

NadiaSpectral: a powerful tool to study transition

M. Buffat, L. Le Penven, A. Cadiou, J. Montagnier
LMFA, Université de Lyon, UCBL ECL INSA CNRS

Objectives

DNS of incompressible flows with solid wall interactions (see [1-6])

- boundary layer
- channel flow
- turbulence, by-pass transition
- flows with solid particles
- complex boundaries
- smooth or rough walls

Characteristics of NadiaSpectral

- Galerkin spectral approximation: (Fourier/Chebyshev) ([1])
- based on an orthogonal decomposition of solenoidal space ([7])
- new methods (1)-(2) to take into account complex boundaries ([2,3])
- efficient parallel implementation (3) ([4])

(1) new Fictitious Domain Formulation

Spectral accurate Fictitious Domain Method with Internal Forcing (FDMIF) (see [2],[3])

- Initial problem in a domain Ω_p with complex boundary γ

$$-\Delta \mathbf{u} = 0 \quad \text{in } \Omega_p \quad \text{with b.c. } \mathbf{u}|_{\gamma} = \mathbf{u}_0 \quad (1)$$

- Fictitious domain formulation in a simpler domain Ω

$$-\Delta \mathbf{u} = \mathbf{f} \quad \text{in } \Omega \quad \text{with } \mathbf{f} \text{ such that } \mathbf{f}(\mathbf{x}) = 0 \text{ if } \mathbf{x} \in \Omega_p \text{ and } \mathbf{u}|_{\gamma} = \mathbf{u}_0 \quad (2)$$

- Smooth forcing inside the fictitious domain $\omega = \Omega \setminus \Omega_p$

$$\mathbf{f}(\mathbf{x}) = \int_{\gamma} \lambda(\mathbf{s}) h_{\rho}(\mathbf{x} - \mathbf{s}) d\sigma$$

- λ Lagrange multipliers, h_{ρ} mollifiers (infinitely differentiable bump)

$$h_{\rho}(\mathbf{x}) = b_{\rho}(\|\mathbf{x}\|) \quad \text{with } b_{\rho}(r) = e^{\frac{1}{1-(\frac{r}{\rho})^2}} \text{ for } r \leq \rho$$

FIGURE 2: FDMIF solution in Ω_p with $\mathbf{u}|_{\gamma} = 0$ and forcing $\mathbf{f}(\mathbf{x}, \mathbf{y})$ in the disk ω

Periodic Stokes flow over cylinder

FIGURE 3: L_2 norm in $\Omega \setminus \bar{\omega}$ of the relative error on the velocity versus the number of modes N

(2) Implicit Volume penalisation

Implicit Volume penalisation with a Galerkin spectral formulation in divergence-free space (see [5])

- Initial problem in a domain Ω_p with complex wall boundary γ

$$\frac{\partial \mathbf{u}}{\partial t} + \mathcal{N}\mathcal{S}(\mathbf{u}) = 0 \quad \text{in } \Omega_p \quad \text{with b.c. } \mathbf{u}|_{\gamma} = \mathbf{u}_0 \quad (3)$$

- Volume penalisation inside ω with $\partial\omega = \gamma$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathcal{N}\mathcal{S}(\mathbf{u}) = \frac{\chi_{\omega}}{\eta}(\mathbf{u} - \mathbf{u}_0) \quad \text{in } \Omega = \Omega_p \cup \omega \quad (4)$$

- Implicit integration using operator splitting

$$\begin{aligned} \frac{\mathbf{u}^{n+1/2} - \mathbf{u}^n}{\Delta t} + \mathcal{N}\mathcal{S}(\mathbf{u}^n) &= \frac{\chi_{\omega}}{\eta}(\mathbf{u}^{n+1/2} - \mathbf{u}_0) \\ \frac{\mathbf{u}^{n+1} - \mathbf{u}^{n+1/2}}{\Delta t} + \mathcal{N}\mathcal{S}(\mathbf{u}^{n+1}) &= \frac{\chi_{\omega}}{\eta}(\mathbf{u}^{n+1/2} - \mathbf{u}_0) \end{aligned}$$

linearly unconditionally stable and $\nabla \cdot \mathbf{u}^{n+1} = 0$

FIGURE 4: Configuration and computational domain

FIGURE 5: Friction coefficient CF over rough and smooth wall

(3) Parallel implementation

Development of efficient numerical tools allowing accurate numerical simulations (see [4])

- modern programming tools (C++, cmake, parallel python, git ...)
- hybrid parallelism (MPI + high level multi-threading)
- optimized parallel decomposition
- scale on Peta-flops parallel computers ($O(10^5)$ cores)
- parallel IO and visualisation (ParaView, VisIt)
- accurate parallel analysis of the results using python scripts

FIGURE 6: Parallel FFT using domain partitioning

FIGURE 7: Speed up on IBM Blue Gene

References

- Buffat M., Le Penven L., Cadiou A. *An efficient spectral method based on an orthogonal decomposition of the velocity for transition analysis in wall bounded flow*. Computers & Fluids, 2011
- Buffat M., Le Penven L. *A spectral fictitious domain method with internal forcing for solving elliptic PDEs*. J. Comp. Phys., 2011
- Le Penven L., Buffat M. *On the spectral accuracy of a fictitious domain method for elliptic operators in multi-dimensions*. Submitted to J. Comp. Phys.
- Montagnier J., Cadiou A., Buffat M., Le Penven L. *Towards Peta-scale spectral simulation for transition analysis in wall bounded flow*. Submitted to Int. J. Num. Meth. in Fluids
- Buffat M., Montagnier J., Cadiou A., Le Penven L., Wechao Y., Vinkovic I. *A Galerkin spectral method with implicit volume penalization for Navier-Stokes simulations*. Submitted to Computers & Fluids
- Vinkovic I., Doppeler D., Le Louvetel-Poilly J., Buffat M. *Direct numerical simulation of particle interaction with ejections in turbulent channel flows*. Int. J. Multiph. Flow, 2011
- Le Penven L., Buffat M. *A general orthogonal decomposition of solenoidal fields function of the normal velocity and normal vorticity components*. submitted to J. Phys. A: Math. Gen.