterminerquellessontlesarêtesdeliaisonà supprimerpour
obtenirla topologieeffectiveapr̀esl’arrondi d’uneouplusieursarêtes.

PSfragreplacements

� �

�

!

!

! "

"

" %

%

%

�NM
' M

' M

' M '�- M

'�- M

'�- M ' MPO (

' MQO (

' MPO ('�2 MQO (

'�2 MPO (

'�2 MPO (

FIG. 5 – Présenceou nond’unearêtedeliaison.

Déterminersi unearêtedeliaisondoit êtreconserv́eeou nondépenddesarrondisd’arêtesayantuneinfluencesur
la face :NR contenantl’arêteenquestion.On distinguealorstrois caspossiblesrepŕesent́essur la figure5. L’arête
deliaisonpeut:
– êtredistinctedesarêtesdecoupe(cas�),
– êtreportéeparunearêtedecoupe(cas
),
– nepasexister(cas �).
Prenonsle casdel’arête ��R . Onrécup̀erele point le pluséloigńede � entrel’ éclatementdusommetrelativement̀a��R (7) et lespointsd’intersectionde ��R aveclesdeuxarêtesdecoupesusceptiblesdel’intersecter(5 et 6). C’est
cepoint, noté 5SR pour l’arête ��R , qui délimite la facequi remplacele sommetle long de ��R . Unefois le point 5SR
défini, deuxcaspeuventseprésenter:
– le point 5 R estdétermińeparl’arêtedecoupecontenuesurla face : R . L’extrémit́edel’arêtedeprofil relative à� R et appartenant̀a : R estalorsl’intersectionde ��� R et de ��� RPT � . C’estle casdel’arête � R dansle cas � .
– le point 5 R estdétermińe par l’ éclatementdesommetrelatif à � R ou par l’autre arêtedecoupeintersectant� R .

L’extrémit́e de l’arêtede profil relative à � R et appartenant̀a : R estalors l’intersectionde ��� R et du reportde
l’arête ��� RPT � aupoint 5 R . C’estle casdel’arête � R danslescas� et
 .

L’existenced’une arêtede profil sur la face :UR dépenddoncseulementde la comparaisondespositionsde trois
pointssur les arêtes ��R et ��RQT � . Si jamaisles deuxpointsles plus éloigńessontproduitspar les arêtesde coupe
contenuesdans:NR , l’arêtedeliaisondela face:NR n’existepas(voir figure5 ���). Dansle cascontraire,elle existe
(voir figures5 �	� et 5 �	
). En traitantde cettefaçon tousles sommetsincidentsaux arêtesà arrondir, tousles
nouveauxsommetssontdirectementcalcuĺescommeétantdesintersectionsentrearêtesde coupe(report́eesou
non).

2.3 Exemples

Nous achevons cettesectionen présentantquelquesexemplesd’arrondi d’arêtessur une configurationusuelle
forméedequatrecubes(voir figure6). La particularit́edecetteconfigurationestl’alternanceentrearêtesconcaves
et convexesau sommetcommunaux quatrecubes.Ce sommetest incident à six arêtesquel’on va arrondirde
plusieursfaçons.Dansles deux premìereslignes,nousarrondissonsune arête puis deux,puis trois, . . . , pour
finalementarrondirlessix arêtesincidentesausommetcommunauxquatrecubes.la secondeligne s’ach̀eveavec
l’arrondidetouteslesarêtesdel’objet surfaciquedeuxettroisfois.Ladernìereligneprésentedesobjetslég̀erement
différents.À gauche,le cubedudessusaét́edéformé,cequi donneapr̀estroisarrondissuccessifsl’objet justeàsa
droite.Lesdeuxderniersobjetsillustrentl’arrondi d’uneconfigurationdifférentedesquatrecubes.

PSfragreplacements PSfragreplacements PSfragreplacements PSfragreplacements

PSfragreplacements PSfragreplacements PSfragreplacements PSfragreplacements

PSfragreplacements PSfragreplacements PSfragreplacements PSfragreplacements

FIG. 6 – Différentsarrondispossiblesd’uneconfigurationclassiquedequatrecubes.

3 Arr ondi avecplongementsurfacique

Danscettesection,nousprésentonsintuitivementnotreméthoded’arrondid’arêtesavecdescarreauxdesurfaces,
enmettantenavantsescaract́eristiqueset lesdifficultésàprendreencompte.Decefait, nousnerentronspasdans
desdétailstechniquesqui sortentdu cadredecetarticle.

3.1 Définition d’un arr ondi général

L’aspecttopologiquede l’arrondi avecplongementsurfaciqueestidentiqueà celui de l’arrondi avecplongement
linéaire.Seulle traitementdela géoḿetriechangeenplongeantdésormaisunearêteparunecourbedeBézieretune
faceparuncarreausurfaciquedeBézier. La difficultéestmaintenantdegérerla continuit́eentrelessurfaces.Nous
nousappuyonssur les travauxde T. V ÁRADY et A. L. ROCKWOOD [VR95, VR97] qui proposentuneméthode
d’arrondid’arêtesavec éclatementdessommets.Cetteméthodeintroduit dessurfacesdeBézierquadrangulaires
tout en assurantla ��� -continuit́e interne1. Cependant,elle ne fonctionneque si toutesles arêtesincidentesen
un sommetsont arrondieset que toutesles arêtesde liaison de la topologiegéńeriquesont conserv́ees.Nous
géńeralisonscetteapprochèa touteslesconfigurationspossiblesenunsommet.

arete de liaison

arete de profil

point de base

courbe de profil

courbe IB

courbe de subdivision
courbe de liaison

PSfragreplacements

�

K KKWV
VV

FIG. 7 – Associationd’unegéoḿetrie à unetopologiegéńerique.

Toutd’abord,regardonsle castraitéparT. V ÁRADY etA. L. ROCKWOOD et faisonsla correspondanceavecnotre
approchetopologique.Consid́eronsla figure7 où les trois arêtesincidentesausommetd’un cubesontarrondies
avecprédominancedel’ éclatementdecesommet.En � , la faceremplaçantcesommetestdetopologiegéńerique,

1C’est-̀a-direla XZY -continuit́e entretouteslessurfacesintroduiteslorsdel’arrondi.

c’est-̀a-direquetouteslesarêtesdeliaisonsontconserv́ees.En
 , estrepŕesent́eela géoḿetrieassocíeeensuivant
l’approchedeT. V ÁRADY et A. L. ROCKWOOD. Unearêtedeprofil estplonǵeeparunecourbedeprofil, et une
arêtede liaisonestplonǵeeparunecourbede liaison. Lesmilieux géoḿetrique2 decescourbessontappeĺesles
pointsdebaseet cesontlesextrémit́esdescourbesdebord, ou courbesIB. Cescourbesdécoupentla régionau
sommetendeuxrégions: la régionderetrait compośeedecarreauxderetrait (notés

V
surla figure7), et la région

intérieure qui estsubdiviséeen carreauxintérieurs (notés K sur la figure 7). La régionintérieureestelle-même
découṕeeen carreauxintérieurssuivant les courbesde subdivision. Finalement,on plongela facegrisée de la
figure7 �	� parle pavagedessurfacesgriséesdela figure7 �	
 .

Pourobteniruneopérationgéńerale,il fautpouvoir n’arrondirquecertainesarêtesavecdesparam̀etresdifférents.
Cecinousobligeà envisagerdeuxcas:
– desarêtesdeprofil sontsuppriḿees;
– desarêtesdeliaisonsontsuppriḿees.
Le premiercasimpliquel’introductiondesurfacesderetraittriangulaires.Eneffet, lorsqu’unecourbedeprofil est
suppriḿee,la régionde retrait incidenteà cettearêten’a plus quetrois côtés.Le secondcasnécessitede prêter
uneattentionparticulìereà la topologieauxpointsdebase: supprimerunearêtede liaison impliquequele point
de basequi en était le milieu va êtreà l’intersectionde deuxcourbesde profil. En fait, danspareil cas,cepoint
estincidentà six courbesau plus : deuxarêtesde coupe,deuxcourbesIB et deuxcourbesde profil. Une étude
détailléemontrequ’il existequatretopologiespossiblesenun point debase(voir figure8) : le cas � où le point
 � est incident à [courbes(aucunecourbede liaison n’a ét́e conserv́eeet il n’y a aucunerégionde retrait de
sommets); le cas
 qui estle seulcasoù l’arêtedeliaisonestconserv́ee,le point
 � estalorsincidentà [courbes;
le cas � où le point
 � estincidentà \ courbes; le cas8 où le point
 � estincidentà] courbes.

PSfragreplacements

�
 � 8

 �
 �
 �
 �

@4
 4
 4
 4
 �
@�
@�
@�

FIG. 8 – Lesdifférentestopologiesauxpointsdebase.

Quelquesoit la configurationconsid́erée,la déterminationdesdifférentescourbeset surfacesnécessitede tenir
comptede contraintesde continuit́e. En l’occurrence,il faut assurerla continuit́e entreles carreauxde surfaces
adjacentsle long d’une courbe,et entreplusieurssurfacesincidentesà un mêmesommet.La secondecondition
est la plus difficile à vérifier, en particulierau voisinagedespointsde base.C’est pourquoi,notre algorithme,
commeceluideT. V ÁRADY et A. L. ROCKWOOD, traiteprioritairementcepoint.Mêmesi l’on effectuele même
traitementqueT. V ÁRADY et A. L. ROCKWOOD dansle cas
 , le découpagedenotrealgorithmeestdifférentdu
leurpourdesraisonsdegéńeralit́e. Intuitivement,lesdifférenteśetapessont(voir figure9) :

1. construirelescourbesdeprofil etdeliaison;

2. construirelessurfacesd’arrondid’arêtesenassurantla continuit́eaveclesfacesinitialesdel’objet ;

3. créerlescourbesIB entenantcomptedela continuit́eauxpointsdebasequi sontsesextrémit́es;

4. déterminerla position du point centralet son plan tangentassocíe selonun critère de moindrescarŕes.
La positiondu point centraldépendd’un coefficient de profondeurpermettantdesarrondisplus ou moins
pointus;

5. assurerla continuit́eauvoisinagedespointsdebase
 R ;
6. assurerla continuit́e entre la région intérieureet les régionsde retrait par l’introduction d’une fonction

communededérivéetransversale[VR95] le longdechaquecourbelesséparant;

7. construirelesrégionsderetraitensepréoccupantdela continuit́eaveclesfacesinitialesdel’objet ;

8. construirela région intérieure,ce qui revient à poserles courbesde subdivision en tenantcomptede la
continuit́eaupoint centralpuisà assurerla ��� -continuit́e le long descourbesdesubdivision.

Afin d’illustrer lesdifficultésrencontŕes,intéressons-nous̀a la gestiondela continuit́eauvoisinaged’un point de
base.

2C’est-̀a-direle point dela courbela séparantendeuxarcsdemêmelongueur.

PSfragreplacements

K
V ^

[

] \ _ `
FIG. 9 – Déroulementdel’arr ondid’arêtes.

3.2 Continuit é enun point de base

Pourassurerla ��� -continuit́e interneenun point debase
@R danstouslescas,il estnécessairedesatisfairedeux
critères[Pet91, YN95] : les tangentesdetouteslescourbesincidentes̀a
@R doiventêtrecoplanairesen
@R ; leurs
courburesen
@R doivent être “compatibles”.En d’autrestermes,il existe unesurfacede courbure continueau
voisinagede
@R surlaquellereposentlescourbesincidentes̀a
@R . Si le premiercritèreestfacilementvérifiable,le
seconddemandeun traitementplusévolué.T. V ÁRADY et A. L. ROCKWOOD proposentuneconstructionsimple
permettantderespectercecritèredansle cas
 delafigure8 où quatrecourbessontincidentes̀a
@R . Ils construisent
la surfacegriséedela figure10�	� , appeĺeesurfacederecouvrement, surlaquelleonfait reposerlocalementtoutes
lescourbesincidentesaupoint
@R . Cettesurfaceestconstruitèa l’aide d’un carreaudeCoons[Far02].

PSfragreplacements

�
 �

 R
@R
 R
a � a �

a 4 a 4

acb � acb4a

FIG. 10 – Surfacederecouvrement.

L’adaptationdirectedela constructiondeT. V ÁRADY et A. L. ROCKWOOD auxcas� , � et 8 dela figure8 n’est
paspossible.En effet, la surfacepośeesurla figure10�	� reposesurla courbedeliaison a qui n’existeplusdans
lescas� , � et 8 . Parexemple,dansle cas� (voir figure10�	
), lescourbesdeprofil a � et a 4 s’intersectentdirec-
tementen
 R . Nousadoptonsla méthodedeT. V ÁRADY et A. L. ROCKWOOD, nousproposonsuneconstruction
simplequi approximela régionaupoint
 R . En fait, nousposonsunesurfacederecouvrementqui approximela
positiondu point
 R et cellesdesarêtesdecoupequi lui sontincidentes.On construitainsiunesurfacetelle que
celledela figure10��� où lesarêtesadb � et adb4 sontdestranslat́esdesarêtesdeprofil a � et a 4 .
Quelquesoit la topologieau point
ER , nousdéfinissonsdonc une surfacede recouvrementsur laquellenous
récuṕeronsla courbure normalede chacunedescourbesà construire.Par exemple,consid́eronsunecourbeIB
définiecommeappartenant̀a un triangleformé desextrémit́esde la courbeIB consid́erée,c’est-̀a-diredespoints
debase,etd’un pointdel’arêteàarrondirinitiale. Surla figure11�	� , la courbeIB a estcontenuedansle triangle
forméparlespoints
 � ,
@4 et e � . Il fautquela courburede a en
 � soit compatibleaveccellesdesautrescourbes
incidentes̀a
 � . Dansle casde la figure11, le point
 � estdeconfiguration
 (voir figure8), nousconstruisons
doncunesurfacederecouvrementdontnousrécuṕeronsla courburenormalerelativementà la sectionnormalef
(voir figure11���). Nousdéduisonsla courburedela courbea parapplicationdu théor̀emedeMeusnier[Car76],
qui exprimela courburedela courbea enfonctiond’unecourburenormaledela surfacederecouvrement.Dansla
pratique,touscesdéveloppementss’accompagnentdecalculsimportantssurlescourbeset lessurfacestraitées.

PSfragreplacements

�
 �
e �

ff

 �
 �

 4
 4

a

FIG. 11 – Contraintessur lescourbesIB.

PSfragreplacements

�

PSfragreplacements

PSfragreplacements

�

PSfragreplacements

8
FIG. 12– Sommetd’un cubedanslescas� ,
 , � et 8 .

3.3 Exemples

Nouscommenc¸onscesexemplespar la figure 12 qui illustre le résultatobtenupour chacundescasparticuliers
de la figure 8. Ensuite,sur la figure 13 nousreprenonsla configurationdesquatrecubestraitéedansla section
préćedente.Nousarrondissonsunearêtepuisdeux,puistrois,. . . , pourfinalementarrondirlessix arêtesincidentes
ausommetcommunauxquatrecubes.

4 Conclusion

Nousavonsdévelopṕe uneopérationgéńeraled’arrondi d’arêtesavecun plongementfilaire ou surfacique.Pour
atteindreundegréélevédegéńeralit́e,nousavonsutiliséuneapprochetopologique,maisnousavonsaussimeńeun
travail importantd’abstractionqui nousfournit unedescriptionprécise,et indépendantedetouteimplantationdans
le casdu plongementfilaire. Cedernierpointprésentel’avantaged’autoriserunegéńeralit́e impossiblèa atteindre
avecuneapprocheprogrammatoirepragmatique.De plus,notreopérationsur lesobjetsfilairessegéńeraliseaux
dimensionssuṕerieures[Led02]. Cettegéńeralisationpermetparexempledecreuserdesgaleriesdansdesvolumes
en surmontantles problèmesde pincementqui peuvent survenir lors de l’arrondi d’arêtesen dessommets̀a la
topologiecomplexe.

L’ étudede l’arrondi avec plongementsurfaciquefournit un résultaten accordavec l’arrondi avec plongement
linéaireetassurela � � -continuit́einterne.L’opérationobtenuefournit unrésultatsatisfaisantdèslorsquel’objet et
lesparam̀etresconsid́eréssont“raisonnables”.Cependantquelquespointsméritentd’êtreaméliorés.Par exemple,
lescourbesIB tellesquenouslesposonsactuellementsontbienconstruites̀a leursextrémit́es(lespointsdebase)
maisnousne mâıtrisonsparcontrepassuffisammentle comportementen leursmilieux. À la suitede ce travail,
nousavonsacquisuneexpertisesuffisantequi vanouspermettrederemodelerplusenprofondeurnotrealgorithme
afind’enaméliorerquelquespointsetdegérerla ��� -continuit́eexterne.

Références

[Car76] M. P. Do Carmo.DifferentialGeometryof CurvesandSurfaces. Prentice-Hall,Inc., 1976.

[Chi88] H. Chiyokura.SolidModelingwith DESIGNBASE,TheoryandImplementation,1988.

[EF94] H. Elter andL. Fuchs. Topologiede l’opérationd’arrondid’arêtes. revueinternationalede CFAO et
d’infographie, 9(6) :807–829,1994.

PSfragreplacements PSfragreplacements PSfragreplacements

PSfragreplacements PSfragreplacements PSfragreplacements

FIG. 13– Arrondisd’arêtesenun sommetincidentà six arêtesavecéclatementdessommets.

[EL94] H. Elter and P. Lienhardt. Cellular complexesas structuredsemi-simplicialsets. In International
Journalof ShapeModeling, volume1, pages191–217.1994.

[Elt94] H. Elter. Étudede structures combinatoirespour la repŕesentationde complexescellulaires. PhD
thesis,Universit́eLouis-PasteurdeStrasbourg, 1994.

[Far02] G. Farin. CurvesandSurfacesfor CAGD, a practicalguide, fifth edition. MorganKaufmann,2002.

[Fjä86] P. O. Fjällström. Smoothingof polyhedralmodels. In Alok Aggarwal, editor, Proceedingsof the2nd
AnnualACM Symposiumon ComputationalGeometry, pages226–235,Yorktown Heights,NY, June
1986.ACM Press.

[Led02] F. Ledoux.Étudeetsṕecificationsformellesdel’arr ondid’objetsgéometriques. PhDthesis,Universit́e
d’Évry Val d’Essonne,2002.

[Lie91] P. Lienhardt. Topologicalmodelsfor boundaryrepresentations: a comparisonwith
 -dimensional
generalizedmaps.Computer-AidedDesign, 23(1):59–82,1991.

[Pet91] J. Peters.Smoothinterpolationof a meshof curves. ConstructiveApproximation, 7 :221–247,1991.
Winnerof SIAM StudentPaperCompetition1989.

[SN91] M. Szilvasy-Nagy. Flexible roundingoperationfor polyedra.Computer-AidedDesign, 23(9):629–633,
1991.

[Vid01] F. Vidil. Développementd’un modeleur̀abasetopologique.Technicalreport,stagededeuxìemeanńee,
enseirb,2001.

[VMV94] T. Várady, R. R. Martin, and J. Vida. A survey of blendingmethodsthat useparametricsurfaces.
Computer-aidedDesign, 26(5):341–365,1994.

[VR95] T. VáradyandA. P. Rockwood. Vertex BlendingBasedon theSetbackSplit. MathematicalMethods
for CurvesandSurfaces, pages527–542,1995.

[VR97] T. VáradyandA. P. Rockwood. Geometricconstructionfor setbackvertex blending.Computer-aided
Design, 29(6):413–425,1997.

[YN95] X. Ye and H. Nowacki. Optimal tangent-planeand curvaturecontinuousmodificationof curvesat
commonnodepoint.In DesignEngineeringTechnical Conferences, pages49–56,1995.

Partition de l’espace et hiérarchie de cartes généralisées :
application aux complexes architecturaux

David FRADIN, Daniel MENEVEAUX, Pascal LIENHARDT

Laboratoire IRCOM-SIC,Université de Poitiers, BP 30179, 86962 Futuroscope-Chasseneuil
Cedex, France

{fradin,meneveaux,lienhardt}@sic.sp2mi.univ-poitiers.fr

Résumé : La modélisation d’environnements complexes nécessite de traiter un nombre important d’informations
géométriques, topologiques et photométriques. Le traitement de ces informations implique une gestion rigoureuse
des diverses structures de données et de la mémoire. Le travail présenté dans cet article concerne la modélisation
géométrique à base topologique de bâtiments composés d’un grand nombre de pièces meublées. Nous décrivons
une structure topologique correspondant à une extension des cartes généralisées, permettant de représenter à la
fois une hiérarchie de niveaux de détails et des partitions multiples pour un même bâtiment. Cette structure est
une optimisation d’un modèle général reposant sur l’étiquetage de cellules. Elle définit le noyau d’un modeleur
géométrique à base topologique spécialisé dans la construction de bâtiments complexes. Mais elle est essentielle-
ment destinée à la visualisation et à la simulation d’éclairage de bâtiments structurés. En effet, à plus long terme,
notre objectif est d’exploiter les propriétés de cette structure topologique pour la visualisation de bâtiments et les
calculs de visibilité.

Mots-clés : Complexes architecturaux, cartes généralisées, niveaux de détails, partitions multiples, hiérarchie.

1 Introduction

Le domaine de la modélisation géométrique propose des outils permettant de définir des objets à l’aide d’opéra-
tions élémentaires. De nombreuses structures dites à base topologique ont été proposées en modélisation par les
bords1 (cf. par exemple [BAU72], [WEI85], [BRI89], [LIE89]). Elles permettent de représenter des subdivisions de
l’espace en cellules (sommets, arêtes, faces, volumes) liées entre elles par des relations d’adjacence et d’incidence.
Chaque cellule possède également des informations géométriques pour compléter leur description. Les modèles
topologiques ont pour atout majeur d’être basé sur des définitions algébriques formelles assurant une fiabilité de la
structure et une cohérence de la représentation obtenue.

L’objectif de cet article est de présenter un modeleur dédié aux complexes architecturaux d’intérieur. Il est déve-
loppé à partir d’un noyau géométrique à base topologique développé au sein du laboratoire IRCOM-SIC, permet-
tant de manipuler des subdivisions de R

3. A plus long terme, nous souhaitons tirer profit de ce travail pour réaliser
des calculs de rendu réaliste et de simulation d’éclairage par la méthode de radiosité. Traditionnellement, ces al-
gorithmes manipulent des structures moins riches, à base de listes de faces, pour des raisons d’espace mémoire et
de simplicité d’utilisation. À l’évidence, le modèle proposé doit donc permettre un accès rapide aux données afin
de ne pas ralentir les calculs de visualisation.

Nous intégrons la notion de niveau de détail, souvent employée pour réduire le nombre de primitives géométriques
à traiter en fonction de la distance entre les objets et le point de vue. Cette notion est également utile pour faciliter
la construction d’un environnement complexe. Par ailleurs, pour des raisons de convivialité nous avons également
souhaité permettre à l’utilisateur de créer des groupes d’objets à l’intérieur des bâtiments. Par exemple, un bâtiment
peut être décomposé à la fois en ailes ou en étages et les pièces sont regroupées suivant leur utilité (bureaux, salles
de cours, etc). Pour permettre cette décomposition, notre structure intègre la notion de partition multiple.

La prochaine section décrit la problématique traitée. Nous proposons ensuite une structure topologique intégrant
les notions de multi-partition et de niveau de détail par étiquetage. Enfin, nous présentons la structure finale ainsi
que le modeleur dédié aux environnements architecturaux complexes avant de conclure.

1En anglais, boundary representation (B-Rep)

2 Problématique

La description d’objets complexes nécessite de manipuler une grande diversité de données : forme (attributs géomé-
triques), apparence (matériaux, caractéristiques photométriques), etc. Pour les visualiser de manière réaliste et/ou
interactive, deux points fondamentaux doivent être respectés : une gestion rigoureuse de la mémoire et un parcours
rapide des différentes cellules de l’objet. Par ailleurs, un travail de construction progressive est fréquemment effec-
tué de manière manuelle, par exemple par les architectes durant la phase de conception des bâtiments. Cela permet
d’accroître la lisibilité des informations lors de la construction ; mais souvent les modèles mis à disposition pour
la visualisation n’intègrent aucune structure relative à cette organisation.

Notre objectif dans cet article est de proposer une structure permettant de représenter conjointement les notions de
partition et de niveau de details, afin qu’elles puissent être réutilisées au cours des étapes de visualisation ou de
simulation d’éclairage. Une partition décrit des groupes de sous-objets pour un objet donné. Dans de nombreuses
applications, plusieurs partitions peuvent être utiles pour représenter l’ensemble de la structure des objets. Par
exemple, un bâtiment est vu comme un ensemble de pièces regroupées soit par ailes soit par étages. Dans la suite
de ce document, nous appelons ce concept multi-partition ou partition multiple. La figure 1.a montre un exemple
de multi-partition d’un objet. Parallèlement, la structure de niveaux de détail2 permet de représenter les étapes de
raffinement successif des objets. Les niveaux de détail sont fréquemment utilisés en visualisation pour accélérer
les calculs. La figure 1.b montre un exemple de décomposition progressive d’un étage de bâtiment.

a.

Bureaux Salles de cours

Administration

Enseignement

b.

FIG. 1 – a. Partition multiple d’un même objet : un étage est subdivisé de deux manières différentes. Chaque
subdivision a sa propre sémantique. La première subdivision représente la séparation entre les bureaux et les
salles de cours. La seconde met en évidence les parties réservées à l’enseignement et à l’administration. - b.
Décomposition d’un objet par niveaux de détail : un étage rectangulaire est détaillé par l’ensemble des pièces qui
le constitue, dont deux sont elles-mêmes précisées (un bureau et une salle de cours).

La structure par niveaux de détail d’un objet peut être interprêtée soit comme une décomposition progressive de
l’objet, soit comme un regroupement de plusieurs objets détaillés. Une solution évidente est d’assigner un numéro
unique à chaque détail de l’objet. Ceci permet d’identifier à la fois les niveaux de détail et les partitions de l’objet.
Plus précisément, chaque niveau de détail est décrit à partir de plusieurs objets plus détaillés et chaque identifiant
a une sémantique particulière : nom, utilité, etc. Cette structure définie dans la section 3 reste inefficace dans le
cadre de notre problématique pour des raisons d’occupation mémoire et d’accès aux données, en particulier pour
la visualisation réaliste.

Dans la littérature, la plupart des modèles reposent sur des hiérarchies d’objets et permettent de répartir les traite-
ments selon les différents niveaux de détail. Ces niveaux de détail sont mis en correspondance à l’aide de struc-
tures hiérarchiques ([KRO95],[FF88],[CDM+94],[PFP95]). Floriani et al. proposent un modèle à base topologique

2En anglais : Level Of Details (LOD).

appelé Multiresolution Simplicial Model [DPM97] présentant une synthèse de la plupart de ces structures. La
décomposition d’un objet est représentée par un graphe orienté acyclique de complexes simpliciaux. Chaque état
contient une modification relative à une partie de l’objet. Cette structure a aussi été généralisée à des complexes
cellulaires : Multiresolution Meshes [DM01]. D’autres structures hiérarchiques ont été proposées dont certaines
reposent sur une structure cellulaire appelée les cartes généralisées [LIE89]. Un travail mis en oeuvre par LEVY
[LEV99] concerne la modélisation de couches géologiques à partir d’une hiérarchie à deux niveaux de cartes géné-
ralisées de dimension 2 et 3. GUILBERT [GUI00] a élaboré une structure de hiérarchie de cartes généralisées en
incluant une technique de clonage des objets pour économiser l’espace mémoire.

Notre travail repose également sur les cartes généralisées et permet de représenter des partitions d’objets de R
3.

Nos contributions concernent les points suivants :
– la multi-partition permet de présenter plusieurs décompositions possibles d’un même objet. Par exemple, un

bâtiment peut être divisé en ailes ou en étage, mais la description géométrique du bâtiment reste la même ;
– la multi-hiérarchie, complémentaire de la structure précédente, met en évidence une représentation du bâtiment

par niveaux de détail et permet un chargement partiel des sous-arbres pour un travail localisé ;
– l’accès aux données pour la visualisation est simplifié et accéléré par la structure proposée quelle que soit la

complexité de l’objet.
Autour de cette structure, nous avons développé un modeleur dédié aux complexes architecturaux d’intérieur. Mais
ce modèle se veut suffisamment générique pour pouvoir plus tard être adapté à d’autres contextes (représentation
de couches géologiques, industrie automobile, etc).

3 Étiquetage et partitions

La multi-partition correspond à une organisation de l’objet en ensemble de cellules, et les niveaux de détail défi-
nissent des ensembles d’ensembles. Une manière classique pour représenter cette organisation est l’étiquetage de
cellules, servant de base théorique pour la définition de notre structure. Cette section rappelle la notion de cartes
généralisées et décrit l’utilisation de l’étiquetage pour la représentation de multi-partitions et de niveaux de détail.

3.1 Rappel sur les cartes généralisées

Les cartes généralisées permettent de modéliser des objets géométriques subdivisés en cellules (sommets, arêtes,
faces, etc.) reliées entre elles par des relations d’adjacence et d’incidence. Cette structure fait partie des modèles de
répresentation par bords3. Les cartes généralisées permettent de représenter les objets sur lesquels nous travaillons :
des subdivisions de R

3. Les définitions qui suivent sont tirées de [LIE89].

Définition 1 Soit n≥ 0, une carte généralisée de dimension n (ou n-G-Carte) est le (n+2)-uplet G=(B,α0,α1,...,αn)
où :
– B est un ensemble fini de brins,
– α0, α1, ..., αn sont des applications telles que :

– ∀0 ≤ i ≤ n, αi est une involution4,
– pour ∀0 ≤ i < i + 2 ≤ j ≤ n, αiαj est une involution.

À partir des éléments de base appelés brins et des applications α définies sur ces brins, les cartes généralisées
représentent les cellules composant l’objet et leurs relations de bords. La i-cellule associée à un brin b donné, est
formée de l’ensemble des brins obtenus par composition des involutions αj , j 6= i (voir figure 2). De manière
générale, toute composition d’involution est appelée orbite et est notée < αk, ..., αp >. Pour des informations
complètes, le lecteur peut se référer à [LIE94].

3.2 Etiquetage

En modélisation, une structuration précise est nécessaire, en particulier pour regrouper des objets de même séman-
tique (nom, utilité, matériau, etc.). Une manière classique est d’étiqueter les cellules par l’identifiant du groupe

3En anglais, Boundary Representation (B-rep).
4Une application f est une involution signifie que f◦f est la fonction identité.

auquel elles appartiennent. Pour grouper des cellules de dimension n, (des ailes, des étages ou des pièces en di-
mension 3), nous définissons une fonction de partition φn associant à chaque cellule son identifiant. Dans le cas des
cartes généralisées, φn est définie sur les brins. La figure 2 montre un exemple d’étiquetage de 2-cellules (faces)
sur une 2-G-Carte.

Définition 2 Soient Gn = (B, α0, ..., αn) une carte généralisée de dimension n et φn : B −→ N une fonction de
numérotation des brins. On dit que φn est une fonction de partition de G en sous-groupes de n-cellules si et seule-
ment si φn est la même sur tous les brins d’une n-cellule, i.e. ∀b ∈ B, tous les brins de l’orbite < α0, ..., αn−1 >(b)
ont la même image par φn que b.

a. b. c.

1

3

2
2α

0α

2α
1α

Face

Sommet

Arête

FIG. 2 – a. Schéma représentant un brin. - b. Sur une carte généralisée simple, trois types de cellules sont mise
en évidence : une face (orbite < α0, α1 >), une arête (orbite < α0, α2 >) et un sommet (orbite < α1, α2 >). -
c. Exemple de partition de l’espace en carte généralisée munie d’un étiquetage. Nous représentons ici une maison
subdivisée en trois groupes principaux : l’habitat, le toit et le garage.

3.3 Multi-partition et niveaux de détail d’un objet

Dans cette partie, nous décrivons l’utilisation de l’étiquetage pour représenter les mécanismes de multi-partition
et de niveau de détail. La multi-partition (voir figure 1) peut être représentée à l’aide de plusieurs étiquetages. La
définition suivante ne spécifie aucune contrainte pour la multi-partition, les décompositions de l’objet étant a priori
indépendantes les unes des autres.

Définition 3 Soient Gn = (B, α0, ..., αn) une carte généralisée de dimension n et P fonctions de partition
(φp

n)p∈{1..P}. On dit que l’ensemble de ces fonctions de partitions Φn = {φp
n}p∈{1..P} est une multi-partition.

Un niveau de détail est une suite de partitions de l’objet qui, à la différence de la multi-partition, sont liées entre
elles par une relation d’inclusion. Une multi-partition est un ensemble de cellules (un groupe) et les niveaux de
détail correspondent à des ensembles d’ensembles (groupes de groupes). Le premier niveau de détail correspond à
un regroupement des cellules de l’objet et tous les autres niveaux peuvent être déduits du précédent en réunissant
les groupes du niveau de détail plus précis. Un niveau de détail donné peut être considéré comme la réunion de
n-cellules de l’objet initial. Nous pouvons ainsi définir, à partir d’une suite ordonnée d’étiquetages, les niveaux de
détail d’un objet, comme le montre la figure 4.a. La définition suivante décrit la relation d’ordre associée à la suite
d’étiquetages : les groupes de l’étiquetage d’un niveau de détail donné sont définis à partir des groupes du niveau
de détail précédent.

Définition 4 Soit une carte généralisée de dimension n représentant un objet. Une famille de D étiquetages
(φd

n)d∈{1..D} représente des niveaux de détail de cet objet si et seulement si chaque groupe étiqueté par φd
n, d ∈

1..D correspond à une union des groupes de φd−1
n :

– ∀d > 1, φd
n 6= φd−1

n ;
– et ∀id ∈ N un numéro de groupe de la fonction φd−1

n , tous les brins numérotés par id appartiennent à un même
groupe de φd

n, i.e. ∃id′ ∈ N tel que φd
n({b ∈ B/φd−1

n (b) = id}) = {id′}.
∀d > 1, φd−1

n est un détail de φd
n.

1

2

3

3

1 1

4

5 5

4

11

2

3 3

a. b.

FIG. 3 – a. Un objet détaillé par des 2-cellules (faces) et une fonction d’étiquetage associée. - b. Niveau de simpli-
fication déduit de cet étiquetage.

2

3

2

2

1

1

1

1

2

2

2

3

2

3

1

1

2

3

3

4

1

1

3 3

5

3

4

1

1

5

Détail de niveau 2

Détail de niveau 1

Détail initial

a. b.

FIG. 4 – a. Un objet détaillé par des 2-cellules (faces) et deux niveaux d’étiquetage donnés par la suite (φ1
2, φ

2
2).

L’étiquetage φ1
2 (dans le coin inférieur droit) correspond à un niveau de détail intermédiaire entre le détail maximal

et le niveau de détail le moins précis représenté par φ2
2 (affiché dans le coin supérieur gauche des 2-cellules). - b.

Niveaux de simplifications correspondant à ces étiquetages.

Étant donnée une G-Carte et un niveau de détail, nous pouvons en déduire une G-Carte simplifiée, correspondant à
une fusion des cellules de même étiquette (cf. figures 3.b et 4.b). Cela implique non seulement la fusion de cellules
de dimension n, mais aussi des cellules de dimension inférieure. Pour définir formellement cette opération, nous
utilisons l’étiquetage pour des i-cellules (i de 1 à n) et des opérations de fusion de ces cellules. Pour un modeleur
de bâtiments, nous pouvons utiliser au choix un processus automatique (à partir de tests de coplanarité des faces et
d’alignement des segments) ou une description manuelle des regroupements de cellules. Sur l’exemple de la figure
5, nous illustrons la simplification d’un escalier. De manière automatique, il est uniquement possible de déduire
la simplification (c) à partir de l’objet initial (a). Alors qu’avec la numérotation des i-cellules (faces et arêtes),
l’utilisateur peut pousser la simplification jusqu’à remplacer l’escalier par le plan incliné (d).

Pour un niveau de détail d donné, l’étiquetage des i-cellules (des n− 1 hyperplans jusqu’aux arêtes) est donné par
la fonction φd

i (avec i respectivement de n − 1 à 1). La figure 5 illustre la notion de simplification définie par un
étiquetage.

a. b. d.c.

222

1

1

1

1

1

1

1

1 1

2

1φ
1

1φ
1

2φ
54

3

6 7
8

2

3
1

11

11

1

FIG. 5 – a. Détail initial d’un escalier (de précision maximale) et fonction d’étiquetage φ1
2 (des faces) indiquant

le niveau de détail suivant. - b. Simplification intermédiaire mettant en évidence l’étiquetage φ1
1 (des arêtes). - c.

Niveau de détail déduit des étiquetages précédents (φ1
2,φ1

1), et nouvel étiquetage des arêtes pour la simplification
suivante φ2

1 - d. Détail le plus simple de l’escalier déduit de φ2
1.

4 Structure finale : hiérarchie de multi-partitions

L’étiquetage est un mécanisme simple pour définir une structure théorique intégrant les notions de multi-partition
et de niveau de détail. Néanmoins, notre objectif est de définir une structure optimisée pour la modélisation et la
visualisation d’environnements architecturaux complexes. Les contraintes imposées par la gestion de la mémoire
et les temps de calcul doivent être prises en compte. En effet, le modèle d’un bâtiment meublé nécessite le stockage
d’un nombre très important de de partitions, de niveaux de détail et de brins.

Pour parvenir à une occupation mémoire raisonnable et conserver l’efficacité des parcours, nous proposons deux
optimisations. D’une part, un marquage des liaisons αn est utilisé pour représenter les multi-partitions (détails dans
la sous-section 4.1). D’autre part, les niveaux de détails peuvent être représentés l’aide d’une hiérarchie de cartes
généralisées (sous-section 4.2).

4.1 Optimisation pour les multi-partitions : liaisons groupantes

Pour les complexes architecturaux, les objets modélisés sont composés de groupes de n-cellules connexes. Par
exemple, les murs et les sols délimitent des pièces et celles-ci sont connectées par des ouvertures. Nous avons donc
opté pour une solution médiane entre coût mémoire et accès aux données : le marquage des liaisons α. En effet,
les liaisons αn relient les n-cellules entre elles. Ainsi, une marque booléenne sur chaque liaison αn nous permet
d’indiquer qu’elle est groupante, c’est à dire qu’elle relie deux n-cellules du même groupe (voir le premier schéma
de la figure 6).

Définition 5 Soit une carte généralisée Gn = (B, α0, ..., αn) et une fonction de partition φn. φn représente une
partition de Gn en groupes connexes si et seulement si ∀b1etb2 ∈ B deux brins tels que φn(b1) = φn(b2), alors il
existe un chemin allant de b1 à b2 en ne passant que par des brins ayant pour numéro de partition φn(b1). Dans
ce cas, nous définissons l’involution groupante αg

n définit par αn restreinte aux partitions de la fonction φn, i.e.
soient deux brins b1 et b2 cousus par αn :
– si φn(b1) = φn(b2), alors αg

n(b1) = b2 et αg
n(b2) = b1.

– sinon, αg
n(b1) = b1 et αg

n(b2) = b2.

La définition des cellules groupantes permet de créer de nouvelles orbites, que nous appelons orbites de groupes,
sur lesquelles nous pouvons stocker une sémantique, par exemple des caractéristiques de matériau ou des attributs
de nomenclature. Dans les rares cas où l’étiquetage ne définit pas des groupes connexes de cellules, une étiquette
peut être ajoutée parmi ces caractéristiques pour définir un numéro de groupe. Cette définition est suffisamment
générale pour permettre une extension à plusieurs partitions dans une même carte généralisée. A chaque partition
est associée une liaison groupante.

Définition 6 Soient une carte généralisée Gn = (B, α0, ..., αn) et p fonctions de partition φ1
n, ..., φp

n. Pour chaque
fonction φk

n avec 1 ≤ k ≤ p, nous posons l’involution αgk

n telle que :
– αgk

n (b) = αn(b) si φk
n(b) = φk

n(αn(b))
– et αgk

n (b) = b sinon.

La figure 6 montre un exemple simple d’utilisation des multi-partitions sur une carte généralisée de dimension
2. Notons que notre représentation prend en compte le cas (non illustré sur la figure) où deux liaisons αgi

n sont
superposées. En effet, le marquage d’une involution groupante est réalisé à l’aide d’un booléen. Nous pouvons
ainsi avoir plusieurs marquages sur une même liaison, tout en conservant un coût mémoire acceptable (un octet
pour huit partitions différentes).

4.2 Optimisation pour les niveaux de détails : hiérarchie

Pour la représentation des niveaux de détail d’un objet par une hiérarchie, l’objet le plus simple est situé au niveau
de la racine, et chaque sous-arbre correspond à un détail d’une partie de l’objet. Nous utilisons ce principe avec les
cartes généralisées pour éviter un étiquetage explicite. La structure que nous proposons permet de travailler locale-
ment sur une partie de l’objet (sous-arbre) afin de réduire l’occupation mémoire par une technique de chargement

α 2

2
α

g

a.

α
g
2

2α

b.

2

α
g 2
2
g1α

α 2

c.

FIG. 6 – Liaisons groupantes : à gauche sont représentées deux partitions différentes d’un même bâtiment. -
a. Une première décomposition en deux ailes - b. Une seconde en trois étages. - c. La G-Carte bi-partitionnée
correspondante.

partiel des données en mémoire (swap). De la même manière, elle facilite l’utilisation d’algorithmes de visuali-
sation multi-échelle. Notons toutefois que cette structure impose une définition précise de la relation de filiation
et des critères de cohérence. Dans cet article, nous présentons les contraintes uniquement de manière intuitive, à
partir de la définition de niveau de détail par étiquetage.

Définition informelle 1 Soient une carte généralisée détaillée G0 et un niveau d’étiquetage (φ1
i)i∈(1..n) expri-

mant un niveau de simplification. Nous appelons G1 la carte simplifié de G0 issu de l’étiquetage (φ1
i)i∈(1..n), la

carte généralisée obtenue après une succession d’opérations de fusion des i-cellules suivant un ordre décroissant
des dimensions (de n à 1).
Dans ce cas, nous posons l’application injective5 η, appelé liaison hiérarchique, qui relie chaque brin de G1 avec
le brin de G0 correspondant.

L’opération de fusion, classique en topologie, a récemment été redéfinie de manière précise pour les cartes généra-
lisées en dimension quelconque par Damiand et Lienhardt [DL02] (voir également [ELT94]). La figure 7.a montre
un exemple de succession de fusions pour obtenir une simplification d’objet.

d’arêtes
fusion

de faces
fusion

η

b.a.

FIG. 7 – a. Simplification d’un objet par une série de fusions de cellules : un couple de faces, puis deux couples
d’arêtes. - b. Mise en évidence de la liaison hiérarchique η qui relie les brins de la simplification à son détail.

La notion de simplification est directement issue de la relation d’ordre qui existe entre φi
n et φi−1

n . Cette relation
nous aide à définir les contraintes de filiation entre deux cartes généralisées. Afin d’éviter les redondances, lors-
qu’une G-Carte G1 est une simplification de la carte G0, nous supprimons dans G0 les i-cellules (i > 1) communes
à G0 et G1. Dans G0, les composantes connexes résultantes de cette opération forment chacune une nouvelle G-
Carte appelée détail de G1. Toutes ces G-Cartes représentent les fils de G1. Certaines i-cellules redondantes ne
sont néanmoins pas supprimées lorsqu’elles permettent à un niveau de détail de conserver toutes les informations
nécessaires à sa représentation. Cela permet d’éviter des parcours coûteux de la hiérarchie. Notons que dans le
cadre particulier de la modélisation de bâtiments, les calculs de visualisation sont réalisés en dimension 3 pour des

5L’application est une injection, car l’ensemble des brins de G0 a plus d’éléments que celui de G1 et chaque brin de G0 possède au plus
un antécédent dans G1.

volumes. Par conséquent, la structure hiérarchique que nous avons mise en place concerne des niveaux de détail
de cellules de dimension 3.

Définition 7 Un arbre de cartes généralisées H est soit vide soit un triplet (G, Γ, η), appelé noeud, où :
– G est une carte généralisée de dimension n, appelée racine ;
– Γ est un ensemble de sous-arbres disjoints, tel que ∀γ une carte généralisée racine d’un sous-arbre de Γ, γ est

un détail de G ;
– η est la fonction de correspondance décrivant l’ensemble des liaisons hiérarchiques entre les i-cellules de la

carte parent G et les G-Cartes de détails, racines des sous-arbres de Γ.

’

η

d.a. b. c.

G
1

G
0

G
0

FIG. 8 – a. Un objet représenté à un niveau détaillé par une carte G0. - b. Une simplification G1 de cet objet. - c.
Pour construire la hiérarchie, nous supprimons dans G0 les cellules en commun avec G1 pour obtenir une carte G′

0.
- d. Les composantes connexes de G′

0 sont ensuite mis en correspondance avec la simplification G0 pour former la
hiérarchie de détail.

Finalement, la structure proposée intègre à la fois les niveaux de détail et la multi-partition d’un objet, tout en res-
pectant les impératifs de faible occupation mémoire et de rapidité d’accès. À ce stade, notre structure se rapproche
de la notion de graphe orienté acyclique6 de simplexes proposée par De Floriani et al [FM01].

5 Résultats

Autour de la structure présentée dans la section précédente, nous avons développé un ensemble d’opérations dé-
diées à la construction de complexes architecturaux ainsi qu’une interface graphique pour un premier prototype de
modeleur de bâtiment. Cette section est dédiée à la présentation de ces opérations et du modeleur. À cette fin, nous
illustrons les étapes de modélisation pour un bâtiment très simple, puis montrons avec un exemple les capacités du
modeleur à créer un complexe architectural plus réaliste.

La première étape de construction correspond à la définition d’un contour servant de base à l’édifice (voir figure
9.a). Une première G-Carte généralisée, racine de la hiérarchie, reçoit l’enveloppe extérieure du bâtiment 3D ob-
tenue par une première extrusion (figure 9.b). Puis le premier détail, défini dans une seconde G-carte, correspond
à une copie du contour auquel une seconde opération d’extrusion est appliquée pour obtenir l’épaisseur des murs
(figure 9.b). Cette figure forme les fondations du bâtiment. Un premier étage est obtenu par extrusion des fonda-
tions, puis recopié autant de fois que le souhaite l’utilisateur. Les copies sont superposées pour finaliser le premier
détail du bâtiment (figure 9.d).

L’interface graphique permet de détailler indépendamment chacun des étages. Pour cela, l’utilisateur sélectionne
un étage, automatiquement recopié dans une carte généralisée fille, pour créer un nouveau niveau de détail (figure
9.e). L’étage est alors visualisé comme sur un plan en deux dimensions à l’aide d’une projection orthogonale.
L’utilisateur peut alors dessiner des murs (figure 9.f) et des ouvertures telles que des portes ou des fenêtres (figure
9.g). Chaque pièce déduite de la création des murs peut à son tour être précisée dans une nouvelle carte généra-
lisée fille. Une fonction d’importation d’objets depuis des fichiers décrivant des listes de faces (comme le format
VRML 1.0 / Inventor) permet d’insérer des meubles dans les pièces. À tout moment, l’utilisateur peut se déplacer
dans la hiérarchie à l’aide de l’arborescence du bâtiment (figure 10. a), ou afficher la totalité du bâtiment (figures
9.h et 10.b). Les affichages sont réalisés à l’aide de parcours en profondeurs de la hiérarchie. Par ailleurs, il est
également possible pour chaque G-Carte de la hiérarchie de définir des groupes de volumes (pièces, murs, etc.)

6En anglais, Directed Acyclique Graph (DAG).

pour créer des partitions du bâtiment. Les multi- partitions peuvent être mises en évidence soit lors de la sélection
explicite d’un groupe, soit lors de l’affichage des liaisons groupantes.

Pour finir, la figure 10 illustre un exemple complet de complexe architectural créé à l’aide de notre modeleur. Il est
inspiré du bâtiment hébergeant notre laboratoire : le SP2MI sur le site du Futuroscope.

6 Conclusion

La difficulté principale de la gestion de complexes architecturaux en synthèse d’image concerne la quantité de
données à prendre en compte et à traiter aussi bien lors de la modélisation que pour la visualisation. Dans cet
article, nous présentons une structure de données à base topologique pour la modélisation et la visualisation de
grands bâtiments. La structure proposée étend le modèle des cartes généralisées et intègre deux notions qui nous
paraissent essentielles : (1) la multi-partition permettant de représenter plusieurs décompositions d’un objet donné,
par exemple le regroupement des pièces d’un bâtiment selon leurs sémantiques, et (2) la notion de niveau de détail
souvent utilisée pour la visualisation et permettant également la construction d’un bâtiment par décomposition
progressive.

Les perspectives de ce travail peuvent être réalisées selon deux axes principaux : l’utilisation de la structure pour la
visualisation et l’intégration du modèle à d’autres domaines de la modélisation. Le premier axe, en cours d’étude
actuellement, consiste à intégrer notre modèle à un outil de simulation d’éclairage et de visualisation interactive.
Nous allons étudier de manière approfondie l’apport des informations topologiques et des niveaux de détail aux
phases de pré-calcul de visibilité dans une scène complexe. Le second point concerne les opérations de construc-
tion pour l’instant dédiées aux bâtiments. En l’état, le modèle est intrinsèquement lié aux environnements archi-
tecturaux. Il nous semble cependant que la structure est suffisamment générale pour des utilisations dans d’autres
domaines (géologie, conception automobile) ou pour des dimensions supérieures (animation), à condition de com-
pléter les opérations associées. Pour cela, certains points importants doivent être étudiés en priorité. Par exemple,
pour le moment le déplacement des objets ou des murs dans une pièce peut engendrer des modifications topolo-
giques importantes non prises en compte au niveau de la hiérarchie. Le traitement de ces modifications nécessite de
définir des contrôles de cohérence sur la structure, impliquant l’utilisation d’opérations telles que le co-raffinement.

Pour affiner la structure, quelques compléments sont envisagés. Par exemple, le clonage (très souvent utilisé en
modélisation) peut participer à la réduction du nombre d’objets mémorisés dans la structure. Cependant, l’intégra-
tion de cette notion implique une une modification de la définition et des traitements de la structure car un noeud
de la hiérarchie peut posséder plusieurs parents. Un autre complément concerne la gestion de plongements non
linéaires, permettant d’obtenir une compression des informations géométriques de notre structure (une suite de
segments formant une courbe peut être remplacée par une seule arête topologique dotée d’une équation).

Références

[BAU72] Bruce BAUMGART. Winged-edge polyhedron representation. In Technical Report CS-320, Stanford
University,CA, 1972.

[BRI89] Erik BRISSON. Representing geometric structures in d dimensions : topology and order. In Procee-
dings of 5th ACM Symposium of Computational Geometry, Saarbrücken, Germany, pages 218–227,
1989.

[CDM+94] Paolo CIGNONI, Leila De FLORIANI, Claudio MONTANI, Enrico PUPPO, and Roberto SCOPI-
GNO. Multiresolution modeling and visualization of volume data based on simplicial complexes.
Symposium on Volume Visualization, pages 19–26, 1994.

[DL02] Guillaume DAMIAND and Pascal LIENHARDT. Removal and contraction for n-dimensional gene-
ralized maps. In Computer Vision Winter Workshop, pages 208–221, Bad Aussee, Austria, february
2002.

[DM01] Leila De FLORIANI and Paola MAGILLO. Multiresolution modeling of three-dimensional shapes.
Chapter 2 in 3D Synthetic Environment Reconstruction, M. Abdelguerfi (Ed.), Kluwer Academic
Publishers, Boston, 2001. pp. 35-59.

[DPM97] Leila De FLORIANI, Enrico PUPPO, and Paola MAGILLO. A formal approach to multiresolution
hypersurface modeling. In W. Straßer, R. Klein, and R. Rau, editors. Geometric Modeling : Theory
and Practice. Springer Verlag., 1997.

[ELT94] Hervé ELTER. Etude de structures combinatoires pour la représentation de complexes cellulaires.
PhD thesis, Université Louis Pasteur de Strasbourg, 1994.

[FF88] Leila De FLORIANI and Bianca FALCIDIENO. A hierarchical boundary model for solid object
representation. ACM Transactions on Graphics, 7(1) :42–60, 1988.

[FM01] Leila De FLORIANI and Paola MAGILLO. Multiresolution meshes, principles of multiresolution in
geometric modeling. Primus01 summer school Munich, August 2001. pp. 193-234.

[GUI00] Oskar GUILBERT. Un Modèle Hiérarchique pour la Modélisation Géométrique à Base Topologique.
PhD thesis, Université Louis Pasteur de Strasbourg, Janvier 2000.

[KRO95] Walter KROPATSCH. Building irregulars pyramids by dual graph contraction. In IEEE Proceedings.
Vision, Image and Signal Processing, volume 142, pages 366–374, 1995.

[LEV99] Bruno LEVY. Topologie Algorithmique : Combinatoire et Plongement. PhD thesis, Institut National
Polytechnique de Lorraine, Octobre 1999.

[LIE89] Pascal LIENHARDT. Subdivisions of n-dimensional spaces and n-dimensional generalized maps. In
Symposium on Computational Geometry, pages 228–236, 1989.

[LIE94] Pascal LIENHARDT. N-dimensional generalized combinatorial maps and cellular quasi-manifolds.
International Journal of Computational Geometry and Applications, 4(3) :275–324, 1994.

[PFP95] Valerio PASCUCCI, Vincenzo FERRUCCI, and Alberto PAOLUZZI. Dimension-independent
convex-cell based hierarchical polyhedral complex : Representation scheme and implementation is-
sues. In SMA ’95 : Proceedings of the Third Symposium on Solid Modeling and Applications, pages
163–174, 1995.

[WEI85] Kevin WEILER. Edge-based data structures for solid modeling in curved-surface environments. IEEE
Computer Graphics and Applications, 5(1) :21–40, Janvier 1985.

a. Définition du contours du bâtiment. b. Positionnement des murs extérieurs.

c. Extrusion du contours (a) pour obtenir le profil
de bâtiment.

d. Extrusion des murs (b) pour obtenir chacun de
ses étages.

e. Description indépendante de chaque étage. f. Mise en place des murs intérieurs d’un étage.

g. Mise en place des ouvertures (portes). h. Affichage complet du bâtiment.

FIG. 9 – Étapes de construction d’un bâtiment.

a.

b.

FIG. 10 – Bâtiment inspiré par les plans du SP2MI : a. vue d’un étage. - b. vue du bâtiment complet.

La chambre photographique

S. Michelin, C. Pichard1

Université de Marne-la-Vallée, Institut Gaspard Monge, Equipe SISAR
6 cours du Danube, 77700 Serris, France

michelin@univ-mlv.fr,cyril@duboi.com

Résumé : Les modèles de caméra existants ne sont pas adaptés à la simulation des caractéristiques optiques
particulières de la chambre photographique. Nous proposons donc dans cet article deux nouvelles méthodes,
fondées sur le fonctionnement de la chambre photographique, dans le but de recréer deux de ses effets optiques.
La première méthode permet de réaliser des anamorphoses en temps réel en utilisant simplement deux paramètres
et peut remplacer la caméra OpenGL classique. La deuxième méthode repose sur une application du lancer de
rayon distribué qui permet de générer du flou de profondeur de champ dont la répartition spatiale ne se fait plus
frontalement.

Mots-clés : Photographie ; modèle de caméra ; projection perspective ; warping ; lancer de rayon distribué ; OpenGL.

1 Introduction

La chambre photographique est un dispositif photographique rudimentaire destiné aux photographes profession-
nels. Elle permet néanmoins un contrôle plus grand de l’image que les appareils photographiques classiques,
comme par exemple la possibilité de redresser les lignes fuyantes, ce qui est très utile en photographie d’ar-
chitecture. Nous nous sommes donc fixé comme objectif de réaliser un modèle de caméra simulant deux des
caractéristiques optiques les plus intéressantes de la chambre photographique : l’anamorphose et le changement
d’orientation de la profondeur de champ. Pour cela, après avoir présenté et comparé la projection perspective au
modèle de la lentille mince, nous donnons un état de l’art non exhaustif des modèles de caméra existants en syn-
thèse d’image. Dans un second temps nous décrivons les caractéristiques mécaniques et optiques de la chambre
photographique. Ensuite nous proposons une méthode de déformation perspective rapide suivant le principe mé-
canique de la chambre photographique. Enfin, pour simuler une orientation du plan de netteté, nous proposons une
modification de l’implémentation du lancer de rayon distribué qui prend en compte les orientations du plan film et
du plan de netteté.

2 Les modèles de caméras

2.1 La caméra perspective

En synthèse d’image, le rôle de la caméra est de retranscrire une

O

d

Plan de

projection

Objet

A'

A

FIG. 1 – Projection perspective

scène tridimensionnelle sur un plan image. Les opérations effectuées
par les caméras sont d’ordre géométrique, et font appel en grande
partie à la géométrie projective. La caméra la plus utilisée est la ca-
méra perspective. Elle consiste en l’application du principe de réduc-
tion perspective qui était utilisé autrefois par les peintres. Ce principe
permet de rendre de manière rationnelle la diminution ou l’agrandis-
sement des choses qui résulte pour la vision humaine de leur éloi-
gnement ou de leur proximité. Ainsi, les premiers appareils photo-
graphiques étaient utilisés pour réaliser des perspectives dessinées
car les supports sensibles à la lumière capables d’enregistrer l’image n’existaient pas encore. La caméra perspec-
tive permettait donc de “dessiner” une image proche de celle perçue par la vision humaine. Maintenant ces images
sont générées de manière informatique selon le même principe.

1DUBOI, 221 bis bld Jean Jaurès, 92100 BOULOGNE

On retrouve la manière de calculer la projection perspective dans tous les livres de synthèse d’image [FD95, Gla89,
WW92]. Si l’on considère une projection perspective simple (pixel carrés, etc. . .), l’image

���������	��
���
��
d’un

point � ����������������� , est donnée par la formule :���
�
� �

�!
"$#

���
�
%'& & && % & &&(& % &&(& %*),+(&

�!
"
���
�
� � � %
�!
"$#

���
�
+.- �) �+�- �) �+ %

�!
" (2.1)

On remarque que tous les points sont positionnés dans le plan
� # +

perpendiculaire à l’axe de visée. Ce plan est
le plan de projection et la valeur

+
donne sa position sur l’axe

(cf Figure 1).

2.2 Lentille mince

En optique, le modèle le plus simple associé à un objectif de prise de vue est une lentille mince. La caméra
perspective et la lentille mince n’ont pas les mêmes propriétés. L’image

���������	��
���
��
d’un point � �/���������.�����

par une lentille mince est donnée par la formule :���
�
� �

�
" #

���
�
%0& & && % & &&1& % &&1& %,)32�45%

�
"
���
�
� � � %
�
" #

���
�
� 2�4/- �6�) �7��8 2�4 �� 2�47- �9�) �/�:8 2�4 �� 2 4 - �;�) �/�:8 2 4<�%

�
" (2.2)

La valeur
2�4

est une caractéristique physique de la lentille appelée distance focale. On voit donc avec cette formule
que l’image de tous les objets de la scène n’est pas une image plane mais une image tridimensionnelle. En général,
la lentille mince peut-être assimilée à une caméra perspective lorsque l’objet photographié est à une distance telle
que la distance focale devienne négligeable :

�=8 2>4@? �
. Dans ce cas le plan de projection est positionné sur la

distance focale
+ # 2A4

, d’où la confusion généralement faite dans les livres de synthèse d’image entre la distance
focale et la distance du plan de projection.

La prise de vue est réalisée en plaçant un plan dans la zone image de la lentille. L’image d’un point sur un plan est
alors un point ou une tache (cf Figure 2). De cette manière, les optiques font apparaître des zones de netteté et des
zones de flou. La taille de la tache de confusion dépend de l’ouverture de la lentille.

Tache de

confusion

Plan film

A'

A

Zone image
 Zone objet

FIG. 2 – Principe du flou de profondeur de champ.

2.3 Modèles de caméra évolués

Il est donc clair que la caméra perspective ne permet pas de simuler les caractéristiques visuelles des objectifs de
prise de vue cinéma ou photo, que ce soit au niveau géométrique (distorsion optique) ou radiométrique (absorption
des lentilles). Plusieurs travaux traitent de la simulation des effets visuels obtenus par les optiques. Ces recherches
se divisent en deux grands axes : la simulation par un traitement ajouté à l’image de synthèse (post-traitement) et
la simulation du parcours de la lumière dans l’objectif.

A

A'

Plan de netteté

rayon envoyé

Plan film

théorique
 P

FIG. 3 – Lancer de rayon distribué

2.3.1 Simulation par post-traitement de l’image

Potmesil et al, dans leur article publié en 1981 [PC81], nous présentent une méthode pour générer du flou de
profondeur de champ en appliquant une convolution dont les paramètres varient en fonction de la profondeur du
point projeté. Les matrices de convolution utilisées dans ces travaux sont déduites du calcul des caractéristiques
des taches de confusion créées au travers d’une lentille mince par des points situés à des intervalles donnés. Shinia
[Shi94] perfectionne la méthode en détournant l’algorithme du lancer de rayon pour connaître les pixels qui vont
être masqués par d’autres.

2.3.2 Simulation du parcours de la lumière

Acquisto et Groller [AG93] proposent des caméras alternatives (hémisphérique, cylindriques) en utilisant le lancer
de rayon et en modifiant la forme des plans de projections. Ces caméras alternatives permettent par exemple de
simuler des caméras hémisphériques, mais aussi les défauts d’aplanétisme des systèmes optiques.

Cook, Porter et Carpenter [CPC84] présentent en 1984 une méthode issue de l’anti-aliasing en lancer de rayon
pour simuler notamment du flou de profondeur de champ et du flou de mouvement. Cette méthode porte le nom
de lancer de rayon distribué. Leur idée est d’utiliser les rayons servant à l’anti-aliasing pour simuler le faisceau de
lumière qui arrive sur un point image. L’algorithme est décrit dans l’encadré si dessous. En pratique, on utilise le
plan de projection comme plan de netteté et la notion de distance focale disparaît complètement ou est assimilée à
la distance de mise au point. Cela provient du fait que les plans (projection, netteté) sont tous perpendiculaires à
l’axe optique et que l’algorithme permet de placer le plan de netteté à n’importe quelle position sur l’axe.

Algorithme 1 Lancé de rayon distribué
pour tous les points A du plan film associés aux pixels de l’image faire

trouver l’image A’ du point A par la lentille dans le plan de netteté
pour tous les points P’ choisis aléatoirement sur la surface de la lentille faire

envoyer un rayon PA’
fin pour
la couleur du pixel associé au point A est la moyenne des couleurs trouvées par tous les rayons envoyés

fin pour

Kolb, Mitchell et Hanrahan [KMH95] nous présentent un modèle de caméra qui est censé simuler les caractéris-
tiques physiques de l’objectif. Leur modèle repose sur la simulation physique du parcours réel de la lumière entre
différentes lentilles constituant l’objectif. Leur modèle permet de simuler avec précision la géométrie et la radio-
métrie de l’image formée, même s’il comporte des simplifications importantes comme la réflexion entre lentille
jugée nulle. De plus elle nécessite un temps de calcul relativement important.

Enfin, Haeberli et Akelay [HA90] présentent un moyen de réaliser du flou de profondeur de champ avec OpenGL
[NDW99]. Cette méthode repose sur l’accumulation d’images prises de différents points de vue proches. Grace à

l’accélération matérielle, on peut obtenir une simulation de flou de profondeur de champ en temps réel. Néanmoins,
leur méthode ne s’appuie sur aucun modèle physique. Heidrich, Slusallek, Seidel [HSS97] étendent ce principe à
la simulation de n’importe quel type d’optique en calculant précisément les images accumulées.

3 La chambre photographique

O'
 O
Z'

X'

Z

X

Y
Y'

O'
 Z'

Y'

X'

O
 Z

Y

X

Axe X

Axe y

z'

O'

X'

Y'

FIG. 4 – La chambre photographique vue de coté, de haut et de derrière

3.1 Présentation

La chambre photographique est l’appareil le plus rudimentaire en photographie après le sténopé. Elle est simple-
ment constituée de deux corps : le corps avant, où repose l’objectif et le corps arrière où va être placée la surface
sensible à la lumière, qui va enregistrer l’image (généralement de la pellicule photographique ou un capteur élec-
tronique). Les deux corps sont montés mécaniquement sur un support monorail sur lequel ils peuvent se déplacer
l’un par rapport à l’autre. Un soufflet étanche à la lumière relie le corps avant et le corps arrière. Le corps arrière
comporte généralement un verre dépoli où apparaît l’image inversée du sujet générée par l’objectif. Le verre dépoli
va servir à régler l’image et à faire la mise au point, avant de recevoir la surface sensible à la lumière. La chambre
photographique permet une meilleure flexibilité du contrôle sur l’image finale.

3.2 Caractéristiques mécaniques

Les chambres photographiques professionnelles possèdent un certain nombre de caractéristiques mécaniques qui
les différencient des appareils photographiques classiques.

Les corps avant et arrière de la chambre ont la capacité de pivoter autour de deux axes, l’un vertical, l’autre
horizontal. Il peuvent aussi être translatés le long de ces deux axes. La chambre photographique permet donc de
décentrer et de basculer le plan film ainsi que l’optique utilisée en combinant ces mouvements. Dans cet article,
nous allons exclusivement nous intéresser aux bascules du plan film de la chambre. L’angle de rotation autour de
l’axe

�
est � et l’angle de rotation autour de X est � , comme présenté dans la figure 5. Il faut aussi noter que l’axe�

va suivre les rotations imposées par l’axe
�

, ce qui donne l’ordre des rotations dans la transformation finale du
plan � #������	� .
3.3 Caractéristiques optiques

Les mouvements des deux corps influencent l’image résultante. Ils jouent sur l’orientation de la profondeur de
champ, l’impression de perspective, le recadrage, l’anamorphose et la mise au point. Le tableau suivant résume les
effets visualisés lors du déplacement des corps de la chambre en fonction du mouvement appliqué :

Corps avant Corps arrière

rotation X/Y profondeur de champ profondeur de champ+anamorphose
translation X/Y perspective (point de vue) recadrage

translation Z perspective (point de vue) mise au point

Le déplacement en translation du corps avant implique un changement de point de vue et donc un changement de
perspective, ce qui revient à déplacer l’appareil. Les bascules du corps avant vont avoir un effet sur l’orientation
du plan de netteté et donc sur la profondeur de champ mais le point de vue ne change pas. La bascule du corps
arrière permet de changer l’impression de perspective en anamorphosant l’image, et de cette manière de corriger
les lignes fuyantes, par exemple dans des scènes architecturales (cf Figure 8). De plus, la bascule du corps arrière,
comme celle du corps avant va avoir une influence sur l’orientation du plan de netteté. Le décentrement du corps
arrière (translation X/Y) permet de recadrer dans l’image et par exemple de prendre des photographies en face d’un
miroir sans avoir le reflet de l’appareil[Til92]. Avec les appareils photographiques classiques, le plan de netteté est
frontal. La chambre permet de changer l’orientation du plan de netteté et par exemple d’avoir une profondeur de
champ verticale (cf Figure 11). Le déplacement sur l’axe des

du corps arrière permet de faire la mise au point.

Lors d’une prise de vue les photographes utilisent la règle de Schempflug [Str86] pour maîtriser l’orientation du
plan de netteté. Cette règle dit que le plan de netteté et le plan film s’intersectent en une droite qui appartient au
plan de la lentille.

4 Notre méthode de déformation perspective rapide

Dans cette partie, nous proposons une méthode simple qui permet de simuler les anamorphoses dues aux rotations
du corps arrière de la chambre en temps réel avec OpenGL. Nous montrons comment une rotation du plan peut
être décomposée en une translation et une homothétie du plan de projection et un changement d’axe de visée en
nous fondant sur le fonctionnement de la chambre photographique. Il serait possible d’utiliser une transformation
perspective en post-traitement, néanmoins, notre méthode apporte une meilleure qualité de rendu sans traitement
supplémentaire et une utilisation plus pratique nécessitant seulement le réglage de deux paramètres.

4.1 Hypothèse

Avant tout, on fait l’hypothèse que la chambre pho-

Plan de projection

Plan film

FIG. 6 – Plan film et plan de projection

tographique peut-être modélisée par une caméra pers-
pective et que le plan de projection est le symétrique
du plan film par le point nodal de l’optique qui devient
le centre de projection. Les mouvements appliqués au
plan film sont donc appliqués au plan de projection,
comme on peut l’observer dans la figure 6.

4.2 Principe proposé

Notre méthode part d’une constatation : basculer le plan de projection revient à faire une nouvelle projection pers-
pective simple en changeant l’axe de visée et avec une fenêtre de projection décentrée par rapport à ce nouvel axe,
comme l’illustre la figure 7. En effet, lorsque l’on fait pivoter le plan de projection, on voit apparaître une nouvelle
projection perspective avec un axe perpendiculaire au plan de projection basculé et une distance de projection plus
courte sur ce nouvel axe. Pour inclure cette méthode dans OpenGL, il faut modifier l’étape de visualisation qui se
décompose en deux parties, la transformation de visée, et la projection perspective.

4.2.1 Correction de la transformation de visée

La transformation de visée consiste à placer et orienter la caméra dans la scène. Le nouvel axe de visée est perpen-
diculaire au plan basculé. On doit donc ajouter à la rotation de visée initiale deux autres rotations correspondant
aux rotations du plan de projection.

Z

X

C

φ

d

Plan de

projection

Rotation du plan

de projection

autour de Y

Y

U = N

Z

X
 O

C

Y

N
U

Position initiale
 Après rotation

Centre de

projection

Centre de

projection

Nouvel axe de

visée

I

FIG. 7 – Nouvelle projection perspective

La transformation finale est alors � #�� � � � avec � � #
�� ����� � & ����� �& % &

� �	�
� � & ����� �

�" , � � #
�� % & && ����� � � �	��� �& �	��� � ����� �

�"

4.2.2 Nouvelle transformation perspective

Le plan de la nouvelle projection perspective n’est plus à la même position sur l’axe. Sa nouvelle position ��
 sur
l’axe se déduit facilement par le calcul vectoriel et on trouve ��
 # +�- ����� � - ����� � . Le centre du plan de projection
a lui aussi changé de position. Le centre de la fenêtre de projection a pour coordonnées dans le nouveau repère :

������
 #
�� � +.- �	�
� �+�- ����� � - ����� �&

�"

4.2.3 Implémentation

Avec les valeurs trouvées précédemment, on peut modifier n’importe quel code OpenGL pour intégrer les bascules
du corps arrière. Un exemple de simulation des bascules est donné ci-dessous. Les décentrements additionnels du
plan film arrière sont triviaux à implémenter, il suffit de rajouter un décalage dans la fonction glFrustrum().

float teta; // angle de bascule autour de X
float phi; // angle de bascule autour de Y
float d; // position du plan sur l’axe

main()
{
....

/* Modification de la transformation perspective */
glMatrixMode(GL_PROJECTION);
glFrustum(-0.5-d*sin(phi), 0.5-d*sin(phi),

-0.5+d*cos(phi)*sin(teta), 0.5+d*cos(phi)*sin(teta),
d*cos(phi)*cos(teta),
d*1000)

/* Modification de la direction de visée */
glMatrixMode(GL_MODELVIEW);

glRotated(teta,0.0,1.0,0.0);
glRotated(phi,1.0,0.0,0.0);

/* La scene */
glutSolidTeapot(0.5);

.....
}

4.3 Résultats

(a) plan de projection non basculé (b) plan de projection basculé

FIG. 8 – Exemple de redressement des lignes fuyantes avec OpenGL.

La première image correspond à une prise de vue classique en contre-plongé. Le bâtiment présente des lignes
fuyantes que l’on peut corriger en réglant l’orientation du plan de projection. Dans la deuxième image, le plan de
projection est parallèle à la façade du manoir. Les lignes fuyantes ne s’intersectent plus. Le manoir donne alors une
impression de stabilité, impression utilisée en photographie d’architecture pour mettre en valeur les bâtiments.

5 Orientation du plan de netteté

Nous avons vu précédemment que les rotations des corps de la chambre ont aussi une influence sur l’orientation du
plan de netteté ce qui permet d’avoir une profondeur de champ qui n’est plus frontale. Notre but est donc de simuler
un flou de profondeur de champ non perpendiculaire à l’axe optique, comme le ferait la chambre photographique.

5.1 Principe

Avec le modèle simple de caméra perspective, on ne peut pas générer du flou de profondeur de champ. Pour
prendre en compte les effets de flou dus au basculement, nous avons utilisé le principe du lancer de rayon distribué.
Malheureusement l’algorithme du lancer de rayon distribué présenté dans [CPC84] donne la distance du plan de
mise au point sur l’axe en fonction du plan film en supposant que ces deux plans sont perpendiculaires à l’axe
optique. Les formules ne sont donc pas adaptées au basculement des plans.

L’idée qui consiste à utiliser les rayons de l’antialiasing pour simuler le faisceau reste néanmoins valable, et il
suffit alors de calculer pour chaque point � du plan film son image � 4 4 par la lentille à partir de la formule 2.2 et

intersecter tous les rayons secondaires vers le point image � 4 4 . Comme utilisation d’un plan film n’est pas pratique
en synthèse d’image, et comme il est plus simple d’utiliser un plan de projection, nous avons donc réalisé une
modification simple de l’implémentation du lancé de rayon distribué permettant l’utilisation du plan de projection
basculé. Nous faisons à nouveau l’hypothèse que le plan de projection est le symétrique du plan film ce qui revient
à dire que basculer le plan film est équivalent à basculer le plan de projection. Il est alors important de noter que
le plan de projection et le plan de netteté ne se correspondent pas du tout. Ce sont deux plans différents, comme
l’illustre la figure 9.

Dans l’implémentation classique du lancer de rayon

Fenêtre de

projection

Plan de netteté

Plan film

F
 F'
O
O'
 N'

FIG. 9 – Différence entre plan de projection et plan de
netteté

distribué [Gla89], le vecteur
� � �� � 4 est connu et le point

� 4 est le point de netteté où vont converger tous les
rayons secondaires. Dans notre implémentation mo-
difiée, les rayons vont s’intersecter en � 4 4 (cf Figure

10). On remarque alors que
� ���� � 4 4 #�� � � �� � 4 et

�������� #
�
� � �� � 4 # � � ���� 8�� � � ���	 4

. Ces deux relations nous per-
mettent de trouver � :

� #

�� f
���
�� ���

 si
���
��# ���
 sinon les rayons secon-

daires envoyés suivent la direction
� � �� � 4 .

On trouve alors chaque vecteur secondaire
� ���� � 4 4 avec

la relation
� � �� � 4 4 # ��� ���� � � � �� �

avec
��� ���� #�� � � �� � 4 .

Les rayons secondaires sont envoyés d’une surface de

z
f'

G

A''

O
 z
a'

P

H

A'

A

FIG. 10 – Construction géométrique

diamètre � # �
� (� étant l’indice de diaphragme) et
leurs points de départ sur la surface sont choisis aléa-
toirement en suivant une distribution de Poisson. Le
choix de la distribution de Poisson est discuté dans
[Gla89].

La méthode du lancer de rayon distribué modifié a plu-
sieurs avantages : l’anamorphose due à la bascule ar-
rière est simulée, lorsque la mise au point est proche,
on observe un agrandissement du champ de vision,
comme avec une optique classique, et enfin la pro-
fondeur de champ est bien respectée. Ces propriétés
sont principalement dues à l’utilisation de la notion de
distance focale. Malheureusement le basculement des
plans implique une divergence plus grande des rayons ce qui oblige à en envoyer beaucoup plus et de ce fait
augmente le temps de calcul déjà important. (Environ trois minutes par images de 800x600 sur un athlon 1,2 Ghz)

5.2 Résultats

Pour la scène de la figure 11, nous avons basculé le plan film de quelques degrés autour de l’axe des
�

. On
observe alors un plan de netteté qui est complètement basculé et une profondeur de champ qui s’étale plus ou
moins verticalement.

6 Conclusions et travail futur

Nous avons présenté deux méthodes pour simuler deux des caractéristiques visuelles de la chambre photographique
qui sont l’anamorphose et le changement d’orientation du plan de netteté. L’anamorphose peut être réglée en temps
réel en réalisant une modification simple de n’importe quel code source OpenGL, l’avantage étant de pouvoir uti-
liser seulement deux paramètres pour corriger la perspective. De cette manière, on peut corriger les perspectives
relativement facilement. On pourrait aussi utiliser cette méthode pour corriger manuellement les perspectives des
images projetées par les projecteurs vidéo. La deuxième méthode présentée s’appuie sur le modèle de la lentille

FIG. 11 – Flou de profondeur de champ avec plan de projection basculé

mince et le lancer de rayon distribué. Elle permet de simuler réellement le comportement d’une optique simple
avec n’importe quelle orientation du plan film et a l’avantage de mettre en avant les différences existant entre le
plan de projection et le plan de netteté qui sont généralement confondus dans beaucoup de livres portant sur la
synthèse d’image. Cette méthode peut-être aussi utilisée pour simuler les objectifs cinéma à bascule et décentre-
ment qu’utilisent souvent les réalisateurs de publicité et de clips musicaux. On pourrait alors incruster des images
de synthèse dans les séquences comportant des effets de flous “alternatifs”. Néanmoins, au vu des temps de calcul
importants liés au lancer de rayon distribué, il serait intéressant d’adapter le principe de Heidrich et al [HSS97] à
des plans de projections quelconques afin de simuler quasiment en temps réel un flou non perpendiculaire à l’axe
optique.

Références

[AG93] P. Acquisto and E. Gröller. A distorsion camera for ray-tracing. In Visualization and intelligent design in
engineering and Architecture, pages 105–118. Computational Mechanics Publications, Elsevier, 1993.

[CPC84] R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In Proceeding of SIGGRAPH 84, Com-
puter Graphics, pages 137–144, Boston, 1984. ACM Press.

[FD95] J. Foley and A. Van Dam. Introduction à l’infographie. Addison-Wesley France, Paris, 1995. Traduc-
tion de Introduction to computer graphics, Addison-Wesley, 1994.

[Gla89] A. Glassner. An introduction to ray-tracing. Academic Press, London, 1989.

[HA90] P. Haeberli and K. Akeley. The accumulation buffer : Hardware support for high-quality rendering.
In Proceeding of SIGGRAPH 90, volume 24 of Computer Graphics, pages 309–318, Boston, August
1990. ACM Press.

[HSS97] W. Heidrich, P. Slusallek, and H. Seidel. An image-based model for realistic lens systems in interactive
computer graphics. In Graphic Interface 97, pages 68–75. Wayne A. Davis and Marilyn Mantei and R.
Victor Klassen, 1997.

[KMH95] C. Kolb, D. Mitchell, and P. Hanrahan. A realistic camera model for computer graphics. In Proceedings
of SIGGRAPH 95, volume 29 of Computer Graphics, pages 317–324, Boston, 1995. ACM Press.

[NDW99] J. Neider, T. Davis, and M. Woo. OpenGL Programming Guide : the Official Guide to Learning
OpenGL, version 1.2. Addisson-Wesley Publishing Company, New York, 1999.

[PC81] M. Potmesnil and I. Chakravarty. A lens aperture camera model for synthetic image generation. In
Proceedings of SIGGRAPH 81, volume 15 of Computer Graphics, pages 297–305, Boston, 1981. ACM
Press.

[Shi94] M. Shinia. Post-filtering for depth of field simulation with ray distribution buffer. In Proceedings of
Graphics Interface 94, pages 39–66. Canadian Computer Communications Society, 1994.

[Str86] L. Stroebel. View camera technique, 5th Edition. Focal Press, Boston, 1986.

[Til92] U. Tillmanns. Bases et applications Grand format créatif. Sinar Edition, Feuerthalen, Allemagne,
1992. Traduction de l’allemand Kreatives Grossformat : Grundlagen und Anwendung, Sinar Edition,
Feuerthalen.

[WW92] A. Watt and M. Watt. Advanced Rendering and Animation Techniques : theory and pratice. Addison-
Wesley publishing company, ACM Press, 1992.

Respect des niveaux de visibilité dans la restitution
d'images de synthèse en unités physiques

R. Brémond

Laboratoire Central des Ponts et Chaussées
58 boulevard Lefebvre 75015 Paris

Roland.bremond@lcpc.fr

Résumé : La visualisation sur écran des images de synthèse calculées en unités physiques (luminance,
coordonnées XYZ) pose un problème spécifique si on souhaite respecter les performances visuelles des
observateurs, et notamment les niveaux de visibilité des objets présents dans la scène. Nous présentons une
méthode d’évaluation de la qualité visuelle du système de visualisation, qui comprend à la fois le système
d’affichage et l’algorithme de transposition de luminance qui lui est associé. Un exemple de mise en œuvre de
cette méthodologie est présenté, dans le cas des performances visuelles des automobilistes dans la simulation de
conduite de jour. Les principales questions non résolues qui se posent pour la visualisation des images calculées
en unités physiques sont identifiées dans le cas des images de synthèse destinées à la simulation de conduite.

Mots-clés : Visibilité, perception, tone mapping, visualisation, transposition, luminance, couleur.

1. Introduction
Le LCPC1 développe des techniques de synthèse d’images permettant de réaliser des études de visibilité et de
lisibilité routière, notamment sur simulateur de conduite. Au stade actuel de nos recherches, le principal obstacle
identifié à l’utilisation de telles images porte sur les procédés de visualisation sur écran des images calculées.
Nous présentons, dans ce papier, la perspective selon laquelle nous envisageons ce problème, qui se pose d’une
manière plus large en synthèse d’image, et nous indiquons selon quelle approche nous essayons de le résoudre.

Nous cherchons à évaluer la capacité des procédures de visualisation à respecter les performances visuelles des
observateurs. L’objectif est de quantifier l’écart entre les images présentées et les scènes modélisées, et donc
d’optimiser la chaîne globale « mesure / modélisation / calcul / visualisation », ce qui doit permettre d’élargir le
domaine de validité des images de synthèse en unités physiques pour les études de visibilité et de lisibilité
routière.

2. Les images en unités physiques

1 Le Laboratoire Central des Ponts et Chaussées est un établissement public à caractère scientifique et
technologique sous la double tutelle du ministère de la recherche et du ministère de l’équipement.

?XYZ XYZ

SpectrophotomètreRVB

Fig. 1 : image de luminances calculée à partir d’un modèle des effets visuels du brouillard [Dum02].

Certaines images numériques sont définies en unités physiques. Elles proviennent de calculs simulant la
propagation de la lumière (exemple Fig. 1), ou de mesures photométriques de l'environnement lumineux par des
systèmes d'acquisition adéquats (exemple Fig. 2). Elles permettent de décrire les informations visuelles dans des
unités physiques (luminance2, coordonnées XYZ3 de la CIE4) qui représentent le signal visuel perçu par un
observateur. La restitution de telles images sur un moniteur, sur l'écran d'un simulateur de conduite ou sur papier
pose des problèmes spécifiques.

Fig. 2 : image de luminances (en fausses couleurs) obtenue par le système de mesure Mélusine [BH96]

3. Le système de restitution visuelle

3.1. Calibrage des écrans
Le premier problème à résoudre lors de l’affichage sur écran d’une image en unités physiques est de s’assurer
que les valeurs physiques des couleurs et des luminances affichées correspondent aux valeurs prévues (Fig. 3).
Pour cela, il est nécessaire de caractériser précisément le système de restitution. Pour un écran CRT, par
exemple, l’affichage des images se base sur des valeurs d’adressage (des triplets d’entiers) correspondant aux
photophores Rouge, Vert et Bleu de l’écran : c’est le triplet [RVB].

Fig. 3 : problématique du calibrage des écrans pour la restitution des images de synthèse en unités physiques.

A partir d’une image calculée décrite en unités tri-chromatiques [XYZ], il est donc nécessaire de connaître la
correspondance entre un triplet quelconque [RVB] et le triplet [XYZ] qui sera observé sur cet l’écran. En
pratique, cette étape repose sur une caractérisation photométrique et colorimétrique de l’écran utilisé. Pour un
écran CRT, on utilise classiquement le modèle GOG (gain-offset-gamma) préconisé par la CIE [CIE122]. Il

2 La luminance représente l’intensité du signal visuel perçu par un observateur, en tenant compte des spécificités
du système visuel humain.
3 Le triplet XYZ représente une quantité mesurable associée à un signal visuel. Il comporte trois composantes,
correspondant aux trois variables nécessaires pour décrire la manière dont un observateur perçoit la lumière en
conditions photopiques.
4 Commission Internationale de l’Eclairage.

transposition

XYZ

X’Y’Z’ RVB

consiste à modéliser la luminance affichée par un moniteur CRT comme la somme des luminances des trois
canaux. Dans ce modèle, on estime que la luminance d’un canal peut être décrite par une fonction puissance de
la valeur d’adressage (modulée par un gain) et par un bruit de fond (offset). Par exemple, pour le canal rouge, on
écrira :

()
γγγγ









−+





= rr g

I
IgR 1
max

R représentant la luminance du canal rouge, I la valeur d’adressage en rouge (Imax = 255), les paramètres γ et gr
étant déterminés par des mesures photométriques sur l’écran utilisé.

A partir d’une telle formulation, on peut inverser les équations et calculer la valeur d’adressage nécessaire pour
afficher à l’écran une couleur XYZ donnée. Cette procédure permet de soumettre l’observateur au même
stimulus visuel que ce qui était prévu dans l’image exprimée en unités physiques.

3.2. Limites techniques des écrans
Les systèmes de restitution présentent des limites techniques incontournables, qui font que l'affichage des
valeurs en unités physiques (calculées ou mesurées) n'est pas toujours possible. Ces limites sont de plusieurs
ordres:

• La stabilité des propriétés dans le temps (dérive) et dans l’espace (hétérogénéité), qui font que les
modèles d’écran ne sont que des approximations, et qu’il est également nécessaire de caractériser les
écarts par rapport au modèle.

• Le domaine de couleur (gamut) d’un écran est limité, certaines couleurs ne peuvent donc pas être
affichées (Fig. 4).

• La quantification liée à la numérisation du signal conduit à des approximations. Il en résulte des écarts
relatifs qui peuvent être significatifs, en particulier pour les faibles niveaux de luminance.

• La dynamique de luminance disponible est souvent beaucoup plus faible que celle qui est présente dans
la scène à afficher. De plus, la luminance maximale disponible sur un écran donné dépend de la couleur
affichée.

Fig. 4 : diagramme colorimétrique5 CIE, et exemple de gamut d’un système d’affichage.

5 Les coordonnées colorimétriques (x,y) sont des quantités mesurables caractérisant la couleur d’un objet
indépendamment de sa luminance, définies par la CIE à partir de la distribution spectrale de la lumière.

0 0.2 0.4 0.6 0.8 1
0

1

CIE (x,y)

Fig. 5 : principe de fonctionnement d’un algorithme de transposition

Ces limites sont contournées, en pratique, par des algorithmes de transposition permettant de convertir un signal
visuel à afficher (de couleur XYZ) en un signal visuel différent (noté X'Y'Z' sur la Fig. 5) affichable par le
système de restitution utilisé. Les algorithmes de transposition les plus étudiés sont les algorithmes de
transposition de luminance (tone mapping), qui transposent les luminances à afficher dans un domaine de
luminance accessible sur l’écran considéré.

Il résulte globalement de l’utilisation d’un algorithme de transposition une dégradation du signal, et des
stratégies sont proposées dans la littérature pour minimiser cette dégradation [Tr93,War94,LRP97].

4. Evaluation de la qualité d’une transposition

4.1. Problématique
Le LCPC produit des images de synthèse en unités physiques, et contribue à la production de bases de données
en unités physiques pour la simulation de conduite [BG02]. Ces images sont produites dans l'intention de
procéder à des expérimentations avec des observateurs, afin d'étudier la visibilité et la lisibilité de
l'environnement routier (Cf. par exemple [Pau01]).

Pour ces expérimentations, la dégradation des images calculées due aux limites des systèmes de restitution est
susceptible d'avoir pour conséquence une modification des performances visuelles des observateurs, par
comparaison avec les performances qu’ils auraient avec un système de restitution « idéal ». L'enjeu est donc pour
nous de déterminer une stratégie de dégradation du signal qui minimise la modification du comportement des
observateurs, notamment le niveau de visibilité des éléments visuels présentés aux observateurs [Pou99].

Dans ce but, un programme de travail a été défini, à partir des principaux enjeux identifiés, et une collaboration
avec l’équipe « Vision » du MNHN6 a permis de proposer une méthode d’évaluation spécifique des algorithmes
de transposition de luminance. Cette méthode a un champ d’application plus large, mais elle doit être adaptée en
fonction des critères de « qualité » retenus pour toute utilisation particulière des images affichées. Elle est
présentée ci-dessous, ainsi que son application dans le cas des scènes routières diurnes. Le problème particulier
que posent les scènes routières nocturnes est détaillé à la section 4.

4.2. Méthodologie d’évaluation
On distingue deux grands domaines d’évaluation de la perception visuelle : l’apparence visuelle et la
performance visuelle, cette dernière étant attachée non seulement à une image mais à une tâche visuelle associée
à cette image. La méthode que nous présentons n’est pas spécifique à l’un ou l’autre de ces domaines, mais
présente deux variantes, adaptées à l’un ou à l’autre.

L’apparence visuelle désigne les jugements subjectifs des observateurs relatifs à un stimulus visuel. Elle est
souvent liée à des catégories d’appréhension implicites, comme le brillant, l’uniformité, l’apparence colorée, etc.
Dans ce domaine, il n’y a pas de référence objective, pas de « bonne » réponse, mais chaque observateur
conserve une certaine consistance dans ses jugements. C’est sur cette cohérence interne que l’on s’appuie pour
évaluer la proximité entre deux stimuli visuels.

La performance visuelle est une performance associée à une tâche liée à un stimulus visuel. Il s’agit en général
de tâches de détection ou d’identification d’objets dans une scène, pour lesquelles les réponses des observateurs
ont une valeur de vérité (vrai ou faux). A partir du taux de bonnes réponses et éventuellement du délai de
réponse, il est possible de définir un indicateur objectif de la performance visuelle de l’observateur pour une
tâche spécifique [CIE145].

L’élément fondamental de notre approche consiste à utiliser un cadre de référence extérieur au domaine des
images de synthèse, comme cela peut être fait, par exemple, avec une « véritable » Cornell box. Une scène
matérielle est construite, dans laquelle des observateurs vont être soumis à une série de tests, permettant

6 Muséum National d’Histoire Naturelle

d’apprécier, soit leurs performances visuelles dans le domaine souhaité, soit les patterns caractéristiques de leurs
jugement d’apparence visuelle.

Cette scène de référence est ensuite caractérisée photométriquement et numérisée (à partir de mesures
photométriques, ou d’une modélisation géométrique et d’une simulation de la propagation de la lumière). C’est
cette image numérique, considérée comme une représentation « fidèle » de la scène réelle, qui peut être
visualisée sur écran. Pour cela, on doit utiliser un algorithme de transposition, qui doit être adapté au système
physique de restitution utilisé (moniteur CRT ou LCD, projecteur sur écran CRT, LCD ou DSP, casque de réalité
virtuelle, etc.)

L’indicateur visuel retenu sur la scène de référence (apparence ou performance visuelle) peut alors être évalué
sur les images de synthèse affichées. C’est la plus ou moins grande correspondance entre la valeur de référence
de l’indicateur et la valeur obtenue à partir des images de synthèse qui permettra de juger de la qualité de la
restitution, pour l’objectif poursuivi, de l’ensemble « algorithme de transposition / système de restitution ».

4.3. Exemple d’application
Cette démarche suppose, avant toute chose, de spécifier l’usage des images de synthèse utilisées sur un support
matériel donné. Nous nous sommes intéressés, avec cette méthode, au problème de la visibilité routière, et à la
pertinence des images de synthèse (en présentation fixe ou sur simulateur de conduite) pour étudier ce problème
crucial dans le domaine de la sécurité routière.

Fig. 6 : photographie de la scène de référence utilisée pour évaluer les indicateurs visuels pour des
automobilistes en conduite de jour : panneau extérieur en polystyrène, tambour de présentation des images

imprimées (ci-contre, pour une évaluation de l’apparence visuelle [Vie02a]).

A partir de cette problématique, les principaux éléments d’une expérimentation ont pu être fixés :

• L’enjeu porte principalement sur des performances visuelles liées à la tâche de conduite.
• Dans le domaine de la conduite de jour, les niveaux de luminance sont trop élevés pour être affichés sur

un moniteur CRT classique, à plus forte raison sur l’écran d’un simulateur de conduite.

Une tâche visuelle a pu être définie (l’identification d’une ligne pointillée parmi 4 lignes parallèles), un moyen
de restitution choisi (un moniteur CRT du MNHN) ainsi qu’un domaine de luminance, à partir des connaissances
que nous avions sur les niveaux lumineux usuels en conduite automobile de jour.

Une expérimentation a eu lieu en deux temps : une scène de référence a été construite, et un système de
présentation d’images imprimées a été mis au point dans ce cadre (Fig. 6). Des images correspondant à la tâche
visuelle ont été imprimées avec différents niveaux de contraste entre les lignes et le fond. Des observateurs ont
été confrontés à ces séries d’images imprimées, dans un environnement lumineux compris entre 0 et 1000
candélas par mètres carrés.

Fig. 7 :modélisation de la scène de référence utilisée pour évaluer les performances
visuelles des automobilistes en conduite de jour.

Dans un deuxième temps, cette scène de référence a été caractérisée par des mesures photométriques, d’une part
en ce qui concerne l’environnement (qui reste le même d’une présentation d’image à l’autre), d’autre part en ce
qui concerne les tests présentés. A partir de ces mesures de luminance, des images de synthèse en luminance ont
été produites. L’écran CRT utilisé a également été caractérisé par des mesures photométriques, et quatre
algorithmes de transposition de luminance ont été sélectionnés dans la littérature [Vie02b]. Des séries d’images
de synthèse RVB ont été calculées en vue de la visualisation sur cet écran (exemple Fig. 7). Nous avons ainsi pu
comparer les performances visuelles des observateurs dans la situation de référence avec leurs performances
devant les images résultant de 4 différents algorithmes de tone mapping. Cette démarche a ainsi permis d’évaluer
la « qualité » relative de ces algorithmes, relativement à une tâche visuelle de détection en situation de conduite
de jour.

5. Questions ouvertes
La méthodologie présentée a un domaine d’application relativement large dans le domaine de la synthèse
d’image, pour tout ce qui touche au « réalisme ». Elle permet en particulier de lever l’ambiguïté sur ce mot, en
quantifiant la notion de réalisme par rapport à un objectif bien défini en termes de perception visuelle.

Cependant, dans certains cas, la littérature en synthèse d’images ne propose pas de solution opérationnelle à des
problèmes de « réalisme » visuel. On présente ci-dessous des exemples de problèmes non résolus, porteurs
d’enjeux en matière de visibilité routière.

5.1. Conduite de nuit
L’exemple qui a été cité consistait à comparer entre eux des algorithmes de la littérature, et à quantifier à chaque
fois l’écart par rapport à une performance visuelle de référence. Nous avons observé que dans le cas de la
conduite de nuit, les algorithmes classiques de tone mapping ne sont pas adaptés, du fait d’une hypothèse forte
qui pose un problème dans ce cas précis.

Un algorithme de tone mapping, comme son nom l’indique, est un algorithme de transposition de luminances. A
partir d’une image en luminance dont la dynamique n’est pas affichable sur le système de restitution dont on
dispose, il construit une image « compressée », selon une stratégie spécifique, dont la dynamique est compatible
avec le système de restitution.

Dans un deuxième temps, l’image issue du tone mapping est transformée en image RVB grâce au modèle de
calibrage du système (Cf. partie 2.2). Implicitement, cette procédure repose sur l’hypothèse que la dynamique de

luminance disponible sur le système de restitution est la même dans toute l’image. Malheureusement, ça n’est
pas le cas : la dynamique disponible dépend de la couleur que l’on veut afficher, elle en dépend même fortement.

Fig. 8 : luminance maximale d’un écran CRT du MNHN en fonction de la couleur affichée, à l’intérieur du
gamut de cet écran (en coordonnées colorimétriques xy).

En conduite de nuit, on se heurte à ce problème, car les feux arrière des véhicules doivent être rouges et très
lumineux (par rapport au reste de la scène), alors que dans le rouge, la luminance maximale disponible est
souvent significativement plus faible que dans le blanc.

Fig. 9 :exemple d’image de synthèse comportant les feux arrières d’un véhicule [Voi02].

On se heurte donc à un problème très général, qui est de reconsidérer la notion de tone mapping en l’intégrant
dans un processus complet portant sur une image physique colorée (décrite en unités XYZ) et non plus
seulement sur une image de luminances. Les rares travaux abordant cette question [Voi02] doivent pouvoir être
évalués à travers la méthodologie proposée ci-dessus.

5.2. Simulation de conduite
Si on considère le problème général de la tâche de conduite sur simulateur, on peut se fixer pour objectif de
respecter le niveau de visibilité des objets présents dans la scène, entre une référence (le comportement sur la
route) et un simulateur de conduite. La qualité des images doit donc être étudiée relativement à cette tâche de
conduite, ce qui doit permettre de hiérarchiser les principales difficultés rencontrées dans cette étape de

visualisation des images de synthèse en unités physiques. On distingue ici trois cas de figure, pour lesquels la
hiérarchie des enjeux est différente.

Conduite de jour :
• Le principal enjeu est le choix d’un algorithme de tone mapping respectant les niveaux de visibilité des

objets, y compris en conditions de visibilité dégradée (chaussée humide, pluie, brouillard).

Conduite nocturne [BD02] :
• Le principal enjeu consiste à définir une procédure satisfaisante, du point de vue des performances

visuelles, de « color mapping », qui transpose des couleurs XYZ et non pas seulement des luminances.
• Le rendu de l’éblouissement [Spe95], qui a un impact significatif sur le comportement de conduite la

nuit, et qui ne peut pas être restitué directement sur écran, doit être évalué.
• La qualité de la restitution des bas niveaux lumineux est particulièrement importante.

Conduite en tunnel :
• Les problèmes d’adaptation visuelle lors des entrées et sorties de tunnel doivent être évalués, en

fonction des solutions algorithmiques choisies pour le rendu de ces situations dans lesquels les niveaux
lumineux changent brusquement.

Dans tous les cas de figure envisagés, les qualités et les défauts des différents modes de restitution (CRT, LCD et
DSP) doivent être évalués en fonction des enjeux prioritaires.

Références

[BD02] R. Brémond, E. Dumont, « simulation de conduite nocturne », rapport à la Direction des Routes du
ministère de l’Equipement (diffusion restreinte).

[BG02] R. Brémond, G. Gallée, « Image quality for driving simulation experiments », actes du congrès
Virtual Reality International Conference 2002, Laval (France), juin 2002.

[BH97] C. Brusque, R. Hubert, « La métrologie de la luminance par caméra CCD. Etalonnage et
qualification du système Mélusine », Bulletin des Laboratoires des Ponts et Chaussées, n° 205, pp.
39-47.

[CIE122] CIE, “The relationship between digital and colorimetric data for controlled CRT displays”, CIE
publication 122-1996.

[CIE145] CIE, “The correlation of models for vision and visual performance”, CIE Publication 145-2002.

[Dum02] E. Dumont, « caractérisation, modélisation et simulation des effets visuels du brouillard pour
l’usager de la route » thèse de doctorat, université Paris V, novembre 2002.

[Dum03] E. Dumont, R. Brémond, C. Boust, E. da Costa, F. Viénot, « assessment of the visual quality of
images for visibility experiments : psychometric evaluation of tone mapping algorithms », poster
retenu par le congrès de la Commission Internationale de l’Eclairage, San Diego, juin 2003.

[LeG72] Y. Le Grand, “Optique physiologique – Tome 2 : Lumière et couleurs”, Masson et Cie, Paris,
France, 1972 (2ème édition).

[LRP97] G. W. Larson, H. Rushmeier and C. Piatko, “A Visibility Matching Tone Reproduction Operator for
High Dymanic Range Scenes”, IEEE Transactions on Visualization and Computer Graphics, 3(4),
October-December 1997, pp. 291–306.

[Pou99] G. Pouliquen, “Respect des niveaux de visibilité dans la restitution d’images de synthèse”. Rapport
de DEA, ESME/LCPC, septembre 1999.

[Pau01] G. Paulmier, C. Brusque, V. Carta, V. Nguyen, “Laboratory study of the influence of the visual
complexity of the environment on the detection of the various types of target”, Lighting Research
and technology, 2001, Editor : RH Simons, Publisher : Arnold.

[TR93] J. Tumblin and H. Rushmeier, “Tone reproduction for Realistic Images”, IEEE Computer Graphics
& Applications, 13(6), November 1993, pp. 42–48.

[Vie02a] F. Viénot, C. Boust, R. Brémond, E. Dumont, “rating gradations for tone-mapping algorithms”,
IS&T, CGIV 2002, Poitiers, 2-5 April 2002, pp. 221-225.

[Vie02b] F. Viénot, C. Boust, E. da Costa, R. Brémond, E. Dumont, « psychometric assessment of the look
and feel of digital images », actes du congrès Driving Simulator Conference 2002, Paris, septembre
2002.

[Voi02] Rapport final du projet Prédit VOIR, octobre 2002 (diffusion restreinte)

[War94] G. Ward, “A Contrast-based Scale Factor for Luminance Display”, in Graphics Gems IV, ed. P. S.
Heckbert, 1994, pp. 391–397.

Conversion de cyclides de Dupin en carreaux de Bézier
Rationnels biquadriques

L. GARNIER, S. FOUFOU, M. NEVEU

LE2I, FRE CNRS 2309
UFR Sciences, Université de Bourgogne, BP 47870,

21078 Dijon Cedex, France�
lgarnier,sfoufou,mneveu � @u-bourgogne.fr

Résumé : D ans cet article, nous allons convertir les cyclides de Dupin en carreaux de Bézier Rationnels biqua-
driques. Les Cyclides de Dupin ont été inventées en 1822 par le mathématicien français Charles Dupin. Ce sont
des surfaces algébriques de degré inférieur à 4 dont les lignes de courbures sont des cercles ayant une équation pa-
ramétrique et deux équations implicites. Elles permettent d’effectuer des jointures en n’utilisant que des concepts
géométriques sans se soucier de problèmes de paramétrisation. M. Pratt a développé un algorithme de conversion
de cyclides de Dupin en carreaux de Bézier Rationnels biquadriques à partir de concepts d’analyse. Celui-ci ne
permet pas de convertir toute une cyclide. Nous allons améliorer cet algorithme afin de résoudre ce problème.
Cependant, certaines valeurs des variables de la cyclide seront interdites ce qui peut gêner lors de jointure. Nous
allons développer un nouvel algorithme de conversion basé sur des concepts géométriques (calculs barycentriques,
symétrie de cercles) et les courbes de Bézier Rationnelles quadriques.

Mots clés : cyclide de Dupin, courbes et surfaces de Bézier Rationnelles de degré � , cercles, calculs barycentriques.

1 Introduction

L’informatique a permis à l’industrie de réaliser des économies en utilisant des scènes 3D réalistes en remplacement
de moules physiques. Il a fallu concevoir des modèles mathématiques permettant ces modélisations. Plusieurs
modèles de courbes et de surfaces ont été développées : le modèle de P. Bézier [3, 13], le modèle B-Splines [12],
les quadriques et superquadriques [31, 17]. Nous pouvons modéliser une scène à l’aide de primitives simples
combinées à l’aide d’un arbre CSG [20, 28]. Il se pose alors des problèmes de jointures entre ces surfaces dus
en particulier à la paramétrisation de celles-ci. Il est possible de remédier à ce problème de paramétrisation en
introduisant une paramétrisation canonique [19].
Depuis une dizaine d’années, il est possible d’effectuer ces jointures ��� -continues de façon géométrique en utilisant
les cyclides de Dupin, inventée en 1822 [10, 15, 7, 6]. Ce sont des surfaces non sphériques ayant des lignes de
courbures circulaires, pouvant être représentées à la fois par des équations paramétriques ou implicites. Beaucoup
d’auteurs ont travaillé sur les problèmes de jointures de surfaces quadriques à l’aide de cyclides de Dupin [22, 5,
11, 32, 27, 26, 29, 1].

Dans la deuxième section, nous faisons un rappel sur les courbes et les surfaces de Bézier Rationnelles de de-
gré deux, les cyclides et les cyclides de Dupin. Dans la troisième section, nous modélisons des cercles par des
courbes de Bézier Rationnelles quadriques. Dans la quatrième section, nous montrons la conversion de cyclides
de Dupin en carreaux de Bézier Rationnels biquadriques réalisée par Pratt [24] et en faisons une amélioration. Les
lignes de courbures des cyclides de Dupin étant des cercles, il est possible sous certaines conditions de les “traiter”
comme des surfaces de révolution et nous développons un algorithme de conversion des cyclides de Dupin en car-
reaux de Bézier Rationnels biquadriques, section suivante. Dans la dernière section, nous comparons les différents
algorithmes.

2 Etat de l’art

L’espace affine euclidien à trois dimensions est muni d’un repère orthonormé
���
	��
�� 	��
�� 	 �
 ���

. Le produit scalaire

usuel entre les vecteurs
�
 �

et
�
 �

est noté
�
 ��� �
 �

. Sauf mention contraire, les équations des cyclides seront données
dans ce repère.

2.1 Courbes et surfaces d’approximation ou d’interpolation en synthèse d’images

Les surfaces utilisées en mathématiques sont définies sur des ouverts afin de ne pas se soucier des problèmes de
différentiabilité aux bornes. Par contre, en synthèse d’images, nous souhaitons effectuer des jointures et donc nous
sommes obligé d’utiliser des fermés. Les courbes sont généralement définies sur l’intervalle � ������� et les surfaces
sur le pavé � �������	�
� ������� .
2.1.1 Courbes de Bézier Rationnelles quadriques

Les courbes de Bézier Rationnelles quadriques sont des courbes paramétriques définies à partir des polynômes de
Bernstein de degré � , Formule (2.1). La propriété de la symétrie des polynômes de Bernstein, Formule (2.2), est
essentielle pour la construction d’arc de cercle puisque elle assure la symétrie des constructions géométriques.
������������ � � ������
 � ������� � ��� � � ����
 � ����� �!� � (2.1)"$#�% �'& # & � 	 " ��(� ������� 	
*)��������+
 ��,)�� � � ��� (2.2)

Une courbe de Bézier Rationnelle quadrique est définie par la Formule (2.3), [9], où la droite
��- � - � � (resp.

��- � - � �)
est la tangente à la courbe au point

-.�
(resp.

- �). Ce type de courbes permet de modéliser une conique à l’aide de
trois points de contrôles

�/-.)0� ��1$)�1 � et de trois nombres
��23)0� ��1$)�1 � appelés poids.� � � �
�54 ����� � �26�7
8�9�����	:;2 �
 � �����	:;2<�=
 � �����

� 2 �
 � ����� � �
� - � :>2 �
 � �����
���
� - � :>2 �
 � �����

� �
� - � � 	 ��(� ������� (2.3)

Il est possible de simplifier cette définition pour modéliser une conique en prenant
2 � �?2 � � � , cette courbe

de Bézier Rationnelle quadrique est dite standard, Formule (2.4). Dans ce cas, on pose
2 � �@2

et ce nombre
détermine la nature de la conique : la courbe est un arc d’ellipse si et seulement si �'A 2 AB� ; la courbe est un arc
de parabole si et seulement si

2B� � ; la courbe est un arc d’hyperbole si et seulement si
2DC � .� � � �
�54 ����� � �
��������E:>28
 � �����	:F
 � �����

�
 � ����� � �
� - � :;28
 � �����
� �
� - � :F
 � �����

���
� - � � 	 ��(� ������� (2.4)

2.1.2 Surfaces de Bézier Rationnelles biquadriques

Les surfaces de Bézier Rationnelles biquadriques sont des surfaces définies comme produit tensoriel de courbes
de Bézier Rationnelles quadriques, Formule (2.5), où

��-G)IH7� ��1J)�K H�1 � sont les points de contrôles,
��28)LH7� ��1J)�K H�1 � les

poids et
� � 	 � �<(� ������� � , [24].

� � � � � � �
�54 � � 	 � ��� ��M)ONP� �MH�N�� 2)IH
) � � �Q
 H � � �
�M)ONP� �MH�N�� 2)LH
) � � �Q
 H � � � � � �
� -)IH

(2.5)

Une telle surface peut être vue comme l’ensemble des barycentres des points pondérées, Formule (2.6), [16, 18].
Le fait que la somme des coefficients fasse � assure l’indépendance de la définition par rapport au point

�
choisi.

On peut simplifier cette définition pour obtenir une surface de Bézier Rationnelle biquadrique quasi-standard. Pour
cela, on prend

23���R�S26� � �S2 � �R�S2 �T� � � . Les courbes et les surfaces de Bézier Rationnelles sont invariantes
par applications affines et projectives [9]. Les courbes tracées sur une surface de Bézier Rationnelle biquadrique
obtenues avec une des variables

�
ou

�
constante sont des coniques.

UVVVVV
W
-E)IH 	 2)IH
) � � �X
 H � � ��M)ONP� �MH�N�� 23)LH7
�)Y� � �X
3H�� � �

Z�[[[[[
\ ��1$)�K H�1 �

(2.6)

2.2 Les cyclides

Dans son étude des surfaces anallagmatiques (on peut trouver une inversion de telle façon que cette surface soit
invariante par cette transformation), M. Moutard a rencontré en ��� ��� les cyclides, [21]. Il a ainsi montré que les
cyclides possèdent cette propriété par rapport à cinq pôles différents, ces pôles sont les centres des inversions. Les
surfaces anallagmatiques de � sont les surfaces enveloppes d’une sphère variable, orthogonale à une sphère fixe � ,
appelé sphère directrice, et dont le centre décrit une surface quelconque � appelée déferente [7, 8]. Les cyclides
de Dupin forment une sous-famille de cyclides [7, 8].

2.3 Les cyclides de Dupin

Il est possible de définir ce type particulier de cyclides de différentes façons : une cyclide de Dupin est l’image
d’un cône de révolution par une inversion ; une cyclide de Dupin est l’image d’un tore par une inversion ; les
cyclides de Dupin sont les enveloppes de sphères centrées sur une conique, appelée déférente, et orthogonale à
une sphère fixe, appelé sphère d’inversion, centrée sur l’axe focal de la cyclide, [7, 8] ; les cyclides de Dupin sont
les enveloppes des sphères tangentes à deux cercles-droites d’un plan, les centres des sphères décrivant l’une des
coniques déférentes ; les cyclides de Dupin sont les enveloppes de sphères de rayons � et centrées en un point

4
sur une conique de foyer � telles que la distance � 4 : � soit constante (définition de Maxwell) ; les cyclides
de Dupin sont les surfaces enveloppes des sphères tangentes à trois sphères fixes ; les cyclides de Dupin sont les
projections stéréographiques du tore de Clifford inclus dans la sphère �
	 .
Une cyclide de Dupin de degré � est définie à l’aide de quatre paramètres � 	
��	�� et � avec ��� �

et
� ��� � � � � � .

Une cyclide de Dupin possède une équation paramétrique, Formule (2.7), et deux équations implicites équivalentes,
Formule (2.8) et (2.9), [24, 14], résultat obtenu par [32] et aussi par [8] en explicitant l’enveloppe des sphères
définissant une cyclide de Dupin. Selon les différentes valeurs des paramètres, il existe trois familles de cyclides de
Dupin, ring cyclide ou cyclide en anneau, horned cyclide ou cyclide à croissant externe, spindle cyclide ou cyclide
à croissant interne. Les propriétés des cyclides de Dupin ont été très étudiées [4, 5, 6, 7, 8, 10, 11, 23, 24, 25, 26,
2, 1, 30].

� ��� 	�� ���
������� ������
� ��� 	�� � � � � � � �
 "!$# � "!%# � �	: � � "!$# �� � � &!%# � "!$# �' ��� 	�� ��� � #�(*) � � � � � �+ &!%# � �� � � &!%# � "!$# �, ��� 	�� � � � #�(*) � � � � &!%# � � � �� � � &!%# � "!$# �� (� ��� �.-J� 	/� (� ��� �.-J�

(2.7)

0 � � : ' � : , � � � � : � ��1 � � � � � � � � � � ��: � � � ' � (2.8)0 � � : ' � : , � � � � � � � 1 � � � � � � � �$� � � � � � � , � (2.9)

3 Cercles et courbes de Bézier Rationnelles quadriques

Nous allons commencer ce paragraphe par un rappel sur la détermination du centre d’un cercle connaissant trois
points distincts. Soit 2 ,

et 3 trois points d’un cercle C de centre

�
. Alors

�
est le point d’intersection des

médiatrices 4 � et 4 � des segments � 2
 � et � 253�� . Nous souhaitons modéliser un arc de cercle par une courbe de
Bézier Rationnelle quadrique. Tout diamètre d’un cercle étant axe de symétrie de ce cercle, le point

- � , Figure
1, doit donc appartenir au plan médiateur 6 du segment � - �7- � � . Le théorème 1 donne les caractéristiques du
cercle passant par

- �
et
- � et ayant comme tangente

� - � - � � et
�/- � - � � . Réciproquement, le théorème 2 donne la

construction du point
- � pour que la courbe de Bézier Rationnelle quadrique soit l’arc de cercle de centre donné et

passant par
- �

et
- � . Le théorème montre la modélisation d’un arc de cercle par une courbe de Bézier Rationnelle

quadrique.

Théorème 1 : Cercle déterminé par deux points et les tangentes en ces points
Soit C le cercle de centre

� �
et de rayon � passant par

- �
et
- � et ayant comme tangente

� - � - � � et
��- � - � � , les

FIG. 1 – Modélisation d’un arc de cercle par une courbe de Bézier Rationnelle quadrique standard.

points
-E�

,
- � et

- � n’étant pas alignés.
Soit � � le milieu du segment � - � - � � . Soit 6 le plan médiateur du segment � - � - � � . Alors

1. Le cercle C existe si et seulement si le point
- � appartient au plan 6 .

2. On suppose que le cercle C existe.
– Le centre

� �
est donné par la Formule (3.1) et le rayon est � � � �7-E�

.

� � �
- � � � �+� � � �
- � � �
	 � � � ��� �
-	�7- � �� �

� � - � �
��� �
-	�7- � (3.1)

– Dans le plan déterminé par le cercle C, la mesure de l’angle géométrique
�-E� � ��- � est inférieure à -

ce qui veut dire que si l’on prend une paramétrisation � usuelle du cercle (en cosinus et sinus) tel que-E�*� � ���7�=� , - � � � ��� � � , on a
% �7� � � � % A - .

Théorème 2 : Construction du point de contrôle
- � connaissant le centre du cercle

Soit C le cercle de centre
� �

et de rayon � passant par
-.�

et
- � . Soit � � le milieu du segment � -.��- � � .

Pour que la courbe de Bézier Rationnelle quadrique standard soit l’arc de cercle de C passant par les deux points
distincts

- �
et
- � , le point

- � est défini par la Formule (3.2).

� �

� � - � �!� �

� �
� � � � � � �
� � �
� �=-E� � � �
� � -E�� � �
� � - � � � �
� �

� �
(3.2)

Il reste à déterminer le poids
2

de la courbe de Bézier Rationnelle quadrique standard pour que celle-ci corresponde
à l’arc de cercle C désiré délimité par

-.�
et
- � , Figure 1.

Théorème 3 : Modélisation d’un arc de cercle par une courbe de Bézier Rationnelle quadrique quasi-standard
Soit

-E�
,
- � et

- � trois points non alignés de l’espace euclidien � et � � le milieu du segment � -E�=- � � .
La courbe de Bézier Rationnelle quadrique quasi-standard � de poids

2
est un arc de cercle C de centre

� �
et de

rayon � définie par les points
- �

,
- � et

- � , théorème 1, si et seulement si
2

vérifie la Formule (3.3).% � :;2 % � % � �
� � :;2 � � - � % (3.3)

Le morceau de l’arc de courbe déterminé par le poids
2

est donné par le tableau 1.

petit arc de cercle grand arc de cercle

2 � � � � � � �� � � � - �
� � � � � �

� �7-E�� � - � � � � - �
C � 2B� � � � � � : �� : � � - �

� � � � � � : � �7-	�� � - � : � � - � A �
TAB. 1 – Arc de cercle en fonction du poids.

4 Conversion de cyclides de Dupin en carreaux de Bézier Rationnels bi-
quadriques

Les courbes tracées sur une surface de Bézier Rationnelle biquadrique obtenues avec une des variables
�

ou
�

constante sont des coniques. Les lignes de courbures des cyclides de Dupin sont des cercles et donc des coniques
particulières. Il est donc possible de convertir des cyclides de Dupin en carreaux de Bézier Rationnels biquadriques.
L’algorithme de conversion proposé par M. Pratt dans [24] permet de déterminer facilement le carreau de Bézier
Rationnel biquadrique représentant une cyclide de Dupin. Les coordonnées des points de contrôles et les poids sont
calculés à partir de l’équation paramétrique d’une cyclide de Dupin, Equation (2.7), en fonction des paramètres de
la cyclide de Dupin et des bornes délimitant la partie à convertir. Dans cet algorithme, les formules de calcul des
points de contrôles du carreau de Bézier Rationnel biquadrique sont données en exploitant les relations trigonomé-
triques liant les fonctions sinus et cosinus à la fonction tangente, Formule (4.1). La Figure 2 montre le résultat de
la conversion d’un morceau de cyclide de Dupin en un carreau de Bézier Rationnel biquadrique.

" � (�� -�� 	 "!$# ������� � �����) � 0��� 1� : ���) � 0 �� 1
	 #�() ������� � �	�) 0��� 1� : ���) � 0 �� 1 (4.1)

Morceau de cyclide de Dupin à convertir Carreau de Bézier, méthode de Pratt

FIG. 2 – Conversion d’un morceau de cyclide de Dupin en un carreau de Bézier Rationnel biquadrique en utilisant
la méthode de Pratt.

��� � 	 � � 	�� � 	�� � � (�
� � � - : �.-�� ����� car la fonction
���) n’est pas définie sur l’ensemble
 � : -�� , donc pour

certaines valeurs de
�

ou
�

, la conversion de la cyclide de Dupin n’est pas possible. Certaines lignes de courbure
ne peuvent donc pas être choisies comme bord du carreau de Bézier Rationnel biquadrique à convertir. La Figure
3 illustre un cas de disfonctionnement de cet algorithme : la discontinuité de la fonction

�	�) en
 � modulo - fait en
sorte que cet algorithme ne fonctionne pas correctement lorsque - (� � � � � � � ou lorsque - (� � � � � � � . La figure de
gauche montre la portion de la cyclide à convertir. La figure du centre montre que le carreau de Bézier Rationnel
biquadrique résultant ne correspond pas au morceau choisi. Nous améliorons l’algorithme précédent, pour obtenir
la figure de droite, en changeant simplement le calcul des poids en prenant la valeur absolue de la formule originale.

Portion de la cyclide à convertir conversion, algorithme de Pratt
Conversion, amélioration de

l’algorithme de Pratt

FIG. 3 – Insuffisance de l’algorithme de Pratt pour convertir un morceau de cyclide de Dupin en un carreau de
Bézier Rationnel biquadrique.

Les valeurs trigonométriques
� �

,
� � ,

� �
et
�
� sont utilisées pour déterminer les points de contrôles et les poids. Si

on a
� � � � et

� � � �
 	 , les points de contrôles seront “entre”
� �
	 et � . Nous devons donc avoir

% � � � � � % A -

et
% � � � �

� % A - . En tenant compte de cette contrainte, nous obtenons plusieurs conversions possibles : la Figure
4 illustre une cyclide de Dupin convertie en � carreaux de Bézier Rationnels biquadriques en utilisant l’algorithme
amélioré. La combinaison des deux algorithmes permet de réduire à � le nombre minimal de carreaux nécéssaires
pour assurer la conversion de toute la cyclide de Dupin, image de droite.

La cyclide � carreaux de Bézier � carreaux de Bézier

FIG. 4 – Conversion d’une cyclide de Dupin en carreaux de Bézier Rationnels biquadriques.

Cette amélioration permet de convertir toute une cyclide de Dupin en carreaux de Bézier Rationnelles biquadriques.
Il ne permet pas d’avoir comme “bord” une courbe obtenue avec un des paramètres ayant une valeur de - . De plus,
il ne fonctionne pas tout le temps, Figure 5. Le problème vient du poids

2 � � qui devrait être négatif. Ainsi, dans
l’algorithme de Pratt amélioré, la courbe de Bézier Rationnelle quadrique modélise le grand arc du cercle supérieur
délimitant la partie de la cyclide à convertir et la courbe de Bézier Rationnelle quadrique modélise le petit arc du
cercle inférieur délimitant la partie de la cyclide à convertir. Nous allons développer un autre algorithme basé sur
le calcul barycentrique et les propriétés circulaires des cyclides de Dupin.

Morceau de cyclide à convertir Conversion en carreaux de Bézier

FIG. 5 – Problème de l’algorithme de Pratt amélioré pour effectuer certaine conversion d’un morceau de cyclide
de Dupin en un carreau de Bézier Rationnel biquadrique.

5 Nouvel algorithme de conversion

5.1 Propriétés barycentriques des surfaces de Bézier Rationnelles biquadriques

On considère la surface de Bézier Rationnelle biquadrique standard � � , de points de contrôles
��-)IH7� ��1$)�K H�1 � et

de poids
��23)IH7� ��1J)�K H�1 � avec

26�T� � 26� � � 2 � � � 2 ��� � � . Pour que la surface � � modèlise une surface à
courbure sphérique, il faut que

-.� � appartienne au plan médiateur de � -.�T�=-E� � � , - � � appartienne au plan médiateur
de � -	�T�7- � � � , - � � appartienne au plan médiateur de � - � �7- ��� � et

- � � appartienne au plan médiateur de � -.� � - �T� � .
Nous allons donner quelques propriétés barycentriques des surfaces de Bézier Rationnelles biquadriques quasi-
standard.

Théorème 4 : Propriétés barycentriques des surfaces de Bézier Rationnelles biquadriques quasi-standard

Soit � une surface de Bézier Rationnelle biquadrique quasi-standard de points de contrôles
�/-)IH � ��1J)�K H�1 � et de

poids
��23)IH7� ��1$)�K H�1 � avec

26�T� � 26� � � 2 � � � 2 ��� � � . Un point
4 � � 	 � � 	 � � 	 � � (� ������� � appartient à la

surface � si et seulement si
4 � � 	 � �

vérifie la Formule (2.5).
– Soit � � le milieu du segment � -E�T�=-E� � � , � � le milieu du segment � -E�T��- � � � , � � le milieu du segment � - � �7- �T� � et � �

le milieu du segment � -E� � - �T� � . On a alors les relations de la Formule (5.1).

��� � � � � � �
�54�� � 	 ���� � �� :>26� �
� � �
�

�
� :>2 � �

� � �
� - � � �
��� � � � � � �
�54�� � 	 ���� � �� :>2 � �

� � �
�
� � :>2 � �

� � �
� - � � �� � � � � � � �
�54 � �� 	 � � � �� :>2 � �
� � �
�

� �6:>2 � �
� � �
� - � � �

� � � � � � � �
�54 � �� 	 � � � �� :>2 � �
� � �
�

� � :>2 � �
� � �
� - � � �

(5.1)

– Soient � � l’isobarycentre des points
- ���

,
- � � , - � � , - ��� , � � le barycentre des points pondérés

� - � � 	 2 � � � ,��- � � 	 2 � � � , �/- � � 	 2 � � � , �/- � � 	 2 � � � et
2 � 2 � � :F2 � � :;2 � � :F2 � � . Soit � � le barycentre des points pondérés� � � 	 � � , � � � 	 2*� .

– Le point
4 0 �� 	 �� 1 vérifie les deux Formules (5.2) et (5.3). De la Formule (5.3), on déduit que le point

- � �
appartient à la droite

0 4 0 �� 	 �� 1 � � 1 .� � � � � � � �
�54�� �� 	 ���� � �� :;2 : � 2 � �
� � � :>2*� � �
� � � : � 2 � �

� � �
� - � � � (5.2)

2 � �
� � � � � � � � � �
4�� �� 	 ���� - � � � � :;2�

� � � � � � � � � �
4�� �� 	 ���� � � (5.3)

– Le point
4 0 �� 	 �� 1 vérifie les deux Formules (5.4) et (5.5) où � 	 est le barycentre des points pondérés

��- ��� 	 � � ,��- � � 	 � � , ��- � � 	 � � , ��- ��� 	 � � , ��- � � 	 � 2 � � � , ��- � � 	 � 2 � � � , �/- � � 	 � � 2 � � � , ��- � � 	 � 2 � � � , et � � � � � : � 2 � � : � � 2 � � :� 2 � � : � 2 � � . De la Formule (5.5), on déduit que le point
- � � appartient à la droite

0 � 	 4 0 �� 	 �� 1 1� � � � � � � �
�54�� �� 	 ���� � �� � : � � 2 � �
� � �

� �
� � 	 : ��� 2 � �
� � �
� - � � � (5.4)

� � � : � � 2 � � �
� � � � � � � � �
� 	 4�� �� 	 ��	� � ��� 2 � �

� � � �
� 	 - � � (5.5)

– Le point
4 0 �� 	 �� 1 vérifie les deux Formules (5.6) et (5.7) où � � est le barycentre des points pondérés

��- ��� 	 � � ,��- � � 	 � � , ��- � � 	 � � , ��- ��� 	 � � , ��- � � 	 � 2 � � � , ��- � � 	 � 2 � � � , �/- � � 	 � � 2 � � � , ��- � � 	 � 2 � � � , et � � � � � : � 2 � � : � � 2 � � :� 2 � � : � 2 � � . De la Formule (5.7), on déduit que le point
- � � appartient à la droite

0 � � 4 0 �� 	 �� 1 1 .� � � � � � � �
�54 � �� 	 ��
� � �� � : � � 2 � �
� � � � �
� � � : ��� 2 � �

� � �
� - � � � (5.6)

� � � : � � 2 � � �
� � � � � � � � �
� � 4�� �� 	 ���� � ��� 2 � �

� � � �
� � - � � (5.7)

5.2 Algorithme de conversion proposé

L’idée et de développer une méthode gardant les symétries circulaires le long des courbes coordonnées de la
cyclide de Dupin en utilisant l’algorithme 1. Une cyclide n’est pas une surface de révolution, nous devrons donc
nous assurer en plus que les droites

� � � � ��� � 	�� � ��� , � � 	 � ��� � 	
� 	 ��� et
� � � � ��� 	 	�� � ��� ont bien le même point

d’intersection. Ceci est vrai à condition que
� �

et
� � (ou

� �
et
�
�) soient symétriques par rapport à � ou - sur le

cercle trigonométrique. L’algorithme 1 permet de convertir la cylide de Dupin en carreaux de Bézier Rationnels
biquadriques quasi-standards, en utilisant les formules des théorèmes 3 et 4.

5.3 Résultats

La Figure 6 illustre deux conversions d’une partie d’une cyclide de Dupin en carreaux de Bézier Rationnels biqua-
drique quasi-standard. Dans le second exemple, nous avons

� � � - . Pour l’image du dessus à droite, nous avons
utilisé un carreau de Bézier Rationnel biquadrique standard avec les poids positifs. Concernant l’image du dessous
à droite, nous avons utilisé un carreau de Bézier Rationnel biquadrique quasi-standard, les poids sont positifs le
long des lignes de courbures obtenues avec

�
constant, négatifs le long des lignes de courbures obtenues avec

�
constant.

Algorithm 1 Modélisation d’un carreau de cyclide de Dupin par un carreau de Bézier Rationnel biquadrique
quasi-standard

1. Nous choisissons un repère orthonormé de l’espace euclidien � de tel façon que l’équation de la cyclide de
Dupin � soit définie par la nappe paramétrée � de la Formule (2.7), les lignes de courbure soient choisies
pour

�'� �7�
,
� � � � ,

� � � �
et
� � �

� telles que
�7�

et
� � (ou

� �
et
�
�) soient symétriques par rapport à �

ou - sur le cercle trigonométrique.

2. les sommets des carreaux sont
- �T� � � ��� � 	�� � � , - � � � � ��� � 	�� � � , - � � � � ��� � 	�� � � , - �T� � � ��� � 	�� � � .

3. Déterminer le centre des quatre cercles de courbure en utilisant trois points sur chaque ligne de courbure
(dont les deux sommets).

4. Déterminer les points de contrôle
- � � , - � � , - � � et

- � � dans les plans médiateurs correspondants et dans les
plans des lignes de courbures correspondants à l’aide des tangentes aux cercles correspondants en utilisant
le théorème 2.

5. Calculer les poids
2 � � , 26� � , 2 � � et

2 � � en utilisant le tableau 1 du théorème 3.

6. Déterminer la première courbe coordonnée ��� qui est une courbe de Bézier Rationnelle quadrique standard
de points de contrôles

-.���
,
- � � , - � � et de poids

2 � � .
Déterminer la seconde courbe coordonnée ��� qui est une courbe de Bézier Rationnelle quadrique standard
de points de contrôles

-.���
,
-E� � , -E� � et de poids

23� � .
7. Trouver

� � solution de l’équation � �
0 �� 1 � � ��� � 	�� � � . Trouver

� � solution de l’équation � �
0 �� 1 �

� ��� � 	
� � � . Trouver
�
	 solution de l’équation � �

0 �� 1 � � ��� � 	
� 	 � .
8. Soit � � l’isobarycentre des points

-.�T�
,
-E� � , - � � , - ��� . Soit � � le barycentre des points pondérés

� - � � 	 2 � �7� ,��-E� � 	 26� � � , ��- � � 	 2 � � � , �/- � � 	 2 � � � . Soit � � le barycentre des points pondérés
� � � 	 � � , � � � 	 2�� .

Soit � 	 le barycentre des points pondérés
�/-.�T� 	 � � , �/- � � 	 � � , ��-E� � 	 � � , ��- ��� 	 � � , �/-E� � 	 � 2<� � � , ��- � � 	 � 2 � � � ,��- � � 	 � � 2 � �7� , ��- � � 	 � 2 � � � . Soit

4 � � ��� � 	�� � � .
Déterminer

- � � intersection des droites
� � � � ��� � 	
� � ��� et

� � 	 � ��� � 	�� 	 ��� .
9. Déterminer le poids

2 � � défini par la Formule (5.3).

6 Comparaison des algorithmes de conversions

Pour convertir une cyclide de Dupin en utilisant notre algorithme, nous n’avons besoin que de quatre carreaux
de Bézier Rationnels biquadriques alors qu’il en faut neuf en utilisant l’algorithme amélioré de Pratt et six en
combinant l’algorithme de Pratt et sa version améliorée, Figure 7. Notre algorithme permet de plus de convertir
une cyclide de Dupin le long d’une ligne de courbure obtenue avec un des paramètres valant - , ce qui n’est
réalisable ni avec l’algorithme de Pratt, ni avec sa version améliorée. Cette valeur - est indispensable lors de
jointure cylindre-plan modélisant un récipient.

7 Conclusion

Dans cet article, nous avons développé un algorithme permettant de convertir des cyclides de Dupin en carreaux de
Bézier Rationnels biquadriques quasi-standards. Notre point de départ a été le travail de M. Pratt. Comme celui-ci
ne permettait pas de convertir toute une cyclide de Dupin, nous l’avons amélioré afin de résoudre ce problème.
Il existait encore des valeurs interdites pour la conversion. Nous avons développé un nouvel algorithme basé sur
les propriétés barycentriques des carreaux de Bézier Rationnels biquadriques quasi-standards et les propriétés
circulaires des cyclides de Dupin. La combinaison de l’algorithme de Pratt est de sa version amélioré nécessite six
carreaux pour représenter une cyclide de Dupin tandis que notre nouvel algorithme n’en demande que quatre. De
plus, notre algorithme permet de convertir des morceaux de cyclides de Dupin impossible jusqu’à ce jour.

Références

[1] M. Berger. Géométrie 2, volume 5. Cedic-Nathan, 2ème edition, 1977-1978.

Cyclide de Dupin Carreau de Bézier

Poids positifs le long des lignes de courbures avec
�

constant, colonne de gauche, tableau 1.

Cyclide de Dupin, vue 1 Cyclide de Dupin, vue 2 Carreau de Bézier

Poids négatifs le long des lignes de courbures avec
�

constant, colonne de droite, tableau 1, et
� � � - .

FIG. 6 – Conversion d’un morceau de cyclide de Dupin en un carreau de Bézier Rationnel biquadrique quasi-
standard en utilisant l’algorithme 1.

[2] M. Berger and B. Gostiaux. Géométrie différentielle : variétés, courbes et surfaces. PUF, 2ème edition, avril
1992.

[3] P. Bézier. Courbe et surface, volume 4. Hermès, Paris, 2 edition, Octobre 1986.

[4] V. Chandru, D. Dutta, and C. M. Hoffmann. On the geometry of dupin cyclides. CSD-TR-818, November
1988.

[5] V. Chandru, D. Dutta, and C. M. Hoffmann. Variable radius blending using dupin cyclides. Technical Report
CSD–TR–851, Purdue University, January 1989.

[6] G. Darboux. Thèse à la faculté des sciences de Paris. Annales scientifiques de l’école normale, 1866.

[7] G. Darboux. Sur une Classe Remarquable de Courbes et de Surfaces Algébriques et sur la Théorie des
Imaginaires. Gauthier-Villars, 1873.

[8] G. Darboux. Principe de géométrie analytique. Gauthier-Villars, 1917.

[9] G. Demengel and J.P. Pouget. Mathématiques des Courbes et des Surfaces. Modèles de Bézier, des B-Splines
et des NURBS, volume 1. Ellipse, 1998.

[10] Ch. P. Dupin. Application de Géométrie et de Méchanique à la Marine, aux Ponts et Chaussées, etc . Bache-
lier, Paris, 1822.

[11] D. Dutta, R. R. Martin, and M. J. Pratt. Cyclides in surface and solid modeling. IEEE Computer Graphics
and Applications, 13(1) :53–59, January 1993.

[12] G. Farin. Curves And Surfaces. Academic Press, 3ème edition, 1993.

[13] J. Foley, A. Van Dam, D. Freiner, and J. Hughes. Computer Graphics : Principles and Practice. Addison
Wesley, 2 edition, 1990.

[14] L. Garnier, M. Neveu, and S. Foufou. Jointure d’un cône et d’une sphère par une cyclide de dupin. AFIG
2001, pages 133–142, november 2001.

[15] G.Darboux. Principe de Géométrie Analytique. Gauthier-Villars, 1917.

[16] M. Gourion. Mathématiques, Terminales C et E, tome 2. Fernand Nathan, 1983.

[17] C. Hoffman. Geometric and solid modeling : An introduction, 1989.

[18] J.M. Arnaudies J. Lelong-Ferrand. Cours de Mathématiques : Géométrie et cinématique, volume 3. Dunod,
2ème edition, Octobre 1991.

[19] F. Jaar, L. Garnier, and M. Neveu. The profiler : a tool for variational surface deformation. Swiss Conference
of CAD/CAM’99, pages 179–184, février 1999.

[20] M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, Rockville, Md, 1998.

La cyclide
Une première conversion avec notre

algorithme, 4 carreaux
Une seconde conversion avec notre

algorithme, 4 carreaux

Algorithme de Pratt et algorithme de Pratt amélioré, 6
carreaux Algorithme de Pratt amélioré, 9 carreaux

FIG. 7 – Comparaison des algorithmes pour effectuer la conversion d’une cyclide de Dupin en un carreau de Bézier
Rationnel biquadrique.

[21] Moutard. Annales de Mathématiques. Bulletin de la société Philomatique et compte rendu de l’Accadémie,
1804.

[22] M Paluszny and W Boehm. General cyclides. Computer Aided Geometric Design, 15 :699–710, 1998.

[23] U. Pinkall. Dupin hypersurfaces. prepint, Bonn, 1985.

[24] M. J. Pratt. Cyclides in computer aided geometric design. Computer Aided Geometric Design, (7) :221–242,
1990.

[25] M. J. Pratt. Dupin cyclides and supercyclides. Mathematics of Surfaces VI (Proc. of the VI. IMA Conference
on the Mathematics of Surfaces, Brunel University, 1994.

[26] M. J. Pratt. Cyclides in computer aided geometric design II. Computer Aided Geometric Design, 12(2) :131–
152, 1995.

[27] M. J. Pratt. Quartic supercyclides I : Basic theory. Computer Aided Geometric Design, 14(7) :671–692, 1997.

[28] A. Requicha and J. Rossignac. Solid modelling and beyond, 1992.

[29] Ching-Kuang Shene. Blending two cones with dupin cyclides. Computer Aided Geometric Design,
15(7) :643–673, 1998.

[30] Ching-Kuang Shene. Do blending and offsetting commute for dupin cyclides. Computer Aided Geometric
Design, 17(9) :891–910, 2000.

[31] D. Terzopoulos. Dynamic 3d models with local and global geometric deformations : Deformable superqua-
drics. IEEE Trans on PAMI, 13(7) :703–714, 1991.

[32] Fordyth A. R. Z. Lecture on Differential Geometry of Curves and Surfaces. Cambridge University Press,
1912.

Rétroconceptionenmodélisation à basetopologique

Franck Ledoux
LaMI, UMR 8042,523PlacedesTerrasses,91000Évry Cedex

fledoux@lami.univ-evry.fr

Résuḿe : La descriptionintuitivedesopérationsgéoḿetriquespeutsefairedeplusieurs façons: soit informelle-
ment,soitmath́ematiquement,soitpar unalgorithme. La premìerevéhiculel’intuition sous-jacenteauxopérations
maisnefournit ni rigueur, ni précision.Ceciestapport́epar unalgorithmeouunedéfinitionmath́ematique. L’ap-
proche algorithmiqueestappŕecíeepar les développeurs, maiselle imposeune implantationtype. De plus elle
renddifficile la comparaisondesapprochesqui diffèrentsouventsur desconfigurationsparticulières.L’approche
math́ematiquequi consistèa décriredemanìeresyst́ematiquele résultatdesopérations,estplusabstraite. Elle n’a
doncpasle biaispréćedent.Cependant,cesdéfinitionsnereflètentgéńeralementpasl’intuition desopérations,ce
qui lesrendsouventobscureset difficilesà manipulerpourdesopérationscomplexes.Surceconstat,nouspropo-
sonsdedéfinir différemmentlesopérationsgéoḿetriques.Lesdéfinitionsrestentmath́ematiques,maisontireparti
despropriét́esdumod̀elepourn’expliciter quele minimumdemodifications̀a effectuer. Decettefaçon,nousobte-
nonsun niveaudedéfinitionplusabstrait véhiculanttoutel’intuition desopérationsetdu mod̀eletopologique. Ce
résultata ét́e obtenuenutilisant uneméthodederétro-définitionbaśeesur l’utilisation despropriét́esdu mod̀ele.
Nousavonsmeńeuneformalisationcompl̀etedumod̀eledesn-G-carteset del’opérationdechanfreinage.

Mots-clés: Topologie,� -G-cartes,abstraction,sṕecificationsformelles,chanfreinage.

1 Intr oduction

En mod́elisationà basetopologique,les objetssont repŕesent́esen distinguantleur topologie,c’est-̀a-dire leur
décompositionenvolumes,faces,arêtesetsommets,et leurgéoḿetrie,c’est-̀a-direleurpositionet leurformedans
l’espace.Dansce cadre,de nombreuxmod̀elesmath́ematiquespermettentde repŕesenteruneclasseparticulìere
d’objets.Parexemple,lescartesgéńeraliséesdedimension� [Lie91], ou � -G-cartes, mod́elisentdesquasi-variét́es
ouvertesou fermées,orientablesou non,et de dimensionquelconque.Pource faire, les � -G-cartesdisposentde
propriét́esquetouteopérationde transformationd’objetsdoit préserver. Usuellement,la définition d’opérations
géoḿetriquespeutsefairedetrois façonsdifférentes:

1. informellement- Le plus souvent les descriptionsinformellessont trèsintuitives.Elles s’appuientsur des
exempleset décriventle résultatdesopérationssanspréciserla façon decalculercerésultat.Malheureuse-
ment,ellessontsouvent incompl̀eteset imprécises.Par exemple,on dira d’une opérationde collageentre
deuxobjetsvolumiques,qu’elle identifiedesfacesdechaqueobjet.

2. math́ematiquement- Par nature,les définitionsmath́ematiquessontpréciseset en pratiqueellessont tou-
jourscompl̀etes.Malheureusement,lesdéfinitionsmath́ematiquesdesopérationstopologiquessonttrèspeu
intuitives.Ellesdécriventle résultatdemanìeresyst́ematique,sansmêmedifférencierlespartiesdesobjets
modifiéesou nonpar les opérations.Elles restentcependantrelativementabstraites,puisqu’ellesdécrivent
le résultatet non le moyendele calculer. Par exemple,pour le collagededeuxvolumes,on poseracomme
préconditionquelesfaces̀a identifiersoientisomorphes,et on décriracompl̀etementl’objet résultantdece
collage.

3. algorithmiquement- Onexpliquecommenteffectuereffectivementl’opération.Cetteapprocheestappŕecíee
parlesdéveloppeurs,maiselle imposeuneimplantationtype.En effet, pourécrireréellementl’algorithme,
il estnécessairede s’appuyersur la structurede donńeesréellementutilisée.Si cettestructurechange,la
définitionn’estplusvalable.Parexemple,si unobjetestrepŕesent́ecommeunelisted’arêtesli éesentreelles
pardesrelationsd’adjacence,un algorithmepour l’opérationdecollagepourraêtrebaśe sur le parcoursde
la listedesarêtescomposantchacundesobjetsà coller et surl’identification desarêtesà coller.

Définir informellementune opérationoffre l’avantagede présenterintuitivementce que doit faire l’opération,
maiscetteapprochen’apporteni rigueur, ni précision.L’utilisation d’un algorithmepallie cesproblèmes,mais
dépendtrop de l’implantation.Elle renddoncimpossiblela comparaisondesapprochesqui diffèrentsouventsur
desconfigurationsparticulìeres.Une définition math́ematiqueest rigoureuse,préciseet ne tient pascomptede
l’implantation. Elle sembledonc la plus adapt́ee pour définir une opérationgéoḿetrique.Cependant,elle a le
désavantagedenevéhiculeraucuneintuition li éeaumod̀elemanipuĺe.

Partantdececonstat,nousproposonsdedéfinir différemmentlesopérationsgéoḿetriques.Lesdéfinitionsrestent
math́ematiques,maison tire parti despropriét́esdu mod̀elepourn’expliciter quele minimumdemodificationsà
effectuer. Certainesmodificationsimplicitesdécoulentalorsdespropriét́esdu mod̀ele.On obtientde cettefaçon
desdéfinitionsmath́ematiquesplus abstraitesquecelleshabituellementpropośees,qui sontexhaustives,souvent
obscureset difficiles à manipuler. Cetteapprochepermetde formaliserfidèlementles descriptionsintuitivesdes
opérationsgéoḿetriques.Ellessontdoncplusfacilesà écrireet ont moinsderisqued’êtreerrońees.

L’obtentiondecesnouvellesdéfinitionsplusabstraiteset plus intuitives,découled’uneétudecompl̀etedeforma-
lisationmeńeeà l’aide du langagedesṕecificationalgébriqueCASL [CAS00,Mos99, BM00]. Celangagedispose
d’un grandpouvoir d’expressionqui permetde formaliserl’ensembledesconceptstopologiqueset d’utiliser un
syntaxe trèsprochedesnotationsmath́ematiqueshabituelles.Néanmoins,afin denousconcentrersur la méthode
derétroconceptionpropośee,nousprésentonsnosdéfinitionsabstraitessousla formemath́ematiqueusuelleetnon
leurssṕecificationsqui peuventêtreconsult́eesdans[LAGB01, LA01].

Danscet article, nousnousintéressonsau mod̀ele des � -G-cartes[Lie89, Lie91], à sesopérationsde baseet
à desopérationsplus complexestellesquele chanfreinage[Elt94]. Nouscommenc¸onspar présenterle mod̀ele
des � -G-cartesainsiquel’opérationde basede couture.Cetteopérationnoussertà introduirenotreméthodede
rétroconceptionquenousappliquonsensuitesurl’opérationdechanfreinage.

2 Cartesgénéraliséeset r étroconception

Nousprésentonsdanscettesectionle mod̀ele topologiquedes � -G-cartes,ainsi que l’opérationde couturequi
permetdecoller deuxobjetsdemêmedimensionentreeux.

2.1 Cartesgénéraliséesdedimensionn

Unecartegéńeraliśeededimension� ou � -G-carteestun mod̀eledéfinissantla topologied’unesubdivisiond’es-
pacededimension� . Cemod̀eleestun mod̀eleordonńe qui estdéfini à partir d’un typeuniqued’élémentsabs-
traits, les brins, sur lesquelssont définis desrelationsd’adjacence.Il permetde repŕesenterdesquasi-variét́es
orientablesou nondedimension� enfournissantunedéfinitionhomog̀eneà touteslesdimensions.Avantd’intro-
duirela définition math́ematiquedes� -G-cartes,présentonslesintuitivementendécomposantsuccessivementles
différentescellulesd’un objet (voir figure1). Lesbrinssontrepŕesent́esvisuellementpardessegmentsou demi-
arêtes.Les liensentrebrins sontmod́elisésmath́ematiquementpar desapplicationsayantla propriét́e d’êtredes
involutions1.

PSfragreplacements

� � � �
FIG. 1 – Décompositiond’un objet � � enun ensembledebrins.

Consid́eronsl’objet géoḿetrique � � dela figure1 � � . À la figure1 � � , le mêmeobjetestdécompośe de façon
à mettreen évidenceles relationsd’adjacenceentre les facesle composant.À la figure 1 � � , on poursuit la
décompositionde l’objet initial en décomposantchaquefaceen objetsde dimensioninférieure,c’est-̀a-direen
desarêtesli éespar leursrelationsd’adjacence.Enfin, à la figure1 � � , chaquearêteestdécouṕeeendeuxdemi-
arêtesqui repŕesententdesbrins.Pourretrouver totalementl’objet initial à partir desbrins, il resteà reporterles
différentesrelationsd’adjacencesurcesélémentsafinderetrouverlesarêtes,lesfacespuisl’objet initial toutentier
(voir figure2 � �). Ondénotelesarêtesenindiquantunerelationentredeuxbrins.Cetterelationestuneinvolution
notée �	� , car elle relie desbrins appartenant̀a dessommetsdifférents,c’est-̀a-diredesentit́esde dimension
 .

1Une application �
������� estuneinvolution si et seulementsi pour tout élément � appartenant̀a � , on a ��������� , où ��� est la
compositionde � par � .

Lesfacessontreconstruitesenintroduisantl’in volution ��� qui reliedeuxbrinsappartenant̀adesarêtesdifférentes
(dimension �). Enfin, l’objet initial est compl̀etementdétermińe en reliant desbrins de deux facesdifférentes
(dimension�) par ��� .

PSfragreplacements

� � �

� �
� �

� � � �

� �
� �

���
�	� � �

� � � �
� �

� �
FIG. 2 – Liaisonset invariantsdansune � -G-carte

En résuḿe,chacunedesrelationsd’adjacenceestmod́eliséeparuneinvolution ��! dont l’indice " correspond̀a la
dimensionde la relationd’adjacence.Le fait d’utiliser desinvolutionsassurequesi un brin #$� a pour imagepar��! un brin # � , alorsl’image de # � par ��! est #$� , ce qui traduit un lien “physique” réciproqueentredeuxentit́es.
Cependant,ceci n’est passuffisantpour garantirla coh́esionde la repŕesentationde l’objet. Si nousreprenons
l’exemplede la figure 1 et que nousreportonsl’ensembledesrelationsd’adjacencedessus,nousobtenonsla
repŕesentationde la figure 2 � � . Pourobtenirce résultat,nousavonsrelié les facesadjacentesle long de leurs
arêtes.Commeuneareteestforméededeuxbrins,uneliaisonentredeuxfacesestconstitúeededeuxliaisons � � .
Cesliaisonsdoiventêtrecoh́erentes.Cequi exclut l’objet dela figure2 � � . La contrainteutiliséeici estque � � ���
soit uneinvolution. Ainsi, si lesarêtes

� � et
� � sontdéfiniesrelativementà uneface,on relie leursbrinspar ���

pourobtenirl’arêtecompl̀ete(voir figure2 � �). Cetypedecontraintessegéńeralisesimplementauxdimensions
suṕerieures[Lie91].

DÉFINITION 1 (CARTE GÉNÉRALISÉE) Une carte géńeralisée de dimensionn, n % -1, ou n-G-carte, est une
algèbreG=(D, � � , ... , � &), où :

- D estun ensembledebrins, (
� �)

- �	�('$)*)$)$'+� & sontdesinvolutions sur D tellesque: (
� �), ".-0/1
2'*)3)4)4' � �5�768' ,29 -:/1"<;=�>'?)3)4)7' � 6('�� ! �A@ estuneinvolution. (
�CB

)

Si lesdifférentescellules2 ont bienét́e misesenévidencelors denosdeuxexemplesdeconstruction,la définition
des � -G-cartesnes’appuiepassurunenotionexplicite decellules.Pourretrouver lescellulescomposantune � -
G-carte,il suffit deregrouperlesbrinsenfonctiondesdimensionsdesliaisons.Cettenotiondefamillesdebrins
setraduitparla notiond’orbite .

DÉFINITION 2 (ORBITE) Soit une � -G-carte DFEHG � 'I� ��'*)3)4)4'I� &�J , un brin KL- � et M un ensemblede N
permutations3 /IO<�P'$)$)*)$'QOSRT6 sur � . Onappelleorbite de K par rapportà M l’ensemble

/1K8UWV XPOSU� -YMZ'$)*)$)1'+XPO[U\]-^MZ' avecK8USE_K$O[U�)$)*)`O[U\(6 (onpeutavoir O[U! E5O[U@ pour "baE 9
)

eton notecetteorbite cdO<�P'*)$)*)$'`O[RfeLGQK J .
L’orbite cdO<�g'$)*)$)$'QO \ eLGQK J peutêtrevuecommel’ensembledesbrinsatteignables̀apartirde K parla composition
desfonctionsOA�P'*)$)$)$'`O \ . Lescellulessontdesorbitesparticulìeres.

DÉFINITION 3 (CELLULE) Soientune � -G-carte DhEhG � 'I� ��'*)3)4)4'I� &�J , un brin K^- � , et un entier " inférieur à� . La i-cellule contenantK estl’orbite c=� � '*)3)4)3'+� !`iA� 'I� !3j�� '*)3)4)3'+� &
eLG`K J .
Une " -cellulecontenantun brin K estdoncconstitúeede l’ensembledesbrinsatteignables̀a partir de K par toute
compositiond’involutionsdifférentesde � ! . L’involution � ! relie entreellesdeuxcellulesde dimension" . Elle
permetdoncde“passer”d’une " -celluleà savoisine.La figure3 présentelesdifférentescellulesd’une k -G-carte:

2Sommets,ar̂etes,faces,volumes,etc.
3Unefonction l estunepermutationsurl’ensemble� si pourtoutbrin mZno� , il existeunentier prqts tel que mul�v?�Ym .

PSfragreplacements

�

PSfragreplacements

�

PSfragreplacements

�

PSfragreplacements

�

FIG. 3 – Cartesdescellules.

enA, lesvolumesou k -cellules; en
�

, lesfacesou � -cellules; en
�

, lesarêtesou � -cellules; en � , lessommets
ou
 -cellules.

2.2 Couture et r étroconception

L’opérationde coutureestuneopérationde basequi permetde coller deuxobjetsde mêmedimension4. Nous
introduisonssadescriptioninformellepuisnousprésentonssadéfinition math́ematiqueclassiquepourfinalement
détaillernotreapproche.

2.2.1 Description informelle

PSfragreplacements

w x y z{ {(|
FIG. 4 – Couturededeuxcubesle long d’uneface.

Consid́eronsdeuxcubesquel’on veutcoller le longd’uneface(voir figure4). Naturellement,onsouhaitedésigner
les deux facesà coller ensemble.En l’occurrence,les facesgriséesde la figure 4 � � . Commenousutilisons
le mod̀ele des � -G-cartes,cela revient simplementà désignerdeux brins K et K U qui appartiennent̀a cesdeux
faceset serontli éspar la couture(voir figure4 � �). Puisquenousvoulonscoller deuxvolumes,lesbrins K et K U
serontcoususpar � B , ainsiquetouslesautresbrinsdesdeuxfaces(voir figure4 � �). Nousobtenonsainsil’objet
géoḿetriquedela figure4 � � . Notonsqu’unepréconditiondecetteopérationestquelesbrinsdésigńesnesoient
pasdéjà coususpar � B . C’estle casici, et on dira que K et K U sont k -libres.

PSfragreplacements

� � � �
KKK K K UK U K U

� � � � � �

� �
������

� �

� �� �

� �� �� �

� �
� �

������

� � � � � �
� �

�	�� �
�	�

�	�� �
�	�

� � � � � �
�	� � �

� �
� B� B

FIG. 5 – Commentcoudredeuxfacesensemble.

Du fait despropriét́esdes� -G-cartes,ladésignationdedeuxbrinsetd’unedimensionsuffit àdéterminerlacouture.
En effet, attardons-noussur lesbrinsdesdeuxfacesà coller (voir figure5). À la figure5 � � , le lien par � B entre

4D’un pointdevuegéoḿetrique,l’opérationdecouturecorrespond̀a l’opérationclassiqued’identificationd’arêtesenB-Rep.

lesdeuxbrins K et K U estétabli.Le fait que K et K U soientli éspar � B imposequelesbrins K(� � et K U � � soientaussi
li éspar � B pourassurerla propriét́eque �	�P� B estuneinvolution (voir figure5 � �). De même,lesdeuxbrins K8���
et K U � � doiventêtreli éspar � B pourassurerque � � � B estuneinvolution (voir figure5 � �). Parpropagation,tous
les brins desdeuxfacesdoivent aussiêtre li éspar � B pour obtenirune k -G-cartecoh́erente(voir figure 5 � �).
Notonsquesi lesdeuxfacesn’avaientpasét́e “identiques”,il n’auraitpasét́e possibledepréserver lespropriét́es
dumod̀ele.

La descriptionintuitive de l’opérationde coutureserésumedoncsimplement̀a dire quel’on lie deuxbrins en-
semble.Lesautreslienssontimpośespardespropriét́esdu mod̀ele.

2.2.2 Définition mathématiquede la couture

Usuellement,uneopérationestdéfiniedemanìereconstructive soit parunedéfinition math́ematique,soit parun
algorithme.Dansle mod̀ele des � -G-cartes,les définitionsmath́ematiquesexistantesénum̀erentl’ensembledes
brinset desliensdu nouvel objet.Cesdéfinitionsnetraduisentdoncpasdirectementl’intuition. Par exemple,une
définitionmath́ematiquedela couture[Elt94] est:

DÉFINITION 4 (COUTURE) Soientune � -G-carte D}E}G � 'I� �8'$)4)3)4'I� &2J , deuxbrins KS'IK U - � , "�~ � un entier
naturel et � un isomorphismede c�� ��'*)$)$)$'I��!�i � '+� !4j � '$)$)*)�'I� & e�GQK J dans c��	�8'$)*)$)�'+� !`i � 'I��!3j � '*)$)$)$'I� & efG`K U J
tel que �ZG`K J E_K U . Nousdéfinissonsla � -G-carte D U E�G � U '+� U� '$)4)3)4'I� U& J par :

1. � U E �
2.
,>9 'I
�~ 9 ~ � ' 9 aE�"�'I� U@ E_�A@

3. � U! G`� J E
�� � �CGQ� J si �]-�c��	�('$)*)$)$'+� !`i � 'I��!3j � '*)$)$)$'I� & eLG`K J G`k2)4� J� i�� GQ� J si �]-�c��	�('$)*)$)$'+� !`i � 'I��!3j � '*)$)$)$'I� & eLG`K U J G`k2)�� J� !+G`� J sinon. G`k2) k JD U estla � -G-carterésultantdela " -couturede K et K U dansD .

Danscettedéfinition, la notiond’isomorphismeutiliséeestdéfiniecommesuit.

DÉFINITION 5 (ISOMORPHISME DANS UNE
� -G-CARTE) Soientune � -G-carte D�E�G � 'I� �('*)$)*)�'I� &2J etunsous-

ensemble�0E�/1� U � '*)$)$)*'I� U! 6 de /1� ��'*)$)$)$'I� & 6 . Étant donńesdeuxbrins K et K U de � , unefonction ��� �����
réaliseun isomorphimede c��teLGQK J sur c���efG`K U J si etseulementsi

1. � réaliseunebijectionde c���e�GQK J sur c=��efG`K U J ;

2. pour touteinvolution � U@ -
� , pour toutbrin K>� de c=��efG`K J , on aK � � U@ �dE_K � ��� U@)
La définition4 méritequelquesexplications:
– l’isomorphisme� de cL� � '*)$)*)�'I� !�i ��'+� !4j �('$)*)$)�'+� &de�G`K J dans cf� � '$)*)$)�'+� !`i �('I� !3j ��'*)$)$)$'I��&0e�G`K U J permet

derepŕesenterlesnouveauxliensajout́esparla couture.Le choixdecesdeuxorbitesestcompŕehensiblesi l’on
sesouvientdescontraintesrégissantle mod̀eledes� -G-cartes.Enparticulier, � !Q� @ estuneinvolutionpourtout

~�"	;���c 9 ~ � . PuisqueK et K U sontcoususpar ��! , il estnécessairedecoudreaussilesbrins K8� @ et K U � @
par � ! pourtout

9 -d/1
�'$��'*)$)*)�'�"2�Y�>'�"7;��>'*)$)*)�' � 6 afind’assurercettecontrainte.Parpropagation,touslesbrins
desdeuxorbitessetrouventdoncli éspar ��! .

– lespoints(2) et (3.3)dela figure4 indiquentquelssontlesliensqui restentinchanǵes.
– lespoints(3.1)et(3.2)introduisentlesnouveauxliens.Lepoint(3.2)assurequela fonction ��! estuneinvolution.
Pourconcluresurcettedéfinition,onpeutremarquerqu’ellenes’appuiepassurlespropriét́esdes� -G-cartespour
définir implicitementla nouvelle � -G-cartemaisqu’elle énum̀erela totalité desélémentscomposantla nouvelle� -G-carte.

2.2.3 Rétro-définition

La définition math́ematique4 fournit unedescriptionexhaustive et syst́ematiquede la couture.Par contreelle ne
retranscritpasl’intuition véhicuĺeepar la définition informelle qui estque l’on n’explicite quele lien entreles

deuxbrins désigńespar l’utilisateur et qu’on laisse“travailler” les propriét́esdu mod̀ele.Nousnousproposons
d’apporterà la fois rigueuret intuition enfournissantunedéfinition math́ematiqueabstraiteauseindelaquelleon
caract́erisecompl̀etementle résultatdel’opérationtoutenexplicitant le minimumdechangements.

PSfragreplacements

D � D�� D B
FIG. 6 – Le principed’inclusionentre� -G-cartes.

Informellement,la couturede deuxbrins K et K U par � ! dansune � -G-carteimplique que les brins desorbitesc�� � '$)$)*)$'+� !`i ��'I� !3j �('$)*)$)*'I��&�e�GQK J et c�� � '$)*)$)$'+� !`i �('I� !4j ��'*)$)$)*'I��&�e�G`K U J sontobligatoirementcoususcor-
rectementpour valider les propriét́esdu mod̀ele. Cetteexplication informelle de la couturereposesur un fait
implicite importantqui estqueles seulesmodificationseffectúeessur la � -G-carteinitiale sont le lien explicité
entreK et K U et lesliensrésultantdecelien poursatisfairelespropriét́esdumod̀ele.End’autrestermes,aucunlien
suppĺementairen’a ét́eeffectúe,etaucunbrin n’a ét́eajout́eousuppriḿe.Pourdéfinir rigoureusementcettenotion
dechangementminimum,nousintroduisonsle principed’inclusionentre� -G-cartes.

DÉFINITION 6 (INCLUSION ENTRE
� -G-CARTES) Une � -G-carte D�E G � 'I� � '*)$)$)*'I��& J est incluse dansune� -G-carte D U E�G � U 'I� U� '$)*)$)*'I� U& J si et seulementsi

– � estun sous-ensemblede � U ,
– pour tousbrins K � et K(� de � telsque K � aE_K(� , si K � � ! E_K(� , ".-5¡
2' �<¢ , alors K � � U! E_K(� .
Ainsi le passaged’une � -G-carteà une autrepar inclusion,consisteà ajouterdesbrins et/ou desliens. Dans
l’exemplede la figure 6, le passagede D � à D�� se fait en ajoutantles brins du triangleet leurs liaisons,et le
passagede D�� à D B se fait en liant le carŕe au triangle.Dansle mod̀ele des � -G-cartes,les brins " -libres sont
repŕesent́esparun point fixe del’in volution ��! . Commel’indique la définition 6, seulesles liaisonsdecespoints
fixessontsusceptiblesde changerpar inclusion.À l’aide de la notion d’inclusion,nousred́efinissonsla couture
commesuit.

DÉFINITION 7 (COUTURE) Soientune � -G-carte D£E�G � '+� � '$)4)3)4'I��& J , un entier naturel "¤~ � et deuxbrins" -libres K�'+K U - � . La pluspetite � -G-carte D U E¥G � U 'I� U� '*)3)4)4'I� U& J telle que

1. D¥¦�D U
2. K(� U! E_K U

estla � -G-carterésultantdela " -couturede K et K U dans D .

Commela � -G-carteobtenuecontientla � -G-carteinitiale, nousconservonstouslesbrinset liensprésentsavantla
couture.Le fait quelesdeuxbrinsdésigńessoientli ésdansla nouvelle � -G-carteassurenonseulementla présence
decelien maisaussicelledetouslesliensnécessaires̀a la coh́erencedes� -G-cartesle long del’orbite ad́equate.
Enfin,commenousconsid́eronsla pluspetite � -G-cartecontenantla � -G-carteinitiale D ettellequelesdeuxbrins
désigńes K et K U sontcoususpar � ! , nousassuronsqueles seulesdifférencesentrela � -G-carteobtenueet la � -
G-carteD sontduesà la propagationdesinvariants.L’existencedecette � -G-cartepeutfacilement̂etreprouv́ee5.
À titre d’exemple,consid́eronsla figure7. En

�
, nousavonsl’objet initial sur lequelestmat́erialiśe la liaisonpar��� à effectuerentre K et K U . En l’ étatactuel,ce n’est doncpasune � -G-carte.En

�
, la � -G-carterésultantde la

couturede K et K U par ��� contientseulementuneliaisonsuppĺementairepar ��� . La présencedecetteliaisonestla
conśequenceimmédiatedela préservationdesinvariantsdumod̀ele: commeK et K U sontli éspar ��� , lesbrins K8� �
et K U � � doivent l’ êtreaussipour assurerque � �*� � estuneinvolution. En

�
, une � -G-carteoù la � -coutureentreK et K U a ét́e effectúeecorrectement,maisqui contientdesbrinset desliaisonssuppĺementaires.De telsobjetsont

évitésenneconservantquela pluspetite � -G-carte.Enfin en � , la coutureestaussieffectúeecorrectementmais
la � -G-carteinitiale a ét́e tronqúee,ellenecontientdoncpasla � -G-cartededépart.

5Une façon simplede prouver l’existenceet l’unicité de cette § -G-carteest de montrerqu’elle est la plus petite § -G-cartevérifiant la
définition6 dela couture.

PSfragreplacements

� � � �
K K U

FIG. 7 – Exempledecouture.

Les définitions6 et 7 ainsi que le mod̀ele des � -G-carteset desopérationscommel’isomorphismeentredeux
orbites,ont toutesét́e formaliśeesen CASL [LAGB01]. Pluspréciśement,c’estdece travail desṕecificationque
découlentlesdéfinitionspréćedentes.Il enva demêmepourl’opérationdechanfreinagequenousabordonsdans
la sectionsuivante.

3 Rétroconceptiondu chanfreinage

Danscettesection,nousprésentonstoutd’abordunedéfinition informelleduchanfreinagepourensuiteintroduire
notredéfinitionabstraite.

3.1 Qu’est-ceque le chanfreinage?

Prenonsl’exemplede la figure 8. En
�

, nousavonsla topologied’un cubedont nouschanfreinonsl’arête
�

et
le sommeẗ . Dansle casdu chanfreinagedu sommeẗ , on obtientunefacetriangulaire,car le sommeẗ était
initialementbord́e par trois faces(voir figure8 � �) alorsquel’arête

�
estremplaćeepar unefaceà deuxcôtés

(voir figure8 � �).

PSfragreplacements

�� � �
¨

FIG. 8 – Exemplesdechanfreinage.

Plus géńeralement,́etantdonńeeune subdivision ¨ de dimension � , chanfreinerune de sescellules,notée
�

,
consistèa remplacercettecelluleparunecellulededimension� dontle nombredecellulesdedimension� �5� la
bordantestégalaunombredecellulesdedimension� incidentes̀a

�
.

Notonsdès à présentqu’en tant quedéfinition informelle, la définition du chanfreinagedonńeepréćedemment
n’explicite pascequesignifiele remplacementd’unecelluleparuneautre.En particuliercommentconnecte-t-on
la nouvelle cellule au restede l’objet qui est rest́e inchanǵe? L’ écritured’une définition math́ematiqueou d’un
algorithmepermetderépondrèa cetypedequestionsendécrivantcompl̀etementle résultat.

3.2 Définition abstraite du chanfreinage

Commela couture,le chanfreinagea ét́e défini math́ematiquementet de façon exhaustive [Elt94]. Par soucide
concision,nousne donnonspascettedéfinition ici pour nousconcentrersur notreapproche.Nouscherchons̀a
identifierlesmodificationsexplicitesetcellesàlaisserimpliciteslorsduchanfreinaged’unecellule.Pourcela,nous
traduisonsla définition informelle du chanfreinagedansle mod̀ele des � -G-cartes.Supposonsquel’on dispose
d’une � -G-carteD�E�G � '+� � '$)*)$)$'+� & J et d’une " -cellule

��© D à chanfreiner, on doit :

1. construireune � -cellule
� U telle quele nombrede G � ��� J -celluleslui étantincidentessoit égalaunombre

de � -cellulespréćedemmentincidentes̀a
�

.

2. remplacerla cellule
�

parla nouvellecellule
� U .

La premìereétapeconsistèaconstruireune � -celluleàpartird’une " -celluleenrespectantcertainescontraintessur
le nombredecellulesincidentes.Cetteétapeesteffectúeeenconsid́erantla notiondecelluleduale.

DÉFINITION 8 (CELLULE DUALE) Soitune � -G-carte DhE}G � '+� � '$)*)$)�'+� & J telle que � ! E id ª « , alors la n-G-
carte D U E�G � U 'I� U� '$)*)$)*'I� U& J définiepar :
– � U E � ,
–
, K¬- � ' ,A­ -®¡
2' �<¢ ' ­ aE�"
– si

­ c="�'�K8� U\ E�K(� \ ,
– si

­ e="�'�K8� U\ iA� E�K(� \ ,
estappeĺeela � -G-carteduale de D . Elle a pour propriét́eque � U& E id ª «.¯ .
Une " -cellule

�
inclusedansune � -G-carte D peutelle-mêmeêtreconsid́eréecommeune � -G-cartetelle que��!	E id. Grâceà la définitionpréćedente,onpeutconstruirèapartird’une " -cellule

�
, une � -celluledontle nombre

de � �=� cellulesincidentessoit égalaunombrede � -cellulesincidentes̀a
�

. Par exemple,à la figure9, la cellule
dualed’un sommeten

�
estobtenueen

�
, lesliaisons��� et � � (qui ont touteslesdeuxunedimensionsuṕerieure

à
 , c’est-̀a-direà celledela celluleconsid́erée)deviennentrespectivementdesliaisons � � et ��� . La celluleduale
d’unearêteen

�
estdonńeeen � . Uneareteestdedimension� , lesliaisons � � restentdoncinchanǵees,maisles

liaisons� � deviennentdesliaisons��� . Cesdeuxexemplessonttraitésdansune � -G-carte.

PSfragreplacements

� � � �KKK K
°°°° #### ±±±±

� �
² ² ���� �

� �
� �� �� �

� �� �

FIG. 9 – Deuxexemplesdecellulesdualesdansune � -G-carte.

Si lacréationdela � -celluledualesefait aiśement,il fautmaintenantpouvoir l’introduire dansla � -G-carteinitiale.
Il vadesoiquecelanepeutsefaireenremplaçantlitt éralementla " -celluleàchanfreinerparla � -celluleconstruite
préćedemmentsouspeinedenepaspaspouvoir “recoller” la celluleaurestedela � -G-carte.Il fautenfait éclater
lacellulededépart,construirela nouvellecelluleet lesrelierentreelles.C’estcequenousfaisonsavecla définition
suivantequi estcomment́eejusteapr̀es.

DÉFINITION 9 (CHANFREINAGE) Soientunen-G-carte DfE¥G � 'I� ��'$)4)4)3'+� &2J etunei-cellule� E¤c�� �8'$)4)3)4'I��!�i��g'+� !4j �g'$)4)3)4'I� & e¥GQK J de D . Nousnotons� ! l’ensembledesbrins de
�

, et nousintroduisonsla
famille G � @ J @�³>´ !3j���µ &P¶ d’ensemblesdebrins telsquepour tout

9 -®¡ "A;·�(' �<¢ ,
– ��¸¹� @ºE�» ,
– pour tout

­ -®¡ "�;·�(' �<¢ ' ­ aE 9 ' � @ ¸
� \ E�» ,
– il existeunebijection � @ � � ! �¼� @ .
Nousconsid́eronsen outre la n-G-carteéclat́ee ½¾E¿G �tÀ '+� À� '*)3)4)3'+� À& J qui est la plus granden-G-carteincluse
dans D et telle que

, K�- � !�'ÁK(� À!4j � E¥K�) Nousdéfinissonsalors la n-G-cartechanfreinée �
E}G �tÂ 'I� Â� '*)3)4)4'I� Â& J
commela pluspetiten-G-cartecontenant½ et telle que:

1. �tÂ E �fÃ^Ä @�³>´ !3j���µ &P¶ � @
2. pour tout K�- � ! , K(� Â!3j�� E�K8� !3j��
3. pour tout K�- � ! , pour tout

­ -®¡ "�' � ��� ¢ , K(� \ � Â \ j � E�K8� \ j �
4. la celluleforméedesbrins K U � & avec K U - � ! , estla celluledualede

�
.

La � -G-carte � estle résultatdu chanfreinagedela cellule
�

dansla � -G-carte D .

Consid́eronsla figure 10 où un sommet
�

est chanfreińe dansune � -G-carte D . Sur la ligne du haut, nous
repŕesentonsl’objet danssaglobalité, tandisquesur la ligne du bas,nouseffectuonsun zoomsur la cellule à
chanfreiner.
– En

�
, l’objet dedépartestrepŕesent́e.À titre d’exemple,nousdétaillonslestransformationsli éesaubrin K .

– En
�

, la cellule
�

estéclat́ee,c’est-̀a-direquel’ensembledesbrinsdela cellulesontdécoususpar ��� . Le “trou”
ainsiformépermettrad’introduirela nouvellefacedualede

�
. Notonsquec’estcette� -G-carte(etnonla � -G-

carteinitiale) qui estinclusedansla � -G-cartefinale.Eneffet, initialement(voir la figure10-
�

) le brin K estli é

à sonvoisin,alorsqu’aufinal (voir la figure10-Å) il estli é à un autrebrin introduit ci-dessous.Cette� -G-carte
éclat́ee(figure10-

�
) estnotée ½ dansla définition 9 et estelle-mêmedéfiniecommeinclusedansla � -G-carte

dedépart(figure10-
�

).
– En

�
, nousprésentonsle traitementlocal au brin K . Pource brin on ajouteunechâıne de deuxbrins K(� � etK(� � telsque K8� � E¥K8� � et K(� � � ��E¥K8� � . Ce traitementestdéfini par lespoints � et k de la définition 9. Les

fonctions� !4j � '$)*)$)$'+� & permettentd’ajouteret denommerlesnouveauxbrinsdansla � -G-carte.
– En � , nousprésentonsl’ajout de la châınedebrinspour touslesbrinsde la cellule

�
. La nouvelle facecom-

menceainsiàprendreforme.
– En Æ , sontprésent́eesles couturesde la nouvelle face,qui estla dualedu sommet

�
de départà chanfreiner.

Cettefaceestconstitúeedetouslesbrins K U � � introduitspourchaquebrin K U du sommetdedépart.On effectue
donclescouturesentresesbrinsselonla définition8 qui estutiliséeaupoint Ç dela définition9.

– Le résultatde la figure 10�rÆ n’est pasune � -G-cartecar certainsliens manquentaux niveauxdesbrins in-
termédiairesentrela cellule

�
et sacelluleduale.Cesdernierliensrésultentenfait despropriét́esdu mod̀eleet

nesontdoncpasexplicitesdansla définition9. Onobtientfinalementle résultatdela figure10�rÅ .
Notonsqueplusla dimensiondela � -G-carteestélevée,plus le nombredecoutureseffectúeesimplicitementest
grand.

Nousproposonsainsiuneformalisationdirectede la définition intuitive du chanfreinage.Seulesles imprécisions
dela descriptionintuitiveont ét́e combĺees,enparticulierla manìeredelier la nouvellefaceà la cellulededépart.
Nousobtenonsainsiunedéfinition rigoureuse,compl̀eteet intuitivedu chanfreinage.Bien entendu,la complexité
intrinsèquede l’opérationde chanfreinagetransparâıt danssadéfinition. La définition 9 ne peutdonc pasêtre
qualifiéedeclaireetconcise.Cependantlesgainssurcespointsparrapportà la définitionpréćedemmentpropośee
par H. ELTER [Elt94] sontsignificatifs.De plus, la proximité avec la descriptionintuitive de l’opérationen fait
uneréférencedecorrectionbeaucoupplussûre.

PSfragreplacements

� � � �
Æ

Å
KK KK K � � � �K(� �K(� �

FIG. 10 – Arrondi fermé d’un sommetdansune k -G-carteplonǵee.

3.3 Retombéesalgorithmiques

Mêmesi celapeutparâıtreparadoxal,la définition9 adesretomb́eesalgorithmiquesdirectes.En fait, la recherche
de critèresminimauxnouspermetd’isoler un comportementlocal à chaquebrin et le travail desinvariantsdu
mod̀ele.Dansle casdela couture,le traitementlocal estsimplementdelier deuxbrinsensemble,tandisquepour
le chanfreinage,il consistèaajouterunechâınede � ��" brins.Ensuite,lesinvariantstravaillentdirectementdansle
casdela coutureetsontamorćesparlesliaisonsdela celluledualedansle casduchanfreinage.̀A titre d’exemple,
l’algorithmede chanfreinagequenousavonsimplant́e suit cettedémarche: on parcourtl’ensembledesbrins de
la celluleà chanfreinerdansun ordrequelconque; pourchaquebrin K , on ajouteunechâınede � �®" brins; si les
brinsvoisinsde K dansla cellule à chanfreinersontdéjà traités,on effectuelescouturesde la celluledualeet on
explicite la propagationdesinvariantsdu mod̀eleentreK et sesvoisins.

Finalement,nousobtenonsunedéfinition math́ematiquedu chanfreinagèa la fois plusabstraitequela définition
usuelle,maisaussiplus prochedesalgorithmeseffectivementmis en œuvrequi sont locaux.Obtenirde tels al-
gorithmesestimportantcar ils permettentde s’affranchirde l’ordre de parcoursdesobjetsen simplifiant la pro-
grammation,ils supprimentpresquetotalementles préconditionsen étantlocaux et non plus globauxet ils se
géńeralisentplusfacilement̀a desdimensionsquelconques.

4 Conclusionet perspectives

Dansle cadrede la mod́elisationgéoḿetriqueà basetopologique,nousproposonsunenouvelle approchepour
définir math́ematiquementlesopérationsdetransformationsgéoḿetriquesdansle mod̀eledes� -G-cartes.La des-
cription propośeeestbaśeesur l’inclusion entre � -G-carteset reposesur la recherchede critèresminimauxde
modification.

Un intérêt majeurde notreapprocheestd’obtenir desdéfinition math́ematiquesplus prochedu niveauinformel
et doncplusfacilesà valider. Cepoint estimportantpourconférerun degré deconfianceplusfort à unenouvelle
opérationgéoḿetrique.En outre,nousavonsvu quel’ écrituredetellesdéfinitionsabstraitesmetenévidencedes
consid́erationsd’ordre algorithmique.Lesalgorithmeslocauxbaśessur le parcoursd’un ensemblede brinset le
traitementlocal deceux-cisedéduisentplusfacilementdenosdéfinitionsoù le traitementlocal à chaquebrin est
identifiéet lesparcourssedéduisentdesinvariantsdu mod̀ele.

Nous avons déjà appliqúe notre approchesur desopérationstelles que l’extrusion et la triangulation,mais il
seraitintéressantde s’intéresser̀a desopérationsplus complexescommele produit cart́esienou les opérations
booĺeennes.Enoutre,il faudraittesternotreapprochesurd’autresmod̀elestopologiquescommelescartes[Cor75],
leschâınesde cartes[EL94], ou lesensemblessimpliciaux[Lan95]. La mêmedémarcheminimalistedoit y être
applicablèaconditiondechangerle critèredemodificationminimaled’un objet.

Références

[BM00] M. Bidoit andP. D. Mosses. A gentleintroductionto CASL. Tutorial, CoFI Workshopat the 3rd
EuropeanJoint Conferenceson Theory andPracticeof Software (ETAPS’2000),Berlin, Germany,
April 2000.

[CAS00] CoFI (commonframework initiative) taskgroupon languagedesign.caslthecommonalgebraicspe-
cificationlanguagesummary, June2000. ftp ://ftp.brics.dk/Projects/CoFI.

[Cor75] R. Cori. Un codepourlesgraphesplanaireset sesapplications.Ast́erisque, 27,1975.

[EL94] H. Elter and P. Lienhardt. Cellular complexesas structuredsemi-simplicialsets. In International
Journalof ShapeModeling, volume1, pages191–217.1994.

[Elt94] H. Elter. Étudede structurescombinatoirespour la repŕesentationde complexescellulaires. PhD
thesis,Universit́eLouis-PasteurdeStrasbourg, 1994.

[LA01] F. Ledoux and A. Arnould. Geospec: specificationlibraries for geometricmodelling,sept.2001.
http ://www.sic.sp2mi.univ-poitiers.fr/GL/GeoSpec.

[LAGB01] F. Ledoux,A. Arnould,P. Le Gall, andY. Bertrand.GeometricModelling with CASL. In M. Cerioli
andG.Reggio,editors,RecentsTrendsin Algebraic DevelopmentTechniques, number2267in Lecture
Notesin ComputerScience,pages176–200.SpringerVerlag,April 2001.

[Lan95] V. Lang.Uneétudedel’utilisation desensemblessimpliciauxenmod́elisationgéoḿetriqueinteractive.
thèse,Universit́eLouisPasteur, L.S.I.I.T, Strasbourg, octobre1995.

[Lie89] P. Lienhardt. Subdivisionsof n-dimensionalspacesandn-dimensionalgeneralizedmaps. In Annual
A.C.M.Symposiumon ComputationalGeometry, pages228–236,Saarbr̈ucken,R.F.A, June1989.

[Lie91] P. Lienhardt. Topologicalmodelsfor boundaryrepresentations: a comparisonwith � -dimensional
generalizedmaps.Computer-AidedDesign, 23(1):59–82,1991.

[Mos99] P. D. Mosses.CASL : A guidedtourof its design.LNCS, 1589:216–240,1999.

Deux algorithmes d’intersection des surfaces de
subdivision

S. Lanquetin, S. Foufou, H. Kheddouci, M. Neveu

LE2I, FRE CNRS 2309/Université de Bourgogne BP 47870
21 078 Dijon cedex

sandrine.lanquetin@u-bourgogne.fr

Résumé : � Le calcul des intersections de surfaces est un problème fondamental en modélisation. Toute
opération Booléenne peut être vue comme un calcul d’intersection suivi d’une sélection des parties à conserver
pour construire la surface de l’objet résultant. Dans cet article, nous nous intéressons aux calculs des
intersections de surfaces de subdivision (surfaces générées par le schéma de subdivision de Loop). Nous
présentons trois variantes d’algorithmes de calcul différent. La première variante calcule cette intersection
après une classification des faces des objets en couples d’intersection et de non intersection. La seconde
variante se base sur le 1-voisinage des faces en intersection. La troisième variante utilise la notion de graphe
biparti.

Mots-clés : �Opérations booléennes, courbes d’intersection, surface de subdivision, principe de Loop.

1.� Introduction
Les méthodes de génération de surfaces occupent une place très importante en Infographie et en Conception et
Fabrication Assistée par Ordinateur (CFAO). La modélisation basée sur les surfaces de subdivision dispose de
deux avantages principaux. Elle s’applique à des maillages de topologie arbitraire (comme la modélisation
polygonale) et elle a un comportement local (comme la modélisation par les NURBS ou les B-Splines)
puisqu’elle s’appuie uniquement sur un petit nombre de points de contrôle.
Les surfaces de subdivision sont maintenant largement utilisées. Le succès de ces surfaces provient de leur
capacité à générer des surfaces lisses à partir de maillages initiaux arbitraires et leur implémentation relativement
aisée grâce à leur concept simple. Elles sont définies par un maillage initial de type arbitraire et des règles de
raffinement. Ces règles sont composées de règles géométriques déterminant les positions des nouveaux points de
contrôle à partir des positions des anciens et de règles topologiques qui décrivent la procédure de raffinement de
la connectivité du polyèdre de contrôle et de ce fait les propriétés de la surface. A partir d’un maillage polygonal,
appelé réseau de contrôle, l’application répétée des règles de raffinement produit des nouveaux maillages
polygonaux comprenant de plus en plus de faces. La suite de maillages ainsi constituée converge vers une
surface lisse, appelée surface limite (par exemple, B-spline ou Box-spline), topologiquement similaire au réseau
de contrôle initial. La Figure 1 montre un exemple de surface de subdivision. De la gauche vers la droite, la
surface est de plus en plus lisse.

Fig. 1. Exemple de surface de subdivision.

Depuis l’introduction des surfaces de subdivision en 1978 par Catmull-Clark [Cat78] et Doo-Sabin [Doo78] de
nombreux principes (ou schémas) de subdivision ont été proposés [Loo87, Zor00, Kob00, Vel00].
Le tableau 1 présente une synthèse des principes les plus connus. Pour chaque schéma, on peut constater le type
de maillage sur lequel il peut s’appliquer (triangulaire, quadrilatéral…) et le type de la surface limite.

Schéma Type de maillage Type de surface limite
Doo-Sabin polygonal B-spline quadratique

Catmull-Clark quadrilatéral B-spline cubique
Loop Triangulaire B-spline triangulaire quartique

Tab. 1. Classification des schémas de subdivision les plus courants.

L’ utilisation croissante de ces surfaces nécessite de reconstruire les outils préalablement connus pour d’ autres
types de surfaces ou de solides. Le calcul des opérations booléennes, par exemple, est fondamental pour la
construction d’ objets complexes à partir d’ objets plus simples. Un objet CSG est généré par combinaison de
plusieurs opérations booléennes (intersection, union, différence) entre des primitives élémentaires [Kri94]. Les
primitives peuvent être des formes simples (cube, cylindre, tore…) ou des formes plus complexes construites à
l’ aide d’ un ensemble de primitives simples ou généré par des surfaces plus compliquées. La Figure 2 montre un
exemple d’ opérations booléennes pouvant être effectuées sur deux objets simples.

Fig. 2. Union (a), intersection (b) et différence ((c) et (d)) entre les deux surfaces.

De façon générale, une opération booléenne se déroule en deux étapes :
•� Calcul des courbes d’ intersection entre les surfaces des deux primitives impliquées dans l’ opération :

des points d’ intersection sont trouvés, classés puis connectés pour approcher la courbe d’ intersection.
•� Conservation des parties des primitives nécessaire à la construction de la surface de l’ objet résultant

selon l’ opération booléenne envisagée.
En modélisation géométrique, le calcul des intersections de surfaces est un problème récurrent et fondamental
largement étudié pour les surfaces algébriques et paramétriques [Boe91, Pat93, Abd96]. Selon les algorithmes
impliqués dans les différentes taches fondamentales, les méthodes de calcul d’ intersections peuvent être classées
parmi les quatre catégories principales suivantes. Les méthodes analytiques [Pat93, Cha87] lorsqu’ une des
surface est exprimée sous forme implicite et l’ autre sous forme paramétrique. Les méthodes de discrétisation
réduisent le problème d’ intersection surface/surface à un ensemble de problèmes d’ intersection courbe/surface
[Bar87]. Les méthodes de suivi nécessitent de connaître au moins un point de la courbe d’ intersection, appelé
point de départ, pour générer une suite de points sur la courbe d’ intersection en exploitant les propriétés
géométriques locales des surfaces en intersection [Baj88]. Les méthodes de subdivision utilisent le raffinement
des surfaces pour trouver une approximation polygonale des courbes d’ intersection. La fiabilité de ces méthodes
dépend du niveau de subdivision et des différents outils utilisés pour contrôler l’ arbre de subdivision.
Dans cet article, nous nous intéressons particulièrement au calcul des intersections des surfaces de subdivision
dans un contexte d’ algèbre de solides modélisés par des surfaces de subdivision. Pour des raisons pratiques, nous
ne considérons que les surfaces de subdivision générées par le principe de Loop. Ce principe s’ appliquant
uniquement sur des maillages triangulaires, il permet de travailler sur des faces triangulaires, et par conséquent
planes. Nous présentons et nous comparons trois variantes d’ un algorithme de calcul : la première variante
calcule cette intersection après une classification des faces des objets en couples d’ intersection et de non
intersection. La seconde variante se base sur le 1-voisinage des faces en intersection. La troisième variante utilise
la notion de graphe biparti. Pour appliquer les deux dernières variantes, il est nécessaire de connaître les courbes
d’ intersection au premier niveau. Elles seront donc calculées à l’ aide de l’ algorithme naturel d’ intersection de
maillages. La principale différence entre la version voisinage et la version graphe repose sur les ensembles de
faces considérés. La première considère un ensemble de faces par objet alors que la seconde fait intervenir
plusieurs sous ensemble de l’ ensemble précédent par l’ intermédiaire d’ un graphe biparti.

a)

b)

c)

d)

2.� Concepts de base.
La deuxième et la troisième variante de notre algorithme se basent sur les notions de 1-voisinage, de 2-voisinage
et de graphe biparti. La Figure 3 illustre les termes de 1-voisinage et de 2-voisinage. Le 1-voisinage

� �� &9
d’ une face F contient cette face et toutes les faces voisines à cette face par un sommet, il est délimité par les
petits pointillés : ��� ��� ��� 	
\ ^	 �

& & & S 3 & 3 &� � � � �9 où � �3 & est l’ ensemble des sommets de la face
F. Le 2-voisinage
 �� &9 est en fait le 1-voisinage de � �� &9 , il est borné par les grands pointillés : ���

	

���

\ ^� � ��� �& & & &� �9 9 9 . L’ ensemble des faces obtenues par une subdivision du 1-voisinage de F est

noté � �� &: , ��� ���	
\ ^� �����& & & ,OOP &� �: 9 . � �� &: est un sous-ensemble de faces de � �� &: restreint

aux faces ayant un sommet commun avec l’ une des sous faces résultant de la subdivision de F, �! �!
	

 �!
	
 	
\ ^" "� �#$# #& & & ,OOP & S 3 ,OOP & 3 &� � � �: 9 où % &	
3 ,OOP & est l’ ensemble des

sommets obtenus par la subdivision de F.

Fig. 3. 1-voisinage et 2-voisinage : ' () &9 , * +, &9 , * +&: et * +, &: .

Un graphe biparti est un graphe dans lequel :
•� Les sommets sont répartis en deux groupes -) et .) . Dans notre algorithme, ces groupes seront

respectivement formés par les faces intersectantes de chaque surface.
•� Chaque arête a une de ses extrémités dans chacun de ces groupes. Dans notre cas, une arête

symbolisera la présence d’ une intersection entre deux faces.
•� Aucune arête ne peut relier deux sommets d’ un même groupe.

3.� La variante naturelle
Le calcul des courbes d’ intersection s’ effectue en plusieurs étapes. Tout d’ abord, les faces des deux surfaces sont
répertoriées en deux catégories : les faces en intersection et les autres. Seul les couples de faces en intersection
sont considérés dans la suite de l’ algorithme. L’ intersection face/face est calculée pour obtenir les points
d’ intersection qui seront ensuite triés et reliés par des segments de manière à obtenir des approximations
linéaires par morceaux des courbes d’ intersection.

3.1.� Détection des intersection entre deux faces
Cette étape préliminaire consiste à utiliser les tests de collision des boites englobantes des faces des deux
maillages pour faire un premier filtrage qui éliminera les faces clairement disjointes de toute investigation future.
Ensuite, les intersections de toutes les faces restantes vont être calculées. La complexité de l’ algorithme devient
en 	
/ // M Nq avec 0M et 1N respectivement inférieurs aux nombre de faces M et N des surfaces 23 et 33 .

3.2.� Déterminer les points d’ intersection entre deux faces
Plusieurs méthodes peuvent être envisagées pour calculer les points d’ intersection. O’ Brien et Manocha [Obr00]
calculent l’ intersection en effectuant l’ intersection des plans porteurs des faces puis en prenant la restriction aux
faces. Ils sont donc obligés de distinguer deux cas : le cas où les deux points d’ intersection appartiennent aux
segments d’ une même face et le cas où ils sont portés par des segments de faces différentes (Figure 4).

Fig. 4. Deux cas d’ intersection face/face.

F

4 52 &9
6 78 &9

F

9 :; &:
6 78 &:

Une autre solution consiste à calculer les intersections de tous les segments d’ une face avec l’ autre face.
L’ intersection droite plan est tout d’ abord calculée. L’ équation de la droite étant écrite sous forme barycentrique,
la restriction au segment s’ effectue en vérifiant que la valeur du paramètre est dans l’ intervalle < >��� . Ensuite il
ne reste plus qu’ à vérifier l’ appartenance du point d’ intersection à la face, ce qui se fait aisément en comparant
l’ aire de la face avec la somme des aires des triangles formés par le point d’ intersection et les sommets de la
face. C’ est cette seconde méthode que nous avons choisi d’ implémenter.

3.3.� Tri des points d’ intersection et évaluation de la courbe polygonale d’ intersection.
Le tri des points est facilement réalisé grâce à la structure du point d’ intersection qui stocke les coordonnées du
point, les faces de chaque objet à l’ origine de ce point et l’ arête qui porte ce point. Ainsi les extrémités des
segments d’ intersection correspondent aux points d’ intersection contenant deux faces identiques. Ensuite, les
segments sont reliés entre eux en utilisant la structure winged edge [Bau72].

4.� La variante de voisinage.
Le calcul de l’ intersection au niveau initial pour cet algorithme se fait à l’ aide de l’ algorithme naturel. Les faces
en intersection des deux surfaces sont donc connues par la suite. La Figure 5 représente la courbe d’ intersection
et les faces en intersection au niveau initial.

Fig. 5. Courbe d’ intersection au premier niveau avec les faces en intersection.

Soit <) l’ ensemble des faces participant à l’ intersection de la surface =3 . La première étape de cet algorithme

consiste à récupérer le 1-voisinage 	
> ?)9 . Rappelons que ce 1-voisinage contient l’ ensemble =) ainsi que

toutes les faces voisines aux faces de =) par un sommet. Les ensembles 	
@A@)9 et 	
@CB)9 sont représentés par
la Figure 6.a.
Puis les ensembles 	
@ ?)9 sont subdivisés en appliquant le principe de Loop. Lors de cette étape de raffinement,

seul le 1-voisinage des ensembles 	
@ ?)9 est conservé. En effet, pour obtenir une subdivision correcte du 1-
voisinage en entier, le 2-voisinage serait nécessaire. Sur la Figure 6.a, les faces obtenues par subdivision de =)
sont représentées en foncé et celles du 1-voisinage en clair sur la Figure 6.b.

Fig. 6. Faces en intersection. a) 1-voisinage 	
@ ?)9 . b) 1-voisinage de la subdivision 	
@ ?): .

En réalité, on conserve tout de même le 2-voisinage 	
B D)9 de =) afin de calculer correctement le 2-voisinage

	
B D): de l’ ensemble des sous faces des faces =) obtenu par la subdivision de Loop. En effet, dans certains cas,

il est nécessaire d’ avoir les faces de 	
B D): en mémoire pour récupérer le voisinage en entier au niveau suivant.

Ensuite, l’ algorithme naturel est à nouveau utilisé pour tester les intersections entre 	
@A@): et 	
@CB): . Les
courbes d’ intersection obtenues au niveau suivant peuvent être tracées (Figure 7).

a) b)

Fig. 7. Intersection au niveau 1. Gauche : la courbe obtenue. Droite : les faces participant à l’ intersection.

Pour récupérer les courbes d’ intersection au niveau de subdivision X donné, il suffit d’ appliquer X fois ce
processus. La Figure 8 montre les résultats obtenus au niveau 2. De gauche à droite, on a : les 1-voisinages
	
@ D)9 , les 1-voisinages de la subdivision 	
@ D): , les faces de 	
@ D): en intersection et la courbe

d’ intersection.

Fig. 8. Voisinage, subdivision et courbe d’ intersection au niveau 2.

Cet algorithme réduit de manière significative le nombre de faces intervenant dans le calcul d’ intersection, il est
par conséquent beaucoup plus rapide que l’ algorithme naturel.

5.� Algorithme utilisant un graphe biparti
Cet algorithme repose sur l’ utilisation d’ un graphe biparti, il permet de réduire le nombre d’ intersections à tester.
Dans l’ exemple présenté sur la Figure 9, on construit le graphe d’ intersection d’ une bande (40 faces) avec un
lapin (694 faces).

Fig. 9. Exemple de construction d’ un graphe où E& et F' sont respectivement des éléments de G) et de H) .

IJ

KL

MN

OP

QP

RP

ST

UP
VN

 WpXp

b)

Y& Z& [
& \&

]' ^
' _' `'

a'

a)

Les faces intersectantes de la bande sont appelées de gauche à droite b& à c& et celle du lapin d' à e' (Figure
9.a). Les nœuds de la première partie du graphe, disposés en colonne représentent les faces de l’ objet 1 (la
bande) et ceux de la seconde partie représentent les faces de l’ objet 2 (le lapin). Les faces de l’ objet 1 qui
intersectent l’ objet 2 sont reliées par des arêtes (Figure 9.b).
Une fois ce graphe constitué, les voisinages des faces des 2 objets sont ajoutés au graphe. L’ intersection de
chaque face de 	
fAf)9 avec toutes les faces de 	
fCg)9 n’ est plus testée, l’ idée de l’ algorithme consiste à calculer
seulement les intersections entre des sous-groupes de ces ensembles. En effet, à chaque face intersectante h& de
la surface d3 , le graphe d’ intersection (graphe biparti) fait correspondre certaines faces i' de la surface j3 en

intersection avec cette face, on va donc calculer uniquement les intersections entre 	
f k&9 et 	
lnm'9 étant

reliés par une arête.

L’ entrée de cet algorithme est un graphe biparti 	

opoqorosut� �')) % où
os) et
ot) sont les ensembles de sommets du

graphe (faces intersectantes) et v% l’ ensemble des arêtes (couples de faces en intersection). Sa sortie est
également un graphe biparti 	

wxwywzww|{� �')) % où }}) et }~) sont les ensembles de sommets (faces intersectantes) et �
% l’ ensemble des arêtes. Ce graphe représente le graphe biparti au niveau suivant de subdivision (couples de
faces en intersection).
L’ algorithme opère en 4 étapes consécutives de la façon suivante :

1.� Pour chaque nœud du graphe, les 1-voisinages des faces �& de l’ objet 1 et des faces �' de l’ objet 2 sont

récupérés, ils sont respectivement notés 	
� �&9 et 	
�n�'9 .

2.� Les 	
� �&9 , ��&)� et 	
�n�'9 , ��')� sont ensuite subdivisés partiellement de manière à conserver

uniquement le 1-voisinage de la subdivision de �& et de �' et notés 	
� �&: et de 	
�n�': .

3.� L’ algorithme naturel est utilisé pour déterminer les couples de faces intersectantes entre 	
� �&: et

	
�n�': (cf. section 3).

4.� Le nouveau graphe biparti 	

�x�y�z��|�� �')) % est construit à l’ aide de ces nouveaux couples de faces

intersectantes de la même manière qu’ à la Figure 9.

 Ci-dessous, nous appliquons l’ algorithme précédent sur un exemple simple. Pour réduire le nombre de sommets
du graphe, cette fois on considère l’ intersection du lapin (694 faces) avec une plus petite bande (10 faces).
Les Figures 10 à 13 illustrent successivement la construction du graphe biparti initial, l’ étape 1 de récupération
du voisinage, l’ étape 2 de subdivision partielle, l’ étape 3 de détermination des couples de faces en intersection et
l’ étape 4 de construction du nouveau graphe d’ intersection.

Fig. 10. Construction du graphe biparti initial

�� �� ��
����

��

��

��

 �

¡¢

 £p¤p

b) a)

Fig. 11. Etape 1 : Récupération des 1-voisinages 	
¥ ¦&9 et 	
§n¨'9 .

Fig. 12. Etape 2 : Obtention des 	
© ª&: et de 	
«n¬': par subdivision partielle de 	
­ ®&9 et 	
¯n°'9 .

Fig. 13. Construction du nouveau graphe biparti à l’ aide des couples de faces en intersection de 	
± ²&: et de

	
³n´': .

Cet algorithme est plus efficace puisqu’ il se base sur un graphe biparti donnant un minimum de faces
intersectantes à chaque subdivision. Actuellement, l’ implémentation est en cours afin de confirmer cette
affirmation. En effet, l’ idée d’ ordonner les sommets de µ) et de ¶) est envisagée afin d’ éviter de générer
plusieurs fois les même faces en calculant les 1-voisinages de ces sommets.

6.� Conclusion
Dans cet article, nous avons décrit trois algorithmes permettent de calculer les courbes d’ intersection entre deux
objets modélisés par des surfaces de subdivision. L’ algorithme naturel est une variante peu optimisée qui peut

· ¸ ·¹

º » ¼½

¾ ¿ ¾À

Á Â ÃÄ

Á Â ÅÄ

Ã Â ÁÄ

Æ Â ÁÄ

Ç È ÉÊ
¾ ¿ ËÀ

 ÌpÍp

b) a)

	
 \ ^ÎÐÏ ÏÒÑ Î ÏÒÑ Ó Ô� �' ' '� !:

	
 \ ^Õ Õ Õ Ö Õ Õ Ö × Ø� �' ' '� !:

	
 \ ^ÕÐ× ×ÙÖ Õ ×ÙÖ ×� �' ' '� !:

\ ^ 	
Ú Û Ú Ú Û Ú Ü ÚÝÚ� �& & &�! :

\ ^ 	
ÞÒß à ÞÒß à Þ àáÞ� �& & &�! :

 vois

âã

äå

æç

èç

éê

 ëpìp

 vois

 vois

 vois

 vois

	
íÝí&9

	
îáï&9

	
ðÐð'9

	
ñÐò'9

	
ñÐó'9

être intéressante à utiliser lorsque les surfaces des objets à intersecter ont un nombre réduit de faces. Les deux
autres algorithmes proposés reposent sur les notions de 1-voisinage et de graphe biparti. Ils permettent de
calculer les courbes d’ intersection entre deux objets plus rapidement qu’ avec l’ algorithme naturel notamment
lorsque le nombre de faces en présence est très élevé. Il reste maintenant à intégrer cette amélioration dans le
cadre des opérations booléennes. L’ implémentation de ces deux algorithmes est en cours. Une étude comparative
sera envisagée par la suite avec d’ autres algorithmes existants.

Références

[Abd96] K. Abdel-Malek, H. J. Yeh. “Determining intersection curves between surfaces of two solids”.
Computer Aided Design, vol. 28-6/7, pp 539-549, 1996.

[Baj88] C. L. Bajaj, C. M. Hoffmann, J. E. Hopcroft, R. E. Lynch. “Tracing surface intersections”.
Computer Aided Geometric Design, vol. 5, pp 285-307, 1988.

[Bar87] R. E. Barnhill, G. Farin, M. Jordan, B. R. Piper. “Surface/surface intersection”. Computer Aided
Geometric Design, vol. 4-3, pp 3-16, 1987.

[Bau72] Bruce G. Baumgart, “Winged edge polyhedron representation”, Technical Report CS-TR-72-320, pp
5, 1972.

[Boe91] E. Boender. “A survey of intersection algorithms for curved surfaces”. Computer & Graphics, vol.
15-1, pp 99-115, 1991.

[Cat78] E. Catmull, J. Clark. “Recursively generated B-spline surfaces on arbitrary topological meshes”.
Computer Aided Design, vol. 9-6, pp 350-355, 1978.

[Cha87] V. Chandru, B. S. Kochar. “Geometric Modeling: Algorithms and NEW Trends”. Chapter Analytic
Techniques for Geometric Intersection Problems, pp 305-318, SIAM, Philadelphia, PA, 1987.

[Doo78] D. Doo, M. Sabin. “Behaviour of recursive subdivision surfaces near extraordinary points”.
Computer Aided Design, vol. 9-6, pp 356-360, 1978.

[Kob00] L. Kobbelt. “Sqrt(3)-Subdivision”. Computer Graphics Proceedings, Annual Conference Series, pp.
103-112, July 2000.

[Kri94] S. Krishnan, A. Narkhede, D. Manocha. “Boole: A System to Compute Boolean Combinations of
Sculptured Solids”. Technical Report, Department of Computer Science, University of North
California, 1994.

[Loo87] C. Loop. “Smooth Subdivision Surfaces Based on Triangles”. Master’ s thesis, University of Utah,
Department of Mathematics, 1987.

[Obr00] D. A. O’ Brien, D. Manocha. “Calculating Intersection Curve Approximations for Subdivision
Surfaces”, 2001. http://www.cs.unc.edu/~obrien/courses/comp258/project.html

[Pat93] N. M. Patrikalakis. “Surface-to-surface intersections”. IEEE Computer Graphics & Applications,
vol. 13-1, pp 89-95, January 1993.

[Vel00] L. Velho, D. Zorin. “4-8 Subdivision”. Computer Aided Geometric Design, volume 18-5, pp 397-
427, 2000.

[Zor00] D. Zorin. “Subdivision Zoo”. SIGGRAPH 2000 Course Notes, Subdivision for Modeling and
Animation, Chap. 4, pp 65-98, 2000.

	jpagenum01: 1
	jpagenum11: 2
	jpagenum21: 3
	jpagenum31: 4
	jpagenum41: 5
	jpagenum51: 6
	jpagenum61: 7
	jpagenum71: 8
	jpagenum81: 9
	jpagenum91: 10
	jpagenum101: 11
	jpagenum111: 12
	jpagenum121: 13
	jpagenum131: 14
	jpagenum141: 15
	jpagenum151: 16
	jpagenum161: 17
	jpagenum171: 18
	jpagenum181: 19
	jpagenum191: 20
	jpagenum201: 21
	jpagenum211: 22
	jpagenum221: 23
	jpagenum231: 24
	jpagenum241: 25
	jpagenum251: 26
	jpagenum261: 27
	jpagenum271: 28
	jpagenum281: 29
	jpagenum291: 30
	jpagenum301: 31
	jpagenum311: 32
	jpagenum321: 33
	jpagenum331: 34
	jpagenum341: 35
	jpagenum351: 36
	jpagenum361: 37
	jpagenum371: 38
	jpagenum381: 39
	jpagenum391: 40
	jpagenum401: 41
	jpagenum411: 42
	jpagenum421: 43
	jpagenum431: 44
	jpagenum441: 45
	jpagenum451: 46
	jpagenum461: 47
	jpagenum471: 48
	jpagenum481: 49
	jpagenum491: 50
	jpagenum501: 51
	jpagenum511: 52
	jpagenum521: 53
	jpagenum531: 54
	jpagenum541: 55
	jpagenum551: 56
	jpagenum561: 57
	jpagenum571: 58
	jpagenum581: 59
	jpagenum591: 60
	jpagenum601: 61
	jpagenum611: 62
	jpagenum621: 63
	jpagenum631: 64
	jpagenum641: 65
	jpagenum651: 66
	jpagenum661: 67
	jpagenum671: 68
	jpagenum681: 69
	jpagenum691: 70
	jpagenum701: 71
	jpagenum711: 72
	jpagenum721: 73
	jpagenum731: 74
	jpagenum741: 75
	jpagenum751: 76
	jpagenum761: 77
	jpagenum771: 78
	jpagenum781: 79
	jpagenum791: 80
	jpagenum801: 81
	jpagenum811: 82
	jpagenum821: 83
	jpagenum831: 84
	jpagenum841: 85
	jpagenum851: 86
	jpagenum861: 87
	jpagenum871: 88
	jpagenum881: 89
	jpagenum891: 90
	jpagenum901: 91
	jpagenum911: 92
	jpagenum921: 93
	jpagenum931: 94
	jpagenum941: 95
	jpagenum951: 96
	jpagenum961: 97
	jpagenum971: 98
	jpagenum981: 99
	jpagenum991: 100
	jpagenum1001: 101
	jpagenum1011: 102
	jpagenum1021: 103
	jpagenum1031: 104
	jpagenum1041: 105
	jpagenum1051: 106
	jpagenum1061: 107
	jpagenum1071: 108
	jpagenum1081: 109
	jpagenum1091: 110
	jpagenum1101: 111
	jpagenum1111: 112
	jpagenum1121: 113
	jpagenum1131: 114
	jpagenum1141: 115
	jpagenum1151: 116
	jpagenum1161: 117
	jpagenum1171: 118
	jpagenum1181: 119
	jpagenum1191: 120
	jpagenum1201: 121
	jpagenum1211: 122
	jpagenum1221: 123
	jpagenum1231: 124
	jpagenum1241: 125
	jpagenum1251: 126
	jpagenum1261: 127
	jpagenum1271: 128
	jpagenum1281: 129
	jpagenum1291: 130
	jpagenum1301: 131
	jpagenum1311: 132
	jpagenum1321: 133
	jpagenum1331: 134
	jpagenum1341: 135
	jpagenum1351: 136
	jpagenum1361: 137
	jpagenum1371: 138
	jpagenum1381: 139
	jpagenum1391: 140
	jpagenum1401: 141
	jpagenum1411: 142
	jpagenum1421: 143
	jpagenum1431: 144
	jpagenum1441: 145
	jpagenum1451: 146
	jpagenum1461: 147
	jpagenum1471: 148
	jpagenum1481: 149
	jpagenum1491: 150
	jpagenum1501: 151
	jpagenum1511: 152
	jpagenum1521: 153
	jpagenum1531: 154
	jpagenum1541: 155
	jpagenum1551: 156
	jpagenum1561: 157
	jpagenum1571: 158
	jpagenum1581: 159
	jpagenum1591: 160
	jpagenum1601: 161
	jpagenum1611: 162
	jpagenum1621: 163
	jpagenum1631: 164
	jpagenum1641: 165
	jpagenum1651: 166
	jpagenum1661: 167
	jpagenum1671: 168
	jpagenum1681: 169
	jpagenum1691: 170
	jpagenum1701: 171
	jpagenum1711: 172
	jpagenum1721: 173
	jpagenum1731: 174
	jpagenum1741: 175
	jpagenum1751: 176
	jpagenum1761: 177
	jpagenum1771: 178
	jpagenum1781: 179
	jpagenum1791: 180
	jpagenum1801: 181
	jpagenum1811: 182
	jpagenum1821: 183
	jpagenum1831: 184
	jpagenum1841: 185
	jpagenum1851: 186
	jpagenum1861: 187
	jpagenum1871: 188
	jpagenum1881: 189
	jpagenum1891: 190
	jpagenum1901: 191
	jpagenum1911: 192
	jpagenum1921: 193
	jpagenum1931: 194
	jpagenum1941: 195
	jpagenum1951: 196
	jpagenum1961: 197
	jpagenum1971: 198
	jpagenum1981: 199
	jpagenum1991: 200
	jpagenum2001: 201
	jpagenum2011: 202
	jpagenum2021: 203
	jpagenum2031: 204
	jpagenum2041: 205
	jpagenum2051: 206
	jpagenum2061: 207
	jpagenum2071: 208
	jpagenum2081: 209
	jpagenum2091: 210
	jpagenum2101: 211
	jpagenum2111: 212
	jpagenum2121: 213
	jpagenum2131: 214
	jpagenum2141: 215
	jpagenum2151: 216
	jpagenum2161: 217
	jpagenum2171: 218
	jpagenum2181: 219
	jpagenum2191: 220
	jpagenum2201: 221
	jpagenum2211: 222
	jpagenum2221: 223
	jpagenum2231: 224
	jpagenum2241: 225
	jpagenum2251: 226
	jpagenum2261: 227
	jpagenum2271: 228
	jpagenum2281: 229
	jpagenum2291: 230
	jpagenum2301: 231
	jpagenum2311: 232
	jpagenum2321: 233
	jpagenum2331: 234
	jpagenum2341: 235
	jpagenum2351: 236
	jpagenum2361: 237
	jpagenum2371: 238
	jpagenum2381: 239
	jpagenum2391: 240
	jpagenum2401: 241
	jpagenum2411: 242
	jpagenum2421: 243
	jpagenum2431: 244
	jpagenum2441: 245
	jpagenum2451: 246
	jpagenum2461: 247
	jpagenum2471: 248
	jpagenum2481: 249
	jpagenum2491: 250
	jpagenum2501: 251
	jpagenum2511: 252
	jpagenum2521: 253
	jpagenum2531: 254
	jpagenum2541: 255
	jpagenum2551: 256
	jpagenum2561: 257
	jpagenum2571: 258
	jentete01: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete21: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete41: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete61: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete81: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete101: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete121: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete141: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete161: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete181: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete201: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete221: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete241: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete261: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete281: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete301: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete321: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete341: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete361: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete381: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete401: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete421: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete441: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete461: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete481: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete501: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete521: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete541: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete561: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete581: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete601: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete621: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete641: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete661: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete681: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete701: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete721: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete741: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete761: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete781: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete801: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete821: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete841: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete861: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete881: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete901: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete921: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete941: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete961: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete981: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1001: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1021: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1041: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1061: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1081: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1101: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1121: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1141: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1161: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1181: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1201: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1221: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1241: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1261: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1281: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1301: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1321: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1341: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1361: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1381: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1401: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1421: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1441: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1461: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1481: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1501: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1521: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1541: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1561: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1581: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1601: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1621: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1641: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1661: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1681: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1701: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1721: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1741: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1761: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1781: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1801: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1821: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1841: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1861: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1881: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1901: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1921: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1941: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1961: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1981: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2001: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2021: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2041: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2061: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2081: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2101: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2121: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2141: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2161: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2181: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2201: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2221: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2241: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2261: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2281: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2301: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2321: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2341: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2361: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2381: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2401: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2421: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2441: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2461: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2481: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2501: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2521: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2541: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2561: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete11: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete31: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete51: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete71: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete91: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete111: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete131: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete151: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete171: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete191: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete211: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete231: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete251: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete271: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete291: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete311: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete331: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete351: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete371: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete391: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete411: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete431: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete451: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete471: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete491: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete511: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete531: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete551: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete571: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete591: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete611: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete631: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete651: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete671: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete691: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete711: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete731: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete751: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete771: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete791: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete811: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete831: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete851: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete871: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete891: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete911: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete931: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete951: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete971: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete991: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1011: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1031: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1051: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1071: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1091: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1111: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1131: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1151: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1171: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1191: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1211: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1231: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1251: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1271: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1291: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1311: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1331: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1351: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1371: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1391: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1411: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1431: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1451: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1471: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1491: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1511: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1531: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1551: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1571: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1591: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1611: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1631: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1651: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1671: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1691: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1711: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1731: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1751: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1771: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1791: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1811: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1831: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1851: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1871: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1891: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1911: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1931: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1951: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1971: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete1991: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2011: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2031: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2051: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2071: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2091: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2111: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2131: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2151: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2171: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2191: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2211: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2231: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2251: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2271: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2291: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2311: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2331: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2351: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2371: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2391: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2411: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2431: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2451: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2471: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2491: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2511: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2531: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2551: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002
	jentete2571: XVèmes journées AFIG - Lyon - 9,10 et 11 décembre 2002

