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Numerical schemes for Low Mach Number flows

( (Mgtiptien) ™
Accuracy and convergence of low Mach number flow simulations
Low Mach number flows are difficult to compute accurately with numerical methods developed for high The objective of this study is to analyse the low Mach number behaviour of a selection of numerical schemes
speed flows. Since the flow time scales may be very different at low Mach number, explicit methods require The inspected methods use explicit or implicit time integration, with a Finite Volume, Finite Element
the use of very small time steps. On the other hand, implicit methods can be cumbersome because of the or Finite Difference spatial discretization and are either centered or upwind schemes derived from
ill-conditioned system to solve. Preconditioning techniques exist, but modify the properties of the numerical Godunov's method. The study focuses on the application to the simulation of the 2D compressible Taylor
schemes and the pertinence of those approaches for long time integration remains a particular issue. vortex flow, solution of the compressible Euler (inviscid) equations.
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( (nialsenditions) ™ (Agymptotic expansion )~
Low Mach number M expansion using 2 time-scales (¢, 7 = t/M)
\ cimle fow © the inviscid. 2D. Tavl . u(x,t) = ug(x) + M2 [W(x. ) + dug(x, 7)) + M3Sus(x, 7,t) + - - -
A simple flow : the inviscid, 2D, Taylor vortex Plxt) = 1+ ]VIZPQ(X)Jr IV Y [Pl(x.t)+5P4(x,nt)} .
u(x, t = 0) = ug(x) = (D, —dutly) p(x,t) = 1+ M2 gy ) + MSps(x, 7) + M [5y(x.1) + dpy(x, 7, B)] + -+
P(x,t=0) = 1+ M’Py(x) ) _ )
Pt =0) = 1 entropic terms, acoustic terms, (.) denotes average over the T time scale.
'\ ] with 1 -1 sin(rz) sin(ry) At t = 0, entropy has O(MZ) variations throughout the flow. At the leading order, density variailz‘inns result
and VP = —up.Vuy from entropy advection along the closed streamlines of the ug field. Density variations at O(M*=) have the
time-period O(1). Due to stretching by the flow, these variations are such that their radial length scales
decrease as ¢~ and displays a striped pattern. Since material derivative of density is not zero during this
. ‘ process, a compressible contribution is generated in the velocity field on the time scale O(1). The flow
Streamlines at ¢ = 0 (¢ = 7). adapts to the divergence-free conditions at ¢ = 0 by generating an acoustic response on the short time scale
’ ' un =0 at the boundary. 7 =t/M characterized by O(M?) variations for the velocity field and O(M?) for density and pressure.
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( (Numerical schemes )™ (Results )
X . 05
Four different schemes representative of numerical methods for compressible flows are evaluated using three
spatial discretization techniques :
(a) 2nd order implicit centered scheme with FV approximation, N
(b) 2nd order explicit (upwind) Roe-Turkel scheme with FE/FV approximation, t—20
(¢) 4th-order explicit (centered) Padé scheme with FD approximation, -
(d) 5th-order explicit (npwind) WENO scheme with FD approximation. y o5
Spatial and temporal discretization errors are evaluated in the case of one dimensional linear advection on a - 05
regular mesh of size h. Dissipation and dispersion errors are evaluated using standard Fourier analysis for a
propagating wave of wavenumber k.
- Centered schemes (implicit centered scheme and compact Padé scheme) are less dissipative than the two o t=88
upwind schemes
- High-order schemes (Padé and WENO) have less dispersion error than second-order schemes.
-FV 2nd order schemes are relatively accurate as compared to the high order FD schemes and especially y 25 density
much more precise than the standard 2nd order FD scheme implicit centered implicit centered =
CFL =06 CFL = 10. P2
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. . . . Roe-Turkel WENO
Spectral error analysis for the 1D linear advection equation for CFL = 0.6
L b ’ ! ) CFL=06 CFL=06
P9 term on a 120 x 120 grid at M = 0.01.
( (Somments )™
\ . 0.1 0.1 0.1
Comparison of schemes
o Explicit 2nd scheme, even with low Mach number preconditioning: the most dissipative but robust =50
o Implicit 2nd centered scheme: captures the slow-time density variations without dissipation and with a b ) b ’
small dispersion error. For CFL smaller than one, acoustic pressure levels are correctly predicted. For
CFL larger than one, acoustic fluctuations are filtered without alteration of the slow-time solution.
® Explicit high order schemes: both correctly predict the slow time density variations on a rather coarse pressure
mesh size. Even if the high-order Padé centered scheme needs low pass spatial filtering, it is less dissipative N 0.1 . 0.1 — 01 6P
than the WENO-Roe upwind scheme and provides the best results. aSlelpt(?th implicit centered implicit centered order
o . o . expansion CFL=0.6 CFL =10. 3
o [mplicit high order finite volume centered schemes seems a promising way to combine the advantages of _ 0.1 0.1 0.1 O(M )
both approaches.
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Asymptotic and numerical analysis of an inviscid bounded vortex flow at low Mach. CFL =06 CFL =06 CFL =06
A. Cadiou, L. Le Penven, M. Buffat (2008) J. Comput. Phys. vol. 227, pp8268-8239
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