
Techniques mathématiques pour l’informatique

R. Watrigant

1 Analyse d’algorithmes

1.1 Comment évaluer l’efficacité des algorithmes ?

1.1.1 Introduction

Un problème peut être résolu par plusieurs algorithmes (ex : plusieurs façons de
trier un tableau d’entiers), et par encore plus de programmes (ex : plusieurs langages de
programmation). Question : comment comparer plusieurs algorithmes réalisant la même
tâche ?
Plusieurs caractéristiques d’un algorithme :

– place mémoire nécessaire (quantifiable)
– durée d’exécution (quantifiable)
– simplicité du code (inquantifiable car subjectif...)

Exemple : l’algorithme A implémenté dans le langage P sur l’ordinateur O, et exécuté sur
la donnée D utilise k secondes et j bits de mémoire. Que se passe-t-il si l’on exécute sur
la donnée D′ ? Si l’on change d’ordinateur ?⇒ On veut un cadre formel nous permettant
d’affirmer "l’algorithme A est meilleur que l’algorithme B". Dans ce cours, on va mesurer
seulement la durée d’exécution.

1.1.2 Cadre d’étude

Le temps d’exécution d’un algorithme dépend de l’entrée (le tri de 1000 nombres
prend plus de temps que le tri de 3 nombres).
On exprimera le temps d’exécution d’un algorithme en fonction de la taille de son entrée
(Attention, un algorithme peut demander des temps différents pour deux entrées de même
taille).

Taille de l’entrée = nombre d’éléments constituant l’entrée. Exemples :
– pour un tableau : son nombre d’éléments
– pour un nombre : son nombre de bits nécessaires à sa représentation (log2 n géné-

ralement)
– pour un graphe : son nombre de sommets

1



Temps d’exécution Axiome : le temps d’exécution d’un algorithme est proportionnel
au nombre d’étapes élémentaires. Exemples :

– affectations
– opérations arithmétiques (additions, multiplications...)
– comparer deux nombres

Dans ce cours, une ligne de code = une étape élémentaire (Attention, on pourrait avoir
dans une ligne de code l’instruction "trier le tableau T" qui ne serait pas une opération
élémentaire).

1.1.3 Exemple : le tri par insertion

tri_insertion
Input: : A : tableau de n entiers
1: for j = 2 à longueur(A) do
2: cle← A[j]
3: i← j − 1
4: while i > 0 et A[i] > cle do
5: A[i+ 1]← A[i]
6: i← i− 1
7: end while
8: A[i+ 1]← cle
9: end for

Nombre d’exécutions de chaque instruction (remarque : pour les boucles For et
While, le test est exécuté une fois de plus que le corps de la boucle) :

– instruction 1 : n
– instruction 2 : n− 1
– instruction 3 :n− 1
– instruction 4 :

∑n
j=2 tj

– instruction 5 :
∑n

j=2 tj − 1
– instruction 6 :

∑n
j=2 tj − 1

– instruction 8 : n− 1
Avec tj le nombre de fois que le test de la boucle While est exécuté pour cette valeur de
j.
Soi T (n) le temps d’exécution de tri_insertion sur une entrée de taille n. On a :

T (n) = n+ (n− 1) + (n− 1) + (

n∑
j=2

tj) + (

n∑
j=2

tj − 1) + (

n∑
j=2

tj − 1) + (n− 1)

= 2n− 1 + 3

n∑
j=2

tj

2



Cas favorable : si le tableau est déjà trié, : tj = 1 pour tout j = 2, ..., n, et donc :

T (n) = 5n− 4

Cas défavorable : si le tableau est trié à l’envers : tj = j pour tout j = 2, ..., n, et
donc :

T (n) = 2n− 1 + 3
n2 + n− 2

2
(1)

=
3

2
n2 +

7

2
n− 4 (2)

⇒ fonction quadratique de n. Sauf mention du contraire, on regardera toujours les per-
formances d’un algorithme dans le pire des case. Plusieurs raisons :

– permet de borner supérieurement le temps pour toute les données de taille n
– ce cas peut apparaitre fréquemment en pratique
– cas "moyen" presque aussi mauvais que le cas le plus défavorable (dans notre

exemple : prendre tj = j/2 donne une fonction quadratique)

1.2 Croissance des fonctions, notations de Landau

Pour le tri par insertion, on a vu que dans le cas le plus défavorable, T (n) = 3
2n

2+ 7
2n−

4. Pour les entrées suffisamment grandes, seul l’ordre de grandeur du temps d’exécution
compte : on "enlève" les constantes multiplicatives et les termes d’ordres inférieurs. On
notera T (n) = θ(n2), et on dira que l’algorithme du tri par insertion a une complexité
en θ(n2).
Dans ce qui suit, toutes les fonctions vont de N dans N.
Abus de notation : au lieu de "f : n 7→ f(n)", on notera directement "f(n)"

Notation θ : Pour une fonction donnée g(n), on note θ(g(n)) ("theta de g de n")
l’ensemble de fonctions suivant :

θ(g(n)) = {f(n) : ∃c1, c2 > 0 et n0 ∈ N tels que 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) pour tout n ≥ n0}

Si f(n) ∈ θ(g(n), on dira que g(n) est une borne asymptotiquement approchée de f(n).
Abus de notation : on notera aussi f(n) = θ(g(n))
Exemple : montrons que 1

2n
2− 3n = θ(n2). Montrons qu’on peut trouver c1, c2 et n0 tels

que c1n2 ≤ 1
2n

2 − 3n ≤ c2n2 pour tout n ≥ n0. En divisant par n2, on a

c1 ≤
1

2
− 3

n
≤ c2

On remarque que c2 ≥ 1/2 convient pour tout n ≥ 1, et c1 ≥ 1/14 convient pour tout
n ≥ 7.
Exercice : montrer que 6n3 6= θ(n2) et que 20n 6= θ(n2).

3



Notation O : Pour une fonction donnée g(n), on note O(g(n)) ("grand O de g de n")
l’ensemble de fonctions suivant :

O(g(n)) = {f(n) : ∃c > 0 et n0 ∈ N tels que 0 ≤ f(n) ≤ cg(n) pour tout n ≥ n0}

Si f(n) ∈ O(g(n), on dira que g(n) est une borne supérieure asymptotique de f(n). Abus
de notation : on notera aussi f(n) = O(g(n)).
Propriété : θ(g(n)) ⊆ O(g(n)).
Exercice : montrer que 20n = O(n2).

Notation Ω : Pour une fonction donnée g(n), on note Ω(g(n)) ("grand oméga de g de
n") l’ensemble de fonctions suivant :

Ω(g(n)) = {f(n) : ∃c > 0 et n0 ∈ N tels que 0 ≤ cg(n) ≤ f(n) pour tout n ≥ n0}

Si f(n) ∈ Ω(g(n), on dira que g(n) est une borne inférieure asymptotique de f(n). Abus
de notation : on notera aussi f(n) = Ω(g(n)).
Propriété : θ(g(n)) ⊆ Ω(g(n)) Exercice : montrer que 5n3 + 2n = Ω(n2)

Théorème 1. Pour deux fonctions quelconques f et g, on a f(n) = θ(g(n)) si et seule-
ment si f(n) = O(g(n)) et f(n) = Ω(g(n).

Démonstration. On a déjà θ(g(n)) ⊆ Ω(g(n)) et θ(g(n)) ⊆ O(g(n)), il ne reste donc plus
qu’à montrer que f(n) = O(g(n)) et f(n) = Ω(g(n)) implique f(n) = θ(g(n). Il existe c1
et n10 tels que f(n) ≤ c1g(n) pour tout n ≥ n10, et il existe c2 etn20 tels que f(n) ≥ c2g(n)
pour tout n ≥ n20. D’où, pour tout n ≥ max{n10, n20}, on a c2g(n) ≤ f(n) ≤ c1g(n) et
donc f(n) = θ(g(n)).

Notation o : Pour une fonction donnée g(n), on note o(g(n)) ("petit o de g de n")
l’ensemble de fonctions suivant :

o(g(n)) = {f(n) : ∀c > 0∃n0 ∈ N tels que 0 ≤ f(n) < cg(n) pour tout n ≥ n0}

Propriété : f(n) = o(g(n)) équivaut à limn→∞
f(n)
g(n) = 0.

Exercice : montrer que 56n = o(n2) et que 1
2n

2 6= o(n2)

Notation ω : Pour une fonction donnée g(n), on note ω(g(n)) ("petit oméga de g de
n") l’ensemble de fonctions suivant :

ω(g(n)) = {f(n) : ∀c > 0∃n0 ∈ N tels que 0 ≤ cg(n) < f(n) pour tout n ≥ n0}

Propriété : f(n) = ω(g(n)) équivaut à limn→∞
f(n)
g(n) =∞.

Exercice : montrer que 1
2n

2 = ω(n) et que 1
2n

2 6= ω(n2)

4



Analogie avec la comparaison de nombres

f(n) = O(g(n)) ≈ a ≤ b
f(n) = o(n)) ≈ a < b

f(n) = θ(g(n)) ≈ a = b

f(n) = Ω(g(n)) ≈ a ≥ b
f(n) = ω(g(n)) ≈ a > b

Ordres de grandeur classiques
– O(1) : constant
– O(log(n) : logarithmique
– O(n) : linéaire
– O(n log(n)) : n log(n) (ou quasi-linéaire)
– O(n2) : quadratique
– O(n3) : cubique
– O(nk), k > 0 : polynomial
– O(2n) : exponentiel

1.3 Récurrences

Comment évaluer la complexité des algorithmes récursifs ?

1.3.1 Premier exemple : factorielle

On rappelle l’algorithme récursif du calcul de la factorielle d’un entier :

factorielle(n)
calcule et retourne n!

1: if n = 0 then
2: return 1
3: else
4: return n ∗ factorielle(n− 1)
5: end if

Observons la trace de l’algorithme pour n = 4 :

↪→ appel de factorielle(4) : on retourne 4 ∗ factorielle(3)
↪→ appel de factorielle(3) : on retourne 3 ∗ factorielle(2)

↪→ appel de factorielle(2) : on retourne 2 ∗ factorielle(1)
↪→ appel de factorielle(1) : on retourne 1 ∗ factorielle(0)
↪→ appel de factorielle(0) : on retourne 1

5



Ici, on voit bien que le nombre d’instructions est en θ(n) (attention : ce n’est pas un
algorithme polynômial, car (1) la taille de l’entrée est log n, et (2) on doit calculer n!).
Possibilité de dérécurser l’algorithme :

factorielle(n)
calcule et retourne n!

1: fact← 1
2: for i← 1 à n do
3: fact← fact ∗ i
4: end for
5: return fact

Ici, la version itérative est également en θ(n).

1.3.2 Second exemple : tri par fusion

Idée : "diviser-pour-régner" :
– Diviser : Diviser la suite de n éléments à trier en deux sous-suites de n/2 éléments

chacune.
– Régner : Trier les deux sous-suites de manière récursive en utilisant le tri par

fusion.
– Combiner : Fusionner les deux sous-suites triées pour produire la réponse triée.

Cas de base : si la séquence à trier est de longueur 1, alors elle est déjà triée.

Exemple d’exécution

30 2 • Premiers pas

TRI-FUSION(A, p, r)
1 si p < r
2 alors q ← "(p + r)/2#
3 TRI-FUSION(A, p, q)
4 TRI-FUSION(A, q + 1, r)
5 FUSION(A, p, q, r)

Pour trier toute la séquence A = 〈A[1], A[2], . . . , A[n]〉, on fait l’appel initial
TRI-FUSION(A, 1, longueur[A]) (ici aussi, longueur[A] = n). La figure 2.4 illustre
le fonctionnement de la procédure, du bas vers le haut, quand n est une puissance
de 2. L’algorithme consiste à fusionner des paires de séquences à 1 élément pour
former des séquences triées de longueur 2, à fusionner des paires de séquences de
longueur 2 pour former des séquences triées de longueur 4, etc. jusqu’à qu’il y ait
fusion de deux séquences de longueur n/2 pour former la séquence triée définitive de
longueur n.

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

2 4 5 7 1 2 3 6

1 2 2 3 4 5 6 7

fusion

fusion

fusion

séquence triée

séquence initiale

fusionfusionfusionfusion

Figure 2.4 Le fonctionnement du tri par fusion sur le tableau A = 〈5, 2, 4, 7, 1, 3, 2, 6〉. Les lon-
gueurs des séquences triées en cours de fusion augmentent à mesure que l’algorithme remonte
du bas vers le haut.

2.3.2 Analyse des algorithmes diviser-pour-régner

Lorsqu’un algorithme contient un appel récursif à lui même, son temps d’exécution
peut souvent être décrit par une équation de récurrence, ou récurrence, qui décrit le
temps d’exécution global pour un problème de taille n à partir du temps d’exécution
pour des entrées de taille moindre. On peut alors se servir d’outils mathématiques

6



fusion(A, p, q, r)
Fusionne les listes A[p...q] et A[(q+1)...r] qui sont supposées être triées et met le résultat
dans A[p...r]

Input: : A, p, q, r
1: n1 ← p− q + 1
2: n2 ← r − q
3: créer deux tableaux L[1...(n1 + 1)] et R[1...(n2 + 1)] //+1 pour les sentinelles
4: for i← 1 à n1 do
5: L[i]← A[p+ i− 1]
6: end for
7: for j ← 1 à n2 do
8: R[j]← A[q + j]
9: end for

10: L[n1 + 1]←∞ //on place des sentinelles
11: R[n2 + 1]←∞ //on place des sentinelles
12: i← 1
13: j ← 1
14: for k ← p à r do
15: if L[i] ≤ R[j] then
16: A[k]← L[i]
17: i← i+ 1
18: else
19: A[k]← L[i]
20: j ← j + 1
21: end if
22: end for

tri_fusion(A, p, r)
Trie les éléments de p à r d’un tableau A
Input: : A, p, r
1: if p < r then
2: q ← b(p+ r)/2c
3: tri_fusion(A, p, q)
4: tri_fusion(A, q + 1, r)
5: fusion(A, p, q, r)
6: end if

7



Analyse de la complexité de l’algorithme
Soit D(n) le temps pour diviser le problème en sous-problèmes, C(n) pour construire la

solution finale à partir des solutions aux sous-problèmes, et T (n) le temps de l’algorithme
global.

– Diviser : calcule simplement le milieu du sous-tableau : D(n) = θ(1).
– Régner : on résoud deux sous-problèmes, chacun ayant une entrée de taille n/2,

ce qui contribue à 2T (n/2) au temps d’exécution.
– Combiner : la procédure fusion prend un temps θ(n), donc C(n) = θ(n).
On a donc :

T (n) =

{
θ(1) si n = 1

2T (n/2) + θ(n) si n > 1
(3)

ou :

T (n) =

{
c si n = 1

2T (n/2) + cn si n > 1
(4)

(ce n’est pas le même c mais on peut contourner en prenant le max des deux).
Pour résoudre la récurrence, on peut utiliser un arbre de récursivité (on suppose que n
est une puissance de 2) :

8



2.3 Conception des algorithmes 33

cn

cn

…

Total: cn lg n + cn

cn

lg n

cn

n

c c c c c c c

…

(d)

(c)

cn

T(n/2) T(n/2)

(b)

T(n)

(a)

cn

cn/2

T(n/4) T(n/4)

cn/2

T(n/4) T(n/4)

cn

cn/2

cn/4 cn/4

cn/2

cn/4 cn/4

Figure 2.5 La construction d’un arbre de récursivité pour la récurrence T(n) = 2T(n/2) + cn. La
partie (a) montre T(n), progressivement développé en (b)–(d) pour former l’arbre de récursivité.
L’arbre complet, en partie (d), a lg n+1 niveaux (c’est-à-dire, il a une hauteur lg n comme indiquée),
sachant que chaque niveau contribue pour un coût total de cn. Le coût global est donc cn lg n+cn,
c’est à dire Q(n lg n).

c ©
D

un
od

–
L

a
ph

ot
oc

op
ie

no
n

au
to

ri
sé

e
es

tu
n

dé
lit

D’où l’algorithme fusion a une complexité en θ(n log(n)) (mieux que tri_insertion).

1.3.3 Troisième exemple : les tours de Hanoï

Le problème des tours de Hanoï est le suivant : étant donnés n disques de tailles
différentes empillés du plus grand (en bas) au plus petit (en haut) sur une tour de départ
D, déplacer ces n disques vers une tour d’arrivée A en utilisant une tour intermédiaire I
en respectant les règles suivantes :

– ne déplacer qu’un disque à la fois
– empiller un disque sur un disque plus grand uniquement (ou sur une tour vide)

9



Algorithme de résolution :

Hanoi(n,D,A, I)
déplace les n premiers disques de la tour D à la tour A en utilisant la tour
I

1: if n = 1 then
2: déplacer le disque de D à A
3: else
4: Hanoi(n− 1, D, I, A)
5: déplacer le disque restant de D vers A
6: Hanoi(n− 1, I, A, D)
7: end if

Soit T (n) le nombre d’instructions (déplacements) appelées. On a T (n) = 2T (n −
1) + 1.

Première méthode : méthode empirique + vérification : calculons les premières
valeurs :

T (1) = 1T (2) = 3T (3) = 7T (4) = 15T (5) = 31

On conjecture D(n) = 2n − 1. Vérifions :

D(n+ 1) = 2D(n) + 1

= 2(2n − 1) + 1

= 2n+1 − 2 + 1

= 2n+1 − 1

Seconde méthode : arbre d’appels : on construit l’arbre des appels

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

profondeur
0

1

2

n − 1

n − 2

valeur de n

n

n − 1

n − 2

1

2

1

10



D(n) est en fait le nombre de noeuds de l’arbre. Nombre de noeuds à la profondeur
i = 2i, d’où

D(n) =

n−1∑
i=0

2i = 2n − 1

1.3.4 Le cas général

Théorème 2. (admis)
Soit a ≥ 1 et b > 1 deux constantes, f une fonction et T définie pour les entiers non
négatifs par la récurrence

T (n) = aT (n/b) + f(n)

Où n/b peut également être interprété comme bn/bc ou dn/be.
T (n) peut alors être bornée asymptotiquement de la façon suivante :

– 1) si f(n) = O(nlogb(a)−ε) pour une certaine constante ε > 0, alors T (n) =
θ(nlogb(a)).

– 2) si f(n) = θ(nlogb(a)) alors T (n) = θ(nlogb(a) log(n)).
– 3) si f(n) = Ω(nlogb(a)+ε) pour une certaine constante ε > 0, et si af(n/b) ≤ cf(n)
pour une certaine constante c < 1 et pour tout n suffisamment grand, alors T (n) =
θ(f(n)).

Exemple :
T (n) = 9T (n/3) + n

On a a = 9, b = 3 et f(n) = n. On a nlogb(a) = nlog3(9) = θ(n2). D’où f(n) = O(nlog3(9)−ε)
avec ε = 1, on peut appliquer le cas 1 du théorème général, et donc T (n) = θ(n2).

Attention : tous les cas ne sont pas traités par le théorème général :

T (n) = 2T (n/2) + n log(n)

On a bien a = 2, b = 2, f(n) = n log(n) et nlogb(a) = n. On pourrait penser que
le cas 3 s’applique car f(n) est asymptotiquement plus grande que nlogb(a) = n, mais
elle n’est pas polynomialement plus grande : le rapport f(n)

nlogb(a)
= n log(n)

n = log(n) est
asymptotiquement plus petit que nε pour toute constante strictement positive ε.

2 Introduction à la théorie de la complexité

2.1 Cadre d’étude

Dans le chapitre précédent, on a vu qu’il était possible de comparer l’efficacité d’algo-
rithmes effectuant la même tâche. La théorie de la complexité vise à classer les problèmes
combinatoires selon leur difficulté à pouvoir les résoudre. Qu’est-ce qu’un problème com-
binatoire ?

11



On distingue les problèmes de décision et les problèmes d’optimisation. Les pro-
blèmes de décisions retournent une réponse binaire (vrai ou faux), tandis que les pro-
blèmes d’optimisation retournent des objets mathématiques (généralement l’élément qui
maximise ou minimise une fonction parmi un ensemble d’objets) .
Exemple de problème de décision :
Test de primalité
Entrée : un entier n
Question : l’entier n est-il premier ?

Exemple de problème d’optimisation :

Sous tableau de somme maximale
Entrée : un tableau T d’entiers
Réponse : deux indices i et j
But : maximiser la somme des éléments de T de i à j

A un problème d’optimisation correspond un problème de décision, exemple :

Sous tableau de somme maximale (décision)
Entrée : un tableau T d’entiers, un entier S
Question : existe-t-il deux indices i et j tels que la somme des éléments de
T de i à j vaut au moins S ?

Il est facile de voir que si l’on sait résoudre le problème d’optimisation, alors on sait
résoudre le problème de décision. Réciproquement, s’il est difficile de résoudre le problème
de décision, il sera difficile de résoudre le problème d’optimisation. C’est pour cela que
l’on s’intéresse plus généralement aux problèmes de décision.

2.2 Les classes P et NP

2.2.1 La classe P

La théorie de la complexité vise à séparer les problèmes en classes (ensembles).

Définition 1. La classe P (pour Polynomial) est la classe des problèmes de décision tels
qu’il existe un algorithme polynômial pour les résoudre.

Exemples de problèmes polynomiaux :

Plus grand élément
Entrée : un tableau T d’entiers
Question : existe-t-il un élément de T strictement plus grand que tous les
autres ?

Un algorithme naïf est de tester toutes les paires de sommets. Si T contient n élé-
ments, cet algorithmes s’exécute en O(n2).

12



Sous tableau de somme maximale (décision)
Entrée : un tableau T d’entiers, un entier S
Question : existe-t-il deux indices i et j tels que la somme des éléments de
T de i à j vaut au moins S ?

On a vu précédemment que l’on pouvait résoudre le problème d’optimisation associé
en O(n log(n)).

2.2.2 Certificats et classe NP

Définition 2. Etant donné une instance I d’un problème Π. Un certificat C est un
objet qui prouve l’existance d’une solution. Le certificat est polynomial si C est de taille
polynomiale en la taille de I, et s’il existe un algorithme polynomial prenant en entrée I
etC et retourne vrai si et seulement si I est une instance positive de Π.

Définition 3. Un problème de décision Π est dans la classe NP (pour Non-deterministic
Polynomial) s’il existe pour chaque solution positive un certificat polynomial.

Exemple : pour le problème Sous tableau de somme maximale (décision), un certificat
est un couple (i, j), il est bien de taille polynomiale en la taille du tableau, et on peut
vérifier que la solution est positive en calculant la somme des élément de T de i à j, et
comparant celle-ci avec l’entier S de l’instance.

Observation : on a clairement P ⊆ NP car on peut tester en temps polynomial si
une instance est positive ou non.
La question de savoir si NP ⊆ P est ouverte.

2.3 Les problèmes NP -difficiles et NP -complets

Définition 4. Soit Π1 et Π2 deux problèmes de décision. Une réduction polynomiale de
Π1 à Π2 est un algorithme polynomial qui prend en entrée une instance de Π1, et retourne
une instance de Π2 telle que l’instance retournée est positive pour Π2 si et seulement si
l’instance d’entrée est positive pour Π1.

S’il existe une réduction polynomiale de Π1 à Π2, on dit que Π1 se réduit à Π2.

Observation : Si Π1 se réduit à Π2, et qu’il existe un algorithme polynomial pour
Π2, alors il existe également un algorithme polynomial pour Π1.

Définition 5. Un problème Π1 est NP -difficile si pour tout problème Π2 de NP , il existe
une réduction polynomiale de Π2 vers Π1

Définition 6. Un problème Π est NP -complet si :
– Π ∈ NP
– Π est NP -difficile

13



Autrement dit, si Π1 est NP -complet, alors un algorithme polynomial pour Π1 im-
plique un algorithme polynomial pour tous les problèmes de NP . D’où l’intérêt de la
question P = NP .

14


