
	
	

Christelle	CAILLOUET	
(christelle.caillouet@unice.fr)	

C.	Caillouet	 M213	-	POO	 2	

Ges$on	des	excep$ons	
� Objectifs	:	

�  Rendre	le	programme	robuste	
�  Limiter	les	instructions	de	traitement	des	cas	
exceptionnels	

	
� Mécanisme	très	souple	de	prise	en	compte	fondé	sur	
la	notion	d’exception,	qui	permet	:	
� De	dissocier	la	détection	d’une	anomalie	de	son	
traitement;	

� De	séparer	la	gestion	des	anomalies	du	reste	du	code	

C.	Caillouet	 M213	-	POO	 3	

L’excep$on	
� Définition	:	c’est	un	objet	qui	peut	être	émis	par	une	
méthode	si	un	évènement	d’ordre	exceptionnel	se	
produit.	

�  La	méthode	émet	alors	une	exception	expliquant	la	
cause	de	cette	émission.	

C.	Caillouet	 M213	-	POO	 4	

Mot-clés	
�  Lancer	une	exception	:	throw (throws)	
�  Surveiller	une	partie	du	code	:	try	
�  Traiter	l’exception	:	catch	

�  Classes	d’exception	standards	prédéfinies	:	
�  Throwable	
�  Exception	
�  RuntimeException	

�  Toutes	les	exceptions	dérivent	de	la	classe	Exception	qui	
dérive	de	la	classe	Throwable	

C.	Caillouet	 M213	-	POO	 5	

Classes	d’excep$ons	
� Classes	qui	héritent	de	la	classe	Throwable

� Un	grand	nombre	de	classes	d’exceptions	existent	
dans	l’API	pour	couvrir	les	erreurs	les	plus	fréquentes	

�  Si	aucune	classe	d’exception	ne	correspond	au	type	
d’erreur	rencontré,	on	peut	écrire	de	nouvelles	classes	
d’exceptions	è	elles	doivent	impérativement	hériter	
de	java.lang.Exception

C.	Caillouet	 M213	-	POO	 6	

Hiérarchie	des	classes	d’excep$ons	

C.	Caillouet	 M213	-	POO	 7	

Excep$ons	levées	par	la	JVM	
� Erreur	de	compilation	ou	d’exécution	

�  NoClassDefFoundError, ClassFormatError
� Problème	d’entrée/sortie	

�  IOException, AWTException
� Problème	de	ressources	

�  OutOfMemoryError, StackOverflowError
� Erreurs	de	programmation	(Runtime)	

�  NullPointerException,
ArrayIndexOutOfBoundsException,
ArithmeticException, …

C.	Caillouet	 M213	-	POO	 8	

C.	Caillouet	 M213	-	POO	 9	

L’exécution	du	programme	est	interrompue.	

Déclara$on	

�  Instruction	throw	:	
�  Lancement	d’une	exception	:	throw objet;

C.	Caillouet	 M213	-	POO	 10	

Déclara$on	
� Pour	chaque	méthode	:	quelles	classes	d’exception	
est-elle	susceptible	de	déclencher	?	(elle	ou	les	
méthodes	appelées)	

�  La	méthode	qui	lève	une	exception	doit	déclarer	cette	
action	potentielle	
�  À	la	fin	de	la	déclaration	de	la	méthode	:	throws		

C.	Caillouet	 M213	-	POO	 11	

C.	Caillouet	 M213	-	POO	 12	

Ges$on	d’erreurs	par	propaga$on	
1.  Une	exception	est	générée	à	l’intérieur	d’une	méthode	

2.  Si	la	méthode	prévoit	un	traitement	de	cette	exception,	
on	va	au	point	4	;	sinon	au	point	3	

3.  L’exception	est	renvoyée	à	la	méthode	ayant	appelé	la	
méthode	courante,	on	retourne	au	point	2	

4.  L’exception	est	traitée	et	le	programme	reprend	son	
cours	après	le	traitement	de	l’exception	

C.	Caillouet	 M213	-	POO	 13	

Exemple	
� Une	méthode	A	appelle	une	méthode	B	qui	appelle	
une	méthode	C	qui	appelle	un	méthode	D.	

�  La	méthode	D	lève	une	exception.	
�  L’exception	est	transmise	à	C	qui	peut	l’intercepter	ou	
la	transmettre	à	B.	

� B	peut	aussi	l’intercepter	ou	la	transmettre	à	A.	

�  L’interception	se	fait	par	une	mise	sur	écoute	d’une	
portion	du	code…	

C.	Caillouet	 M213	-	POO	 14	

Intercep$on	
�  Surveillance	des	exceptions	éventuelles	lancées	par	
une	séquence	cible	d’instructions	

�  Surveiller	ne	veut	pas	dire	traiter	!	
(mais	obligation	de	traiter	si	on	surveille…)	

C.	Caillouet	 M213	-	POO	 15	

Comment	intercepter	une	excep$on	
� Exécuter	un	bloc	d’instructions	A	suspect	
�  Si	A	ne	fonctionne	pas,	l’erreur	est	prise	en	charge	par	
un	bloc	d’instructions	B	(cf.	traitement)	

�  Si	aucune	erreur	ne	se	produit	dans	A,	B	n’est	pas	
exécuté	

C.	Caillouet	 M213	-	POO	 16	

Traitement	

�  Si	un	exception	est	levée	dans	A,	l’exception	levée	est	
transmise	au	gestionnaire	d’exceptions	(catch)	qui	va	
exécuter	la	séquence	de	traitement	B.	

�  La	séquence	de	traitement	peut	elle-même	:	
�  Appeler	des	méthodes	
�  Lever	des	exceptions	

C.	Caillouet	 M213	-	POO	 17	

C.	Caillouet	 M213	-	POO	 18	

C.	Caillouet	 M213	-	POO	 19	

Reprise	après	excep$on	
�  Si	une	exception	est	levée	et	capturée,	l’exécution	
reprend	à	la	suite	du	catch	(et	non	là	où	l’exception	a	
été	levée	!)	

C.	Caillouet	 M213	-	POO	 20	

Ne	s’affichera	pas	!	

Redéclenchement	d’une	excep$on	
� Malgré	la	phase	de	traitement,	on	peut	décider	de	
propager	l’exception	à	un	niveau	supérieur	

è Propagation	directe	

	
� Très	utile	si	l’on	ne	peut	résoudre	localement	qu’une	
partie	du	problème	

C.	Caillouet	 M213	-	POO	 21	

Plusieurs	ges$onnaires	d’excep$on	
� Plusieurs	bloc	catch	peuvent	se	succéder	

� Attention	aux	relations	d’héritage	!	

C.	Caillouet	 M213	-	POO	 22	

Bloc	finally	
�  Le	bloc	finally	est	toujours	exécuté	lorsque	le	bloc	try	se	termine	
(sauf	si	la	JVM	crashe	entre	temps…)	

�  Affiche	:	

begin	
in	catch	
hello	world	
	

C.	Caillouet	 M213	-	POO	 23	

try{

System.out.println("begin");

throw new Exception();

} catch (Exception e) {

System.out.println("in catch");

} finally {

System.out.println("hello world");	
	
}	
	
	

Clavier,	écran,	fichiers,	erreurs,	…	

C.	Caillouet	 M213	-	POO	 24	

Le	package	java.io
�  Ensemble	de	classes	qui	gèrent	la	plupart	des	entrées-
sorties	d’un	programme	

�  Gestion	des	entrées-sorties	=	créer	un	objet	flux	dans	
lequel	transitent	les	données	à	envoyer	ou	recevoir	

�  Un	flux	connecte	un	objet	Java	à	un	autre	élément	

�  2	cas	étudiés	:	
�  Interactions	avec	un	utilisateur	(entrée	clavier,	sortie	écran)	
�  Lecture,	écriture	dans	un	fichier	

C.	Caillouet	 M213	-	POO	 25	

https://docs.oracle.com/javase/8/docs/api/java/io/package-summary.html	

Etapes	des	échanges	

1.   Ouverture	du	flux	
	

2.   Lecture/écriture	des	données	
	

3.   Fermeture	du	flux

C.	Caillouet	 M213	-	POO	 26	

Un	flux	(stream)	
� Représente	un	canal	de	communication	

� Dans	lequel	circulent	des	données	
�  	octets	(Byte),	caractères(Character),	…	
�  Codage	des	caractères	UNICODE	sur	2	octets	

� Ce	flux	peut	être	en	entrée	(ou	lecture),	ou	en	sortie	
(ou	écriture)	
�  	Peut	utiliser	un	buffer	pour	le	traitement	de	lots	

C.	Caillouet	 M213	-	POO	 27	

Classes	java.io.*	
�  Flux	de	données	:	

�  Classes	InputStream	et	OutputStream	
�  Classes	Reader	et	Writer		

	
�  Système	de	fichiers	:	Classe	File	

�  Noms	des	classes	:	
�  Origine	ou	destination	du	flot	:	tampon,	fichier,	tableau,	tube	
�  Sens	(lecture	ou	écriture)	:	Input,	Output,	Reader,	Writer	
�  Octets	ou	Caractères	:	Stream	ou	Reader/Writer	

BufferedInputStream	:	tampon/Lecture/octet	
ByteArrayOutputStream	:	tableau/Ecriture/octet	
BufferedWriter	:	tampon/caractère	

C.	Caillouet	 M213	-	POO	 28	

Types	de	flux	
�  Flux	d’octets	

�  Toutes	les	classes	héritent	de	
InputStream	ou	
OutputStream

�  Flux	d’E/S	standard	:		
	in,	out	et	err

�  Flux	de	caractères	
�  Les	classes	dérivent	des	
classes	abstraites	Reader	et	
Writer

� Méthode	de	lecture	:	read()		

C.	Caillouet	 M213	-	POO	 29	

Exemple	:		
lire	un	octet	au	clavier	

Flux	tampon	
�  améliorent	les	performances	
		
�  classe	BufferedReader

public String readLine() throws IOException	
è	lit	une	ligne	de	texte	et	la	retourne	comme	un	objet	
String	

C.	Caillouet	 M213	-	POO	 30	

Lecture	de	caractères	au	clavier	

C.	Caillouet	 M213	-	POO	 31	

Flux	d’entrée	:	variable		
statique	in	de	la	classe		
java.lang.System	

Création	de	flux	
pour	chaînes	de	
caractères	

Lecture	des	données	

Fermeture	du	flux	

Flux	sur	fichiers	
� Un	fichier	est	un	objet	de	java.io.File	construit	à	
partir	du	chemin	d’accès	du	fichier	

� Mêmes	types	de	flux	sur	fichiers	:	
�  Flux	d’octets	:	FileInputStream/
FileOutputStream à	partir	d’un	objet	de	type	File	

�  Flux	de	caractères	:	BufferedReader/
BufferedWriter à	partir	d’un	objet	de	type	
FileReader/FileWriter	

C.	Caillouet	 M213	-	POO	 32	

Lecture	par	octets	

C.	Caillouet	 M213	-	POO	 33	

Lecture	par	ligne	de	caractères	

C.	Caillouet	 M213	-	POO	 34	

La	classe	Scanner
https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html	
	

� Classe	du	package	java.util

� Autre	manière	d’effectuer	la	lecture	

� Découpe	le	fichier	(ou	la	ligne)	«	en	morceaux	»	en	
fonction	d’un	délimiteur	

� Peut	lire	un	entier,	double,	String,	…	
C.	Caillouet	 M213	-	POO	 35	

Lecture	avec	Scanner	

C.	Caillouet	 M213	-	POO	 36	

Ecriture	dans	un	fichier	

C.	Caillouet	 M213	-	POO	 37	

Flux	d’objets	
�  3	niveaux	:		
1.  Une	instance	de	ObjectInputStream/

ObjectOutputStream
2.  se	construit	à	partir	d’un	objet	de	type		

FileInputStream/ FileOutputStream
3.  qui	se	construit	à	partir	d’un	objet	de	type	File

�  On	écrit/lit	l’objet	dans	le	fichier	à	l’aide	de	la	méthode	
writeObject(Object obj)
readObject()	

C.	Caillouet	 M213	-	POO	 38	

Exemple	

C.	Caillouet	 M213	-	POO	 39	

La	fin	de	fichier	
�  La	classe	ObjectInputStream	ne	possède	pas	de	
méthode	pour	détecter	la	fin	du	fichier.	

è	Utilisation	du	mécanisme	des	exceptions	

�  	Tentative	de	lecture	en	fin	de	fichier	:	EOFException	

� Pour	détecter	la	fin	de	fichier,	il	suffit	d’attraper	cette	
exception	!	

C.	Caillouet	 M213	-	POO	 40	

