
	
	

Christelle	CAILLOUET	
(christelle.caillouet@unice.fr)	

Contrôle	Con*nu	21	avril	ma*n	
�  Durée	2h	

�  Programme	:	tout	depuis	le	début	jusqu’à	cette	semaine	
incluse,	sauf	entrées/sorties	et	gestion	de	fichiers	
�  Savoir	écrire	une	classe	en	Java		

�  juste	=	qui	compile	et	s’exécute	
�  lisible	=	règles	d’écritures	

�  Types	primitifs,	objets,	tableaux,	exceptions	
�  Instanciation,	éléments	static,	encapsulation,	composition/
agrégation/association,	héritage,	polymorphisme	

�  Aucun	document	autorisé	
C.	Caillouet	 M213	-	POO	 2	

Eclipse	et	l’héritage	
� Créer	des	classes	dérivées	directement	

� Paramétrage	à	la	création	

� Génération	des	constructeurs	dérivés	avec	appel	à	
super	

C.	Caillouet	 M213	-	POO	 3	

Héritage	des	méthodes	
�  Le	code	des	méthodes	de	la	classe	de	base	peut	ne	
plus	être	«	correct	»	dans	la	classe	dérivée	
�  Pour	l’exemple	de	Point	et	ColoredPoint	:	

�  La	méthode	distanceP	est	toujours	valide	
�  La	méthode	toString	ne	parle	pas	de	la	couleur	

public static void main(String[] args){
 ColoredPoint cp = new ColoredPoint();
 System.out.println(cp);
 System.out.println(cp.couleur);
 }	

C.	Caillouet	 M213	-	POO	 4	

Redéfini*on	et	surcharge	de	
membres	
� Réécrire/Modifier	des	méthodes	existantes	

� On	l’a	déjà	vu	avec	les	méthodes	de	la	classe	Object

� Généralisation	à	toutes	les	classes	avec	l’héritage	

C.	Caillouet	 M213	-	POO	 5	

Redéfini*on	de	méthode	
�  Fournir	une	nouvelle	définition	pour	la	même	
méthode	
� Même	nom	
� Mêmes	arguments	(nombre	et	types)	
�  Code	différent	

�  L’annotation	@Override	demande	au	compilateur	de	
vérifier	(facultative)	

C.	Caillouet	 M213	-	POO	 6	

Principes	de	la	redéfini*on	
La	redéfinition	d'une	méthode	(dans	la	classe	dérivée)	:	

�  Ne	doit	pas	diminuer	les	droits	d'accès	par	rapport	à	celle	de	
la	classe	de	base	
�  Par	contre,	elle	peut	les	augmenter	:	protected	à	public	

�  Ne	doit	pas	lever	plus	d’exceptions	
�  Peut	en	lever	moins	

�  Doit	avoir	le	même	type	de	retour	ou	un	type	dérivé	

�  La	résolution	est	faite	en	2	temps	:	
1.   Compilation	:	on	vérifie	que	c’est	possible	sur	le	type	

déclaré	
2.   Exécution	:	on	cherche	la	+	précise	étant	donné	le	type	

«	réel	»	(cf.	polymorphisme)	

C.	Caillouet	 M213	-	POO	 7	

Exemple	:	méthode	toString()	de	
Object
public String toString(){
 return "Point "+couleur+" "+super.toString();
}	

�  L’objectif	est	de	lui	donner	une	définition	+	précise	
(mieux	adaptée	aux	objets	de	la	classe	dérivée	que	de	
la	classe	de	base)	de	sorte	qu’elle	soit	appelée	à	
l’exécution	

C.	Caillouet	 M213	-	POO	 8	

Soit	l’arborescence	d’héritage	
suivante	

� Pour	une	instance	de	la	classe	B,	la	méthode	f	
appliquée	est	celle	de	A	

� Pareil	pour	un	objet	E	
� Pour	un	objet	F,	c’est	celle	de	C	
� …	

C.	Caillouet	 M213	-	POO	 9	

A*	

B	 C*	

D*	 E	 F	

L’astérisque	*	signale	la	définition	
ou	la	redéfinition	d’une	méthode	f.	

Les	classes	et	méthodes	final	
�  Le	mot-clé	final	existe	pour	les	méthodes	:	

�  Il	signifie	que	la	méthode	ne	pourra	pas	être	redéfinie	
dans	une	classe	dérivée	

�  Peut	être	utile	pour	garantir	qu’aucune	autre	définition	
ne	pourra	être	donnée	pour	cette	méthode	(sécurité)	

�  Le	mot-clé	final	existe	pour	les	classes	(vu	cours	
précédent)	:	
�  Impossible	d’hériter	de	cette	classe	
�  Les	méthodes	se	comportent	comme	si	elles	étaient	
final	

C.	Caillouet	 M213	-	POO	 10	

Surcharge	dans	une	classe	
�  Surcharger	une	méthode	(dans	une	même	classe),	
c’est	avoir	plusieurs	définitions	possibles	pour	cette	
méthode	:	
� Même	nom	
�  Signatures	différentes	:	nombre	d’arguments	ou	types	
des	arguments	

	
� Détection	de	la	bonne	méthode	à	la	compilation	:	

�  Le	compilateur	doit	être	capable	de	faire	un	choix	

C.	Caillouet	 M213	-	POO	 11	

public class Point {
 private double abscisse;
 private double ordonnee;

 public Point(double x, double y){
 abscisse = x;
 ordonnee = y;
 }

 public void deplace(double dx, double dy)
{
 abscisse += dx;
 ordonnee += dy;
 }

 public void deplace(double dx) {
 abscisse += dx;
 }

 public void deplace(float dx) {
 abscisse += dx;
 }
}	

C.	Caillouet	 M213	-	POO	 12	

public class Surdef1 {
 public static void main(String[] args) {
 Point a = new Point(1.0, 2.0);
 a.deplace(1, 3); // appelle deplace(double, double)

 a.deplace(2.0); // appelle deplace(double)
 float b = 1.5f;
 a.deplace(b); // appelle deplace(float)

 }

}	

Surcharge	de	la	méthode		
deplace	

Ambiguité	
public void deplace(double dx, float dy) {
 abscisse += dx;
 ordonnee += dy;
}
public void deplace(float dx, double dy) {
 abscisse += dx;
}	

public class Surdef1 {
 public static void main(String[] args) {
 Point a = new Point(1.0, 2.0);
 float b = 1.5f;
 double c = 2.0;
 a.deplace(b, c); // OK
 a.deplace(c, b); // OK
 a.deplace(b, b); // erreur : ambiguité
 }

}	

C.	Caillouet	 M213	-	POO	 13	

Relié	à	la	notion	de		
transtypage	(conversion		
de	types)	automatique	et	
polymorphisme	

Surcharge	et	héritage	

�  Surcharge	vs.	Redéfinition	:	
�  La	signature	de	la	méthode	dérivée	n’est	pas	la	même	
que	dans	la	classe	de	base	

/!\Les	2	méthodes	cohabitent	dans	la	classe	dérivée	

C.	Caillouet	 M213	-	POO	 14	

C.	Caillouet	 M213	-	POO	 15	

Le	polymorphisme	
� Définition	:	

�  Faculté	d’un	objet	d’être	une	instance	de	plusieurs	classes	

� Concept	extrêmement	puissant	en	POO,	qui	complète	
l’héritage	

�  Intérêt	:	
� Manipuler	des	objets	sans	en	connaître	(tout	à	fait)	le	type	

C.	Caillouet	 M213	-	POO	 16	

Exemple	
Gestion	de	tableaux		
hétérogènes	:	

Forme[] tableau = new Forme[4];
tableau[0] = new Rectangle(10, 20);
tableau[1] = new Carre(15);
tableau[2] = new Rectangle(5, 30);
tableau[3] = new Carre(10);	

C.	Caillouet	 M213	-	POO	 17	

Transtypage	implicite	(ascendant)	
�  Capacité	d’une	variable	de	classe	de	base	à	recevoir	une	référence	
sur	un	objet	de	sa	descendance.	

Point p = new ColoredPoint(1.5, 2.5, Color.red);
	
�  Compatibilité	par	affectation	entre	un	type	classe	et	un	type	
ascendant	(conversion	implicite	légale)	

	
Capitale paris = new Capitale("Paris", 2250000, "France");
// Capitale hérite de Ville
Ville v = paris;

// Capitale hérite de Ville qui hérite de Object
Object o = paris;	

C.	Caillouet	 M213	-	POO	 18	

Transtypage	explicite	(descendant)	

C.	Caillouet	 M213	-	POO	 19	

ColoredPoint p;
p = new Point(1.5, 2.5);	

Erreur	de	compilation	!	

ColoredPoint cp = new ColoredPoint(1.5, 2.5, Color.red);
Point p = cp;

// Transtypage explicite
ColoredPoint c = (ColoredPoint)p;	
	

Soit	l’arborescence	d’héritage	
suivante	

C.	Caillouet	 M213	-	POO	 20	

A*	

B	 C*	

D*	 E	 F	

L’astérisque	*	signale	la	définition	
ou	la	redéfinition	d’une	méthode	f.	

Soient	les	déclarations	:	
A a = new A(); B b = new B(); C c = new C();
D d = new D(); E e = new E(); F f = new F();

	
Les	affectations	suivantes	sont	légales	:	
a=b; a=c; a=d ; a=e; a=f;
b=d; b=e;
c=f;

Celles-ci	sont	illégales	:	b=a; d=c; c=d;

Ligature	dynamique	

�  L’instruction	se	fonde	:	
�  Sur	le	type	effectif	de	l’objet	référencé	par	p	
�  Et	non	sur	le	type	de	la	variable	p	

è	Permet	d’obtenir	un	comportement	adapté	à	chaque	
type	d’objet	sans	avoir	besoin	de	tester	sa	nature	

C.	Caillouet	 M213	-	POO	 21	

Point p;
p = new Point(5, 0.5);
System.out.println(p); // appelle toString() de Point
p = new ColoredPoint(1.5, 2.5, Color.red);
System.out.println(p); // appelle toString() de
ColoredPoint	

Opérateur	instanceof	et	méthode	
getClass()	
�  instanceof	:	teste	l’appartenance	d’un	objet	à	une	classe	
(réponse	à	la	question	est	instance	de	…	?)	

�  Pour	connaître	la	classe	exacte	de	l’objet	à	l’exécution	(type	
effectif)	:	
getClass().getName()	

Point p;
p = new ColoredPoint(1.5, 2.5, Color.red);
System.out.println(p instanceof Point);
// true
System.out.println(p.getClass().getName());
// ColoredPoint	

C.	Caillouet	 M213	-	POO	 22	

Polymorphisme,	redéfini*on	et	
surcharge	
� A	la	compilation	:		

� Des	vérifications	statiques	sont	effectuées	sur	le	type	de	
la	variable	

�  a	est	de	type	A	è	on	ne	peut	lui	appliquer	que	les	
méthodes	de	A	

� A	l’exécution	:	
�  La	sélection	du	code	à	exécuter	est	effectuée	
dynamiquement	en	fonction	du	type	effectif	de	la	
variable	

C.	Caillouet	 M213	-	POO	 23	

Exemple	

C.	Caillouet	 M213	-	POO	 24	

public class A{
 public void f(float x) {...}
}

public class B extends A{
 public void f(float x) {...} // redéfinition de f de A
 public void f(int n) {...} // surcharge de f pour A et
B
}

A a = new A();
B b = new B();
int n;
a.f(n); // appelle f(float) de A
b.f(n); // appelle f(int) de B
a = b; // a contient une référence sur un objet de type B
a.f(n); // appelle f(float) de B et non f(int)	

Exemple	
1.  Le	compilateur	recherche	la	meilleure	méthode	

parmi	toutes	celles	s’appliquant	au	type	de	a	(à	
savoir	A	ou	ses	classes	ascendantes)	

è	La	signature	de	la	méthode	et	son	type	de	retour	
sont	figés	

2.  Lors	de	l’exécution,	on	se	fonde	sur	le	type	de	l’objet	
référencé	par	a	pour	trouver	une	méthode	ayant	la	
signature	et	le	type	de	retour	voulus	

è	On	aboutit	à	void	f(float	x)	de	B	
C.	Caillouet	 M213	-	POO	 25	

