Gestion des exceptions
et des entrees-sorties

Christelle CAILLOUET
(christelle.caillouet@unice.fr)

Gestion des exceptions

/ T

Gestion des exceptions
Objectifs :

e Rendre le programme robuste

e Limiter les instructions de traitement des cas
exceptionnels

Mécanisme tres souple de prise en compte fondé sur
la notion d’exception, qui permet :

e De dissocier la détection d’'une anomalie de son
traitement;

e De séparer la gestion des anomalies du reste du code

C. Caillouet M2i13 - POO

py

’'exception

Définition : c’est un objet qui peut étre émis par une
meéthode si un évenement d’ordre exceptionnel se
produit.

La méthode émet alors une exception expliquant la
cause de cette émission.

C. Caillouet M2i13 - POO

.

Mot-clés

Lancer une exception : throw (throws)
Surveiller une partie du code : try
Traiter 'exception : catch

Classes d’exception standards prédéfinies :
e Throwable

e Exception

e RuntimeException

Toutes les exceptions dérivent de la classe Exception qui
dérive de la classe Throwable

C. Caillouet M213 - POO

py

Classes d’exceptions

Classes qui héritent de la classe Throwable

Un grand nombre de classes d’exceptions existent
dans I’API pour couvrir les erreurs les plus fréquentes

Si aucune classe d’exception ne correspond au type
d’erreur rencontré, on peut écrire de nouvelles classes
d’exceptions =» elles doivent impérativement hériter
de java.lang.Exception

C. Caillouet M2i13 - POO

Hié

C. Caillouet

rarchie des classes d’exceptions

-
-
3
°
2
w
z
o
z
<
L3
L
w
o
-
=
L
«
-
=
z
3

Arbre des exceptions
Throwable

Strin g (message d'erreur)

/\

Exception Error

\ OutOﬂ\/IcImoryError

. . Les erreurs sont graves et il est
RunTlmcExccptlon recommandé de ne pas les
corriger.
VosE i NullPointerException
ospxceptions... .
P ClassCastException
exceptions prédéfinies
Francois Bonneville - Laboratoire d'Informatique de Besangon - www.bonneville.nom. fr 6

M213 - POO

e

"

Exceptions levées par la JVM

Erreur de compilation ou d’exécution

e e el iner et e e wE e iR e IeI e e e Ve
Probléme d’entrée/sortie

e TOException, AWTException
Probléme de ressources

¢ OutOfMemoryError, StackOverflowError
Erreurs de programmation (Runtime)

e NullPolnterException,
ArrayIndexOutOfBoundsException,
ArithmeticException,

C. Caillouet M2i13 - POO

public class TestException({
public static int divisionEntiere(int x, int y){ —
return x/v;

public static void main(String[] args) {

int a =2, b= 0;
System.out.println("Avant 1l'orage...");
divisionEntiere(a,b);
System.out.println("Apres 1l'orage...");
}
}
C\Windows\System32\cmd.exe

icrosoft Windows [version 6.3.96001]
(c> 2013 Microsoft Corporation. Tous droits réservés.

\Windows\System32>cd C:\Users\cmolleN\Documents\COURS\2016-2017\M213\2017\Code

:\Users\cmolle\Documents\COURSN\2016-2017\M213\201\Code >java TestException

Avant 1’orage...
Exception in thread "“main' java.lang.ArithmeticException: / by zero

at TestException.main{TestException.java:5>

L'exécution du programme est interrompue.

C. Caillouet M213 - POO

Déclaration

¢ Instruction throw :

e Lancement d'une exception : throw objet;

if (k<0)
throw new RuntimeException ("k négatif");

C. Caillouet M2i13 - POO 10

P —

Déclaration

Pour chaque méthode : quelles classes d'exception
est-elle susceptible de déclencher ? (elle ou les
méthodes appelées)

La méthode qui léve une exception doit déclarer cette
action potentielle
o A la fin de la déclaration de la méthode : throws

import java.io.IOException;
public void maMethode (int entier) throws IOException
{
//code de la methode
}
C. Caillouet M2i13 - POO 1

/

/
public class TestException{

public static int divisionEntiere(int x, int y) throws ArithmeticException{
if (y == 0U) throw new ArithmeticException("Division par 0 !");
return x/vy;

public static void main(String[] args) {

int a =2, b= 0;
System.out.println("Avant l'orage...");
divisionEntiere(a,b) ;
System.out.println("Apres l'orage...");

:\Users\cmolle\Documents\COURS\2016-2017\M213\2017\Code >java TestException
lvant 1’orage...
Exception in thread "“main' java.lang.ArithmeticException: Division par O *?

at TestException.divisionEntiere(TestException.java:3>)
at TestException.main{(TestException.java:11)

C. Caillouet M213 - POO 12

/ T

Gestion d’erreurs par propagation

Une exception est générée a l'intérieur d'une méthode

Si la méthode prévoit un traitement de cette exception,
On va au point 4 ; sinon au point 3

[’exception est renvoyée a la méthode ayant appelé la
méthode courante, on retourne au point 2

[’exception est traitée et le programme reprend son
cours apres le traitement de I'exception

C. Caillouet M2i13 - POO

23

e

Exemple

Une méthode A appelle une méthode B qui appelle
une méthode C qui appelle un méthode D.

La méthode D leve une exception.

[’exception est transmise a C qui peut l'intercepter ou
la transmettre a B.

B peut aussi 'intercepter ou la transmettre a A.

L'interception se fait par une mise sur écoute d'une
portion du code...

C. Caillouet M213 - POO

14

/ A ——

o

Interception

Surveillance des exceptions éventuelles lancées par
une séquence cible d’instructions

Surveiller ne veut pas dire traiter !
(mais obligation de traiter si on surveille...)

C. Caillouet M2i13 - POO

5

Comment intercepter une exception

Exécuter un bloc d’instructions A suspect

Si A ne fonctionne pas, l'erreur est prise en charge par
un bloc d’instructions B (cf. traitement)

try{
// A
} catch(Exception e) {
// B
}
Si aucune erreur ne se produit dans A, b n’est pas

execute

C. Caillouet M2i13 - POO 16

— try{

= // A
. } catch(Exception e)
Traitement B
}

Si un exception est levée dans A, I'exception levée est
transmise au gestionnaire d’exceptions (catch) qui va
exécuter la séquence de traitement B.

La séquence de traitement peut elle-méme :

e Appeler des méthodes try {
. /] A
e Lever des exceptions } catch (Exception e){
// B

throw new Exception();

C. Caillouet M2i13 - POO

17

/

public class TestException{

public static int divisionEntiere(int x,

int y) throws ArithmeticException/({
return x/vy;

public static void main(String[] args) {

int a=2, b=20;
System.out.println("Avant 1l'orage...");
try {

divisionEntiere(a,b) ;
} catch (ArithmeticException e) {

System.out.println(e.getMessage()) ;
}

System.out.println("Apres 1l'orage...");

:\Users\cmolleN\Documents\COURS\2016-2017\M213\2017\Code >javac TestException.jav

:\Users\cmolle\Documents\COURS\2016-2017\M213\2017\Code >java TestException

Avant 1l’orage...
by zero
pres l’orage...

C. Caillouet M213 - POO 18

/
public class TestException({

public static int divisionEntiere(int x, int y) throws Exception{
if (v == 0) throw new Exception("Division par S -

return x/v;

public static void main(String[] args) {

int a =2, b= 0;
System.out.println("Avant l'orage...");
try {

divisionEntiere(a,b);
} catch (Exception e) {

System.out.println(e.getMessage()) ;
}
System.out.println("Apres l'orage...");

:\Users\cmolle\Documents\COURS\2016-2017\M213\2017\Code >java TestException
Avant 1l’orage...

Division par O ¢
pres l’orage...

C. Caillouet M213 - POO 19

Reprise apres exception

* Si une exception est levée et capturée, I'exécution
reprend a la suite du catch (et non la ot 'exception a
été levée !)

public static void main(String[] args) {

int a =2, b= 0;
System.out.println("Avant l'orage...");
try {
! |
divisionEntiere (a,b) ; *///////// Ne s’affichera pas !
System.out.println("Suite...");

} catch (Exception e) {
System.out.println(e.getMessage()) ;

}

System.out.println("Apres l'orage...");

C. Caillouet M2i13 - POO 20

p—

P —

Redéclenchement d’une exception

Malgré la phase de traitement, on peut décider de
propager l'exception a un niveau supérieur

Propagation directe try j /
A

} catch (Exception e){
// B

throw e;

Tres utile si 'on ne peut résoudre localement qu'une
partie du probleme

C. Caillouet M2i13 - POO 21

Plusieurs gestionnaires d’exception

¢ Plusieurs bloc catch peuvent se succéder

try {
divisionEntiere(a,b) ;

} catch (ArithmeticException e) {
System.out.println(e.getMessage()) ;

} catch (Exception e) {
System.out.println(e.getMessage());

}

* Attention aux relations d’héritage !

C. Caillouet M2i13 - POO 22

P —

Bloc finally

Le bloc finally est toujours exécuté lorsque le bloc try se termine
(sauf'si la JVM crashe entre temps...)

Affiche :

begin
in catch

hello world

C. Caillouet

try{

System.out.println("begin");

throw new Exception();

+ catch (Exception e) {

System.out.println("in catch");
+ finally {

System.out.println("hello world");

M213 - POO

23

Gestion
des entrees - sorties

Clavier, écran, fichiers, erreurs, ...

-
Le package java.io

Ensemble de classes qui gerent la plupart des entrées-
sorties d'un programme

Gestion des entrées-sorties = créer un objet flux dans
lequel transitent les données a envoyer ou recevoir

Un flux connecte un objet Java a un autre élément

2 cas étudiés :
e Interactions avec un utilisateur (entrée clavier, sortie écran)

e Lecture, écriture dans un fichier
C. Caillouet M2i13 - POO

23

/
Etapes des échanges

Ouverture du flux
Lecture/écriture des données

Fermeture du flux

C. Caillouet M2i13 - POO

py

Un flux (stream)

Représente un canal de communication

Dans lequel circulent des données

e octets (Byte), caractéres(Character), ...
e Codage des caractéres UNICODE sur 2 octets

Ce flux peut étre en entrée (ou lecture), ou en sortie
(ou écriture)

e Peut utiliser un buffer pour le traitement de lots

C. Caillouet M2i13 - POO 27

py

Classes java.io.™

Flux de données :
e (Classes InputStream et QutputStream
e (Classes Reader et Writer

Systeme de fichiers : Classe File

Noms des classes :
e Origine ou destination du flot : tampon, fichier, tableau, tube
e Sens (lecture ou écriture) : Input, Output, Reader, Writer
e Octets ou Caracteéres : Stream ou Reader/Writer

BufferedInputStream : tampon/Lecture/octet
ByteArrayOutputStream : tableau/Ecriture/octet
BufferedWriter : tampon/caractere

C. Caillouet M2i13 - POO 28

P —

Types de flux

Flux d’octets

e Toutes les classes héritent de
InputStreamou
OutputStream

e Flux d’E/S standard :
in, out et err

Flux de caractéres

e [es classes dérivent des

classes abstraites Reader et
Writer

Méthode de lecture : read ()

C. Caillouet M2i13 - POO

Exemple :
lire un octet au clavier
try{
byte b;
int val = System.in.read() ;
if(val !'= -1) b = (byte)val;
System.out .write (b) ;
}

catch (IOException e) {}

29

/ 7 ——

-

Flux tampon

améliorent les performances

classe Buf feredReader

public String readLine () throws IOException
=» lit une ligne de texte et la retourne comme un objet
String

C. Caillouet M213 - POO 30

/

— /

/ A ——

-

Lecture de caracteres au clavier

Création de flux
import java.io.*; pour chaines de

caracteres 2 4
Flux d’entrée : variable

statique in de la classe
java.lang.System

public class Clavier({
public static void main(String[] args) {
try {
BufferedReader flux = new BufferedReader (
new InputStreamReader(System in)) ;

System.out.print ("Entrer votre prenom : ");
Strin renom = flux readLine ;

g b . T O T ecture des donnees
System.out.println("Bonjour "+prenom) ;

flux.close() ;
} catch (IOExcept;;;\ISETT\“‘*-\\

System.err.println(ioe) ;

Fermeture du flux

} :\Users\cmolleN\Documents\COURS\2016-2017\M213\2017\Code >java Clavier
} Entrer votre prenom : Bob
Bonjour Bob

C. Caillouet M213 - POO 31

py

Flux sur fichiers

Un fichier est un objet de java.io.File construit a
partir du chemin d’acces du fichier

Mémes types de flux sur fichiers :

e Flux d’'octets : FileInputStream/
FileOutputStream a partir d'un objet de type File

e Flux de caractéres : Buf feredReader/
BufferedWriter a partir d'un objet de type
F'ileReader/FileWriter

C. Caillouet M213 - POO 32

Lecture par octets

import Jjava.io.¥*;

public class LectureFichier({
public static void main(String[] args) {

try {
= new File("monfichier.txt");

File fichier =
FileInputStream flux = new FileInputStream(fichier);

int c;

while ((c = flux.read()) > -1){
System.out.write(c) ;

}

flux.close() ;
} catch (FileNotFoundException e) {

e.printStackTrace() ;

} catch (IOException e) {
e.printStackTrace() ;

}

}
C. Caillouet M2i13 - POO 33

ecture par ligne de caracteres

import java.io.¥;

public class LectureFichier({
public static void main(String[] args) {

try {

BufferedReader reader = new BufferedReader (fichier) ;
while (reader.ready()) {
String line = reader.readLine();
System.out.println(line) ;
}
reader.close() ;

fichier.close() ;
} catch (FileNotFoundException e) {

e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace() ;

}

C. Caillouet M2i13 - POO

FileReader fichier = new FileReader("monfichier.txt");

34

/ ' , e

La classe Scanner

Classe du package java.util
Autre maniére d’effectuer la lecture

Découpe le fichier (ou la ligne) « en morceaux » en
fonction d'un délimiteur

Peut lire un entier, double, String, ...

C. Caillouet M2i13 - POO

29

Lecture avec Scanner

import java.io.¥*;
import java.util.*;

public class LectureFichier{
public static void main(String[] args) {

try {
Scanner fileScanner = new Scanner(new File("monFichier.txt"™));

while (fileScanner.hasNextLine()) {

Scanner lineScanner = new Scanner (fileScanner.nextLine()) ;

while (lineScanner.hasNext ()) {
System.out.println(lineScanner.next()) ;

}

} catch (FileNotFoundException e) {

}

C. Caillouet

e.printStackTrace() ;

M213 - POO

36

Ecriture dans un fichier

import java.lio.¥*;

public class EcritureFichier({
public static void main(String[] args) {

try {
= new FileWriter("monfichier.txt™);

FileWriter fichier =
BufferedWriter writer = new BufferedWriter (fichier) ;

String s = "Hello world
writer.write(s) ;
writer.close() ;

fichier.close() ;
} catch (FileNotFoundException e) {

e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace() ;

| m .
- ’

37

C. Caillouet M2i13 - POO

_
Flux d’objets

3 niveaux :

Une instance de ObjectInputStream/
ObjectOutputStream

>. se construit a partir d'un objet de type
FileInputStream/ FileOutputStream

5. qui se construit a partir d'un objet de type File

On écrit/lit 'objet dans le fichier a I'aide de la méthode
writeObject (Object obj)
readObject ()

C. Caillouet M2i13 - POO

38

Exemple

File file = new File("toto.txt");

ObjectOutputStream stream;

// Ouverture du fichier

stream = new ObjectOutputStream(new FileOutputStream(file)) ;
// Ecriture dans le fichier

stream.writeObject (new Etudiant("Ivan", "Wilfried"));

// Fermeture du fichier

stream.close () ;

C. Caillouet M213 - POO 39

—

La fin de fichier

La classe ObjectInputStream ne posséde pas de
méthode pour détecter la fin du fichier.

=» Utilisation du mécanisme des exceptions

Tentative de lecture en fin de fichier : EOFException

Pour détecter la fin de fichier, il suffit d’attraper cette
exception !

C. Caillouet M2i13 - POO 40

