Suite sur I"héritage et
polymorphisme

Christelle CAILLOUET
(christelle.caillouet@unice.fr)

P —

Controle Continu 21 avril matin

Durée 2h

Programme : tout depuis le début jusqu’a cette semaine
incluse, sauf entrées/sorties et gestion de fichiers

e Savoir écrire une classe en Java
« juste = qui compile et s’exécute
« lisible = regles d’écritures
e Types primitifs, objets, tableaux, exceptions

 Instanciation, éléments static, encapsulation, composition/
agrégation/association, héritage, polymorphisme

Aucun document autorisé

C. Caillouet M2i13 - POO

P —

Eclipse et I'héritage

Créer des classes dérivées directement
Paramétrage a la création

Génération des constructeurs dérivés avec appel a
super

C. Caillouet M2i13 - POO

Y

Héritage des méthodes

Le code des méthodes de la classe de base peut ne
plus étre « correct » dans la classe dérivée

e Pour 'exemple de Point et ColoredPoint :
» La méthode distanceP est toujours valide
« La méthode toString ne parle pas de la couleur

publbacvstatacwordmairnitobrang il args)d
o loredPoint iop isvnew Col e Povnet)
System.out.println(cp)
SYstem ot prantintepreonlcir)y

:\Users\cmolleN\Documents\COURSN\2016—-2017\M213\2017\Code >java ColoredPoint
(8.6 ., 8.6

ava.awt.Color[r=0,.9=0,.h=01

C. Caillouet M213 - POO 4

Mﬁniﬁonme/

membres

Réécrire/Modifier des méthodes existantes
On I'a déja vu avec les méthodes de la classe Object

Généralisation a toutes les classes avec I'héritage

C. Caillouet M2i13 - POO

_
Redéfinition de méthode

Fournir une nouvelle définition pour la méme
méthode

e Méme nom

e Mémes arguments (nombre et types)

e Code différent

[’annotation @Override demande au compilateur de
vérifier (facultative)

C. Caillouet M2i13 - POO

/ A ——

o

Principes de la redéfinition

La redéfinition d'une méthode (dans la classe dérivée) :

e Ne doit pas diminuer les droits d'acces par rapport a celle de
la classe de base

« Par contre, elle peut les augmenter : protected = public

e Ne doit pas lever plus d'exceptions
« Peut en lever moins

e Doit avoir le méme type de retour ou un type dérivé

La résolution est faite en 2 temps :

1. Compilation : on vérifie que c’est possible sur le type
déclaré

2. Exécution : on cherche la + précise étant donné le type
« réel » (cf. polymorphisme)

C. Caillouet M2i13 - POO

Exemple : méthode toString() de
Object

public String toString() {
return "Point "+couleur+" "+super.toString() ;

}

L'objectif est de lui donner une définition + précise
(mieux adaptée aux objets de la classe dérivée que de
la classe de base) de sorte qu’elle soit appelée a
I'exécution

C. Caillouet M2i13 - POO

~-Soit I'arborescence d’héritage

sulvante A
/\
L’astérisque * signale la définition B C*
ou la redéfinition d'une méthode f. /'\ '\
D* E F

* Pour une instance de la classe B, la méthode f
appliquée est celle de A

¢ Pareil pour un objet E
* Pour un objet F, c’est celle de C

C. Caillouet M2i13 - POO

/

— /

/ A ——

-

Les classes et méthodes final

Le mot-clé final existe pour les méthodes :

e Il signifie que la méthode ne pourra pas étre redéfinie
dans une classe dérivée

e Peut étre utile pour garantir qu'aucune autre définition
ne pourra étre donnée pour cette méthode (sécurité)

Le mot-clé final existe pour les classes (vu cours
précédent) :

e Impossible d’hériter de cette classe

e Les méthodes se comportent comme si elles étaient

final

C. Caillouet M2i13 - POO 10

/ A ——

-

Surcharge dans une classe

Surcharger une méthode (dans une méme classe),
c’est avoir plusieurs définitions possibles pour cette

meéthode :
e Méme nom

e Signatures différentes : nombre d’arguments ou types
des arguments

Détection de la bonne méthode a la compilation :
e Le compilateur doit étre capable de faire un choix

C. Caillouet M2i13 - POO 1

pub e el s Re T T
private double abscissey;

private—double ordonnee;

;//&’//,%ﬁzzzjlgzéoint(double x, double vy){

abscisse = x;
ordonnee = y; Surcharge de la méthode
deplace

public void deplace(double dx, double dy)

{
abscisse += dx;
ordonnee += dy;
}
public void deplace(double dx) {
abscisse += dx;
}
public void deplace(float dx) {
abscisse += dx;
}
} public class Surdefl {

public static void main(String[] args) {
Point a = new Point (1.0, 2.0);

a.deplace(l, 3); // appelle deplace (double, double)
a.deplace(2.0); // appelle deplace (double)

e Sl e

a.deplace(b) ; // appelle deplace (float)

C. Caillouet M2i13 - POO 12

Y

Ambiguité

N SN R A AR oy s Lo P Y AR 2% o MO Y ARy b iy AN SO B ST WO
abscisse += dx;
ordonnee += dy;

}

public void deplace(float dx, double dy) {
abscisse += dx;

Relié a la notion de
transtypage (conversion
de types) automatique et
polymorphisme

A

public class Surdefl {
public static void main(String[] args) {

PO e T S W B OVATIEAL ;)
float b = ;

double ¢ = ;

a.deplace(b, c); PR
a.deplace(c, b): // OK

a.deplace(b, b);

// erreur : ambiguité

Surdefl.java:8: error: reference to deplace is ambhiguous)
axdeplace(b, h)>; /7 erreur :

ambiguit H®

both method deplace{double.float> in Point and method deplace{(float.double) in

Point match

C. Caillouet M213 - POO

3

/ A —

Surcharge et héritage

Surcharge vs. Redéfinition :

e La signature de la méthode dérivée n’est pas la méme
que dans la classe de base

/"\Les 2 méthodes cohabitent dans la classe dérivée

C. Caillouet M2i13 - POO 14

Le polymorphisme

Le polymorphisme

Définition :
e Faculté d'un objet d’étre une instance de plusieurs classes

Concept extrémement puissant en POO, qui complete
I’héritage

Intérét :
e Manipuler des objets sans en connaitre (tout d fait) le type

C. Caillouet M2i13 - POO 16

_
Exemple

Gestion de tableaux
hétérogenes :

Forme [l tableau =

tableau[0] = new
tableaul[l] = new
tableaul = new
tableaul[3] = new

C. Caillouet M2i13 - POO

FIGURE 4.1 - Exemple de relations d’héritage

Forme

Rectangle

Carre

Cercle

new Formel[4];

Rectangle (10,

Carre (

) ;

Rectanglels,

Carre (

) ;

)

Y

17

e

Transtypage implicite (ascendant)

Capacité d'une variable de classe de base a recevoir une référence
sur un objet de sa descendance.

Point p = new ColoredPoint (. Lo e

Compatibilité par affectation entre un type classe et un type
ascendant (conversion implicite légale)

Capitale paris = new Capitale("Paris",
// Capitale hérite de Ville
Ve s S

AN MR B

// Capitale hérite de Ville qui hérite de Object
Object o = paris;

C. Caillouet M2i13 - POO 18

Transtypage explicite (descendant)

ColoredPoint p; *”’/,,,,//"Eneurdeconqﬁbﬁon!
D new ROl B Ry

ColoraedPoint i episinew ColoredPoinb {15, " 205 " Colorired)
TR B B g o

// Transtypage explicite
BB N LR o o D SR eV Y NG Mo e O TR £ B 6 i

C. Caillouet M213 - POO 19

~-Soit I'arborescence d’héritage

sulvante .

L’astérisque * signale la définition B C*

ou la redéfinition d'une méthode f. /////’“\\\\\ ‘\\\
D* E F

Soient les déclarations :

A a =new A(); B b = new B(); C c = new C();

D d=new D(); E e = new E(); F £ = new F();

Les affectations suivantes sont légales :

a=b; a=c; a=d ; a=e; a=f;
b=d; b=e;
c=Ff

Celles-ci sont illégales : b=a; d=c; c=d;

C. Caillouet M2i13 - POO

20

p — 5
Ligature dynamique
Polnt i
p = new Point (5,)i
System.out.println(p),; // appelle toString() de Point
p = new ColoredPoint (v VG e et eh W
System.out.println(p),; // appelle toString() de
ColoredPoint

L'instruction se fonde :
e Sur le type effectif de I'objet référencé par p
e Et non sur le type de la variable p

=» Permet d’obtenir un comportement adapté a chaque
type d’objet sans avoir besoin de tester sa nature

C. Caillouet M2i13 - POO

Opérateur instanceof et méthode

getClass()

instanceof : teste 'appartenance d'un objet a une classe
(réponse a la question est instance de ... ?)

Pour connaitre la classe exacte de 'objet a 'exécution (type

effectif) :
getClass().getName()

Point p;

p = new ColoredPoint(1.5, 2.5, Color.red),
System.out.println(p instanceof Point);,
// true

System.out.println(p.getClass () .getName ()),
// ColoredPoint

C. Caillouet M2i13 - POO 22

Polymorphisme, redéfinition et

surcharge

A la compilation :

e Des vérifications statiques sont effectuées sur le type de
la variable

* a est de type A = on ne peut lui appliquer que les
méthodes de A

A exécution :

e La sélection du code a exécuter est effectuée
dynamiquement en fonction du type effectif de la
variable

C. Caillouet M213 - POO 23

Exemple

PabhnEvalaise iy
public void f(float x) {...}

}

public class B extends A{
YA OBV BE O AR B eI e N VI N el e e e e
bubivevvold it it // surcharge de f pour A et

A a = new A();
B b = new B();

W 5 A 3 i

=R (ol i // appelle f(float) de A

I et // appelle f(int) de B

S VD G SN R MR Y A AVREOVA U A W % BY e Y DO A M S M SV G o L8 S
Shana Gl // appelle f(float) de B et non f (int)

C. Caillouet M2i13 - POO 24

i

Exemple

Le compilateur recherche la meilleure méthode
parmi toutes celles s’appliquant au type de a (a
savoir A ou ses classes ascendantes)

=» La signature de la méthode et son type de retour
sont figés

Lors de I'exécution, on se fonde sur le type de I'objet
référencé par a pour trouver une méthode ayant la
signature et le type de retour voulus

=» On aboutit a void f{(float x) de B

C. Caillouet M213 - POO 25

