Partie 1 : Architecture et

!'_ communications Client/Serveur

Olivier GLUCK
Université LYON 1/Département Informatique
Olivier.Gluck@univ-lyon1.fr
http://perso.univ-lyon1.fr/olivier.gluck

Copyright

= Copyright © 2025 Olivier Gluck; all rights reserved

= Ce support de cours est soumis aux droits d'auteur et n'est
donc pas dans le domaine public. Sa reproduction est
cependant autorisée a condition de respecter les conditions

suivantes :

= Si ce document est reproduit pour les besoins personnels du
reproducteur, toute forme de reproduction (totale ou partielle) est
autorisée a la condition de citer 'auteur.

= Si ce document est reproduit dans le but d'étre distribue a des tierces
personnes, il devra étre reproduit dans son intégralité sans aucune
modification. Cette notice de copyright devra donc étre présente. De
plus, il ne devra pas étre vendu.

= Cependant, dans le seul cas d'un enseignement gratuit, une
participation aux frais de reproduction pourra étre demandée, mais elle
ne pourra étre supérieure au prix du papier et de l'encre composant le
document.

= Toute reproduction sortant du cadre precise ci-dessus est interdite
sans accord préalable écrit de I'auteur.

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 2

i Remerciements

= Certains transparents sont basés sur des
supports de cours de :
= Olivier Aubert (LYON 1)
= Bénédicte Le Grand (UPMC)

= Des figures sont issues des livres cités en
bibliographie

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

i Plan de la premiere partie

= Organisation pratique et contenu du module

= Bibliographie

= Quelques rappels : Internet et le modele TCP/IP
= Architecture Client/Serveur

= Communications inter-processus

= Les sockets

= Les appels de procédures distantes

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

Organisation pratique et contenu

!'_ du module

i Le module AdminSR

AdminSR : 15h de cours + 24h TP (Admin. Unix et Windows)
= Admin Unix : 10,5h CM + 12h TP
= Admin Windows : 4,5h CM + 12h TP

= Retour expérience messagerie CISR : 4,5h CM

= [ravaux pratiques :
= Salles Réseaux : TPR1, TPR2, TPR3
= pas d'acces extérieur
= possibilité de cablage
= root sur les machines

= Evaluation : un controle final, des notes de CC

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

i Le module AdminSR : objectifs

= Former des administrateurs systemes et réseaux

= = connaitre le modele Client/Serveur (90% des
applications de I'Internet)

= —> avoir des notions de conception d'applications
Client/Serveur

= = connaitre les protocoles applicatifs de I'Internet et
savoir mettre en place les services associés sous Linux
et sous Windows

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

i Le module AdmiInSR : contenu (1)

= Modele Client/Serveur et applications
= Architecture et communication de type Client/Serveur

Olivier Gluck

= Modele Client/Serveur, middleware

= Conception d'une application Client/Serveur

| es modes de communication entre processus

_es sockets TCP/IP

_es serveurs multi-protocoles et multi-services
_es appels de procedures distantes, I'exemple des

RPC

M2 SRS - Admin Systémes et Réseaux

i Le module AmInSR : contenu (2)

= Applications Client/Serveur sur TCP/IP
= Connexions a distance (telnet, rlogin, ssh, X11, ...)
« Transfert de fichiers et autres (FTP, TFTP, NFS, SMB)
= Gestion d'utilisateurs distants (NIS)
= Le courrier électronique (POP, IMAP, SMTP, WebMail)
= Les serveurs de noms (DNS)
= Un annuaire fédéerateur (LDAP)
= Le web (HTTP) (déja vu)

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

i Le module AdmiInSR : contenu (3)

= Administration systeme et réseaux des technologies
Windows :
= Architecture en Domaines
= Gestion des utilisateurs (Active Directory)
= Profils errants, stratégie de groupe
= Systeme de fichiers et sécurité
= Services réseaux
= Scripts, base de registre
= Gestion des disques (partitions et raid)
= Sauvegardes et surveillance d'un parc, cluster

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 10

Bibliographie

« Réseaux », 4ieme édition, Andrew Tanenbaum, Pearson
Education, ISBN 2-7440-7001-7

« La_ communication sous Unix », 2iéme édition, Jean-Marie
Rifflet, Ediscience international, ISBN 2-84074-106-7

« Analyse structurée des réseaux », 2ieme édition, J. Kurose et
K. Ross, Pearson Education, ISBN 2-7440-7000-9

« TCP/IP Illustrated Volume 1, The Protocols », W. R. Stevens,
Addison Wesley, ISBN 0-201-63346-9

« TCP/IP, Architecture, protocoles, applications », 4ieme
édition, D. Comer, Dunod, ISBN 2-10-008181-0
Internet...

= http://www.w3.org/

= http://www.rfc-editor.org/ (documents normatifs dans TCP/IP)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 11

Quelques rappels : Internet et le

!'_ modele TCP/IP

i Le visage de |'Internet (1)

= Un réseau de réseaux

= Un ensemble de logiciels et de protocoles
= Basé sur I'architecture TCP/IP

= Fonctionne en mode Client/Serveur

= Offre un ensemble de services (e-mail, transfert
de fichiers, connexion a distance, WWW, ...)

= Une somme « d'inventions » qui s'accumulent
= Mecanismes réseau de base (TCP/IP)
= gestion des noms et des adresses
= des outils et des protocoles spécialisés
= le langage HTML

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

Le visage de |'Internet (2)

= Une construction a partir du « bas »
= réseau local (laboratoire, département)
= réseau local (campus, entreprise)
= réseau regiona
= réseau nationa
= réseau mondia

= 3 niveaux d'interconnexion

= postes de travail (ordinateur, terminal...)
= liaisons physiques (cable, fibre, RTC...)
= routeurs (équipement spécialis¢, ordinateur...)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 14

Le visage de l'Internet (3)

= Un ensemble de sous-réseaux independants
(Autonomous System) et hétérogenes qui sont
interconnectés (organisation hiérarchique)

Liaisons louées Une épine dorsale
vers I'Asie Une épine dorsale Liaison louée européenne
ameéricaine

transatlantique

Réseau
régional

Routeur IP

Réseau
national

N

S'articule autour de
plusieurs backbone

A

Réseau

T

LAN LAN
Ethernet IP LAN Token Ring IP Etheret IP

Olivier Gluck

© Pearson Education France

15

Le visage de I'Internet (4)

I ANS
| ATT
| BBN/GTE
I CERFnet
I Digex
Ebone
MCI
Netcom
AL i I psi
< _ ez : ‘.._-;F" Qwest
Modele Client/Serveu WL o
48 : UUnet

Hétérogeénéité £ = e =L
Facteur d'échelle e’ RN ST —

ISP aux US
Olivier Gluck

i |'architecture de TCP/IP (1)

= Une version simplifiée du modele OSI
=« Application FTP, WWW, telnet, SMTP, ...
= [ransport TCP, UDP (entre 2 processus aux extrémités)
= TCP : transfert fiable de données en mode connecté
= UDP : transfert non garanti de données en mode non

connecté
= Réseau IP (routage)
« Physique transmission entre 2 sites

TCP Transport Control Protocol
UDP User Datagram Protocol
IP Internet Protocol

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 17

L'architecture de TCP/IP (2)

*

TELNET

sockets

Applications (processus utilisateur)

.
--

.
* *

transpo:
rt
4
3

Logiciel (systeme d'exploitation)-

*

réseau IP ICMP ARP || RARP (| BOOTP || DHCP
Réseaux locaux
i SLIP PPP ATM || FRelay Ethernet, Token Ring, ...
. Matérie!j
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 18

| 'architecture de TCP/IP (3)

= Deux machines sur un méme sous reseau IP

Ordinateur A Ordinateur B

Protocole FTP
Client FTP e, J{ Serveur FTP

Réseau logique IP

--
. s
* *

Protocole TCP
. Linux
kernel
IP e eneeeneeneeneeseeneeseeseessnannans > IP
Pilote Protocole Ethernet Pilote
Ethernet Sousreseaudetype Ethernet NIC

Ethernet

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 19

L'architecture de TCP/IP (4)

= Prise en compte de I'hétérogenéite

Ordinateur A

Protocole FTP
Client FTP e, » Serveur FTP

o Y

Ordinateur B

T

trames

‘trames

Pilote Ethernet:
Ethernet

e ennesmannnane, oo Ether

Téken Rin Pilote
' Token Ring

sous-réseau de type

Ethernet
Olivier Glick

sous-réseau de type

Token Ring

M2 SRS - Admin Systémes et Réseaux

NIC

20

i L'architecture de TCP/IP (5)

IP\

1P

Olivier Gluck

\IP

1P

v

IP
P
IP
IP
/ \ IP
IP /
IP 1P
datagramme \

Noaud intermédiaire : routeur
(matériel ou logiciel)

= [P - protocole d'interconnexion, best-effort
= acheminement de datagrammes (mode non connecte)
= peu de fonctionnalités, pas de garanties
= simple mais robuste (défaillance d'un nceud intermédiaire)

M2 SRS - Admin Systémes et Réseaux

21

i L'architecture de TCP/IP (6)

Couche transport : communications entre applis

L ecceccsse®®] - Oo°.. NQUd d'EXtrémité
datagramme (end systems)

Flux TCP

= TCP - protocole de transport de bout en bout
= uniguement présent aux extremités
= transport fiable de segments (mode connecte)

= protocole complexe (retransmission, gestion des

erreurs, sequencement, ...)
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 22

L'architecture de TCP/IP (7)

en-tete
Ethernet

en-tete donnees
applicatif| utilisateur
message
..

- données applicatives

segment

Y .Y

........................

o
—
Yo

données applicatives

Y Serveur FTP

IP
Pilote
Ethernet
en-queue
Ethernet

23

Identification des protocoles (1)

HTTP

FTP

TELNET

SMTP

DNS

SNMP

v

Numéro de

port (dans
I'en-téte TCP
ou UDP)

ICMP

port=21 |

4

v

port=25
port=53 -

EtherType (dans

I'en-téte de la trame)

Olivier Gluck

ARP

RARP

4

Ethernet ou
SNAP

M2 SRS - Admin Systémes et Réseaux

i Identification des protocoles (2)

Une adresse de transport = une adresse IP + un
numeéro de port (16 bits) -> adresse de socket

Une connexion s'établit entre une socket source et
une socket destinataire -> une connexion = un
quintuplé (proto, @src, port src, @dest, port dest)

Deux connexions peuvent aboutir a la méme
socket

Les ports permettent un multiplexage ou
démultiplexage de connexions au niveau transport

Les ports inférieurs a 1024 sont appelés ports
réserves

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 25

Identification des protocoles (3)

Multiplexage/demultiplexage: exemples

source port: X
dest. port:

server B

Source IP: A

Web client
host C

2

Source IP: C Source IP: C

Dest IP: B Dest IP: B

source port:y | [source port: x

dest. port: 80 | [dest. port:

Dest IP: B

vy

Web client Hlg
host A <&§

source port: x

dest. port: 80

Web
>= server B

Serveur Web

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 26

i Le protocole UDP

= UDP (RFC 768) - User Datagram Protocol

= protocole de transport le plus simple
= service de type best-effort (comme IP)
= les datagrammes UDP peuvent étre perdus
= les datagrammes UDP peuvent arriver dans le désordre
= mode non connecté : chaque segment UDP est traité
indépendamment des autres
= Pourquoi un service non fiable sans connexion ?

= simple donc rapide (pas de délai de connexion, pas d'état
entre émetteur/récepteur)

= petit en-téte donc économie de bande passante

= sans contrble de congestion donc UDP peut émettre aussi

rapidement qu'il le souhaite
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 27

i Les utilisations d'UDP

= Performance sans garantie de délivrance

= Souvent utilisé pour les applications multimédias
= tolérantes aux pertes
= sensibles au débit

s Autres utilisations d'UDP

= applications qui envoient peu de donnees et qui ne
néecessitent pas un service fiable

= exemples : DNS, SNMP, BOOTP/DHCP

s Transfert fiable sur UDP

= ajouter des mecanismes de compensation de pertes
(reprise sur erreur) au niveau applicatif

= Mecanismes adaptes a I'application
= exemple : NFS / RPC

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

28

Le datagramme UDP

< 32 bits >
I | | L l 1 1 1 l 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 | 1 1 1 | | ! |
Port source Port destination
Longueur segment Checksum UDP
.‘ .‘
E;E] # Données applicatives (messagg) Ny
Taille totale du segment Total de contrdle du segment

(en-téte+données) (en-téte+données)

optionnel : peut étrea 0

UDP = IP + multiplexage (adresse de transport) !!
Olivier Gliick M2 SRS - Admin Systémes et Réseaux

8 octets

29

Le protocole TCP

= Transport Control Protocol (rRrc 793, 1122, 1323, 2018,

2581) Attention: les RFCs ne spécifient pas tout - beaucoup de
choses dépendent de I'implémentation

= Transport fiable en mode connecte

= point a point, bidirectionnel : entre deux adresses de
transport (@IP src, port src) --> (@IP dest, port dest)

= transporte un flot d'octets (ou flux)
= I'application lit/écrit des octets dans un tampon
= assure la délivrance des données en séquence
= contréle la validité des données recues
= organise les reprises sur erreur ou sur temporisation

= realise le controle de flux et le controle de congestion

(a l'aide d'une fenétre d'émission)
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 30

i Exemples de protocole applicatif (1)

« HTTP - HyperText Transport Protocol
= protocole du web

= échange de requéte/réponse entre un client et un
serveur web

= FTP - File Transfer Protocol
= protocole de manipulation de fichiers distants
= transfert, suppression, création, ...
= TELNET - TELetypewriter Network Protocol
= systeme de terminal virtuel
= permet l'ouverture d'une session distante

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

31

i Exemples de protocole applicatif (2)

= SMTP - Simple Mail Transfer Protocol
= service d'envoi de courrier €lectronique
= réception (POP, IMAP, IMAPS, ...)

= DNS - Domain Name System

= assure la correspondance entre un nom symbolique
et une adresse Internet (adresse IP)

= bases de données réparties sur le globe
= SNMP - Simple Network Management Protocol

= protocole d'administration de réseau (interrogation,
configuration des equipements, ...)

= Les sockets - interface de programmation permettant
'échange de données (via TCP ou UDP)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 32

!'_ Architecture Client/Serveur

Les applications réseau (1)

= Applications = la raison d'étre des réseaux infos

= Profusion d'applications depuis 40 ans grace a
I'expansion d'Internet
= annees 1980/1990 : les applications "textuelles"

= messagerie €lectronique, acces a des terminaux
distants, transfert de fichiers, groupe de discussion
(forum, newsgroup), dialogue interactif en ligne
(chat), la navigation Web

= plus réecemment :

= les applications multimédias : vidéo a la demande
(streaming), visioconferences, radio et telephonie sur
Internet

= la messagerie instantanée

= les réseaux sociaux
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 34

i Les applications réseau (2)

= L'application est généralement répartie (ou
distribuée) sur plusieurs systemes

= Exemples :

= L'application Web est constituée de deux logiciels
communiquants : le navigateur client qui effectue une
requéte pour disposer d'un document présent sur le
serveur Web

« L'application te/net : un terminal virtuel sur le client, un
serveur te/net distant qui execute les commandes

= La visioconférence : autant de clients que de
participants
= --> Nécessité de disposer d'un protocole de
communication applicatif !

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 35

Terminologie des applications reseau

= Processus :
= une entité communicante
= UN programme qui s'execute sur un hote d'extréemite

= Communications inter-processus locales :

= communications entre des processus qui s'executent
sur un méme hote

= communications régies par le systeme d'exploitation
(tubes UNIX, mémoire partageée, ...)
= Communications inter-processus distantes :

= les processus s'echangent des messages a travers le
réseau selon un protocole de la couche applications

= Nécessite une infrastructure de transport sous-jacente
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 36

i Protocoles de la couche Applications

= Le protocole applicatif définit :

= le format des messages échangés entre les processus
émetteur et récepteur

= les types de messages : requéte, reponse, ...
= |'ordre d'envoi des messages

= Exemples de protocoles applicatifs :

« HTTP pour le Web, POP/IMAP/SMTP pour le courrier
électronique, SNMP pour 'administration de réseau, ...

= Ne pas confondre le protocole et I'application !

= Application Web : un format de documents (HTML),
un navigateur Web, un serveur Web a qui on

demande un document, un protocole (HTTP)
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 37

i Le modele Client / Serveur

= Idée : I'application est répartie sur différents
sites pour optimiser le traitement, le stockage...

s Le client

=« effectue une demande de service aupres du serveur
(requéte)

= initie le contact (parle en premier), ouvre la session

s Le serveur

= est |a partie de I'application qui offre un service
= est a |'écoute des requétes clientes
= répond au service demandeé par le client (réponse)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 38

Le modele Client / Serveur

= Le client et |le serveur ne sont pas identiques, ils
forment un systeme coopératif

= les parties client et serveur de |'application peuvent
s'exécuter sur des systemes différents

= une méme machine peut implanter les cotés client ET
serveur de |'application

= Un serveur peut réepondre a plusieurs clients
simultanément

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 39

Des clients et des serveurs...

Plusieurs clients, un serveur :

. Client ™" Maitre [*—] Client
Un client, un serveur :

— N/ NS

Esclave Esclave

A 4

Client |«

Requéte/Réponse

Le serveur traite plusieurs requétes
simultanées

Un client, plusieurs serveurs :

Client S

ien | Serveur Serveur
Le serveur contacté peut faire appel a un
service sur un autre serveur (ex. SGBD)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 40

Le modele Client / Serveur

Application C/S

L'application est répartie sur

le client et le serveur qui
dialoguent selon un protocole
applicatif spécifique

Processus [— ——| Processus
client "o otocole applicatif fSErVeur

Systeme Systeme
(0S) ﬁm\ (0S)

Materiel Réseal Materiel

'exemple du Web

Olivier Gluck

(Le Web

i — —— Serveur
Navigateur | X
HTTP Apache
Windows L
Modem ff\w
ADSL Internet Ethernet

M2 SRS - Admin Systémes et Res 41

Le modele Client / Serveur

Client A

Applications
Transport .
P Systeme autonome
Reseau
Liaison ===
Physique
| Applications
Transport
Partie cliente Réseau
de l'application Liaison
Applications Physique |
Transport
Réseau

Liaison

Physique | cjient B

Serveur

I'application

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

i Exemple d'application client/serveur

= Le client lit une ligne a partir de I'entrée standard
(clavier) et I'envoie au serveur

= Le serveur lit la ligne recue et la convertit en
majuscules

= Le serveur renvoie la ligne au client

= Le client lit la ligne recue et |'affiche sur la sortie
standard (écran)

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

43

i Exemple d'application client/serveur

= DAYTIME (RFC 867) permet au client d'obtenir Ia
date et I'heure du serveur

= Le protocole spécifie
= |'échange des messages :

= des qu'un serveur recoit un message d'un client, il
renvoie une chaine de caracteres contenant la date et
I'heure

= le contenu du message client n'est méme pas regardé
= le format de la chaine renvoyée : 1 ligne ASCII
« Par exemple " Weekday, Month Day, Year Time-Zone"

"Tuesday, February 22, 1982 17:37:43-PST"

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 44

i Interface de programmation réseau

= Il faut une interface entre I'application réseau et
la couche transport

= le transport n'est qu'un tuyau (TCP ou UDP dans
Internet)

« |'API (Application Programming Interface) n'est que le
moyen d'y accéder (interface de programmation)
= Les principales APIs de I'Internet
= les sockets
= apparus dans UNIX BSD 4.2
= devenus le standard de fait

= les RPC : Remote Procedure Call - appel de

procedures distantes
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 45

Interface de programmation réseau
=

5

Application C/S

Duressort du + M50 caceus T——u _—T Processus
developpeur de lient
l'application client "5 iocole applicatif SErveur Interface d'accos
‘SOert‘ ‘Soc!tkt‘ | au transport
Du ressort du TCP/IP TCP/IP
systeme f/\

Une socket : interface locale a I'hote, créée par I'application, controlée par I'0S
Porte de communication entre le processus client et le processus serveur

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 46

i Application C/S - récapitulatif

= Une application Client/Serveur, c'est

= une partie cliente qui exécute des requétes vers un
serveur

= une partie serveur qui traite les requétes clientes et
y répond

= un protocole applicatif qui définit les échanges
entre un client et un serveur

= un acces via une API (interface de programmation)
a la couche de transport des messages

= Bien souvent les parties cliente et serveur ne

sont pas écrites par les mémes programmeurs

(Navigateurs Web/Serveurs Web) --> role

important des RFCs qui spécifient le protocole !

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 47

Le Middleware

= Grossierement : la gestion du protocole
applicatif+I'API d'acces a la couche transport+des
services complémentaires

= C'est un ensemble de services logiciels construits
au dessus d'un protocole de transport afin de
permettre |'échange de requéte/réponse entre le
client et le serveur de maniere transparente

Client Serveur

Middleware

Réseau

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 48

Le Middleware

= Complément de services du réseau permettant la
realisation du dialogue client/serveur :
= prend en compte les requétes de I'application cliente

= les transmet de maniére transparente a travers le
réseau jusqu'au serveur

= prend en compte
les transmet vers

= L'objectif essentie

es données résultat du serveur et
‘application cliente

du middleware est d'offrir aux

applications une interface unifiée permettant
'acces a I'ensemble des services disponibles sur

le réseau : I'API

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

i Fonctions d'un Middleware

= Procédures d'établissement/fermeture de connexion
= Exécution des requétes, récupération des résultats
= Initiation des processus sur différents sites

= Services de répertoire

= Acces aux données a distance

= Gestion d'acces concurrents

= Sécurité et intégrité (authentification, cryptage, ...)
= Monitoring (compteurs, ...)

= Terminaison de processus

= Mise en cache des résultats, des requétes

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 50

Architecture of a Grid

iJJLJﬂL@uJ%.ijQij =

— ® viﬁﬂ CEELC

Portals

Portals that are Web Services based, shell scripts,
specialized (e.g. high end vis workstations, PDAs)

Encapsulation as Web Services, as Script Based Services, as Java Based Services

= Visualization
3 Data replication and ——
= 2 WA <1 D . Data analysis
o . .
Sz Resource management Authorization metadata management analy Applications
T P brokering o — {d M Data integration
< £ Fault Accounting Grid MPI ___E
management CORBA, DCOM, ... Collaboration tools
Grid Services Application Services
Encapsulation as Web Services, as Script Based Services, as Java Based Services
=, R Uniform . oo e .
5 @ Resource SIS Combutin Uniform Data | [Monitoring an P Identity
o > Discovery Scheduling puting Access Events Credentials
= Access
w Q " E—— — S— ~— L
‘g N
Grid Communication Functions (transport services, security services)
Communications . ,
space-based networks | optical networks | Internet cee
Resource access Kesource access Kesource access Kesource access Resource access
:q.} % | and functionality and functionality and functionality and functionality and functionality
=] 2 T, s . .
=2 = 7, scientific clusters tertiary storage 3
= 3 2 QR instruments = é‘.g
=2 Qqé g— AEEE | g g =
s I ’;\ =1 -
Oliv ‘ ‘ 5

job initiation, event generators, GridFTP servers

i Conception d'une application C/S

= Comment découper une application informatique
en clients et serveurs ?

= Une application informatique est représentee
selon un modele en trois couches :
= la couche présentation (interface Homme/Machine) :
= gestion de l'affichage...

= la couche traitements (ou logique) qui assure la
fonctionnalité intrinseque de I'application (algorithme)

= la couche données qui assure la gestion des données
de I'application (stockage et acces)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 52

Conception d'une application C/S

= Exemples de decoupage Client/Serveur :

e module de gestion des données peut étre heberge
par un serveur distant (SGBD, serveur web)

e module de gestion de I'affichage peut egalement

étre gére par un serveur distant (un terminal X par

exemple)
: |Présentation|
Logique
Le web
Logique
Données
Olivier Gluck

~ Applets, JavaScript, ...
X Window

PHP, CGI, Servlets, ...

M2 SRS - Admin Systémes et Réseaux

Données

Logique

Présentatior1

Présentatior{

53

Conception d'une application C/S

= Autres exemples

BD distribuée Serveur de fichiers Emulation de terminaux

|Présentatiorl |Présentation| ﬁ Présentatim{ ~
Logique Logique

Données Logique ‘

, telnetd
; : Donnees ; | ;
,,,,,,,,,,,,,,,,,,,,,,,, : Données :
Données

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 54

Conception d'une application C/S

= Modele de Gartner pour les systemes a 2
niveaux (2-tiers) :

|Présentation| |Présentatior| |Présentatiorl Présentatior{ Présentatior{
Client
A
Logique Logique Logique
A
Données
Présentation|
\ 4
Logique Logique Logique
\ 4
Serveur Données Données Données Données Données
BD Données Transactions Présentations Présentations
réparties distantes réparties distantes réparties
Classe 1 Classe 2 Classe 3 Classe 4 Classe 5
Olivier Gliick M2 SRS - Admin Systémes et Réseaux

55

Conception d'une application C/S

= Modele de Gartner pour les systemes a 3
niveaux (3-tiers) :

Client

Serveur de milieu |

Serveur

Olivier Gluck

Présentatior{

Logique

Données

Présentatior{ |Présentation|
Logique
Logique Logique
Logique
Données Données

|Présentatiorl

Logique

Données

Logique

Données

Logique

Données

M2 SRS - Admi'n’Systémes et Réseaux

56

Les modes de communication

= Communication en mode non connecté

Client

envoi d'une requéte

Réseau

Serveur

message requéte

Y
reception du résultat

Y

poursuite du traitement

Olivier Gluck

prise en compte de
la requéte

i

réveil du serveur

i

<<
<

message réponse

exécution requéte

M2 SRS - Admin Systémes et Réseaux

57

Les modes de communication

= Communication en mode connecté

Client

demande de
connexion

Réseau

message de connexion

>

Emission de requétes
Réception de résultats
Synchronisation

Serveur

prise en compte de
la connexion

Y

Création d'un contexte

Y

Y

A

Y

Y

demande de
déconnexion

Olivier Gluck

message de déconnexion

.
>

Exécution des
requeétes

Y

prise en compte de
la déconnexion

Libération du contexte

M2 SRS - Admin Systémes et Réseaux

o)

i Serveur itératif ou concurrent

= Serveur itératif
= traite séquentiellement les requétes
= adapté aux requétes qui peuvent s'exécuter rapidement
= souvent utilise en mode non connecté (recherche de la
performance)
= Serveur concurrent

= le serveur accepte les requétes puis les "déelegue" a un
processus fils (traitement de plusieurs clients)

= adapté aux requétes qui demandent un certain
traitement (le colt du traitement est suffisamment
important pour que la création du processus fils ne soit
pas penalisante)

= souvent utilisé en mode connecté
Olivier Glick M2 SRS - Admin Systemes et Reseaux 59

Service avec ou sans etat(s)

s Service avec états

= |e serveur conserve localement un état pour chacun
des clients connectés : informations sur le client, les
requétes précedentes, .

= Service sans état

= |le serveur ne conserve aucune information sur
I'enchainement des requetes...

= Incidence sur les Ferformances et la tolérance
aux pannes dans le cas ou un client fait plusieurs
requétes successives

= performance --> service sans état
= tolérance aux pannes --> service avec états
= Exemple : acces a un fichier distant

= RFS avec états, NFS sans état (pointeur de fichier...)
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 60

!'_ Les communications inter-processus

Clusters

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 62

Cluster Architecture

Sequential Applications

Sequential Applications \—‘

Parallel Annlications I

| Parallel Applications

Parallel Programming Environment

Cluster Middleware

(Single System Image and Availability Infrastructure)

PC/Workstation

Communications
Software

PC/Workstation

Communications
Software

PC/Workstation

Communications
Software

PC/Workstation

Communications
Software

Network Interface
Hardware

Network Interface
Hardware

Network Interface
Hardware

Network Interface
Hardware

Cluster Interconnection Network/Switch

Olivier Gluck

M2 SRS - Admin Systémes et Réseaux

63

Modele de fonctionnement

Application

Noyau

Carte reseau

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

64

Les schémas de communication

= Des lors qu'une application est repartie, elle se
décompose en plusieurs processus qui doivent
communiquer (échanges de données)

= Deux grands types de schéma de communication
= communication par mémoire partagée (ou fichier)
= communication par passage de messages

= On retrouve ces deux schémas de communication

» dans des communications locales : entre processus
s'exécutant sur le méme hote

» dans des communications distantes : entre
processus s'executant sur des hotes distants

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 65

Communication par mémoire partagee

= Les processus se partagent une zone de
memoire commune dans laquelle ils peuvent lire
et/ou écrire

Zone de mémoire partagée

write() entre P1 et P2 read()
P1). P2
read() write()

= Intérét : communications transparentes,
limitation des copies memoire

= Probleme : gestion de l'acces a une ressource
partagee

= probleme si deux ecritures simultanegs (ordre
d'ordonnancement, atomicite des operations)

= les processus P1 et P2 doivent se synchroniser pour
acceder au tampon partage (verrou, semaphore, ...)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 66

Communication par mémoire partagee

= Communications locales

= les deux processus s'exécutent sur la méme machine
donc peuvent se partager une partie de leur espace
d'adressage

= exemple : les threads s'exécutent dans le contexte
d'un méme processus
= Communications distantes
= la mémoire partagée est physiquement repartie
= le gestionnaire de mémoire virtuelle permet de
regrouper les differents morceaux selon un seul
espace d'adressage

= probleme de cohérence mémoire...
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 67

i Les tubes de communication (pipes)

= Communications locales type mémoire partagee

= le canal de communication est unidirectionnel (pas de
probleme de synchronisation)

= communications entre 2 processus uniqguement : 'un
écrit dans le tube, 'autre lit

= Exemple : shs 1s -1 | wec -1

Création du tube et des processus fils

fOI‘k(); @ fOI‘k();
exec(%/ \exec();

write() read()
s - O Cwe D

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 68

Communication par passage de msg

= Les processus n'ont pas acces a des "variables"
communes

= Ils communiquent en s'échangeant des messages
= au moins deux primitives : send() et rec)

= des zones de mémoire locales a chaque processus
permettent I'envoi et la réception des messages

= |'émetteur/récepteur doit pouvoir désigner le
recepteur/émetteur distant

= Problemes
= zones d'émission et réception distinctes ?

= nombre d'émetteurs/récepteurs dans une zone ?

= Opérations bloquantes/non bloguantes ?
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 69

Communication par passage de msg

= Il faut eviter les écritures concurrentes : write

write P j:‘ll!’

read/write read/write IS
P1). P ?m. P2 ‘II'L\\::::jxﬁ ; j:‘IE,»
: read :

read

= Pour se ramener a des communications point-a-
point
= --> dissocier le tampon d'émission et de réception

= --> avoir autant de tampons de réception que
d'émetteurs potentiels

= --> il ne reste plus alors au protocole qu'a s'assurer
que deux emissions successives (d'un méme emetteur)
Qe%ras)ent pas des données non encore lues (controle
e flux

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 70

i Opérations bloguantes/non bloquantes

= Quand un appel a une primitive send) ou rec)
doit-il se terminer ?

= Plusieurs sémantiques en réception :
= rec) peut rendre la main
= aussitot (rec() non bloguant)

= quand les données ont été recues et recopiees
depuis le tampon de réception local (le tampon de
reception est de nouveau libre)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 71

i Opérations bloguantes/non bloquantes

= Plusieurs sémantiques en émission :
» send() peut rendre la main
= aussitot (sena() non bloguant)

= quand les données ont été recopiées dans le
tampon d'émission local (les données peuvent étre
modifiées au niveau de I'application)

= quand les données ont été recopiées dans le
tampon de reception distant (le tampon d'émission
local est de nouveau libre)

= quand le destinataire a consommeé les données (le
tampon de réception est de nouveau libre)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 72

i Opérations bloquantes

= Le processus se bloque jusqu'a ce que
'opération se termine :

Application “Middleware
read() _APpel systéme .
] A]

- Attente de l'arrivée des

- données

- - Recopie dans le tampon de
~ l'application

_ Retour

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 73

i Opérations non bloquantes

= Intérét :
= le processus peut faire autre chose en attendant que
les données soient émises ou recues
= Le processus a tout de méme besoin d'étre
informé de la complétion de I'opération (lecture
ou ecriture)

= Deux possibilités :
= attente active : appels réguliers a la primitive jusqu'a
complétion
= attente passive : le systeme informe le processus par

un moyen quelconque de la complétion de 'opération

(sighaux par exemple)
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 74

Communication par signaux

= Mécanisme de communications locales inter-
processus (ou depuis le noyau vers un processus)
permettant de notifier un événement

= Principe : interruption logicielle quand I'événement
se produit

= Le processus

= indigue les signaux qu'il souhaite capter (provoquant
son interruption)

= met en place un handler (fonction particuliere) qui sera
exécuté quand I'événement se produira
= Exemple : arrivee de données urgentes sur une
socket

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 75

i Opérations non bloquantes

Attente des
~données

Recopie

Application Middleware
read ()Aé Appel syster?e R
. WOULDBLOCK
read(Appel systérgne .
| ____WOULDBLOCK
| Appel systeme
read() - ppe oy o
v Retour§ v

Olivier Gluck

A

Attente active

M2 SRS - Admin Systémes et Réseaux

76

i Opérations non bloquantes

Application Middleware
' signal()__Activer SIGIO |
| A | 1
B Retour ~ Attente des

- données

handlerv()A Signal SIGIQ

| Recopie
Retour v |

Attente passive

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

77

i Désignation du destinataire/émetteur

= Pour faire du passage de messages, il est
nécessaire de désigner l'autre extrémité de la
communication

= Désignation explicite

= du ou des processus destinataire(s)/émetteurs
= Désignation implicite

= recevoir un message de n'importe qui

= émettre un message a n'importe qui (diffusion)

= une phase d'établissement de connexion désigne les
deux entités communicantes

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 82

0))]
D
X

O

S

0))

)

Q
e

i Les sockets - adressage

= Deux processus communiquent en émettant et
recevant des données via les sockets

= Les sockets sont des portes d'entrées/sorties
vers le réseau (la couche transport)

= Une socket est identifiee par une adresse de
transport qui permet d'identifier les processus de
'application concernée

= Une adresse de transport = un numéro de port
(identifie I'application) + une adresse IP
(identifie le serveur ou I'hote dans le réseau)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 84

i Les sockets - adressage

= Le serveur doit utiliser un numeéro de port fixe vers
lequel les requetes clientes sont dirigees

= Les ports inférieurs a 1024 sont reéserves :

= 'well-known ports"

= ils permettent d'identifier les serveurs d'applications
connues

= ils sont attribués par I'TANA

= Les clients n'ont pas besoin d'utiliser des wel/-
Known ports

= ils utilisent un port ﬂuelconque entre 1024 et 65535 a
condition que le triplet <transport/@IP/port> soit unique

= ils communiguent leur numero de port au serveur lors de
la requete (a |'etablissement de la connexion TCP ou
dans les datagrammes UDP)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 85

i Les sockets en pratique

= Une socket est un fichier virtuel avec les opérations
d'ouverture, fermeture, écriture, lecture, ...

= Ces opérations sont des appels systeme

= Il existe différents types de socket associés aux
différents services de transport :
» Stream sockets (connection-oriented) - SOCK_STREAM

= utilise TCP qui fournit un service de transport d'octets
flable, dans l'ordre, entre le client et le serveur

» datagram sockets (connectionless) - SOCK_DGRAM

= utilise UDP (transport non fiable de datagrammes)
« raw sockets - SOCK_RAW

= Utilise directement IP ou ICMP (ex. ping)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 86

Les sockets en pratique

Un descripteur de socket (sock_id) n'est qu'un point
d'entrée vers le noyau

Processus client ou serveur sock_id=2

Appel systeme< Bibliotheque socket (API) writ
Couche socket du noyau

read

socket buffers

TCP

UDP

- la bibliotheque socket est liée a 'application

émission/réception d'un segment
TCP, datagramme UDP...

- la couche socket du noyau réalise I'adaptation au protocole de

transport utilisé

Olivier Gluck

M2 SRS - Admin Systémes et Réseaux 87

Rappel - une connexion TCP

s Une connex

ion = (proto, @IP_src, port_src, @QIP_dest, port_dest)

. -, . Client
L'appli ecrit_ TCP send buffer [~
i " o R |
L~ _— Segment TCP
L'appli lit <~ N TCP recv buffer |- dans un data-
“gramme IP
Controle de flux : I'émetteur ne I l "
sature pas le tampon de réception
du récepteur
L'appli ecrit<_ TCP send buffer [~ Flux TCP
N " o R |
/ \ _— |
L'appli lit e TCP recv buffer | Cerveur
O M2 SRS - Admin Systémes et Réseaux 88

En mode connecté...

= Pour que le client puisse contacter le serveur
= le processus serveur doit déja tourner

= le serveur doit avoir cree au préalable une socket pour
recevoir les demandes de connexion des clients

s Le client contacte le serveur
= en créant une socket locale au client

= en specifiant une adresse IP et un numero de port
pour joindre le processus serveur

= Le client demande alors I'établissement d'une
connexion avec le serveur

= Si le serveur accepte la demande de connexion

= il crée une nouvelle socket permettant le dialogue
avec ce client

= permet au serveur de dialoguer avec plusieurs clients
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 89

En mode connecté...

Création du

descripteur local

Demande

d'ouverture de

connexion

Olivier Gluck

‘4

7

socket()

connect()

Demande de
connexion

socket()

bind()

\"Stlen()

Connexion ouverte

write()

read()
ReqUéN’

Traitement de la requéte

Réponse

write()

4

Attachement d'un numéro
de port a la socket

Le serveur autorise NMAX
connexions (le service est
ouvert !)

Le serveur accepte (ou
attend) une connexion
pendante et crée une
nouvelle socket dédiée au
client

M2 SRS - Admin Systémes et Réseaux 90

En mode connecté...

Parametres en entrée

Parametres en sortie

socket() type, domaine, protocole sock_id
bind() sock_id, port
listen() sock_id, NMAX

connect() sock_id, @sock_dest

accept() sock_id @sock_src, client_sock_id
read() client_sock_id, @recv_buf, Ig read_lIg
write() client_sock_id, @send_buf, Ig write_Ig

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

91

En mode connecté...

g 3 —f Au retour
BB d'accept()
File des connexions H

Processus en attente :
client (pendantes) id=xxx id=xxx1 id=xxx2

sock_id=xxx

TCP TCP

Créé par *
Ilsten() >

clientl
client2

socket buffers

port=yyy
IP 1 IP

e
"7 intemet .

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 92

En mode connecté...

= Attention : les émissions/réceptions ne sont pas
synchrones
= read(m) : lecture d'au plus m caracteres
= write(m) : écriture de m caracteres

N écritures write(m) -+ read(m) N lectures

write(m) m

Coté émission W/d/ Q
Coté réception V \/

ri r2 r3 r4

r1+r2+r3+r4+...+rN <= N*m
Olivier Gliick M2 SRS - Admin Systémes et Réseaux

En mode non connecté...

= Pour que le client puisse contacter le serveur
= il doit connaitre 'adresse de la socket du serveur
= le serveur doit avoir crée la socket de réception

= Le client envoie sa requéte en précisant, lors de
chaque envoi, I'adresse de la socket destinataire

= Le datagramme envoyée par le client contient
'adresse de la socket émettrice (port, @IP)

= Le serveur traite la requéte et répond au client
en utilisant I'adresse de la socket émettrice de la
requéte

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

94

En mode non connecte...

Création du

descripteur local

Envoi de la
requéte

Attente de la
réponse

Olivier Gluck

X

socket()

send_to()

recv_

from()

ReqUéN’

Réponse

socket()

bind()

4

Attachement d'un numéro
de port a la socket

recv_from()

send_to()

Le serveur est en
attente d'une
requéte cliente

Traitement de la
requéte

Le serveur envoie la
réponse

M2 SRS - Admin Systémes et Réseaux 95

En mode non connecte...

Parametres en entrée

Parametres en sortie

socket()

type, domaine, protocole

sock_id

bind()

sock_id, port

recv_from()

sock_id, @recv_buf, Ig

read_lg, @sock_src

sock_id, @sock_dest,

send_to() @send_buf, Ig write_lg
Rappel en mode connecté :
read() client_sock_id, @recv_buf, Ig read_Ig
write() client_sock_id, @send_buf, Ig write_Ig
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 96

En mode non connecte...

Processus Processus
client serveur

sock_id=xxx K_id=zzz

socket buffers socket buffers

port=yyy port=53

IP IP

. Internet) ——

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

97

Serveur itératif en mode connecte

-

socket()
Processus Le processus serveur :
bind() serveur - attend une connexion cliente
- lit la requéte
listen() - traite la requéte
> - envoie la réponse
accept() - ferme la connexion cliente
]
read()
Traitement de la requéte cliente
write()
]
close()

Olivier Gluck

M2 SRS - Admin Systémes et Réseaux

98

Serveur concurrent en mode connecté

bind()

listen()

accept()

LA 4
socket() EB’

Processus
serveur

Le processus serveur :
- attend une connexion cliente

- crée un processus fils ou thread
pour traiter le dialogue avec ce
client et executer sa requete

création
thread dédié

Olivier Gluck

1

1

thread 1 thread 2

read() read()
Traitement de la Traitement de la
requéte cliente requéte cliente

write() write()

]]

close() close()

M2 SRS - Admin Systémes et Réseaux 99

i Opérations bloguantes/non bloquantes

= Par défaut, les primitives connect (),
accept (), send to(), recv from(),

read (), write () sont bloguantes

= recv () sur un tampon vide attendra l'arrivée des
données pour rendre la main

= send () sur un tampon plein attendra que les
données quitte le tampon pour rendre la main

= accept () ne rend la main qu'une fois une connexion
établie (blogue si pas de connexions pendantes)

= connect () he rend la main qu'une fois la connexion
cliente établie (sauf si pas entre 1isten () et
accept ())

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 100

i Opérations bloguantes/non bloquantes

= Il est possible de parametrer la socket lors de sa
création pour rendre les opérations non bloguantes

= Comportement d'une émission non bloguante

= tout ce qui peut étre écrit dans le tampon l'est, les
caracteres restants sont abandonnés (la primitive
retourne le nombre de caracteres écrits)

= Si aucun caractere ne peut étre écrit (tampon plein),

retourne -1 avec errno=EWOULDBLOCK (I'application
doit réessayer plus tard)

= Comportement d'une lecture non bloquante

= S'il n'y a rien a lire dans la socket, retourne -1 ...
(I'application doit réessayer plus tard)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 101

i Opérations bloguantes/non bloquantes

= Comportement vis a vis de I'acceptation des
connexions en mode non bloquant
« S'il n'y a pas de connexion pendante, retourne -1 ...
(I'application doit réessayer plus tard)
= Comportement vis a vis des demandes de

connexions en mode non bloquant

= la primitive connect () retourne immediatement

mais la demande de connexion n'est pas abandonnée
au niveau TCP...

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 102

i Paramétrage des sockets

= Les sockets sont paramétrables

= fonctions se

tsockopt () et getsockopt ()

= options booléennes et non booléennes
= Exemples d'options booléennes

= diffusion (dg

ram uniqguement ; remplace I'@IP

destinataire par I'@ de diffusion de l'interface)

s keepalive

. teste régulierement la connexion (stream)

= tcpnodelay : force I'envoi des segments au fur et a
mesure des écritures dans le tampon

= Exemples d'o

= taille du tam

reception, ty
Olivier Glick

ntions non booléennes
pon d'émission, taille du tampon de

pe de la socket
M2 SRS - Admin Systémes et Réseaux 103

i Les serveurs multi-protocoles

= Un serveur qui offre le méme service en mode
connecté et non connecteé

= exemple : DAYTIME (RFC 867) port 13 sur UDP et sur
TCP qui permet de lire la date et I'heure sur le serveur

= 13/TCP : la demande de connexion du client
déclenche la réponse (a une requéte donc implicite) :
le client n'émet aucune requéte

= 13/UDP : la version UDP de DAYTIME requiert une
requéte du client : cette requéte consiste en un
datagramme arbitraire qui n ‘est pas lu par le serveur

mais qui déclenche I'émission de la donnée coté
serveur

= Le serveur ecoute sur 2 sockets distinctes pour
rendre le meme service

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 104

Les serveurs multi-protocoles

= Pourquoi un serveur multi-protocoles ?

= certains systemes ferment tout acces a UDP pour des
raisons de sécurité (pare-feu)

= non duplication des ressources associées au service
(corps du serveur)
= Fonctionnement

= un seul processus utilisant des opérations non
bloquantes de maniere a gérer les communications a
la fois en mode connecté et en mode non-connecté

= deux implémentations possibles : en mode itératif et
en mode concurrent

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 105

Les serveurs multi-protocoles

= En mode itératif

= le serveur ouvre la socket UDP et la socket TCP puis
boucle sur des appels non bloguants a accept () et
recv_from () sur chacune des sockets

= Si une requéte TCP arrive

= le serveur utilise accept () provoquant la creation
d'une nouvelle socket servant la communication avec
e client

= lorsque la communication avec le client est terminee,
e serveur ferme la socket "cliente” et reitere son
attente sur les deux sockets initiales

= Si une requéte UDP arrive
= le serveur recoit et émet des messages avec le client

= lorsque les echanges sont termines, le serveur reitere
son attente sur les deux sockets initiales

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 106

i Les serveurs multi-protocoles

= En mode concurrent

= un automate gere l'arrivée des requétes (primitives
non bloguantes)

= Création d'un nouveau processus fils pour toute
nouvelle connexion TCP

= traitement de maniere itérative des requétes UDP
= elles sont traitées en priorité

= pendant ce temps, les demandes de connexion
sont mises en attente

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 107

L es serveurs multi-services

= Un serveur qui réepond a plusieurs services (une
socket par service)

= Pourgquoi un serveur multi-services ?

= probleme lié a la multiplication des serveurs : le
nombre de processus necessaires et les ressources
CONsommees qui y sont associees

= Avantages

= le code réalisant les services n'est présent que lorsqu'il
est nécessaire

= la maintenance se fait sur la base du service et non
du serveur : I'administrateur peut facilement activer

ou désactiver un service
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 108

L es serveurs multi-services

= Fonctionnement : lancement d'un programme
difféerent selon la requéte entrante
= le serveur ouvre une socket par service offert, attend
une connexion entrante sur I'ensemble des sockets
ouvertes
= lorsqu'une demande de connexion arrive, le serveur
crée un processus fils qui prend en compte la
connexion
= |e processus fils exécute (via exec () sur systeme
UNIX) un programme dédié realisant le service
demandé

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 109

Les serveurs multi-services

fork()

Y

processus
fils

serveur

processus
fils

\ fork()

exec()

| exec()
Y

code
dédié code
T dedie

A

sockets : une

par service sockets : une par connexion

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 110

i Les processus demons

= L'invocation d'un service Internet standard (FTP,
TELNET, RLOGIN, SSH, ...) nécessite la présence
coté serveur d'un processus serveur
= qui tourne en permanence
= qui est en attente des requétes clientes

= On parle de démon
= A priori, il faudrait un démon par service

= Probleme : multiplication des services -->
multiplication du nombre de démons

= Sous UNIX, un super-démon : inetd

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 111

Le demon /netd

= Un "super serveur”
= Un processus multi-services multi-protocoles
= UN Serveur unique qui recoit les requétes
= activation des services a la demande

= permet d'éviter d'avoir un processus par service, en
attente de requetes

= une interface de configuration (fichier inetd. conf)
permettant a I'administrateur systeme d'ajouter ou
retirer de nouveaux services sans lancer ou arreter un

nouveau processus
= Le processus inetd attend les requétes a l'aide
de la primitive select () et cree un nouveau

processus pour chaque service demandeé (excepté
certains services UDP qu'il traite lui-meme)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 112

Le fichier /etc/inetd.conf

Internet services syntax :

<service name> <socket type> <proto> <flags> <user> <server pathname> <args>
walit : pour un service donne, un seul serveur peut exister a un instant donné

donc le serveur traite I'ensemble des requétes a ce service

stream --> nowait : un serveur par connexion

ftp stream tcp nowait root /etc/ftpd ftpd -1
tftp dgram udp wait root /etc/tftpd tftpd
shell stream tcp nowait root /etc/rshd rshd

pop3 stream tcp nowait root /usr/local/lib/popper popper -s -d -t /var/log/poplog
internal services :

=> service réalise par inetd directement

time stream tcp nowait root 1nternal

time dgram udp nowait root internal

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 113

La scrutation de plusieurs sockets

= Scrutation : mécanisme permettant I'attente d'un
evenement (lecture, connexion, ...) sur plusieurs
points de communication

= hécessaire dans le cas des serveurs multi-services ou
multi-protocoles

= Probleme lié aux caracteres bloquants des
primitives
= exemple : une attente de connexion (accept) sur une
des sockets empéche ['acceptation sur les autres...

= Premiere solution

= rendre les primitives non bloquantes a I'ouverture de la
socket

= inconvénient : attente active (dans une boucle)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 114

La scrutation de plusieurs sockets

= Deuxieme solution
= créer un fils par socket pour la scrutation d'un service
= inconvenient : lourd, gaspillage de ressources
= Mais avantage conserve d'activation a la demande

= Troisieme solution : la primitive select ()

y Bermet de realiser un multiplexage d'opérations
logquantes (scrutation) sur des ensembles de
descripteurs passes en argument :

= C
= C

= C

escCri
escCri
escCri

nteurs sur
hteurs sur

hteurs sur

€S(
€S(

€S(

ue
ue
ue

S rea
S rea
S rea

iser une lecture
iser une écriture
iIser un test de condition

exceptionnelle (arrivée d'un caractere urgent)

= Un argument permet de fixer un temps maximal
d'attente avant que l'une des opérations souhaitees ne
soit possible

Olivier Gluck

M2 SRS - Admin Systémes et Réseaux 115

i La scrutation de plusieurs sockets

= La primitive select () rend la main quand une
de ces conditions se réalise :

= |'un des événements attendus sur un descripteur de
'un des ensembles se réalise : les descripteurs sur
esquels I'opération est possible sont dans un
parametre de sortie

= |le temps d'attente maximum s'est écoulé

= |e processus a capté un signal (provoque la sortie de
select ())

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 116

!'_ Les appels de procédures distantes

Deux approches de conception

= Un concepteur d'application distribuée peut procéder
selon deux approches :
= conception orientée communication :

= définition du protocole d'application (format et syntaxe
des messages) inter-operant entre le client et le serveur

= conception des composants serveur et client, en
specifiant comment ils réagissent aux messages
entrants et génerent les messages sortants

= conception orientée application :

= construction d'une application conventionnelle, dans un
environnement mono-machine

= subdivision de |'application en plusieurs modules qui

pourront s'executer sur différentes machines
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 118

Principe général

= Souvent, quand un client envoie une requéte (des
parametres), il est bloque jusqu'a la reception
d'une reponse

= Analogie avec un appel de fonction

= la fonction ou procédure ne rend la main au programme
appelant qu'une fois le traitement (calcul) termine

s RPC - Remote Procedure Call

= permettre a un processus de faire exécuter une fonction
par un autre processus se trouvant sur une machine
distante

= Se traduit par I'envoi d'un message contenant
'identification de la fonction et les parametres

= une fois le traitement terminé, un message retourne le

~_ resultat de la fonction a 'appelant
Olivier Glick M2 SRS - Admin Systemes et Reseaux 119

i Principe général

= L'objectif des RPC est de faire en sorte qu'un
appel distant ressemble le plus possible a un
appel local

= Le processus client (I'appelant) est lié a une
petite procédure de bibliotheque, appelée stub
client, qui représente la procédure du serveur
dans |'espace d'adressage du client

= Le processus serveur (I'exécutant) est lié a un
stub serveur qui représente I'execution du client

= Dissimule le fait que I'appel de la procédure n'est
pas local : le programmeur de |'application utilise
un appel de procédure "normal" !

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 120

Le modele RPC

Programme

principal

return

Machine 1

Olivier Gluck

Procédure A
(serveur)

Procédure B
(serveur)

return

return

> Machine 2

réseau

> Machine 3

reseau
M2 SRS - Admin Systémes et Réseaux

121

Le modele RPC

Client Serveur

Procédure
.. RPC
Application .

1 Appel Retour 4 8 Rgtour Exécyter v
Procédure| stub client Procédurei Procedure| stub serveur |Procedur

v

v

P Assemblage Désassemblage 13 9 Assemblage Désassemblage 6

1 t] 1 x

3 SendRequest() ReceiveResponse() | 12 1()| | SendResponse() ReceiveRequest() 5
4 1

Noyau 11 v
4 Réseau

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 122

L'interface RPC

Application x Ll Interface RPC “Serveur
RPC/XDR Client stub Server stub
API socket Message RPC

o —— au format XDR (call) r——————

socket Librairie RPCF; *ILibrairie RPC
TCP | UDP i (reply) f
7 A Sockets TCP ou UDP

s Interets :

= |'application n'a pas a manipuler directement les sockets
(le transport des données est transparent)

= |'implémentation des RPC est indépendante de I'OS
= Inconvénient :

= |'utilisation des RPC est moins performante que I'utilisation
directe des sockets (couches supplémentaires)

Olivier Glick M2 SRS - Admin Systemes et Réseaux 123

i Restrictions liees aux RPC

= Pas de passage de parametres par adresse :
impossible de passer des pointeurs (ou
references)

= en effet, les espaces d'adressage du client et du
serveur sont difféerents donc aucun sens de passer
une adresse

= La procédure distante n'a pas acces aux
variables globales du client, aux périphériques
d'E/S (affichage d'un message d'erreur !)

= Un appel de procédure obéit a fonctionnement
synchrone : une instruction suivant un appel de
procedure ne peut pas s'executer tant que la
procédure appelée n'est pas terminee

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 124

i Le protocole RPC

= Il doit définir le format du call (message du

client vers le serveur), le format des arguments
de la procédure, le format du reply (résultats)

= Il doit permettre d'identifier la procédure a
executer par le serveur quand un call arrive

= Il doit permettre d'authentifier la demande
(problemes de sécurite)

= Quelles machines distantes sont autorisées a executer
la procédure ?

= Quels utilisateurs sont autorisés a exécuter la
procédure ?

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 125

i L'implementation de SUN

= Sun Micros¥{stems a développé une technologie RPC
gitef « Sun RPC » devenue aujourd'hui un standard
e fait

s NFS (Network File Sytem) repose sur les Sun RPC

= Les Sun RPC définissent :

= le format des messages que I'appelant (stub client) emet
bour déclencher la procédure distante sur un serveur

= |le format des arguments de la procédure
e format des résultats de la procedure

. P055|b|I|te d'utiliser UDP ou TCP pour les
communications

= XDR assiste les RPC pour assurer le fonctionnement
dans un environnement heterogene (representation
standard des arguments et resultats...)

Olivier Glick M2 SRS - Admin Systemes et Réseaux 126

i Identification des procédures distantes

= Un programme distant correspond a un serveur avec
ses procedures et ses données propres

= Chaque programme distant est identifié par un entier
uniqgue code sur 32 bits utilisé par 'appelant

= Les procédures d'un programme distant sont
identifiées séquentiellement par les entiers 0, 1, ..., N

= Une procédure distante est identifiee par le triplet
(program, version, procedure)

= program identifie le programme distant
= version identifie la version du programme

= procedure identifie la procédure
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 127

Identification des procédures distantes

= La procédure de numero 0 permet de tester la
disponibilité du service
= Un identifiant de programme peut correspondre

a plusieurs processus de service (mount/showmount)

Nom Identifiant Description
portmap 100000 port mapper

rstat 100001 rstat, rup, perfmeter
ruserd 100002 remote users

nfs 100003 Network File System
ypserv 100004 Yellow pages (NIS)
mountd 100005 mount, showmount
dbxd 100006 debugger

ypbind 100007 NIS binder
etherstatd 100010 Ethernet sniffer
pcnfs 150001 NFS for PC

Olivier Gluck

M2 SRS - Admin Systémes et Réseaux

128

i La sémantique "au moins une fois"

= Les RPC sur un protocole de transport non fiable
(UDP)

= Si un appel de procédure distante s'executant sur UDP ne
retourne pas, I'appelant ne peut pas savoir si la procédure
a ete exécutée ou si la réponse a été perdue

= du coté de I'appelant : la réception d'un reply signifie
uniguement que la procédure distante a été exécutée au
moins une fois

= du coté de serveur : un serveur recevant plusieurs fois la
méeme requéte ne peut pas savoir si le client s'attend a une
unique exécution de la procédure ou bien s'il s'agit
effectivement de N exécutions distinctes de la méme proc.

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 129

La sémantique "au moins une fois"

= Le concepteur d'une application RPC utilisant UDP doit

prendre en compte le fait que la non réeception d' un
reply ne S|gn|f|e pas que la procédure distante n'a

pas ete exécutee...

= Exemple :

= lecture dans un fichier distant : pas génant si une demande
de lecture a genere deux executions de la procedure

= ecriture dans un fichier distant : génant s'il s'agit d'un ajout
en fin de fichier ; la chaine peut étre ajoutée deux fois au
lieu d'une seule...

= Les procédures doivent étre idempotentes :

= —-> pas de procedure d'ajout en fin de fichier mais une
procédure d'écriture a telle position (ajout d'un parametre

précisant ou écrire dans le fichier)
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 130

i Communications client/serveur

= Les sockets utilisent un well-known port pour
contacter un serveur distant (ex: telnet=port 23)

= Les clients RPC ne connaissent que l'identifiant
du programme RPC distant et le numéro de
procedure (ex: 100003 pour NFS)

= Pourtant, les communications sous-jacentes se
font en mode client/serveur : I'appelant doit

connaitre I'adresse (IP, port) utilisée par le
programme RPC distant (ex: nfsd)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 131

i Communications client/serveur

= Le numeéro de port du processus serveur est
attribué dynamiquement quand il démarre

« --> car le nombre de programmes RPC (identifiant sur
32 bits) est potentiellement supérieur au nombre de
well-known ports (numero de port sur 16 bits, ports
réservés entre 0 et 1023)
= Un processus spécial, le démon portmap (ou
rpcbind) maintient une base de données
renseignant les associations locales entre

numeéro de port et programme RPC

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 132

i Le processus portmap (rpcbind)

= lorsqu'un programme RPC (serveur) démarre, il alloue

dynamiguement un numeéro de port local, contacte le
bort mapper de la machine sur laquelle il s'exécute,
ouis informe ce dernier de |'association

= lorsqu'un client désire contacter un programme RPC
sur une machine distante, il interroge d'abord le port
mapper de cette machine pour connaitre le port de
communication associé au service RPC

= le port mapper est lui méme un programme RPC
(100000) mais il est le seul a utiliser un port alloué
statiquement : le port 111/UDP et le port 111/TCP

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 133

Le processus portmap (rpcbind)

Programme) € programme communique
> | Port Mapper

RPC serveur

le quadruplé (numeéro de
protocole, numéro RPC,

numero de version, numeéro
1 de port) 1
TCP|{UDP TCP UDP
sockets allouées dynamiquement sockets du port
au programme RPC mapper = 111

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 134

i Le processus portmap (rpcbind)

= Les procédures du port mapper
= 0 : fonction vide (teste la présence de portmap)
= 1 : enregistrement d'un service (local)
=« 2 : annulation d'un service (local)

= 3 : demande du numéro de port d'un service
enregistré localement

= 4 : liste tous les services enregistrés localement

= 5 : appel d'une procédure distante via le port mapper
--> permet de "pinger" une procédure distante

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 135

Utilisation du port mapper (rpcbind)

RPC Client Host

|

RPC Server Host

Get Port No. of RPC Server

(i)

o

Port No. |(xyz)

RPC
client

program

Call/reply

Portmap |g
Register with:
{Program No.,
Version No.,
Procedure No. and

(xyz) Protocol Used}
RPC —
server

program

136

Le format des messages RPC

Message ID Numeérotation des CALL/REPLY

Message type CALL ou REPLY

RPC version number | Version de la librairie RPC

\
REMOTE program
REMOTE program version | > Identifie la procédure distante

REMOTE procedure

-/
e - - Plusieurs types possibles (par ex.
Authentification fields UNIX : uid, gid, ..)

Le format est de longueur variable car le nombre
d'arguments de la procédure appelée est variable

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 137

i Les réponses possibles

= Plusieurs types de réponses possibles :

= SUCCESS : les résultats de la procédure sont renvoyés
au client

= RPC_MISMATCH : les versions RPC du client et du
serveur ne sont pas compatibles

=« AUTH_ERROR : probleme d'authentification

= PROG_MISMATCH : la procédure demandee n'est pas
disponible (probleme de version du programme, ...)

= Plus de détails : RFC 1057

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 138

i La représentation XDR

= Les champs des messages RPC sont spécifies
dans le format XDR (eXternal Data
Representation)

= XDR : représentation des données définie par
SUN Microsystems

= définit le type et le format des données échangées sur
le réseau (parametres de la procédure distante)

= permet d'échanger des données entre machines ayant
des représentations internes différentes

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 139

i La représentation XDR

= Pourquoi XDR ?

= répond au probleme d'échange d'informations typées ou
structurees entre deux machines heterogenes dans la
representation locale des donnees

= exemple : un entier de 32 bits ayant la valeur 260 sera
représenté par :
= 00000104h sur une machine de type "big endiar’' c'est
a dire avec les Most Significant Bytes ayant les adresses
basses et les LSB ayant les adresses hautes

= 40100000h sur une machine de type "/ittle endiarn’

= il faut adopter une représentation réseau et convertir sur
les extrémités les représentations locales en representation

réseau et vice-versa
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 140

i La représentation XDR

= L'hétérogénéité concerne :

= la taille des objets typés : un entier peut étre codé sur
2 octets ou 4 octets...

« l'ordre des octets : big endian ou little indian

= la représentation proprement dite d'un objet typeé :
combien de bits pour la mantisse et I'exposant
représentant un nombre flottant, représentation d'un
entier negatif...

= Inconvénient du protocole XDR :

= |'encodage est effectué méme si les machines source
et destination utilisent déja la méme représentation

= --> perte de performance
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 141

La représentation XDR

= XDR va par exemple specifier qu'un entier occupe
32 bits qui seront transferes dans l'ordre "big
endiar’" sur le réseau

= Si I'émetteur ou le recepteur n'est pas "big endian’,
XDR fera la conversion de |'entier
= Le probleme se posait deja pour les transmissions
par socket des adresses IP et numeéros de port

= fonctions de conversion :

= htons () et htonl () : représentation locale -->
représentation réseau

« ntohs () etntohl () : representation reseau -->
représentation locale

= Ce probleme ne se pose pas pour transferer un fichier :
transfert brut d'une séquence d'octets sans interpréeter

son contenu
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 142

La représentation XDR

Type Taille Description
int 32 bits |entier signé de 32 bits
unigned int 32 bits |entier non signé de 32 bits
bool 32 bits |valeur booléenne (0 ou 1)
enum arb. type énuméré
hyper 64 bits |entier signé de 64 bits
unsigned hyper 64 bits |entier non signé de 64 bits
float 32 bits |virgule flot. simple précision
double 64 bits |virgule flot. double précision
opaque arb. donnée non convertie (sans type)
fixed array arb. tableau de longueur fixe de n’importe quel
autre type
structure arb. agrégat de données
discriminated union |arb. structure implémentant des formes alternatives
symbolic constant |arb. constante symbolique
void 0 utilisé si pas de données
string arb. chaine de car. ASCII
Olivier Gliick M2 SRS - Admin Systemes et Réseaux 143

Les RPC sous UNIX

= Le fichier /etc/rpc

= |'équivalent de /etc/services pour les sockets
(annuaire des services)

= contient les informations relatives aux programmes RPC :
nom du service, numéro de programme, listes d'alias

root@192.168.69.2# cat /etc/rpc

portmapper 100000 portmap sunrpc
rusersd 100002 rusers

nfts 100003 nfsprog

ypserv 100004 vypprog nis
mountd 100005 mount showmount

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 153

Les RPC sous UNIX

= La commande rpcinfo

= permet d'interroger le port mapper pour connaitre les
services RPC disponibles la machine ou il s'exécute
(procédure n° 4 du port mapper)

rpcinfo -p [host]
(par défault, host = localhost)

= permet de s'assurer de la disponibilité d'un service RPC
particulier (exécution de la procédure 0 du service)

rpcinfo -u host prog num [ver num] (UDP)
rpcinfo -t host prog num [ver num] (TCP)
(par défault, ver_num = 1)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 154

Les RPC sous UNIX

root@192.168.69.1# rpcinfo -p 192.168.90.2

program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100004 2 udp 954 ypserv
100004 1 udp 954 ypserv
100004 2 tcp 957 ypserv
100004 1 tcp 957 ypserv
100007 2 udp 959 ypbind
100007 1 udp 959 ypbind
100007 2 tcp 962 ypbind
100007 1 tcp 962 ypbind

root@192.168.69.1# rpcinfo -u 192.168.90.2 ypserv
program 100004 version 1 ready and waiting
program 100004 version 2 ready and waiting

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 155

Les RPC sous UNIX

= Sur le client (192.168.69.1)
root@192.168.69.1# rpcinfo -u 192.168.69.2 nfs
rpcinfo: RPC: le programme n'est pas enregistré

Le programme 100003 n'est pas disponible.
root@192.168.69.1# rpcinfo -p 192.168.69.2

Aucun programme enregistré sur 1'hdte cible

= Sur le serveur (192.168.69.2)
root@192.168.69.2# rpcinfo -p 192.168.69.2

No remote programs reglstered.
root@192.168.69.2# rpcinfo -p | grep nfs
100003 2 udp 2049 nfs

100003 3 udp 2049 nfs
= I| faut autoriser les connexions RPC extérieures

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 156

i Les RPC sous UNIX

= Comme pour les démons utilisant les sockets, il est
possible de lancer dynamiquement le processus d'un

serveur RPC uniguement quand un client sollicite le
service (via le demon inetd)

= II suffit d'ajouter une entrée par service RPC dans le
fichier /etc/inetd.conf

services RPC

rpc 100002 1-2 dgram udp wait root /sbin/ypserv ypserv -d

= Quand le processus inetd se lance, il réalise

I'enregistrement des services RPC qu'il prend en
compte aupres de portmap

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 158

!'_ Exercices

i Lecture bloguante/non bloquante

= Une application (client ou serveur) veut lire
exactement 100 caracteres sur une socket
(mode connecte)

= Décrire I'algorithme correspondant et donnez les
avantages/inconvénients

= dans le cas d'une lecture complétement blogquante
(read retourne quand tout est lu)

= dans le cas standard des sockets (« au moins 1 »)

= dans le cas d'une lecture non bloquante (-1 si
EWOULDBLOCK)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 160

Exemple de programmation C/S g

= 1. Quel est le service propose par cette application client/serveur ?
Combien d'arguments sont necessaires au lancement du client ?

Quels sont-ils ?

= 2. Quel port utilise le serveur ? Aurait-on pu choisir une autre
valeur ? Quel port utilise le client ? Comment est-il attribué et par
quelle primitive ? S'agit-il d'une connexion en mode connecte ou
non et est-ce justifieé ?

= 3. A quoi correspondent les constants BUF_SIZE et QUEUE_SIZE ?

= 4. Quand est-ce que le serveur s'arréte ? Que fait le serveur une fois
les initialisations terminées (décrire le cas ou il y a des connexions
pendantes et le cas inverse) ?

= 5. Que se passe t-il si le client est lancé avant que le serveur n'ait
démarre ?

= 6. Quand est-ce que le client s'arréte si la connexion a réussi ? Que
fait le client une fois la connexion établie ?

= /. Que pensez-vous de la structure actuelle du serveur ? Peut-il
satisfaire un grand nombre de connexions ? Expliquez. Proposez une
solution plus adapteée.

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 161

Un mini-inetd a

= Voici la page man du programme mini-inetd ainsi que son code.

= 1. Complétez la partie DESCRIPTION de la page man. Représentez
a l'aide d'un schéma/diagramme la structure algorithmique du
programme.

= 2. Dans le code ci-apres, le code de la fonction tcp listen() a

volontairement été omis. Quelles sont les parametres et la valeur de
retour de cette fonction ? Quelles sont les opérations qui doivent y
étre réalisées et ou les parametres interviennent-ils ?

= 3. Commentez le nom du programme. Quelles sont les différences et
similitudes entre mini-inetd et inetd ?

= 4. Comment modifieriez vous la structure donnée a la question 1
pour que mini-inetd puisse traiter plusieurs couples (port,

program) passeés en arguments ?

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 162

