
COMP6834: Advanced topics in optimization

Tutorial 1: the simplex algorithm

1 First example

Let us solve the following simple example:

maximize z = 2x1 + 3x2

subject to:

x1 +x2 ≤ 6

2x1 +x2 ≤ 10

− x1 +x2 ≤ 4

x1, x2 ≥ 0

In order to put it into the standard form (equations instead of inequalities), we add three slack
variables x3, x4, x5, and obtain the following equivalent system:

maximize z = 2x1 + 3x2

subject to:

x1 +x2 +x3 = 6

2x1 +x2 +x4 = 10

− x1 +x2 +x5 = 4

x1, x2, x3, x4, x5 ≥ 0

In order to start the simplex algorithm, we need an easy feasible solution. Basically, if we are
able to find in each constraint a variable which appears in this constraint only, then you can easily
find a feasible solution.
In our case: (x1, x2, x3, x4, x5) = (0, 0, 6, 10, 4) is a feasible solution. Variables having non-zero
values are called the basics variables. We construct the following tableau:

basis z x1 x2 x3 x4 x5 RHS
L1 z 1 -2 -3 0 0 0 0
L2 x3 0 1 1 1 0 0 6
L3 x4 0 2 1 0 1 0 10
L4 x5 0 -1 1 0 0 1 4
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Concerning the first row, we write the objective function in a constraint-like way: z−2x1−3x2 =
0. RHS stands for ”Right Hand Side” of the equations. In the first column, we write the basic
variable corresponding to the constraint.
As we can see, the z column together with the columns of the basis form the identity matrix as a
submatrix. When this happens, we say that the tableau is in a legitimate form.
The simplex algorithm consists in several iterations, each of them being summarized as follows:

• replace a basic variable by a non-basic variable

• modify the tableau in order to make it legitimate

Concerning the first item, we need to find the non-basic variable which will increase the most the
objective function. Thus, we look at the z row for the column with the most negative value (for
a minimization problem, we would look for the column with the least negative value). This column
corresponds to the variable which will enter the basis. In the example above, x2 is the entering
variable (that is why the corresponding column has been colored in red).
In order to find the leaving variable, we look for the first constraint which becomes tight when in-
creasing the value of the entering variable. That is, for each row, we divide the right hand side value
by the value in the column corresponding to the entering variable, and we look for the minimum
positive value over all ratios (we do not compute the ratio for the z row). We have the following:

basis z x1 x2 x3 x4 x5 RHS Min.
L1 z 1 -2 -3 0 0 0 0 ratio
L2 x3 0 1 1 1 0 0 6 6/1
L3 x4 0 2 1 0 1 0 10 10/1
L4 x5 0 -1 1 0 0 1 4 4/1

In the example above, x5 is the leaving variable. The value at the intersection (in green) is
called the pivot.
Concerning the second item, we need to modify the tableau in order to make it legitimate. That is,
such that the column corresponding to the entering variable has a 1 at the pivot and a 0 elsewhere.
To do so, we use the row corresponding to the leaving variable. Concerning the row L4, we do not
need to do anything, since the pivot value is already 1. Then we proceed to the following operations:

• L1 ← L1 + 3L4

• L2 ← L2 − L4

• L3 ← L3 − L4

And we obtain the following tableau:
basis z x1 x2 x3 x4 x5 RHS Min.

L1 z 1 -5 0 0 0 3 12 ratio
L2 x3 0 2 0 1 0 -1 2 2/2
L3 x4 0 3 0 0 1 -1 6 6/3
L4 x2 0 -1 1 0 0 1 4 (neg.)

Now, x1 is the entering variable, x3 is the leaving variable. We need to divide L2 by 2, and
make the following operations (notice that these changes are made after the modification of L2):
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• L1 ← L1 + 5L2

• L3 ← L3 − 3L2

• L4 ← L4 + L2

And obtain the following tableau:
basis z x1 x2 x3 x4 x5 RHS

L1 z 1 0 0 5/2 0 1/2 17
L2 x1 0 1 0 1/2 0 -1/2 1
L3 x4 0 0 0 -1/2 1 1/2 3
L4 x2 0 0 1 1/2 0 1/2 5

Here, all values of the z row are positive: the algorithm stops, and a solution has been found: its
value is 17 (right hand side value of the z row), and the solution is (x1, x2, x3, x4, x5) = (1, 5, 0, 3, 0)
(the value of the basic variables are in the RHS column, the value of non-basic variables are 0). In
order to obtain a solution to the first linear program, we just take the projection to (x1, x2). Thus,
we just remove the slack variables, and obtain the solution (x1, x2) = (1, 5).

2 Second example

We would like to solve the following linear program:

maximize z = 1000x1 + 1200x2

subject to:

10x1 +5x2 ≤ 200

2x1 +3x2 = 60

x1 ≤ 12

x2 ≥ 6

x1, x2 ≥ 0

We turn it into the standard form by adding three slack variables:

maximize z = 1000x1 + 1200x2

subject to:

10x1 +5x2 +e1 = 200

2x1 +3x2 = 60

x1 +e3 = 12

x2 −e4 = 6

x1, x2, e1, e3, e4 ≥ 0
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However here, we cannot find any easy feasible solution. Thus, before finding an optimal solu-
tion to this problem, the first step consists in finding such a feasible solution.

Phase I: To do so, we add two artificial variables and change the objective function:

maximize z = 1000x1 + 1200x2 zA = −a2 − a4
subject to:

10x1 +5x2 +e1 = 200

2x1 +3x2 +a2 = 60

x1 +e3 = 12

x2 −e4 +a4 = 6

x1, x2, e1, e3, e4, a2, a4 ≥ 0

The previous linear program has a feasible solution if and only if this new program has optimal
value 0 (i.e. when a2 = a4 = 0).
Here we have the feasible solution (x1, x2, e1, e3, e4, a2, a4) = (0, 0, 200, 12, 0, 60, 6) and the basics
variables are thus {e1, a2, e3, a4}. We have the following tableau (recall that for the first row zA,
we write the objective function in a constraint-like way: zA + a2 + a4 = 0):

basis zA x1 x2 e1 e3 e4 a2 a4 RHS
L1 zA 1 0 0 0 0 0 1 1 0
L2 e1 0 10 5 1 0 0 0 0 200
L3 a2 0 2 3 0 0 0 1 0 60
L4 e3 0 1 0 0 1 0 0 0 12
L5 a4 0 0 1 0 0 -1 0 1 6

However it is not in a legitimate form: the z column together with the columns corresponding
to basic variables do not form the identity matrix (because of the zA row mainly). We thus modify
the first row L1 ← L1 + L3 + L5 (notice that most of the time, we just have to add to L1 the rows
in which we added artificial variables, L3 and L5 here). We obtain the following tableau and are
now ready to start the iterations:

basis zA x1 x2 e1 e3 e4 a2 a4 RHS min.
L1 zA 1 -2 -4 0 0 1 0 0 -66 ratio
L2 e1 0 10 5 1 0 0 0 0 200 200/5
L3 a2 0 2 3 0 0 0 1 0 60 60/3
L4 e3 0 1 0 0 1 0 0 0 12 -
L5 a4 0 0 1 0 0 -1 0 1 6 6/1

Here, x2 is the entering variable, and a4 is the leaving variable. We then turn it into a legitimate
form: L5 does not change, and:

• L1 ← L1 + 4L5
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• L2 ← L2 − 5L5

• L3 ← L3 − 3L5

• L4 ← L4

basis zA x1 x2 e1 e3 e4 a2 a4 RHS min.
L1 zA 1 -2 0 0 0 -3 0 4 -42 ratio
L2 e1 0 10 0 1 0 5 0 -5 170 170/5
L3 a2 0 2 0 0 0 3 1 -3 42 42/3
L4 e3 0 1 0 0 1 0 0 0 12 -
L5 x2 0 0 1 0 0 -1 0 1 6 -

Here, e4 is the entering variable, and a2 is the leaving variable. The modifications: we divide
L3 by 3, and, using this new L3, we get:

• L1 ← L1 + 3L3

• L2 ← L2 − 5L3

• L4 ← L4

• L5 ← L5 + L3

And we obtain:

basis zA x1 x2 e1 e3 e4 a2 a4 RHS
L1 zA 1 0 0 0 0 0 1 1 0
L2 e1 0 20/3 0 1 0 0 -5/3 -10 100
L3 e4 0 2/3 0 0 0 1 1/3 -1 14
L4 e3 0 1 0 0 1 0 0 0 12
L5 x2 0 2/3 1 0 0 0 1/3 0 20

All values in the zA row are positive, so the algorithms stops and an optimal solution has been
found. Good news: its value is 0, which was the objective. This implies that the first linear program
has a feasible solution: (x1, x2, e1, e3, e4, a2, a4) = (0, 20, 100, 12, 14, 0, 0).

Phase II: We now remove the artificial variables, and solve the linear program with the former
objective function z − 1000x1 − 1200x2 = 0:

basic zA x1 x2 e1 e3 e4 RHS
L1 zA 1 -1000 -1200 0 0 0 0
L2 e1 0 20/3 0 1 0 0 100
L3 e4 0 2/3 0 0 0 1 14
L4 e3 0 1 0 0 1 0 12
L5 x2 0 2/3 1 0 0 0 20

We first turn it into legitimate form (the x2 column should have a 0 at the first row), by changing
L1 ← L1 + 1200L5
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basis zA x1 x2 e1 e3 e4 RHS min.
L1 zA 1 -200 0 0 0 0 24000 ratio
L2 e1 0 20/3 0 1 0 0 100 100 × 3/20
L3 e4 0 2/3 0 0 0 1 14 14 × 3/2
L4 e3 0 1 0 0 1 0 12 12
L5 x2 0 2/3 1 0 0 0 20 20 × 3/2

Now, x1 is the entering variable, and e3 is the leaving variable. We do not change L4, and
proceed to the following changes:

• L1 ← L1 + 200L4

• L2 ← L2 − 20/3× L4

• L3 ← L3 − 2/3× L4

• L5 ← L5 − 2/3× L4

And we obtain the tableau:

basis zA x1 x2 e1 e3 e4 RHS
L1 zA 1 0 0 0 200 0 26400
L2 e1 0 0 0 0 -20/3 0 20
L3 e4 0 0 0 0 -2/3 1 6
L4 x1 0 1 0 0 1 0 12
L5 x2 0 0 1 0 -2/3 0 12

The z row has no negative value: the algorithm stops and an optimal solution has been found,
of cost 26400. The solution is (x1, x2) = (12, 12).
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