Partie1:
commu

Architecture et
ations Client/Serveur

Olivier GLUCK
Université LYON 1/Département Informatique
Olivier.Gluck@univ-lyon1.fr
http://perso.univ-lyon1.fr/olivier.gluck

®~

Copyright

= Copyright © 2025 Olivier Gliick; all rights reserved
= Ce support de cours est soumis aux droits d'auteur et n'est
donc pas dans le domaine public. Sa reproduction est
cependant autorisée a condition de respecter les conditions
suivantes :
= Sice document est reproduit pour les besoins personnels du
reproducteur, toute forme de reproduction (totale ou partielle) est
autorisée a la condition de citer l'auteur.
Si ce document est reproduit dans le but d'étre distribué & des tierces
personnes, il devra étre reproduit dans son intégralité sans aucune
modification. Cette notice de copyright devra donc étre présente. De
plus, il ne devra pas étre vendu.
Cependant, dans le seul cas d'un enseignement gratuit, une
participation aux frais de reproduction pourra étre demandée, mais elle
ne pourra étre supérieure au prix du papier et de I'encre composant le
document.
= Toute reproduction sortant du cadre précisé ci-dessus est interdite
sans accord préalable écrit de l'auteur.

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 2

:- Remerciements

= Certains transparents sont basés sur des
supports de cours de :
= Olivier Aubert (LYON 1)
= Bénédicte Le Grand (UPMC)

= Des figures sont issues des livres cités en
bibliographie

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 3

3 Plan de la premiére partie

= Organisation pratique et contenu du module

= Bibliographie

= Quelques rappels : Internet et le modéle TCP/IP
= Architecture Client/Serveur

= Communications inter-processus

= Les sockets

= Les appels de procédures distantes

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 4

Organisation pratique et contenu
du module

@

Le module AdminSR

AdminSR : 15h de cours + 24h TP (Admin. Unix et Windows)
= Admin Unix : 10,5h CM + 12h TP

= Admin Windows : 4,5h CM + 12h TP

= Retour expérience messagerie CISR : 4,5h CM

= Travaux pratiques :
- Salles Réseaux : TPR1, TPR2, TPR3
= pas d'accés extérieur
« possibilité de cablage
= root sur les machines
= Evaluation : un contréle final, des notes de CC

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 6

Le module AdminSR : objectifs

= Former des administrateurs systémes et réseaux

= = connaitre le modéle Client/Serveur (90% des
applications de I'Internet)

= > avoir des notions de conception d'applications
Client/Serveur

= = connaitre les protocoles applicatifs de I'Internet et
savoir mettre en place les services associés sous Linux
et sous Windows

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 7

3 Le module AdminSR : contenu (1)

= Modéle Client/Serveur et applications
= Architecture et communication de type Client/Serveur
= Modéle Client/Serveur, middleware
= Conception d'une application Client/Serveur
= Les modes de communication entre processus
= Les sockets TCP/IP
= Les serveurs multi-protocoles et multi-services

= Les appels de procédures distantes, I'exemple des
RPC

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 8

2 Le module AdminSR : contenu (2)

= Applications Client/Serveur sur TCP/IP
= Connexions a distance (telnet, rlogin, ssh, X11, ...)
= Transfert de fichiers et autres (FTP, TFTP, NFS, SMB)
= Gestion d'utilisateurs distants (NIS)
= Le courrier électronique (POP, IMAP, SMTP, WebMail)
= Les serveurs de noms (DNS)
= Un annuaire fédérateur (LDAP)
= Le web (HTTP) (déja vu)

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 9

3 Le module AdminSR : contenu (3)

= Administration systéme et réseaux des technologies
Windows :
= Architecture en Domaines
= Gestion des utilisateurs (Active Directory)
= Profils errants, stratégie de groupe
= Systéme de fichiers et sécurité
= Services réseaux
= Scripts, base de registre
= Gestion des disques (partitions et raid)
= Sauvegardes et surveillance d'un parc, cluster

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 10

10

2 Bibliographie

=« Rdsegux », 4iéme édition, Andrew Tanenbaum, Pearson
Education, ISBN 2-7440-7001-7

= « La communication sous Unix », 2iéme édition, Jean-Marie
Rifflet, Ediscience international, ISBN 2-84074-106-7

» « Apalvse structurée des réseayx », 2ieme édition, J. Kurose et
K. Ross, Pearson Education, ISBN 2-7440-7000-9

« », W. R. Stevens,
Addison Wesley, ISBN 0-201-63346-9

« JCP/P. Architectu olocoles, applications », 4ieme
édition, D. Comer, Dunod, ISBN 2-10-008181-0

Internet...

= http://www.w3.0rg/
« http://www.rfc-editor.org/ (documents normatifs dans TCP/IP)

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 11

Quelques rappels : Internet et le
modele TCP/IP

11

12

Le visage de I'Internet (1)

= Un réseau de réseaux

= Un ensemble de logiciels et de protocoles
Basé sur l'architecture TCP/IP

Fonctionne en mode Client/Serveur

Offre un ensemble de services (e-mail, transfert
de fichiers, connexion a distance, WWW, ...)

Une somme « d'inventions » qui s'accumulent

= mécanismes réseau de base (TCP/IP)

= gestion des noms et des adresses

= des outils et des protocoles spécialisés
= le langage HTML

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 13

3 Le visage de I'Internet (2)

= Une construction a partir du « bas »
= réseau local (laboratoire, département)
= réseau local (campus, entreprise)
= réseau régional
= réseau national
= réseau mondial
= 3 niveaux d'interconnexion
= postes de travail (ordinateur, terminal...)
= liaisons physiques (cable, fibre, RTC...)
= routeurs (équipement spécialisé, ordinateur...)

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 14

13

14

Le visage de I'Internet (3)

= Un ensemble de sous-réseaux indépendants
(Autonomous System) et hétérogénes qui sont
interconnectés (organisation hiérarchique)

Liason ovée europés
Iransatiantique

plusieurs backbone / o
A 0)

LA N
Ethemet IP LAN Token Fing IP Ethemet P
Olivier Gliick 0 15

3 Le visage de I'Internet (4)

int d
d'interconnexion

Modéle Client/Serveur
Hétérogénéité
Facteur d'échelle

ISP aux US

Olivier Gliick

15

16

L'architecture de TCP/IP (1)

= Une version simplifiée du modéle OSI
= Application FTP, WWW, telnet, SMTP, ...
= Transport TCP, UDP (entre 2 processus aux extrémités)
= TCP : transfert fiable de données en mode connecté
= UDP: tr§nsfert non garanti de données en mode non

connecté
= Réseau IP (routage)
= Physique transmission entre 2 sites
TCP Transport Control Protocol
ubp User Datagram Protocol
P Internet Protocol
Olivier Glick M2 SRS - Admin Systémes et Réseaux 17

L'architecture de TCP/IP (2)

HTTP

FTP ||TELNET|| SMTP || DNS || SNMP || NFS ||

sockets lications (p

1P
Réseaux locaux
stP " Pe " ATM | FRelay Ethernet, Token Ring, ...
. Matgériel,
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 18

17

18

L'architecture de TCP/IP (3)

= Deux machines sur un méme sous réseau IP

Ordinateur A Ordinateur B
Protocole FTP
Réseau logique IP

Protocole TCP

Linux
kernel

L'architecture de TCP/IP (4)

= Prise en compte de I'hétérogénéité
Ordinateur A

Protocole FTP.

kernel

trames
Pilote Protocole Ethernet Pilote Pilote | Ethernet Pilote

Ethernet [" éceau de type |__Ethernet NIe | Ethernet |‘ '| Ether [Token) 1 Token Ring nie

[Ethernet [sous-réseau de type sous-réseau de type
ern oken King
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 19 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 20
19 20

L'architecture de TCP/IP (5) L'architecture de TCP/IP (6)

Couche transport : communications entre applis

[P < e
) [153<"" Neeud d'extrémité
Neeud intermédiaire : routeur Flux TCP datagramme (end systems)

(matériel ou logiciel)
= IP - protocole d'interconnexion, best-effort
= acheminement de datagrammes (mode non connecté)
= peu de fonctionnalités, pas de garanties

= simple mais robuste (défaillance d'un nceud intermédiaire)
Olivier Glick M2 SRS - Admin Systémes et Réseaux 21

= TCP - protocole de transport de bout en bout
= uniquement présent aux extrémités
= transport fiable de segments (mode connecté)

= protocole complexe (retransmission, gestion des

erreurs, séquencement, ...)
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 22

21

22

L'architecture de TCP/IP (7)
S

ererere | domes
appiicatif|_utiisateur |

- -
L=]

- données applicatives

[t | données applicatives
Ethernet| IP | données applicatives | LT

i trame -
Olivier Giick M2 SRS - Admin Systémes et Réseaux 23

Identification des protocoles (1)

HTTP || FTP ||TELNET|| SMTP || DNS || SNMP ||BOOTP| Izl

Numéro de port=21 port=25 port=161
port (dans port=80 port=23" port=53 port=67 ou 68
I'en-téte TCP

[}

EtherType (dans 0 types= 5
I'en-téte de la trame) 6
Ethernet ou
SNAP

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 24

23

24

2 Identification des protocoles (2)

= Une adresse de transport = une adresse IP + un
numéro de port (16 bits) -> adresse de socket
Une connexion s'établit entre une socket source et
une socket destinataire -> une connexion = un
quintuplé (proto, @src, port src, @dest, port dest)
Deux connexions peuvent aboutir a la méme
socket

Les ports permettent un multiplexage ou
démultiplexage de connexions au niveau transport
Les ports inférieurs a 1024 sont appelés ports

reserves
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 25

Identification des protocoles (3)

Multiplexage/demultiplexage: exemples

.
host A [dest. porf: 23]
]

ource porTx
desf. po server B
&
- ‘
fource port:Z3|
PR I E—
est. port: x Sourc our:
Y e e

|source port: y | [source port: x
App telnet simple et port: 53] [desr- sort 0]

vy

Web client
host C

Source IP: A
Dest IP: B
Web client @ [source port: x

host A des. port: 80

Web
server B

Serveur Web

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 2

25

26

Le protocole UDP

= UDP (RFC 768) - User Datagram Protocol
= protocole de transport le plus simple
= service de type best-effort (comme IP)
= les datagrammes UDP peuvent étre perdus
= les datagrammes UDP peuvent arriver dans le désordre
= mode non connecté : chaque segment UDP est traité
indépendamment des autres
= Pourquoi un service non fiable sans connexion ?
= simple donc rapide (pas de délai de connexion, pas d'état
entre émetteur/récepteur)
= petit en-téte donc économie de bande passante

= sans contréle de congestion donc UDP peut émettre aussi
rapidement qu'il le souhaite

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 27

= Performance sans garantie de délivrance
= Souvent utilisé pour les applications multimédias
= tolérantes aux pertes
= sensibles au débit
= Autres utilisations d'UDP
= applications qui envoient peu de données et qui ne
nécessitent pas un service fiable
= exemples : DNS, SNMP, BOOTP/DHCP
= Transfert fiable sur UDP
= ajouter des mécanismes de compensation de pertes
(reprise sur erreur) au niveau applicatif
= mécanismes adaptés a |'application
= exemple : NFS / RPC

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 28

27

28

2 Le datagramme UDP
« 32 bits .
1 L
Port source Port destination
8 octets
Longueur segment Checksum UDP
Qlj Données applicatives (message) Qlj
Taille totale du segment Total de contréle du segment
(en-téte-+données) (en-téte+données)
optionnel : peut étre a 0
UDP = IP + multiplexage (adresse de transport) !!
Olivier Gliick M2 SRS - Adrmin Systémes et Réseaux 29

Le protocole TCP

= Transport Control Protocol (rFc 793, 1122, 1323, 2018,
2581) ion: les RFCs ne spécif pas tout - dd
! choses dépendent de I'implémentation
Transport fiable en mode connecté
= point a point, bidirectionnel : entre deux adresses de
transport (@IP src, port src) --> (@IP dest, port dest)
= transporte un flot d'octets (ou flux)
= I'application lit/écrit des octets dans un tampon
= assure la délivrance des données en séquence
= contrdle la validité des données regues
= organise les reprises sur erreur ou sur temporisation
= réalise le contrdle de flux et le contréle de congestion
(a l'aide d'une fenétre d'émission)
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 30

29

30

2 Exemples de protocole applicatif (1)

= HTTP - HyperText Transport Protocol
= protocole du web

= échange de requéte/réponse entre un client et un
serveur web

= FTP - File Transfer Protocol
= protocole de manipulation de fichiers distants
= transfert, suppression, création, ...
= TELNET - TELetypewriter Network Protocol
= systéme de terminal virtuel
= permet |'ouverture d'une session distante

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 31

2 Exemples de protocole applicatif (2)

= SMTP - Simple Mail Transfer Protocol
= service d'envoi de courrier électronique
= réception (POP, IMAP, IMAPS, ...)
= DNS - Domain Name System
= assure la correspondance entre un nom symbolique
et une adresse Internet (adresse IP)
= bases de données réparties sur le globe
= SNMP - Simple Network Management Protocol
= protocole d'administration de réseau (interrogation,
configuration des équipements, ...)
= Les sockets - interface de programmation permettant
I'échange de données (via TCP ou UDP)
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 32

31

32

!L Architecture Client/Serveur

@

Les applications réseau (1)

pplications = la raison d'étre des réseaux infos

= Profusion d'applications depuis 40 ans grace a
I'expansion d'Internet
= années 1980/1990 : les applications "textuelles"
= messagerie électronique, accés a des terminaux
distants, transfert de fichiers, groupe de discussion
(forum, newsgroup), dialogue interactif en ligne
(chat), la navigation Web
= plus récemment :
= les applications multimédias : vidéo a la demande
(streaming), visioconférences, radio et téléphonie sur
Internet
= la messagerie instantanée

= les réseaux sociaux
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 34

33

34

2 Les applications réseau (2)

= L'application est généralement répartie (ou
distribuée) sur plusieurs systémes
= Exemples :
= L'application Web est constituée de deux logiciels
communiquants : le navigateur client qui effectue une
requéte pour disposer d'un document présent sur le
serveur Web
= L'application te/net : un terminal virtuel sur le client, un
serveur telnet distant qui exécute les commandes
= La visioconférence : autant de clients que de
participants
= --> Nécessité de disposer d'un protocole de
communication applicatif !

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 35

Terminologie des applications réseau

= Processus :
= une entité communicante
= un programme qui s'exécute sur un hdte d'extrémité
= Communications inter-processus locales :
= communications entre des processus qui s'exécutent
sur un méme hote
= communications régies par le systéme d'exploitation
(tubes UNIX, mémoire partagée, ...)
= Communications inter-processus distantes :
= les processus s'échangent des messages a travers le
réseau selon un protocole de la couche applications
= nécessite une infrastructure de transport sous-jacente

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 36

35

36

Protocoles de la couche Applications

Le protocole applicatif définit :

= le format des messages échangés entre les processus
émetteur et récepteur

3 Le modeéle Client / Serveur

= Idée : l'application est répartie sur différents
sites pour optimiser le traitement, le stockage...

= les types de messages : requéte, réponse, ... = Le dlient . N
Fordre d'envoi des messages = effectue une demande de service auprés du serveur
. A
(requéte)
- Exﬁl:rnT[;IeS de protocoles applicatifs : . = initie le contact (parle en premier), ouvre la session
. H p§ur le Web, POP/IMAP/sMTP Pour le c?urrler = Le serveur
électronique, SNMP pour I'administration de réseau,, o . .
= Ne pas confondre le protocole et I'application ! : Z:E laalpeacr:l]et:Z;:r:z:zaettt:c?:;::sre un service
= Application Web : un format de documents (HTML), ,
un navigateur Web, un serveur Web & qui on = répond au service demandé par le client (réponse)
demande un document, un protocole (HTTP)
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 37 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 38
37 38

1 Le modele Client / Serveur

= Le client et le serveur ne sont pas identiques, ils
forment un systéme coopératif
= les parties client et serveur de I'application peuvent
s'exécuter sur des systémes différents

= une méme machine peut implanter les cotés client ET
serveur de |'application

= un serveur peut répondre a plusieurs clients
simultanément

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 39

]- Des clients et des serveurs...

Plusieurs clients, un serveur :

Un client, un serveur :

—fe]

Requéte/Réponse

Le serveur traite plusieurs requétes
simultanées

Un client, plusieurs serveurs :

Le serveur contacté peut faire appel a un
service sur un autre serveur (ex. SGBD)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 40

39

40

Le modéle Client / Serveur
Application C/S
Ricee=sIE Processus | 3 ppjication est répartie sur
SC"%M Protocole applicatif —SSE'VF”’ le client et le serveur qui
WAL YSEEME | ialoguent selon un protocole
(0S) P N (05) applicatif spécifique
Matériel (‘ Réseau) Matériel
)
Le Web
—— ——[Serveur
Navigateur
HTTP Apache
L'exemple du Web Windows P Linux
Wod Jai)
odem Tht 77| Ethernet
ADSL (Internet)
Olivier Glick M2 SRS - Admin Systémes etwes. - a1

Le modeéle Client / Serveur

[Applications
'
Ny

Client B

I'application

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 42

41

42

2 Exemple d'application client/serveur

= Le client lit une ligne a partir de I'entrée standard
(clavier) et I'envoie au serveur

= Le serveur lit la ligne regue et la convertit en
majuscules

= Le serveur renvoie la ligne au client

= Le client lit la ligne regue et I'affiche sur la sortie
standard (écran)

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 43

2 Exemple d'application client/serveur

= DAYTIME (RFC 867) permet au client d'obtenir la
date et I'neure du serveur
= Le protocole spécifie
= I'échange des messages :
= dés qu'un serveur regoit un message d'un client, il

renvoie une chaine de caractéres contenant la date et
I'heure

= le contenu du message client n'est méme pas regardé
= le format de la chaine renvoyée : 1 ligne ASCII
= Par exemple " Weekday, Month Day, Year Time-Zone"
"Tuesday, February 22, 1982 17:37:43-PST"

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 44

43

44

Interface de programmation réseau

= Il faut une interface entre |'application réseau et
la couche transport

= le transport n'est qu'un tuyau (TCP ou UDP dans
Internet)

= |'API (Application Programming Interface) n'est que le
moyen d'y accéder (interface de programmation)

= Les principales APIs de |'Internet
= les sockets
= apparus dans UNIX BSD 4.2
= devenus le standard de fait

2 Interface de programmation réseau

®

Application C/S

Processus Processus
Ce"t Protocole applicatif L Serveur
o] Ed
=]

développeur de
Iapplication

Du ressort du [

Interface d'accés
au transport

Du ressort du | | TCP/IP - TCP/IP
systeme ¥\
dexplotation | | Matériel |~ frgermer)| Matérie

~—
June socket : interface locale a I'hdte, créée par I'application, contrdlée par I'0S]

= les RPC : Remote Procedure Call - appel de Porte de entre le pi client et le p serveur
procédures distantes
Olivier Glick M2 SRS - Admin Systémes et Réseaux 45 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 46
45 46

Application C/S - récapitulatif

= Une application Client/Serveur, c'est

= une partie cliente qui exécute des requétes vers un

serveur

une partie serveur qui traite les requétes clientes et

y répond

un protocole applicatif qui définit les échanges

entre un client et un serveur

= un acces via une API (interface de programmation)
a la couche de transport des messages

]- Le Middleware

= Grossiérement : la gestion du protocole
applicatif+I'API d'accés a la couche transport+des
services complémentaires

= C'est un ensemble de services logiciels construits
au dessus d'un protocole de transport afin de
permettre I'échange de requéte/réponse entre le
client et le serveur de maniére transparente

= Bien souvent les parties cliente et serveur ne [ciient | [serveur |
sont pas écrites par les mémes grogrammeurs \ Middleware |
(Navigateurs Web/Serveurs Web) --> role
important des RFCs qui spécifient le protocole ! \ (e |
Olivier Glick M2 SRS - Admin Systémes et Réseaux 47 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 48
47 48

:- Le Middleware

= Complément de services du réseau permettant la

réalisation du dialogue client/serveur :

= prend en compte les requétes de I'application cliente

= les transmet de maniére transparente a travers le
réseau jusqu'au serveur

= prend en compte les données résultat du serveur et
les transmet vers |'application cliente

L'objectif essentiel du middleware est d'offrir aux

applications une interface unifiée permettant

l'accés a I'ensemble des services disponibles sur

le réseau : I'API

]- Fonctions d'un Middleware

= Procédures d'établissement/fermeture de connexion
= Exécution des requétes, récupération des résultats
= Initiation des processus sur différents sites

= Services de répertoire

= Accés aux données a distance

= Gestion d'accés concurrents

= Sécurité et intégrité (authentification, cryptage, ...)
= Monitoring (compteurs, ...)

= Terminaison de processus

= Mise en cache des résultats, des requétes

Olivier Glick M2 SRS - Admin Systémes et Réseaux 49 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 50
49 50
| Architecture of a Grid -
- . ' . .
:# [T —, | | : 3 Conception d'une application C/S
- ‘specialized (e.g. high end vis workstations, PDAs) = £
e = Comment découper une application informatique
- - - LT | o en clients et serveurs ?
g Lt pcan) H : . : 3 .
= = Une application informatique est représentée
Grid Services ‘Application Services selon un modéle en trois couches :
[cri ices, a5 Java Based Services] = la couche présentation (interface Homme/Machine) :
E 5 o I Res % u..amnm”mué.::l.g Mmmm" iy = gestion dg l'affichage...) A
i3 T e ety = = =] = la couche fraitements (ou logique) qui assure la
- — fonctionnalité intrinséque de I'application (algorithme)
[Copmectmsednetworks] | opticatnetworks | [toernet__] = la couche données qui assure la gestion des données
de I'application (stockage et accés)

[| | e || [

Distributed

o Resources

s e Réspaux &

i - 51| Olivier Gliick M2 SRS - Admin Systémes et Réseaux 52
ion,event GrdF TP servers
51 52
Conception d'une application C/S 3 Conception d'une application C/S
= Exemples de découpage Client/Serveur : = Autres exemples
= le module de gestion des données peut étre hébergé
par un serveur distant (SGBD, serveur web) .
. . A BD distribuée Serveur de fichiers Emulation de terminaux
= le module de gestion de I'affichage peut également
étre géré par un serveur distant (un terminal X par % {
exemple) 3 5
Logique | Logique |
Données Données Logique
-
Applets, JavaScript, Logique L
Le web X Window
PHP, CGI, Serviets, ...
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 53 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 54
53 54

Conception d'une application C/S

= Modéle de Gartner pour les systémes a 2
niveaux (2-tiers) :

Conception d'une application C/S

= Modéle de Gartner pour les systémes a 3
niveaux (3-tiers) :

N IC 1 In 1k 1
hé-emzﬂu{ I | ,,{ Client 1 | F 1
crient f T s B (e | [toome
togiaue | [togiaue | | Logiae
Données
Données
Serveur demilieu | togiaue | [togiae | [togiae | [soviaue |
jique jique jique
Logiq | Logiq | Logiq
Serveur [| D | | b | | |
BD Données Transactions Présentations Présentations Logique Logique
réparties distantes réparties distantes réparties
Pt serveur [Dowies | [[oomiss | [oomiss | [loomis |
Olivier Glick M2 SRS - Admin Systémes et Réseaux 55 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 56

poursuite du traitement

Olivier Gliick

Les modes de communication

= Communication en mode non connecté

[client] [

Réseau ‘ ‘ Serveur ‘

message requéte

réveil du serveur

réception du résultat
message réponse

M2 SRS - Admin Systémes et Réseaux 57

Les modes de communication

= Communication en mode connecté
[client] [

Réseau ‘ ‘ Serveur ‘

de i prise en compte de
la i
Création d'un contexte

Emission de requétes Exécution des
de) requétes
ynchr
| de -
W prise en compte de

la déconnexion

déconnexion

Olivier Gliick

Libération du contexte

M2 SRS - Admin Systémes et Ré

57

58

ol

Serveur itératif ou concurrent

= Serveur itératif
= traite séquentiellement les requétes
= adapté aux requétes qui peuvent s'exécuter rapidement
= souvent utilisé en mode non connecté (recherche de la
performance)
= Serveur concurrent
= le serveur accepte les requétes puis les "délégue" a un
processus fils (traitement de plusieurs clients)
= adapté aux requétes qui demandent un certain
traitement (le codt du traitement est suffisamment
important pour que la création du processus fils ne soit
pas pénalisante)

= souvent utilisé en mode connecté
livier Gliick M2 SRS - Admin Systémes et Réseaux 59

Service avec ou sans état(s)

= Service avec états
= le serveur conserve localement un état pour chacun
des clients connectés : informations sur le client, les
requétes précédentes, ...
= Service sans état
= le serveur ne conserve aucune information sur
I'enchainement des requétes...
= Incidence sur les performances et la tolérance
aux pannes dans le cas ou un client fait plusieurs
requétes successives
= performance --> service sans état
= tolérance aux pannes --> service avec états
= Exemple : accés a un fichier distant
= RFS avec états, NFS sans état (pointeur de fichier...)

Olivier Gliick M2 SRS - Admin Systemes et Réseaux

59

60

10

!|~ Les communications inter-processus

(@)ven

]- Clusters

Olivier Gliick

M2 SRS - Admin Systémes et Réseaux 62

61

62

* Cluster Architecture
e

Parallel Programming Environment___|

2 Modele de fonctionnement

Application

¥ ¥ ¥ 2 ¥
Middleware (MPI, VIA, -..)

‘ Cluster Middleware ‘
- " o Noyau
PC/ PC/ PC/ PC/
= | = | = | =]
otk o e ook etk o e
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Carte réseau ‘ Firmware |
[Cluster i i |
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 63 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 64
63 64

:- Les schémas de communication

= Dés lors qu'une application est répartie, elle se
décompose en plusieurs processus qui doivent
communiquer (échanges de données)
= Deux grands types de schéma de communication
= communication par mémoire partagée (ou fichier)
= communication par passage de messages
= On retrouve ces deux schémas de communication
= dans des communications locales : entre processus
s'exécutant sur le méme hote
= dans des communications distantes : entre
processus s'exécutant sur des hétes distants

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 6

Communication par mémoire partagée

= Les processus se partagent une zone de

mémoire commune dans laquelle ils peuvent lire
et/ou écrire

Zone de mémoire partagée
ite(ead
@ o ®

entre P1 et P2
read() write()

= Intérét : communications transparentes,
limitation des copies mémoire
= Probléme : gestion de I'accés a une ressource
partagee
= probléme si deux écritures simultanées (ordre
d'ordonnancement, atomicité des opérations)
= les processus P1 et P2 doivent se synchroniser pour
accéder au tampon partagé (verrou, sémaphore, ...)
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 66

65

66

11

3 Communication par mémoire partagée

= Communications locales
= les deux processus s'exécutent sur la méme machine
donc peuvent se partager une partie de leur espace
d'adressage
= exemple : les threads s'exécutent dans le contexte
d'un méme processus
= Communications distantes
= la mémoire partagée est physiquement répartie
= le gestionnaire de mémoire virtuelle permet de
regrouper les différents morceaux selon un seul
espace d'adressage
= probléme de cohérence mémoire...

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 67

2 Les tubes de communication (pjpes)

= Communications locales type mémoire partagée

= le canal de communication est unidirectionnel (pas de
probléme de synchronisation)

= communications entre 2 processus uniquement : l'un
écrit dans le tube, l'autre lit
= Exemple : sh$ 1s -1 | wc -1

Création du tube et des processus fils

fork(); _(h) fork0);
ey — @ — [0

exec();
write()

d

M2 SRS - Admin Systémes et Réseaux 68

Olivier Gliick

67

68

Communication par passage de msg

= Les processus n'ont pas accés a des "variables"
communes
= Ils communiquent en s'échangeant des messages
= au moins deux primitives : send() et rec\)
= des zones de mémoire locales a chaque processus
permettent I'envoi et la réception des messages
= |'émetteur/récepteur doit pouvoir désigner le
récepteur/émetteur distant
= Problémes
= zones d'émission et réception distinctes ?
= nombre d'émetteurs/récepteurs dans une zone ?

= opérations bloquantes/non bloquantes ?
Olivier Glick M2 SRS - Admin Systémes et Réseaux 69

Communication par passage de msg

= I| faut éviter les écritures concurrentes : write
H L]

write
read/write

read/write]
read

= Pour se ramener a des communications point-a-

point

= --> dissocier le tampon d'émission et de réception

= --> avoir autant de tampons de réception que
d'émetteurs potentiels

= --> il ne reste plus alors au protocole qu'a s'assurer
que deux émissions successives (d'un méme émetteur)
n'écrasent pas des données non encore lues (contrdle
de flux)

Olivier Gliick

M2 SRS - Admin Systémes et Réseaux 70

69

70

2 Opérations bloquantes/non bloguantes

= Quand un appel a une primitive send() ou rec\)
doit-il se terminer ?
= Plusieurs sémantiques en réception :
= rec) peut rendre la main
= aussitdt (rec) non bloquant)
= quand les données ont été regues et recopiées

depuis le tampon de réception local (le tampon de
réception est de nouveau libre)

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 7

2 Opérations bloquantes/non bloquantes

= Plusieurs sémantiques en émission :
= send() peut rendre la main

= aussitdt (send() non bloquant)

= quand les données ont été recopiées dans le
tampon d'émission local (les données peuvent étre
modifiées au niveau de I'application)

= quand les données ont été recopiées dans le
tampon de réception distant (le tampon d'émission
local est de nouveau libre)

= quand le destinataire a consommé les données (le
tampon de réception est de nouveau libre)

Olivier Gliick

M2 SRS - Admin Systémes et Réseaux 72

71

72

2 Opérations bloguantes

= Le processus se bloque jusqu'a ce que
I'opération se termine :

Application Middleware

read() Appel systéme

- Attente de l'arrivée des

2 Opérations non bloguantes

= Intérét :

= le processus peut faire autre chose en attendant que
les données soient émises ou regues
= Le processus a tout de méme besoin d'étre

informé de la complétion de I'opération (lecture
ou écriture)

données I
- Recopie dans le tampon de = Deux possibilités :
I'application = attente active : appels réguliers a la primitive jusqu'a
., Retour complétion
= attente passive : le systéme informe le processus par
un moyen quelconque de la complétion de I'opération
(signaux par exemple)
Olivier Glick M2 SRS - Admin Systémes et Réseaux 73 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 74
73 74

Communication par signaux

= Mécanisme de communications locales inter-
processus (ou depuis le noyau vers un processus)
permettant de notifier un événement
= Principe : interruption logicielle quand I'événement
se produit
= Le processus
= indique les signaux qu'il souhaite capter (provoquant
son interruption)
= met en place un handler (fonction particuliére) qui sera
exécuté quand I'événement se produira

= Exemple : arrivée de données urgentes sur une

socket
Olivier Glick

M2 SRS - Admin Systémes et Réseaux 75

2 Opérations non bloguantes

Application Middleware

read(), ppel systeme |

'WOULDBLOCK Attente des
read) Appel systéme données

'WOULDBLOCK

| systéme
read() _ Appelsystéme |
Recopie
v Retour

Attente active

Olivier Gliick M2 SRS - Admin Systemes et Réseaux

75

76

2 Opérations non bloquantes

Application Middleware

signal()__Activer SIGIO
+ Retour

:- Désignation du destinataire/émetteur

= Pour faire du passage de messages, il est
nécessaire de désigner I'autre extrémité de la

Attente des communication
données = Désignation explicite
handler) _Signal SIGIO___ | = du ou des processus destinataire(s)/émetteurs
read(k " Appel systeme - R
— = Désignation implicite
Recopie . . .
Retour = recevoir un message de n'importe qui
v = émettre un message a n'importe qui (diffusion)
Attente passive = une phase d'établissement de connexion désigne les
deux entités communicantes
Olivier Glick M2 SRS - Admin Systémes et Réseaux 77 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 82
77

82

!L Les sockets

@

3 Les sockets - adressage

= Deux processus communiquent en émettant et
recevant des données via les sockets

= Les sockets sont des portes d'entrées/sorties
vers le réseau (la couche transport)

= Une socket est identifiée par une adresse de
transport qui permet d'identifier les processus de
I'application concernée

= Une adresse de transport = un numéro de port
(identifie I'application) + une adresse IP
(identifie le serveur ou I'hdte dans le réseau)

Olivier Gliick

M2 SRS - Admin Systémes et Réseaux 84

83

84

2 Les sockets - adressage

= Le serveur doit utiliser un numéro de port fixe vers
lequel les requétes clientes sont dirigées
= Les ports inférieurs a 1024 sont réservés :
= "well-known ports"
= ils permettent d'identifier les serveurs d'applications
connues
= ils sont attribués par I'TANA
= Les clients n'ont pas besoin d'utiliser des wel//-
known ports
= ils utilisent un port quelconque entre 1024 et 65535 a
condition que le triplet <transport/@IP/port> soit unique
= ils communiguent leur numéro de port au serveur lors de

la requéte (a I'établissement de la connexion TCP ou
dans les datagrammes UDP)

Olivier Gliick

M2 SRS - Admin Systémes et Réseaux 8

Les sockets en pratique

= Une socket est un fichier virtuel avec les opérations
d'ouverture, fermeture, écriture, lecture, ...
= Ces opérations sont des appels systéme
= Il existe différents types de socket associés aux
différents services de transport :
= stream sockets (connection-orfented) - SOCK_STREAM
= utilise TCP qui fournit un service de transport d'octets
fiable, dans I'ordre, entre le client et le serveur
= datagram sockets (connectionless) - SOCK_DGRAM
= utilise UDP (transport non fiable de datagrammes)
= raw sockets - SOCK_RAW

= utilise directement IP ou ICMP (ex. ping)
12 SF

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 86

85

86

:- Les sockets en pratique

Un descripteur de socket (sock_id) n'est qu'un point
d'entrée vers le noyau

3 Rappel - une connexion TCP

= Une connexion = (proto, @IP_src, port_src, @IP_dest, port_dest)

L'appli écrit._| TCP send buffer Client
Processus client ou serveur sock_id=2 B
Appel systé 4= = BUE Segment TCP
ppel systeme ue socket (API) wri ead Lapplilit | recv buffer dans un data
\#gramme IP
Couche socket du noyau socket buffers Contrdle de flux : I'émetteur ne I y
sature pas le tampon de réception
PR P . du récepteur
émission/réception d'un segment ~.
TCP, datagramme UDP... o o TCP
- la bibliothéque socket est lige & I'application L'appli ecrlt\\ TCP send buffer
- la couche socket du noyau réalise I'adaptation au protocole de —= —
: ——
transport utilisé L'appli lit Serveur
Olivier Gliick M2 SRS - Adrmin Systémes et Réseaux 87 o M2 SRS - Admin Systémes et Réseaux 88
87

88

En mode connecté... En mode connecté...
',g O
= Pour que le client puisse contacter le serveur \z EB
= le processus serveur doit déja tourner Création du ek A .)
ttachement d'un numéro
= le serveur doit avoir créé au préalable une socket pour descripteur local de port 4 la socket
recevoir les demandes de connexion des clients Demande Demande de Le serveur autorise NMAX
= Le client contacte le serveur douverture de. | connect() j~conexon connexions (le service est
= en créant une socket locale au client ouvert !)
= en spécifiant une adresse IP et un numéro de port Le serveur accepte (ou
pour joindre le processus serveur Connexion ouverte attend) une connexion
i '&tabli U " endante et crée une
= Le client demande alors I'établissement d'une nouvelle Socket dadies au
connexion avec le serveur cient
= Si le serveur accepte la demande de connexion Traitement de Ia requéte
= il crée une nouvelle socket permettant le dialogue | L
avec ce client [read0 Réponse [write() |
= permet au serveur de dialoguer avec plusieurs clients I
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 89 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 90
89 90
3 En mode connecté... En mode connecté...
I Paramétres en entrée I I Paramétres en sortie ﬁg e Au retour
N N \ 2 EE d'accept()
socket() type, domaine, protocole sock_id X File des connexions ?
Processus en attente
bind() sock_id, port client (pendantes) xxx1 id=xxx2
sock_id=xxx
sock_id, NMAX

listen()

TCP Créé pa TCP
socket buffers .

connect() sock_id, @sock_dest

accept() sock_id @sock_src, client_sock_id D";WY

read() client_sock_id, @recv_buf, Ig read_lg P
client_sock_id, @send_buf, g write_lg
— N~ N
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 91 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 92
91 92

En mode connecté...

= Attention : les émissions/réceptions ne sont pas
synchrones
= read(m) : lecture d'au plus m caractéres
= write(m) : écriture de m caractéres

: reaa:m)
wite(m) m m m m m
COté émission
COté réception

rl R r3 r4 . N

r1+r2+r3+r4+.. +rN <= N*m
M2 SRS - Admin Systémes et Réseaux 93

N écritures N lectures

Olivier Gliick

En mode non connecté...

= Pour que le client puisse contacter le serveur

= il doit connaitre I'adresse de la socket du serveur

= le serveur doit avoir créé la socket de réception

Le client envoie sa requéte en précisant, lors de
chaque envoi, I'adresse de la socket destinataire
Le datagramme envoyé par le client contient
I'adresse de la socket émettrice (port, @IP)

Le serveur traite la requéte et répond au client
en utilisant |'adresse de la socket émettrice de la
requéte

Olivier Gliick M2 SRS - Admin Systemes et Réseaux

93

94

En mode non connecté...

2
Création du

descripteur local| _socket()

=

Attachement d'un numéro
de port a la socket

Le serveur est en
attente d'une
requéte cliente

recv_from()

Envoi de la Traitement de la

!- En mode non connecté...

I Paramétres en entrée I I Paramétres en sortie

type, domaine, protocole sock_id

sock_id, port

sock_id, @recv_buf, Ig read_lg, @sock_src

sock_id, @sock_dest,

@send_buf, Ig write_Ig

" send_to() n
requéte
d Requéte requéte .
Rappel en mode connecté :
Attente de la " Le serveur envoie la
réponse Réponse_| send_to() réponse client_sock_id, @recv_buf, Ig read_lg
client_sock_id, @send_buf, Ig write_Ig
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 9 Olivier Glick 2 SRS - Admin Systémes et Réseaux %
95 96
En mode non connecte... Serveur itératif en mode connecté
)
\% _socket() EH
X Processus Le processus serveur
Processus bind() serveur - attend une connexion cliente
serveur lit la requéte
sock_id=xxx sock_id=zzz -
- traite Ia requéte
UDP uDP - envoie la réponse
socket buffers socket buffers
_accept() - ferme la connexion cliente
ort=yyy ort=53
® ® Traitement de la requéte cliente
-
Internet
Olivier Gliick imin Systémes et Réseaux 97 Olivier Glick M2 SRS - Admin Systémes et Réseaux %
97 98

Serveur concurrent en mode connecté
Te processus semveur

bind() Processus | - Crée un processus fils ou ¢hread
o pour traiter le dialogue avec ce
serveur client et exécuter sa requéte
listen()
accept()
création ! |
thread dédié thread 1 thread 2
[read0] [read0]

Traitement de la
requéte cliente
write()

Traitement de la
requéte cliente
write()

T T
| close() | | close() |
Olivier Glick M2 SRS - Admin Systémes et Réseaux %

Opérations bloquantes/non bloquantes

= Par défaut, les primitives connect (),

accept(), send_to(), recv_from(),

read (), write () sont bloquantes

= recv () surun tampon vide attendra l'arrivée des

données pour rendre la main

= send () surun tampon plein attendra que les
données quitte le tampon pour rendre la main
accept () nerend la main qu'une fois une connexion
établie (bloque si pas de connexions pendantes)
connect () ne rend la main qu'une fois la connexion
cliente établie (sauf si pas entre 1isten () et
accept ())

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 100

99

100

16

Opérations bloquantes/non bloguantes

= Il est possible de paramétrer la socket lors de sa
création pour rendre les opérations non bloquantes
= Comportement d'une émission non bloguante
= tout ce qui peut étre écrit dans le tampon l'est, les
caractéres restants sont abandonnés (la primitive
retourne le nombre de caractéres écrits)
= si aucun caractére ne peut étre écrit (tampon plein),
retourne -1 avec errno=EWOULDBLOCK (l'application
doit réessayer plus tard)
= Comportement d'une lecture non bloquante
= s'il n'y a rien a lire dans la socket, retourne -1 ...
(I'application doit réessayer plus tard)

Olivier Gliick

M2 SRS - Admin Systémes et Réseaux 101

2 Opérations bloquantes/non bloquantes

= Comportement vis a vis de I'acceptation des
connexions en mode non bloquant
= s'il n'y a pas de connexion pendante, retourne -1 ...
(I'application doit réessayer plus tard)
= Comportement vis a vis des demandes de
connexions en mode non bloquant

= la primitive connect () retourne immédiatement
mais la demande de connexion n'est pas abandonnée
au niveau TCP...

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 102

101

102

Paramétrage des sockets

= Les sockets sont paramétrables
= fonctions setsockopt () et getsockopt ()
= options booléennes et non booléennes
= Exemples d'options booléennes
diffusion (dgram uniquement ; remplace I'@IP
destinataire par I'@ de diffusion de l'interface)
= keepalive : teste régulierement la connexion (stream)
= tcpnodelay : force I'envoi des segments au fur et a
mesure des écritures dans le tampon
= Exemples d'options non booléennes
= taille du tampon d'émission, taille du tampon de

réception, type de la socket
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 103

Les serveurs multi-protocoles

= Un serveur qui offre le méme service en mode
connecté et non connecté
= exemple : DAYTIME (RFC 867) port 13 sur UDP et sur
TCP qui permet de lire la date et I'heure sur le serveur
= 13/TCP : la demande de connexion du client
déclenche la réponse (a une requéte donc implicite) :
le client n'émet aucune requéte
= 13/UDP : la version UDP de DAYTIME requiert une
requéte du client : cette requéte consiste en un
datagramme arbitraire qui n ‘est pas lu par le serveur
mais qui déclenche I'émission de la donnée coté
serveur
Le serveur écoute sur 2 sockets distinctes pour
rendre le méme service

Olivier Gliick

M2 SRS - Admin Systémes et Réseaux 104

103

104

2 Les serveurs multi-protocoles

= Pourquoi un serveur multi-protocoles ?
= certains systémes ferment tout accés a UDP pour des
raisons de sécurité (pare-feu)
= non duplication des ressources associées au service
(corps du serveur)
= Fonctionnement
= un seul processus utilisant des opérations non
bloquantes de maniére a gérer les communications a
la fois en mode connecté et en mode non-connecté

= deux implémentations possibles : en mode itératif et
en mode concurrent

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 105

Les serveurs multi-protocoles

= En mode itératif
= le serveur ouvre la socket UDP et la socket TCP puis
boucle sur des appels non bloquants a accept () et
recv_from() sur chacune des sockets
= si une requéte TCP arrive
= le serveur utilise accept () provoquant la création
d'une nouvelle socket servant la communication avec
le client
= lorsque la communication avec le client est terminée,
le serveur ferme la socket "cliente" et réitere son
attente sur les deux sockets initiales
= si une requéte UDP arrive
= le serveur regoit et émet des messages avec le client
= lorsque les échanges sont terminés, le serveur réitére
son attente sur les deux sockets initiales
Oliver Gliick

M2 SRS - Admin Systémes et Réseaux 106

105

106

17

2 Les serveurs multi-protocoles

= En mode concurrent
= un automate gére l'arrivée des requétes (primitives

non bloquantes)
= création d'un nouveau processus fils pour toute
nouvelle connexion TCP
= traitement de maniére itérative des requétes UDP
= elles sont traitées en priorité
= pendant ce temps, les demandes de connexion
sont mises en attente

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

:- Les serveurs multi-services

= Un serveur qui répond a plusieurs services (une

socket par service)
= Pourquoi un serveur multi-services ?
= probléme lié a la multiplication des serveurs : |
nombre de processus nécessaires et les ressources
consommeées qui y sont associées
= Avantages
= le code réalisant les services n'est présent que lorsqu'il
est nécessaire
= la maintenance se fait sur la base du service et non
du serveur : I'administrateur peut facilement activer

ou désactiver un service
M2 SRS - Admin Systémes et Réseaux 108

Olivier Gliick

107

108

:- Les serveurs multi-services

= Fonctionnement : lancement d'un programme
différent selon la requéte entrante
= le serveur ouvre une socket par service offert, attend
une connexion entrante sur I'ensemble des sockets
ouvertes
= lorsqu'une demande de connexion arrive, le serveur
crée un processus fils qui prend en compte la

:- Les serveurs multi-services
fork()

serveur

processus

T
fork()

|
[

connexion / \
= le processus fils exécute (via exec () sur systéme L L \
UNIX) un programme dédié réalisant le service o v
demandé par service sockets : une par connexion
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 109 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 110
110

109

3 Les processus démons

= L'invocation d'un service Internet standard (FTP,
TELNET, RLOGIN, SSH, ...) nécessite la présence
coté serveur d'un processus serveur
= qui tourne en permanence
= qui est en attente des requétes clientes
= On parle de démon
= A priori, il faudrait un démon par service
= Probléme : multiplication des services -->
multiplication du nombre de démons
= Sous UNIX, un super-démon : inetd

Olivier Gliick M2 SRS - Admin Systémes et Réseaux

111

3 Le démon /inetd
= Un "super serveur"

= un processus multi-services multi-protocoles

= Un serveur unique qui regoit les requétes

= activation des services a la demande

= permet d'éviter d'avoir un processus par service, en
attente de requétes

= une interface de configuration (fichier inetd.conf)
permettant a I'administrateur systéme d'ajouter ou
retirer de nouveaux services sans lancer ou arréter un
nouveau processus

= Le processus inetd attend les requétes a l'aide
de la primitive select () et crée un nouveau

certains services UDP qu'il traite lui-méme)
M2 SRS - Admin Systémes et Réseaux

Olivier Gliick

processus pour chaque service demandé (excepté

112

111

112

18

Le fichier /etc/inetd.conf

Internet services syntax :

<service_name> <socket_type> <proto> <flags> <user> <server_pathname> <args
4 wait : pour un service donné, un seul serveur peut exister & un instant donné

donc le serveur traite 'ensemble des requétes i ce service

stream --> nowait : un serveur par connexion

fip stream tep mowait root fete/ftpd fipd -1

tfp dgram udp wait oot /fete/tfipd thipd

shell stream tep nmowait root fetc/rshd rshd

pop3 stream tep nowait root /usr/local/lib/popper popper -s -d -t /var/log/poplog|
I services

> service réalisé par inetd directement

La scrutation de plusieurs sockets

Scrutation : mécanisme permettant I'attente d'un

événement (lecture, connexion, ...) sur plusieurs

points de communication

= nécessaire dans le cas des serveurs multi-services ou
multi-protocoles

= Probléme lié aux caractéres bloguants des
primitives
= exemple : une attente de connexion (accept) sur une

des sockets empéche I'acceptation sur les autres...
= Premiére solution
= rendre les primitives non bloquantes a I'ouverture de la

time stream tep nowait root internal
time dgram udp nowait root internal socket
= inconvénient : attente active (dans une boucle)
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 113 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 114
113 114

La scrutation de plusieurs sockets

= Deuxieme solution
= créer un fils par socket pour la scrutation d'un service
= inconvénient : lourd, gaspillage de ressources
= mais avantage conservé d'activation a la demande
= Troisiéme solution : la primitive select ()
= permet de réaliser un multiplexage d'opérations
bloquantes (scrutation) sur des ensembles de
descripteurs passés en argument :
= descripteurs sur lesquels réaliser une lecture
= descripteurs sur lesquels réaliser une écriture
= descripteurs sur lesquels réaliser un test de condition
exceptionnelle (arrivée d'un caractére urgent)
= un argument permet de fixer un temps maximal
d'attente avant que I'une des opérations souhaitées ne
soit possible
Olivier Glick M2 SRS - Admin Systémes et Réseaux 115

La scrutation de plusieurs sockets

= La primitive select () rend la main quand une

de ces conditions se réalise :

= |'un des événements attendus sur un descripteur de
I'un des ensembles se réalise : les descripteurs sur
lesquels I'opération est possible sont dans un
paramétre de sortie

= le temps d'attente maximum s'est écoulé

= le processus a capté un signal (provoque la sortie de
select ())

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 116

115

116

Les appels de procédures distantes

@

Deux approches de conception

n concepteur d'application distribuée peut procéder
selon deux approches :
= conception orientée communication :
= définition du protocole d'application (format et syntaxe
des messages) inter-opérant entre le client et le serveur
= conception des composants serveur et client, en
spécifiant comment ils réagissent aux messages
entrants et générent les messages sortants
= conception orientée application :
= construction d'une application conventionnelle, dans un
environnement mono-machine
= subdivision de I'application en plusieurs modules qui

pourront s'exécuter sur différentes machines
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 18

117

118

Principe général

= Souvent, quand un client envoie une requéte (des
parametres), il est bloqué jusqu'a la réception
d'une réponse
= Analogie avec un appel de fonction
= la fonction ou procédure ne rend la main au programme
appelant qu'une fois le traitement (calcul) terminé
= RPC - Remote Procedure Call
= permettre a un processus de faire exécuter une fonction
par un autre processus se trouvant sur une machine
distante
= se traduit par I'envoi d'un message contenant
I'identification de la fonction et les paramétres

= une fois le traitement terminé, un message retourne le
résultat de la fonction a I'appelant
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 119

3 Principe général

= L'objectif des RPC est de faire en sorte qu'un
appel distant ressemble le plus possible a un
appel local
Le processus client (I'appelant) est lié a une
petite procédure de bibliothéque, appelée stub
client, qui représente la procédure du serveur
dans I'espace d'adressage du client
Le processus serveur (l'exécutant) est lié a un
stub serveur qui représente I'exécution du client
Dissimule le fait que I'appel de la procédure n'est
pas local : le programmeur de I'application utilise
un appel de procédure "normal" !

12

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 120

119

120

3 Le modele RPC
Programme Procédure A

Procédure B

3 Le modele RPC

principal (serveur) (serveur)
. ~ Client m
Appel| etour Exécuter
, Procédure| stubclient |Procédurel® 8 |procedure| stub serveur |Procédurel 7
OCA(0B [1] [
R procs0 | 2 | | = | 113 9 | | [Fmmmmee] | G
3 Reauest() Recel |12 10)) ({5
3 |
| I
T 1
return return Noyau \—l] 1
[4 Réseau
Machine 1 Machine 2 Machine 3
Téseau Téseau
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 121 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 122
121 122
nterface RPC Restrictions liées aux RPC
T Interface RPC = Pas de passage de paramétres par adresse :
impossible de passer des pointeurs (ou
RPC/XDR [Client stub] références)
API socket Message RPC = en effet, les espaces d'adressage du client et du
S [Corairie RPC}—2% format XDR (call serveur sont différents donc aucun sens de passer
TCP [UbP (reply)] une adresse

oy Sockets TCP ubpP
« Intéréts: | sieo e |

= l'application n'a pas & manipuler directement les sockets
(le transport des données est transparent)
= l'implémentation des RPC est indépendante de I'0S
= Inconvénient :
= |'utilisation des RPC est moins performante que I'utilisation
directe des sockets (couches supplémentaires)
Olivier Glick

M2 SRS - Admin Systémes et Réseaux 123

La procédure distante n'a pas accés aux
variables globales du client, aux périphériques
d'E/S (affichage d'un message d'erreur !)

Un appel de procédure obéit a fonctionnement
synchrone : une instruction suivant un appel de
procédure ne peut pas s'exécuter tant que la
procédure appelée n'est pas terminée

Olivier Gliick

M2 SRS - Admin Systémes et Réseaux 124

123

124

2 Le protocole RPC

= Il doit définir le format du call (message du
client vers le serveur), le format des arguments
de la procédure, le format du reply (résultats)

= Il doit permettre d'identifier la procédure a
exécuter par le serveur quand un call arrive

= Il doit permettre d'authentifier la demande
(problémes de sécurité)

= Quelles machines distantes sont autorisées a exécuter
la procédure ?

= Quels utilisateurs sont autorisés a exécuter la
procédure ?

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 125

mplémentation de SUN

= Sun MicrosEstems a développé une technologie RPC
dite « Sun RPC » devenue aujourd'hui un standard

de fait

NFS (Network File Sytem) repose sur les Sun RPC

Les Sun RPC définissent :

= le format des messages que I'appelant (stub client) émet
pour déclencher la procédure distante sur un serveur

= le format des arguments de la procédure

= le format des résultats de la procédure

Possibilité d'utiliser UDP ou TCP pour les

communications

XDR assiste les RPC pour assurer le fonctionnement

dans un environnement hétérogene (représentation

standard des arguments et résultats...)
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 126

125

126

2 Identification des procédures distantes

Un programme distant correspond a un serveur avec
ses procédures et ses données propres

Chaque programme distant est identifié par un entier
unique codé sur 32 bits utilisé par I'appelant

Identification des procédures distantes

= La procédure de numéro 0 permet de tester la
disponibilité du service

= Un identifiant de programme peut correspondre
a plusieurs processus de service (nount/shoumount)

, . Nom Identifiant Description
= Les procédures d'un programme distant sont portmap 00000 port mapper
identifiées séquentiellement par les entiers 0, 1, ..., N rstat 00001 rstat, rup, perfmeter
. ; i o i ruserd 00002 remote users
= Une procédure distante est identifiée par le triplet nfs 00003 Network File System
(program, version, procedure) |_ypserv 00004 Yellow pages (NIS) |
- . . . mountd 00005 mount, showmount
= progran identifie le programme distant dbxd 00006 debugger
= version identifie la version du programme ypbind 00007 NIS binder
. . . etherstatd 00010 Ethernet sniffer
= procedure identifie la procédure penfs 50001 NFS for PC
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 127 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 128
127 128

2 La sémantique "au moins une fois"

= Les RPC sur un protocole de transport non fiable
(UDP)
= si un appel de procédure distante s'exécutant sur UDP ne
retourne pas, l'appelant ne peut pas savoir si la procédure
a été exécutée ou si la réponse a été perdue
du c6té de I'appelant : la réception d'un reply signifie
uniquement que la procédure distante a été exécutée au
moins une fois
du c6té de serveur : un serveur recevant plusieurs fois la
méme requéte ne peut pas savoir si le client s'attend a une
unique exécution de la procédure ou bien s'il s'agit
effectivement de N exécutions distinctes de la méme proc.

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 129

La sémantique "au moins une fois"

concepteur d'une application RPC utilisant UDP doit
prendre en compte le fait que la non réception d'un
reply ne signifie pas que la procédure distante n'a
pas été exécutée...
= Exemple :
= lecture dans un fichier distant : pas génant si une demande
de lecture a généré deux exécutions de la procédure
= écriture dans un fichier distant : génant s'il s'agit d'un ajout
en fin de fichier ; la chaine peut étre ajoutée deux fois au
lieu d'une seule...
= Les procédures doivent étre idempotentes :
= --> pas de procédure d'ajout en fin de fichier mais une
procédure d'écriture a telle position (ajout d'un paramétre

précisant ou écrire dans le fichier)
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 130

129

130

21

:- Communications client/serveur

= Les sockets utilisent un we//-known port pour
contacter un serveur distant (ex: telnet=port 23)

= Les clients RPC ne connaissent que l'identifiant
du programme RPC distant et le numéro de
procédure (ex: 100003 pour NFS)

= Pourtant, les communications sous-jacentes se
font en mode client/serveur : 'appelant doit
connaitre I'adresse (IP, port) utilisée par le
programme RPC distant (ex: nfsd)

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 131

:- Communications client/serveur

= Le numéro de port du processus serveur est
attribué dynamiquement quand il démarre
= --> car le nombre de programmes RPC (identifiant sur
32 bits) est potentiellement supérieur au nombre de
well-known ports (numéro de port sur 16 bits, ports
réservés entre 0 et 1023)
= Un processus spécial, le démon portmap (ou
rpcbind) maintient une base de données
renseignant les associations locales entre
numéro de port et programme RPC

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 132

131

132

2 Le processus portmap (rpcbind)

= lorsqu'un programme RPC (serveur) démarre, il alloue
dynamiquement un numéro de port local, contacte le
port mapper de la machine sur laquelle il s'exécute,
puis informe ce dernier de I'association

lorsqu'un client désire contacter un programme RPC

2 Le processus portmap (rpcbind)
le i

RPC serveur/ |e quadruplé (numéro de
protocole, numéro RPC,

~ (Port Mapper]

. numéro de version, numéro
sur une machine distante, il interroge d'abord le port] de port) I
mapper de cette machine pour connaitre le port de TCP|UDP TCP|UDP
communication associé au service RPC sockets allouées dynamiquement sockets du port
= le port mapper est lui méme un programme RPC au RPC mapper = 111
(100000) mais il est le seul & utiliser un port alloué
statiquement : le port 111/UDP et le port 111/TCP
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 133 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 134
133 134

2 Le processus portmap (rpcbind)

= Les procédures du port mapper
= 0 : fonction vide (teste la présence de portmap)
= 1 : enregistrement d'un service (local)
= 2 : annulation d'un service (local)
= 3 : demande du numéro de port d'un service
enregistré localement
= 4 : liste tous les services enregistrés localement

= 5 : appel d'une procédure distante via le port mapper
--> permet de "pinger" une procédure distante

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 135

2 Utilisation du port mapper (rpcbind)

RPC Client Host RPC Server Host

2

(i)

Get Port No. of RPC Server

135

° Register with
Port No. [(xyz) {Program No.,
Version No.,
RPC Procedure No. and
client (xyz) Protocol Used}
program 4
RPC
Call/reply server
program
136
— ——

136

2 Le format des messages RPC

Message ID Numérotation des CALL/REPLY
CALL ou REPLY

Message type

RPC version number | version de la librairie RPC
REMOTE program

REMOTE program version
REMOTE procedure
Authe

Identifie la procédure distante

Plusieurs types possibles (par ex.
UNIX : uid, gid,

Nombre variable

cation fields

Le format est de longueur variable car le nombre
d'arguments de la procédure appelée est variable

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 137

2 Les réponses possibles

= Plusieurs types de réponses possibles :

= SUCCESS : les résultats de la procédure sont renvoyés
au client
RPC_MISMATCH : les versions RPC du client et du
serveur ne sont pas compatibles
AUTH_ERROR : probléme d'authentification
PROG_MISMATCH : la procédure demandée n'est pas
disponible (probléme de version du programme, ...)
= Plus de détails : RFC 1057

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 138

137

138

3 La représentation XDR

= Les champs des messages RPC sont spécifiés
dans le format XDR (eXternal Data
Representation)
= XDR : représentation des données définie par
SUN Microsystems
= définit le type et le format des données échangées sur
le réseau (paramétres de la procédure distante)
= permet d'échanger des données entre machines ayant
des représentations internes différentes

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 139

La représentation XDR

= Pourquoi XDR ?
= répond au probléme d'échange d'informations typées ou
structurées entre deux machines hétérogénes dans la
représentation locale des données
= exemple : un entier de 32 bits ayant la valeur 260 sera
représenté par :
= 00000104h sur une machine de type "big endian" c'est
a dire avec les Most Significant Bytes ayant les adresses
basses et les LSB ayant les adresses hautes
= 40100000h sur une machine de type "/ittle endian"
= il faut adopter une représentation réseau et convertir sur
les extrémités les représentations locales en représentation
réseau et vice-versa

Olivier Gliick M2 SRS - Admin Systemes et Réseaux 140

139

140

3 La représentation XDR

= L'hétérogénéité concerne :
= la taille des objets typés : un entier peut étre codé sur
2 octets ou 4 octets...
= |'ordre des octets : big endian ou little indian
= la représentation proprement dite d'un objet typé :
combien de bits pour la mantisse et I'exposant
représentant un nombre flottant, représentation d'un
entier négatif...
= Inconvénient du protocole XDR :
= l'encodage est effectué méme si les machines source
et destination utilisent déja la méme représentation
= --> perte de performance
Olivier Glick M2 SRS - Admin Systémes et Réseaux 141

3 La représentation XDR

= XDR va par exemple spécifier qu'un entier occupe
32 bits qui seront transférés dans I'ordre "bjg
endian" sur le réseau
= si I'émetteur ou le récepteur n'est pas "big endian’",
XDR fera la conversion de I'entier
= Le probléme se posait déja pour les transmissions
par socket des adresses IP et numéros de port
= fonctions de conversion :
= htons () et htonl () : représentation locale -->
représentation réseau
= ntohs () et ntohl () : représentation réseau -->
représentation locale
= ce probleme ne se pose pas pour transférer un fichier :
transfert brut d'une séquence d'octets sans interpréter

son contenu
Olivier Glick M2 SRS - Admin Systémes et Réseaux 142

141

142

23

La représentation XDR

Les RPC sous UNIX

Type Taill [Descripti - .
int 32 bits_|entier signé de 32 bits Le fichier /etc/rpc
unigned int 32 bits_|entier non signé de 32 bits = |'équivalent de /etc/services pour les sockets
bool 32bits _[valeur (Oout) (annuaire des services)
enum b type énuméré) - X)
hyper its _|entier signé de 64 bits = contient les informations relatives aux programmes RPC :
unsigned hyper its _lentier non signé de 64 bits nom du service, numéro de programme, listes d'alias
floaf ts_|virgule flot. simple précision)
double its _|virgule flot. double précision root@192.168.69.2# cat /etc/rpc
opaque arb. __|donnée non convertie (sans type) I, 100000 bortr I
fixed array arb. | tableau de longueur fixe de wimporte quel portmapper 000 portmap sunrpc
autre type rusers
structure arb. agrégat de données o
iscrimi union [arb. structure i des formes 00003 nfsprog
symbolic constant _|arb. constante 00004 ypprog nis
void [utilisé si pas de données
string arb. chaine de car, ASCIl mountd 00005 mount showmount
Olivier Glick M2 SRS - Admin Systémes et Réseaux 143 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 153
143 153

Les RPC sous UNIX

= La commande rpcinfo

= permet d'interroger le port mapper pour connaitre les
services RPC disponibles la machine ou il s'exécute
(procédure n° 4 du port mapper)

rpcinfo -p [host]

(par défault, host = localhost)

= permet de s'assurer de la disponibilité d'un service RPC
particulier (exécution de la procédure 0 du service)

rpcinfo -u host prog_num [ver_num] (UDP)

rpcinfo -t host prog_num [ver_num] (TCP)

(par défault, ver_num = 1)

Les RPC sous UNIX

00t@192.168.69.1# rpcinfo -p 192.168.90.2
am vers proto port

0000 2 tep 111 portmapper
100000 2 udp 111
100004 2
100004 1
100004 2
100004 1
1 2
1 1
1 2

udp

00007
00007
00007

100007 1
00t@192.168.69.1# rpcinfo -u 192.168.90.2 ypserv

04 version 1 ready and waiting

program

program 004 version 2 ready and waiting
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 154 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 155

Les RPC sous UNIX

e client (192.168.69.1)
92. 69.1%# rpcinfo -u 192.168.69.2 nfs
le pro

me n'est pas enregistré

Le programme t pas disponible.
92.168.69.1# rpcinfo -p 192.168.69.2
Aucun programme enregistré sur 1'héte cible
= Sur le serveur (192.168.69.2)
root@192.168.69.24 rpcinfo -p 192.168.69.2
No remote programs registered.

.69.2# rpcinfo -p | grep nfs

2 udp 2049 n

Les RPC sous UNIX

= Comme pour les démons utilisant les sockets, il est
possible de lancer dynamiquement le processus d'un
serveur RPC uniquement quand un client sollicite le
service (via le démon inetd)

= Il suffit d'ajouter une entrée par service RPC dans le
fichier /etc/inetd.conf

services RPC

rpc 100002 1-2 dgram udp wait root /sbin/ypserv ypserv -d

= Quand le processus inetd se lance, il réalise

00003 3 udp 2049 nfs I'enregistrement des services RPC qu'il prend en
= Il faut autoriser les connexions RPC extérieures compte auprés de portmap
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 156 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 158
156 158

24

Exercices

®~

Lecture bloquante/non bloquante

= Une application (client ou serveur) veut lire

exactement 100 caractéres sur une socket
(mode connecté)

= Décrire I'algorithme correspondant et donnez les

avantages/inconvénients

= dans le cas d'une lecture complétement bloquante
(read retourne quand tout est lu)

= dans le cas standard des sockets (« au moins 1 »)

= dans le cas d'une lecture non bloquante (-1 si
EWOULDBLOCK)

Olivier Gliick M2 SRS - Admin Systémes et Réseaux 160
Exemple de programmation C/S 4 Un mini-inetd a
= 1. Quel est le service proposé par cette application client/serveur ? = Voici la page man du programme mini-inetd ainsi que son code.
gﬂrglgiggni'?lrsggments sont nécessaires au lancement du client ? = 1. Complétez la partie DESCRTPTION de la page man. Représentez
.) . a l'aide d'un schéma/diagramme la structure algorithmique du
L} Quel port utilise le serveur ? Aurait-on pu choisir une autre programme.
valeur ? Quel port utilise le client ? Comment est-il attribué et par .
quelle primitive ? S'agit-il d'une connexion en mode connecté ou = 2. Dans le code ci-aprés, le code de la fonction tcp_listen () a
non et est-ce justifié ? R volontairement été omis. Quelles sont les paramétres et la valeur de
- 3 A quodl col;responde‘nt les cons$anthstBl;lF,SIZfE :tl QUEUE_SIZE f N retour de cette fonction ? Quelles sont les opérations qui doivent y
= 4 Quand est-ce que le serveur s'arréte ? Que fait le serveur une fois &tre réalisées et ol les paramétres interviennent-ils ?
les initialisations terminées (décrire le cas ol il y des connexions -
pendantes et le cas inverse) ? = 3. Commentez le nom du programme. Quelles sont les différences et
= 5. Que se passe t-il si le client est lancé avant que le serveur n'ait similitudes entre mini-inetd et inetd ?
démarré ?) o) o = 4. Comment modifieriez vous la structure donnée 4 la question 1
= 6. Quand est-ce que le client s'arréte si la connexion a réussi ? Que pour que mini-inetd puisse traiter plusieurs couples (port,
fait le client une fois la connexion établie ? ‘. ts ?
= 7. Que pensez-vous de la structure actuelle du serveur ? Peut-il program) passés en arguments ?
satisfaire un grand nombre de connexions ? Expliquez. Proposez une
solution plus adaptée.
Olivier Gliick M2 SRS - Admin Systémes et Réseaux 161 Olivier Gliick M2 SRS - Admin Systémes et Réseaux 162

25

