Techniques mathématiques pour l'informatique

R. Watrigant

1 Analyse d’algorithmes

1.1 Comment évaluer l'efficacité des algorithmes ?
1.1.1 Introduction

Un probléme peut étre résolu par plusieurs algorithmes (ex : plusieurs fagons de
trier un tableau d’entiers), et par encore plus de programmes (ex : plusieurs langages de
programmation). Question : comment comparer plusieurs algorithmes réalisant la méme
tache?

Plusieurs caractéristiques d’un algorithme :

— place mémoire nécessaire (quantifiable)

— durée d’exécution (quantifiable)

— simplicité du code (inquantifiable car subjectif...)

Exemple : 'algorithme A implémenté dans le langage P sur I'ordinateur O, et exécuté sur
la donnée D utilise k secondes et j bits de mémoire. Que se passe-t-il si 'on exécute sur
la donnée D’ ? Si 'on change d’ordinateur 7 = On veut un cadre formel nous permettant
d’affirmer "I’algorithme A est meilleur que 'algorithme B". Dans ce cours, on va mesurer
seulement la durée d’exécution.

1.1.2 Cadre d’étude

Le temps d’exécution d'un algorithme dépend de l’entrée (le tri de 1000 nombres
prend plus de temps que le tri de 3 nombres).
On exprimera le temps d’exécution d’un algorithme en fonction de la taille de son entrée
(Attention, un algorithme peut demander des temps différents pour deux entrées de méme
taille).

Taille de ’entrée = nombre d’éléments constituant I'entrée. Exemples :
— pour un tableau : son nombre d’éléments
— pour un nombre : son nombre de bits nécessaires a sa représentation (logyn géné-
ralement)
— pour un graphe : son nombre de sommets

Temps d’exécution Axiome : le temps d’exécution d’un algorithme est proportionnel
au nombre d’étapes élémentaires. Exemples :

— affectations

— opérations arithmétiques (additions, multiplications...)

— comparer deux nombres
Dans ce cours, une ligne de code = une étape élémentaire (Attention, on pourrait avoir
dans une ligne de code l'instruction "trier le tableau T" qui ne serait pas une opération
élémentaire).

1.1.3 Exemple : le tri par insertion

TRI__INSERTION

Input: : A : tableau de n entiers
1. for j =2 alongueur(A) do
2: cle < A[j]

3 i j—1

4: while i > 0 et Afi] > cle do

5: Ali + 1) + Afi]

6: i—i—1

7: end while

8 Ali+1] «cle

9: end for

Nombre d’exécutions de chaque instruction (remarque : pour les boucles For et
W hile, le test est exécuté une fois de plus que le corps de la boucle) :

— instruction 1 : n

— instruction 2 : n — 1

— instruction 3 :n — 1

— instruction 4 : Y " o t;

- ?nstruct%on 5: Z%ﬁ tj—1

~ instruction 6 : 30 o t; — 1

— instruction 8 : n — 1
Avec t; le nombre de fois que le test de la boucle While est exécuté pour cette valeur de

J-
Soi T'(n) le temps d’exécution de TRI_INSERTION sur une entrée de taille n. On a :

n n

Tn) = n+n-D+n-1D)+O t)+OQ t;-D+ O _t;—1)+(n-1)
j=2

Jj=2 Jj=2

n
= 2n—1+3) ¢
§=2

Cas favorable : si le tableau est déja trié, : t; = 1 pour tout j = 2,...,n, et donc :

T(n)=5n—4
Cas défavorable : si le tableau est tri¢ a 'envers : t; = j pour tout j = 2,...,n, et
donc :
Tn) = 2n—1+ 3”2+2”_2 (1)
= gnQ + gn -4 (2)

= fonction quadratique de n. Sauf mention du contraire, on regardera toujours les per-
formances d’un algorithme dans le pire des case. Plusieurs raisons :
— permet de borner supérieurement le temps pour toute les données de taille n
— ce cas peut apparaitre fréquemment en pratique
— cas "moyen" presque aussi mauvais que le cas le plus défavorable (dans notre
exemple : prendre ¢; = j/2 donne une fonction quadratique)

1.2 Croissance des fonctions, notations de Landau

Pour le tri par insertion, on a vu que dans le cas le plus défavorable, T'(n) = %n%—%n—
4. Pour les entrées suffisamment grandes, seul 'ordre de grandeur du temps d’exécution
compte : on "enléve" les constantes multiplicatives et les termes d’ordres inférieurs. On
notera T'(n) = 6(n?), et on dira que 'algorithme du tri par insertion a une complexité
en 0(n?).
Dans ce qui suit, toutes les fonctions vont de N dans N.
Abus de notation : au lieu de "f : n+— f(n)", on notera directement " f(n)"

Notation 6 : Pour une fonction donnée g(n), on note 6(g(n)) ("theta de g de n")
I’ensemble de fonctions suivant :

O(g(n)) ={f(n) : Je1,ca > 0 et ng € N tels que 0 < ¢19(n) < f(n) < cag(n) pour tout n > ng}

Si f(n) € 6(g(n), on dira que g(n) est une borne asymptotiquement approchée de f(n).
Abus de notation : on notera aussi f(n) = 6(g(n))
Exemple : montrons que %nz —3n = A(n?). Montrons qu’on peut trouver ¢y, cz et ng tels

que an? < %nz — 3n < con? pour tout n > ng. En divisant par n2, on a

—_

3
Clﬁifﬁﬁ@

On remarque que c2 > 1/2 convient pour tout n > 1, et ¢; > 1/14 convient pour tout
n>"7.
Exercice : montrer que 6n> # 8(n?) et que 20n # 6(n?).

Notation O : Pour une fonction donnée g(n), on note O(g(n)) ("grand O de g de n")
I’ensemble de fonctions suivant :

O(g(n)) ={f(n) : 3¢ > 0 et ng € N tels que 0 < f(n) < cg(n) pour tout n > ng}

Si f(n) € O(g(n), on dira que g(n) est une borne supérieure asymptotique de f(n). Abus
de notation : on notera aussi f(n) = O(g(n)).

Propriété : 0(g(n)) € O(g(n)).

Exercice : montrer que 20n = O(n?).

Notation Q2 : Pour une fonction donnée g(n), on note Q(g(n)) ("grand oméga de g de
n") 'ensemble de fonctions suivant :

Qg(n)) ={f(n) : 3¢ > 0 et ng € N tels que 0 < cg(n) < f(n) pour tout n > ng}

Si f(n) € Q(g(n), on dira que g(n) est une borne inférieure asymptotique de f(n). Abus
de notation : on notera aussi f(n) = Q(g(n)).
Propriété : 8(g(n)) C Q(g(n)) Exercice : montrer que 5n3 + 2n = (n?)

Théoréme 1. Pour deux fonctions quelconques f et g, on a f(n) = 0(g(n)) si et seule-
ment si f(n) = 0(g(n)) et f(n)=Q(g(n).

Démonstration. On a déja 6(g(n)) C Q(g(n)) et 8(g(n)) C O(g(n)), il ne reste donc plus
qu’a montrer que f(n) = O(g(n)) et f(n) = Q(g(n)) implique f(n) = 6(g(n). Il existe ¢;
et n tels que f(n) < c1g(n) pour tout n > nd, et il existe co etn? tels que f(n) > cag(n)
pour tout n > n3. D’olt, pour tout n > max{n,n3}, on a cag(n) < f(n) < cig(n) et
donc f(n) =0(g(n)). O

Notation o : Pour une fonction donnée g(n), on note o(g(n)) ("petit o de g de n")
I’ensemble de fonctions suivant :

o(g(n)) ={f(n) : Ve > 03np € N tels que 0 < f(n) < cg(n) pour tout n > ng}

Propriété : f(n) = o(g(n)) équivaut a lim,,_, s =0

Exercice : montrer que 56n = o(n?) et que in? # o(n?)

Notation w : Pour une fonction donnée g(n), on note w(g(n)) ("petit oméga de g de
n") 'ensemble de fonctions suivant :

w(g(n)) ={f(n) : ¥e > 03np € N tels que 0 < cg(n) < f(n) pour tout n > ng}

Propriété : f(n) = w(g(n)) équivaut a lim, % = 0.
Exercice : montrer que in% = w(n) et que 3n? # w(n?)

Analogie avec la comparaison de nombres

f(n) = O(g(n)) a<b
fm)=o(m) ~ a<b
f(n) = 0(g(n)) a=b
f(n) = Q(g(n)) a>b
f(n) = w(g(n)) a>b
Ordres de grandeur classiques

— O(1) : constant

— O(log(n) : logarithmique

— O(n) : linéaire

— O(nlog(n)) : nlog(n) (ou quasi-linéaire)

— O(n?) : quadratique

~ O(n?) : cubique

~ O(n*),k > 0 : polynomial

— O(2") : exponentiel

1.3 Récurrences

Comment évaluer la complexité des algorithmes récursifs ?

1.3.1 Premier exemple : factorielle

On rappelle I'algorithme récursif du calcul de la factorielle d’un entier :

FACTORIELLE(n)
calcule et retourne n!
1: if n=0 then
return 1
else
return n x factorielle(n — 1)
. end if

Observons la trace de 'algorithme pour n =4 :

— appel de factorielle(4) : on retourne 4 x factorielle(3)
— appel de factorielle(3) : on retourne 3 * factorielle(2)
— appel de factorielle(2) : on retourne 2 * factorielle(1)
— appel de factorielle(1) : on retourne 1 * factorielle(0)
— appel de factorielle(0) : on retourne 1

Ici, on voit bien que le nombre d’instructions est en #(n) (attention : ce n’est pas un
algorithme polynoémial, car (1) la taille de 'entrée est logn, et (2) on doit calculer n!).
Possibilité de dérécurser 'algorithme :

FACTORIELLE(n)
calcule et retourne n!

1: fact <1

2: for i+ 14ando
3. fact < factxi

4: end for

5. return fact

Ici, la version itérative est également en 6(n).

1.3.2 Second exemple : tri par fusion

Idée : "diviser-pour-régner" :
— Diviser : Diviser la suite de n éléments a trier en deux sous-suites de n/2 éléments
chacune.

— Régner :

fusion.

Trier les deux sous-suites de maniére récursive en utilisant le tri par

— Combiner : Fusionner les deux sous-suites triées pour produire la réponse triée.
Cas de base : si la séquence a trier est de longueur 1, alors elle est déja triée.

Exemple d’exécution

AN
]
B
B
=]
B
N
(]

séquence triée

1 2 2 3 4 5 6 1|
/ fusion \

7] 1 2

fusion \ / fusion

NG B P

fusion %usion %usion

W

[\
(Jl\
N
o~
~
I
W
l\)/
(@)

fusion

FUSION(A, p, q,r)
Fusionne les listes Alp...q] et A[(q+1)...r] qui sont supposées étre triées et met le résultat
dans Alp...r]
Input: : A, p,q, 7

Inp+p—q+1
ng 1 —gq
créer deux tableaux L[1...(n1 + 1)] et R[1...(ng + 1)] //+1 pour les sentinelles
fori<1an; do

Lii] + Alp+1i—1]
end for
for j < 1 any do

R[j] « Alg +j]
end for
Liny + 1] <~ oo //on place des sentinelles
: R[na + 1] - 0o //on place des sentinelles
11
g1
:for k< par do
if L[i] < R[j] then

Alk] < LJi]

14 1+1
else

Alk] « L[i]

j—i+1
end if
: end for

N N N~ = = = =
M HQ© 0T w o

TRI__FUSION(A, p,)

Trie les éléments de p a r d’un tableau A
Input: : A, p,r

1: if p < r then

2 qe Lp+r)/2)

3: TRI_FUSION(A,p,q)

4: TRI_FUSION(A,q+ 1,7)

5. FUSION(A,p,q,r)

6: end if

Analyse de la complexité de 1’algorithme

Soit D(n) le temps pour diviser le probléme en sous-problémes, C(n) pour construire la
solution finale & partir des solutions aux sous-problémes, et 7'(n) le temps de I’algorithme

global.
— Diviser : calcule simplement le milieu du sous-tableau : D(n) = 6(1).

— Régner : on résoud deux sous-problémes, chacun ayant une entrée de taille n/2,

ce qui contribue a 27'(n/2) au temps d’exécution.

— Combiner : la procédure FUSION prend un temps 6(n), donc C(n) = 6(n).

On a donc :
B 0(1) si n=1
Tn) = { 2T(n/2) +0(n) si n>1
ou :
T(n) = c si n=1
"= 2T'(n/2)+cn si n>1

(ce n’est pas le méme ¢ mais on peut contourner en prenant le max des deux).

(3)

(4)

Pour résoudre la récurrence, on peut utiliser un arbre de récursivité (on suppose que n

est une puissance de 2) :

T(n) cn cn

T(n/2) T(n/2) cn/2 cnl2
T(n/4) T(nl4) T(n/4) T(n/4)

(@) (b) (©
A /Cﬂ \ cn
cnl2 CR[2 wsrmsessmssssnnnnas i cn

lgn / \ / \
cnl4 cnl4 cnl4 cnfd e v cn
Y ¢ ¢ ¢ e ¢ e ¢ o e o
R/—/

" -
(d) Total: cn1gn + cn

D’ou 'algorithme FUSION a une complexité en §(nlog(n)) (mieux que TRI_INSERTION).

1.3.3 Troisiéme exemple : les tours de Hanoi

Le probléme des tours de Hanoi est le suivant : étant donnés n disques de tailles
différentes empillés du plus grand (en bas) au plus petit (en haut) sur une tour de départ
D, déplacer ces n disques vers une tour d’arrivée A en utilisant une tour intermédiaire I
en respectant les régles suivantes :

— ne déplacer qu'un disque & la fois

— empiller un disque sur un disque plus grand uniquement (ou sur une tour vide)

Algorithme de résolution :

HaNoi(n, D, A, I)
déplace les m premiers disques de la tour D a la tour A en wutilisant la tour
1

1: if n =1 then

2: déplacer le disque de D a A

3: else

4: Hanoi(n — 1, D, I, A)

5. déplacer le disque restant de D vers A

6: Hanoi(n —1, I, A, D)

7. end if

Soit T'(n) le nombre d’instructions (déplacements) appelées. On a T'(n) = 27'(n —
1)+ 1.

Premiére méthode : méthode empirique + vérification : calculons les premiéres
valeurs :

T(1) = 1T(2) = 3T(3) = 7T(4) = 15T(5) = 31

On conjecture D(n) = 2™ — 1. Vérifions :

D(n+1) = 2D(n)+1

= 202" —1)+1
= "l _9241
2n+1_1

Seconde méthode : arbre d’appels : on construit ’arbre des appels

profondeur valeur de n
o~~~ "~~~ 7777 I n
1 - -—-—-=====-- 1 1 ———————-—--- n—1
/\ /\
2~ 1 11 1 n—2
n—2-"7"" - 2
n—1-- 1 1 1 | I 1 1 1 1 - -1

10

D(n) est en fait le nombre de noeuds de ’arbre. Nombre de noeuds a la profondeur
i =2, don

n—1
D(n)=) 2'=2"—-1
=0

1.3.4 Le cas général

Théoréme 2. (admis)
Soit a > 1 et b > 1 deux constantes, f une fonction et T définie pour les entiers non
négatifs par la récurrence

T(n) = aT(n/b) + f(n)

Ou n/b peut également étre interprété comme [n/b] ou [n/b].
T(n) peut alors étre bornée asymptotiquement de la fagon suivante :
— 1) si f(n) = O A=) pour une certaine constante ¢ > 0, alors T(n) =
0(nloss(@)),
— 2) si f(n) = 0(n'°=() alors T(n) = O(nl°e(®) log(n)).
— 8) si f(n) = Qnlo2(D+) pour une certaine constante € > 0, et si af(n/b) < cf(n)
pour une certaine constante ¢ < 1 et pour tout n suffisamment grand, alors T'(n) =

0(f(n))-

Exemple :
T(n)=9T(n/3)+n

Onaa=9,b=3et f(n) =n.Onan°® = ploes®) = g(n?). D’ou f(n) = O(n'°8()—¢)
=40

avec € = 1, on peut appliquer le cas 1 du théoréme général, et donc T'(n) (n?).
Attention : tous les cas ne sont pas traités par le théoréme général :

T(n) =2T(n/2) + nlog(n)

On a bien @ = 2, b = 2, f(n) = nlog(n) et n'°%(® = 5. On pourrait penser que
le cas 3 s’applique car f(n) est asymptotiquement plus grande que n'°%(®) = n mais
elle n’est pas polynomialement plus grande : le rapport nlfog()@ = "105(") = log(n) est

asymptotiquement plus petit que n¢ pour toute constante strictement positive e.

2 Introduction & la théorie de la complexité

2.1 Cadre d’étude

Dans le chapitre précédent, on a vu qu’il était possible de comparer I'efficacité d’algo-
rithmes effectuant la méme tache. La théorie de la complexité vise a classer les problémes
combinatoires selon leur difficulté & pouvoir les résoudre. Qu’est-ce qu'un probléme com-
binatoire ?

11

On distingue les problémes de décision et les problémes d’optimisation. Les pro-
blémes de décisions retournent une réponse binaire (vrai ou faux), tandis que les pro-
blémes d’optimisation retournent des objets mathématiques (généralement 1’élément qui
maximise ou minimise une fonction parmi un ensemble d’objets) .

Exemple de probléme de décision :
Test de primalité

Entrée : un entier n
Question : 'entier n est-il premier ?

Exemple de probléme d’optimisation :

Sous tableau de somme maximale

Entrée : un tableau T d’entiers

Réponse : deux indices i et j

But : maximiser la somme des éléments de T de 7 & j

A un probléme d’optimisation correspond un probléme de décision, exemple :

Sous tableau de somme maximale (décision)

Entrée : un tableau T d’entiers, un entier S

Question : existe-t-il deux indices 7 et j tels que la somme des éléments de
T de ¢ a j vaut au moins S'7

Il est facile de voir que si ’on sait résoudre le probléme d’optimisation, alors on sait
résoudre le probléme de décision. Réciproquement, s’il est difficile de résoudre le probléme
de décision, il sera difficile de résoudre le probléme d’optimisation. C’est pour cela que
I'on s’intéresse plus généralement aux problémes de décision.

2.2 Les classes P et NP
2.2.1 La classe P

La théorie de la complexité vise a séparer les problémes en classes (ensembles).

Définition 1. La classe P (pour Polynomial) est la classe des problémes de décision tels
qu’il existe un algorithme polyndmial pour les résoudre.

Exemples de problémes polynomiaux :

Plus grand élément
Entrée : un tableau T d’entiers

Question : existe-t-il un élément de T strictement plus grand que tous les
autres ?

Un algorithme naif est de tester toutes les paires de sommets. Si T' contient n élé-
ments, cet algorithmes s’exécute en O(n?).

12

Sous tableau de somme maximale (décision)

Entrée : un tableau T d’entiers, un entier S

Question : existe-t-il deux indices i et j tels que la somme des éléments de
T de i & j vaut au moins S 7

On a vu précédemment que ’on pouvait résoudre le probléme d’optimisation associé
en O(nlog(n)).

2.2.2 Certificats et classe NP

Définition 2. FEtant donné une instance I d’un probleme 1. Un certificat C est un
objet qui prouve ’existance d’une solution. Le certificat est polynomial si C est de taille
polynomiale en la taille de I, et s’il existe un algorithme polynomial prenant en entrée I
etC' et retourne vrai si et seulement si I est une instance positive de I1.

Définition 3. Un probléme de décision 11 est dans la classe NP (pour Non-deterministic
Polynomial) s’il existe pour chaque solution positive un certificat polynomial.

Exemple : pour le probléme Sous tableau de somme maximale (décision), un certificat
est un couple (4, 7), il est bien de taille polynomiale en la taille du tableau, et on peut
vérifier que la solution est positive en calculant la somme des élément de T de i & j, et
comparant celle-ci avec I’entier .S de 'instance.

Observation : on a clairement P C NP car on peut tester en temps polynomial si
une instance est positive ou non.
La question de savoir si NP C P est ouverte.

2.3 Les problémes N P-difficiles et N P-complets

Définition 4. Soit 11 et Ily deux problémes de décision. Une réduction polynomiale de
II; a Il est un algorithme polynomial qui prend en entrée une instance de I1y, et retourne
une instance de Ilsy telle que ’instance retournée est positive pour Il si et seulement si
[instance d’entrée est positive pour I1.

S’il existe une réduction polynomiale de II; & Ilo, on dit que II; se réduit a Ils.

Observation : Si II; se réduit a I, et qu’il existe un algorithme polynomial pour
115, alors il existe également un algorithme polynomial pour II;.

Définition 5. Un probleme 11 est N P-difficile si pour tout probléme Ils de N P, il existe
une réduction polynomiale de Il vers 114

Définition 6. Un probléme 11 est N P-complet si :
-ITe NP
— II est N P-difficile

13

Autrement dit, si ITy est IV P-complet, alors un algorithme polynomial pour Il im-
plique un algorithme polynomial pour tous les problémes de NP. D’ou l'intérét de la
question P = NP.

14

