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Turbulent transition at the entrance of a plane channel

The objective is the study of by-pass turbu-
lent transition occurring in a plane channel flow,
downstream the entry zone, and more particularly
the effect of inlet turbulence and wall rough-
ness.  Although the present investigation is cur-
rently limited to incompressible flows, one objec-
tive is to better understand appearance of cavita-
tion in fuel injector devices (project NadiaBio
\MUV'OU 2008-2011).

Transition in boundary layers exposed to free-stream turbulent intensity of order > 1% or more can occur without the mediation of viscous Tollmien-Schlichting
instability waves (by-pass transition). Experiments or numerical simulations show the presence in the boundary layers of large, elongated spanwise modulations of
the streamwise velocity called streamwise streaks. These disturbances grow in the streamwise direction and are subjected to an instability process leading finally
to turbulence breakdown. The physical process explaining emergence of streaks is known as the lift-up effect. It is understood as the result of interaction between
streamwise vorticity and the boundary layer shear: streamwise vorticity pushes low momentum fluid away from the wall and high momentum fluid towards the wall
and the spanwise modulation obtained in this way is stretched downstream by the mean shear. Streaks can be found as solutions of the linearised stability equations
(Orr-Sommerfeld-Squire equations). However, the effect of viscosity eventually dominates these linear solutions, making the growth of the streaks only transient.
Stricto sensu, streaks are thus stable perturbations (sub-critical), but their amplitude can reach such large values (30% of the mean flow) than they escape the linear
regime and becomes sensitive to secondary perturbations ([1],[2]).
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( By-pass transition induced by free-stream turbulence )

Streamuwise velocity perturbation at distance 205 from the wall (top) and in a vertical plane (bottom). turbulence intensity.

forced towards periodicity using the fringe method
[4]. The approximation uses Fourier expansions in
two directions and the Chebyshev basis proposed
by Moser et al. [5| in the third direction in or-
der to satisfy the wall boundary conditions. Using
Crank-Nicholson/Adams Bashford time integration,
the numerical scheme requires the solution of two 1D
sparse linear systems for each Fourier component of
the velocity. The method has been implemented in
C-++ in the NadiaSpectral code and parallelized
using MPI and OpenMP.

www.ufrmeca.univ-lyond . fr/~buffat/NadiaSpectral
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NadiaSpectral 107 General result Let be y a unit vector in R® (the “vertical’ direction) and w a solenoidal field defined in a bounded domain
adiaSpectra £
pe 107 Q) C R3, u can be decomposed into the sum of two solenoidal, Ly(Q)-orthogonal fields - 1 = usq + Uos
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field, an efficient Galerkin fl”‘“lal (_Ufle ll.as been iz,g Uy is 3D, solenoidal, has zero vertical vorticity and is determined by the values of v, the vertical component of w and by
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sounded shear flows. In order to use Fourier ex-

. . . . . Lo 10 o . . . . . .
pansions in the streamwise direction, the solution is 1o For doubly periodic fields in the two directions x and z normal to y : Fourier components can be expressed in function of
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()22 denotes the component of wavevector (a, ) and k2 = a2 + 52 :
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For plane, parallel, shear flows, this decomposition is related to the Orr-Sommerfeld and Squire modal decomposition of
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the linear stability theory [1]. Using the orthogonal decomposition, the projection of the Navier-Stokes equations linearized
around the basis velocity field (Uy(y), 0,0) reads
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transport and viscous terms interaction with U,

Parallel efficiency.

The linear part of these two scalar equations is equivalent to the classical Orr-Sommerfeld-Squire system [1].
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Streamuwise velocity perturbation at distance 205 from the wall (top) and in a vertical plane (bottom).

Yy
L

(0,0) + (2a,0) + ...

uP = ubs + ugq )

7

.

1 Durbin P. & Wu X., Transition Beneath Vortical Disturbances. Annu. Rev. Fluid Mech., 2007

2 Schmid P. J. & Henningson D. S., Stability and Transition in Shear Flows. Springer-Verlag, 2001

3 Buffat M., Le Penven L., & Cadiou A., An efficient spectral method based on an orthogonal decomposition of the velocity for transiti
4 Bertolotti F. P., Herbert T. & Spalart P. R., Lincar and nonlincar stability of the Blasi
5Moser R. D., Moin P. & Leonard A., A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow. J. Comp. Phys., 1983

!

is in wall bounded flow. Submitted to Computers & Fluids

s boundary layer. J. Fluid Mech., 1992




