
	
	

Rémi	Watrigant	
remi.watrigant@inria.fr	

	
(basé	sur	le	cours	de	Christelle	Caillouet)	

Organisa(on	du	module	
� Répartition	horaire	:	

�  10h	CM		
�  30h	TD/TP	

� Evaluation…?	:		
�  un	ou	plusieurs	TP	noté(s)	
�  évaluation	à	mi-parcours	
� DS	final	

M213	-	POO	C.	Caillouet	 2	

Objec(f	du	module	(PPN	2013)	

è	Développer	un	programme	dans	un	langage	de	
POO	à	partir	d'une	conception	détaillée.		

� En	lien	avec	le	module	A214	Bases	de	la	COO.	
	

C.	Caillouet	 M213	-	POO	 3	

Contenu	du	PPN	
� Concepts	fondamentaux	de	la	programmation	
orientée	objet	(encapsulation,	composition,	
polymorphisme,	héritage,	cycle	de	vie	des	objets)		

�  Lecture	d'une	conception	orientée	objet	détaillée	
� Mise	en	œuvre	de	tests	unitaires		
� Utilisation	de	briques	logicielles,	d’interfaces	de	
programmation	(API	:	Application	Programming	
Interface),	de	bibliothèques		

�  Sensibilisation	aux	bonnes	pratiques	de	la	
programmation	(versions,	documentation	du	code)	

C.	Caillouet	 M213	-	POO	 4	

Choix	pour	le	module	
� Choix	d’une	méthodologie	d’analyse	et	de	conception	
(Unified	Modeling	Language	-	UML)	

� Choix	d’un	environnement	de	conception	(Visual	
Paradigm)	

� Choix	d’un	langage	de	programmation	orienté	objets	
(Java)	

� Choix	d’un	environnement	de	développement	IDE	
(Eclipse)	

� Choix	d’un	framework	de	tests	unitaires	(JUnit)	

C.	Caillouet	 M213	-	POO	 5	

Autres	langages	orienté	objet	
�  C++	:	très	utilisé	
�  C#	:	langage	de	Microsoft	(appartient	à	.NET)	
�  Objective	C	:	langage	utilisé	par	Apple	
�  PHP	:	langage	très	utilisé	sur	le	Web	
�  Python	
�  Ruby	
�  Eiffel	
�  Ada	
�  Smalltalk	
�  ...	

�  La	syntaxe	change	mais	les	concepts	sont	les	mêmes!	

C.	Caillouet	 M213	-	POO	 6	

programmer objets java M213

M214

M112

M224

outil Visual Paradigm diagrammes UML
+ ou - détaillés concevoir

développer

contraintes
- budget, temps, planning

Bases
-  Variables, types, itérations, conditions,…
Structurer
-  TAD
Tester
-  Tests unitaires
-  Intégration

typedef struct
+

Traitements
(proc, fonc)

copains +
API

Ré-utiliser

Compléments : algo (M313), prog (M315, M412, M415)

cycle de vie

V

M113

Pré-requis	
� Modules	M112	&	M113	:	

�  Structures	algorithmiques	fondamentales	:	choix,	
répétitions	

� Notion	de	sous-programmes	(nommage	des	variables,	
assertions,	documentation,	etc.)	

� Notion	de	types	et	de	données	
�  Apprendre	à	réutiliser	les	fonctions,	procédures	ou	
méthodes	existantes	du	langage		

�  Gestion	des	erreurs	
�  Programmation	modulaire	
�  Concepts	et	mise	en	œuvre	des	TAD	

C.	Caillouet	 M213	-	POO	 8	

Module	connexe	M214	COO	
� Modélisation	objet	pour	l’analyse	et	conception	
détaillée	en	UML	

� Production	de	tests	unitaires,	problématique	de	la	
non	régression	

� Gestion	des	versions	dans	le	développement	
� Documentation	du	code	
�  Sensibilisation	aux	bonnes	pratiques	de	la	conception	
et	du	développement	

C.	Caillouet	 M213	-	POO	 9	

Module	connexe	M224	Ges(on	de	
projet	
�  La	démarche	projet		
�  Les	acteurs	:	le	maître	d’ouvrage,	le	maître	d’œuvre,	les	
sous-traitants,	le	comité	de	pilotage		

�  L’équipe	projet	:	répartition	des	rôles		
�  Le	cahier	des	charges	:	analyse	et	compréhension	des	
besoins	du	client		

�  La	définition	des	tâches,	planification	et	enchaînement,	
attribution	des	ressources		

�  Les	outils	d’ordonnancement	:	graphe	Pert,	diagramme	de	
Gantt		

�  La	documentation		

C.	Caillouet	 M213	-	POO	 10	

Modules	complémentaires	en	DUT2	
� M313	:	Algorithmique	avancée	(java)	
Savoir	mettre	en	œuvre	des	structures	de	données	avancées	
(y	compris	récursives)	et	les	algorithmes	qui	les	manipulent	
	

� M315	:	Conception	et	programmation	avancées	
Produire	une	conception	détaillée	en	appliquant	des	
modèles	de	conception,	la	mettre	en	œuvre	en	utilisant	des	
bonnes	pratiques	de	programmation	orientée	objet	
	

� M412	:	Programmation	répartie	(java)	
Savoir	programmer	une	application	répartie	(multi	
processus	–	multi	threads	–	distribuée	sur	un	réseau)	

C.	Caillouet	 M213	-	POO	 11	

Bibliographie	
�  Site	de	référence	:	
http://www.oracle.com/fr/java/index.html	
� Documentation	en	ligne	(développement)	:	
http://docs.oracle.com/javase/8/docs/api/	
�  Livres	:	

�  La	programmation	orientée	objet,	H.	Bersini,	Eyrolles	
�  Programmer	en	java,	9ème	édition,	C.	Delannoy,	Eyrolles	
�  En	ligne	:	Penser	en	java,	B.	Eckel	
http://bruce-eckel.developpez.com/livres/java/traduction/
tij2/	

C.	Caillouet	 M213	-	POO	 12	

C.	Caillouet	 M213	-	POO	 14	

Différents	paradigmes	de	
programma(on	

C.	Caillouet	 M213	-	POO	 15	

IMPERATIF	 FONCTIONNEL	 OBJET	 DESCRIPTIF	

DEMARCHE	

Procédurale	
Série	d’instructions,	
sauts	conditionnels	

Flots	de	données	
Diagramme	de	
structure	

Objets,	classes,	
composition,	
réseau	de	
messages	

Besoin,	expressif,	
léger	

CONCEPTS	

Itération,	structures	
de	contrôles	
Exécution	
d’instructions	qui	
modifient	l’état	de	
la	mémoire	

Evaluation	
d’expressions	qui	
ne	dépendent	que	
de	la	valeur	des	
arguments,	et	non	
de	l’état	de	la	
mémoire	

Objet,	classes,	
méthodes,	
encapsulation,	
héritage,	relations	
de	composition,	
d’utilisation,	…	

Description	des	
buts	à	atteindre	
à	l’aide	d’une	
syntaxe	légère	

LANGAGES	
Fortran,	C,	Pascal	 Lisp,	Scheme,	

Caml	
SmallTalk,	C++,	
Java,	Python	

HTML,	XML,	
LaTeX	

L’approche	orientée	objet	
�  Approche	procédurale	:	«	Que	doit	faire	mon	programme	?	»	
�  Approche	objet	:	«	De	quoi	doit	être	composé	mon	
programme	?	»	
�  Conséquence	d’un	choix	de	modélisation	fait	pendant	la	conception.	

C.	Caillouet	 M213	-	POO	 16	

L’orienté	objet	
�  Méthodologie	centrée	sur	les	données	(objets)		
�  Chaque	objet	est	un	composant	autonome	
�  Trio	<objet,	attributs,	valeurs	>	

C.	Caillouet	 M213	-	POO	 17	

Le	style	objet	
�  Les	objets	représentent	des	données	modélisées	par	
des	classes	qui	définissent	des	types	
� Un	peu	comme	typedef struct	en	C	

�  Les	classes	définissent	les	actions	que	les	objets	
peuvent	prendre	en	charge	et	la	manière	dont	les	
actions	affectent	leur	état.	
�  Ces	traitements	sont	des	méthodes	

�  Les	données	d’un	objet	sont	appelés	ses	attributs	

C.	Caillouet	 M213	-	POO	 18	

La	programma(on	orientée	objet	

�  Les	objectifs	:	
�  Faciliter	le	développement,	la	maintenance,	et	l’évolution	
des	applications;	

�  Permettre	le	travail	en	équipe;	
�  Augmenter	la	qualité	des	logiciels	(moins	de	bugs).	

�  Solutions	proposées	:	
�  Découpler	(séparer)	les	parties	des	projets;	
�  Limiter	(et	localiser)	les	modifications	lors	des	évolutions;	
�  Réutiliser	facilement	du	code.	

C.	Caillouet	 M213	-	POO	 19	

Modèle	pour	le	développement	
logiciel	

Analyse	

Conception	

Implémentation	

Test	

Maintenance	

�  Unified	modeling	language	(UML)	
�  Standard	pour	l’analyse	et	la	

conception	orientée	objet	
�  Première	version	standard	en	1997	
�  Actuellement	version	2.5	

C.	Caillouet	 M213	-	POO	 20	

�  Java	
�  Pas	un	standard	mais	très	largement	

utilisé	
�  Première	version	standard	en	1995	
�  Dernière	version	stable	:	JDK	1.8	(Java	8)	

Concepts	abordés	
� Niveau	conception/programmation	

�  Instanciation	d’objets	à	partir	de	classes	
�  Encapsulation	
�  Composition	
� Héritage	
�  Polymorphisme	
�  Généricité	
�  Persistance	
�  Tests	unitaires	

C.	Caillouet	 M213	-	POO	 21	

Historique	
�  Créé	en	1995	par	Sun	Microsystems	
�  Oracle	rachète	Sun	en	2009	et	détient	désormais	Java	

�  Essor	du	langage	grâce	à	Internet	(navigateurs	web	et	
applet):	
�  Java	JDK	1.01	et	1.02	en	1996,	1.1	en	1998	
�  Java	2	(Playground)	J2SE	1.2	en	1999	,	(Kestrel)	J2SE	1.3	en	
2000,	(Merlin)	J2SE	1.4	en	2004	

�  Java	5	(Tiger)	J2SE	5.0	en	2004	
�  Java	6	(Mustang)	JSE	6.0	en	2006	
�  Java	7	(Dolphin)	JSE	7.0	en	2011	
�  Java	8	JSE	8.0	en	2014	

C.	Caillouet	 M213	-	POO	 23	

� Chaque	langage	a	des	avantages	
et	des	inconvénients.	

�  Java	est	:	
� Modulaire	:	on	peut	écrire	des	
portions	de	code	«	génériques	»	

�  Rigoureux	:	erreurs	détectées	
plutôt	à	la	compilation	qu’à	
l’exécution	

�  Portable	:	le	programme	
compilé	peut	s’exécuter	sur	
plusieurs	plateformes	

C.	Caillouet	 M213	-	POO	 24	

Le	langage	Java	

� En	quelques	mots	:	
� Orienté	Objet	
�  Simple,	Robuste,	Dynamique	et	Sécurisé	
�  Indépendant	de	la	Plateforme	(VM)	
�  Semi	Compilé/Semi	Interprété	
�  Fortement	typé	
�  Bibliothèque	Importante	(JDK	API)	

C.	Caillouet	 M213	-	POO	 25	

Langage	compilé	et	interprété	
Code	source	

Compilateur	

Bytecode	

Interpréteur	

Langage	machine	

Système	d’exploitation	
C.	Caillouet	 M213	-	POO	 26	

MonProgramme.java	

javac	MonProgramme.java	

MonProgramme.class	

java	MonProgramme	

Virtualisation	(JVM)	

Système	d’exploitation	

Le	bytecode	
�  Le	langage	source	Java	est	défini	par	la	JLS	(Java	
Language	Specification)	éditée	par	Sun-Oracle	
�  Syntaxe	+	sémantique	

�  Le	code	source	d’une	classe	contenue	dans	un	fichier	est	
compilé	avec	la	commande	javac	
�  cela	produit	un	code	intermédiaire,	appelé	bytecode	

�  Le	bytecode	d’une	classe	est	destiné	à	être	chargé	par	une	
machine	virtuelle	qui	doit	l’exécuter	avec	la	commande	
java,	par	interprétation.	
�  L’argument	est	le	nom	d’une	classe	(sans	extension	.class)	

C.	Caillouet	 M213	-	POO	 27	

La	machine	virtuelle	(JVM)	
�  Rôle	:	Abstraire	le	comportement	d’une	machine	
�  But	:	Rendre	indépendant	de	la	plateforme	

�  La	JVM	:	
�  Garantit	le	même	environnement	d’exécution	sur	les	
différentes	plateformes	d’accueil	(Windows,	Linux,	MacOS)	

�  Optimise	(comme	un	OS)	l’exécution	des	applications	en	
fonction	de	la	machine	

	
è	Une	JVM	traduit	le	bytecode	dans	le	langage	
machine	de	la	plateforme	d’accueil.	

C.	Caillouet	 M213	-	POO	 28	

Portabilité	entre	différents	
environnements	

C.	Caillouet	 M213	-	POO	 29	

VM	 VM	 VM	

Windows	 Linux	 MacOS	

bytecode	

javac	

Java	:	un	langage	et	une	
plateforme	
�  Dans	la	technologie	Java,	on	a	besoin	:	

�  Du	langage	de	programmation	et	du	compilateur	
�  De	la	JVM	et	des	APIs	(Application	Programming	Interfaces)	
regroupées	dans	une	plateforme	:	
�  Java	SE	(Java	Platform,	Standard	Edition)	:	Java	SE	8	pour	

applications	classiques,	desktop	
�  Java	EE	(Java	Platform,	Enterprise	Edition)	:	Java	EE	8	pour	

développer	et	déployer	des	applications	serveur,	Web	services	etc.	
�  Java	ME	(Java	Platform,	Micro	Edition)	:	J2ME	pour	les	applications	

embarquées,	PDA,	smartphones,	etc.	

�  Si	l’on	veut	juste	exécuter,	il	suffit	du	JRE	(Java	Runtime	
Execution)	par	opposition	au	JDK	(Java	Development	Kit)	

C.	Caillouet	 M213	-	POO	 30	

Diagramme	conceptuel	Java	

C.	Caillouet	 M213	-	POO	 31	

http://docs.oracle.com/javase/8/docs	
	

