
CNRS  Université de Lyon  ECL  INSA  UCBL

Aérodynamique Interne: L. Le Penven, M. Buffat, A. Cadiou

Numerical schemes for Low Mach Number flows

Auray and onvergene of low Mah number �ow simulationsLow Mah number �ows are di�ult to ompute aurately with numerial methods developed for highspeed �ows. Sine the �ow time sales may be very di�erent at low Mah number, expliit methods requirethe use of very small time steps. On the other hand, impliit methods an be umbersome beause of theill-onditioned system to solve. Preonditioning tehniques exist, but modify the properties of the numerialshemes and the pertinene of those approahes for long time integration remains a partiular issue.
The objetive of this study is to analyse the low Mah number behaviour of a seletion of numerial shemesThe inspeted methods use expliit or impliit time integration, with a Finite Volume, Finite Elementor Finite Di�erene spatial disretization and are either entered or upwind shemes derived fromGodunov's method. The study fouses on the appliation to the simulation of the 2D ompressible Taylorvortex �ow, solution of the ompressible Euler (invisid) equations.

Motivation

A simple �ow : the invisid, 2D, Taylor vortex
u(x, t = 0) = u0(x) = (∂yψ0,−∂xψ0)

P (x, t = 0) = 1 +M2P2(x)

ρ(x, t = 0) = 1with ψ0 = π−1 sin(πx) sin(πy)and ∇P2 = −u0.∇u0

Streamlines at t = 0 (ψ0 = Ct).
u.n = 0 at the boundary.

Initial conditions Low Mah number M expansion using 2 time-sales (t, τ = t/M )
u(x, t) = u0(x) +M2 [u2(x, t) + δu2(x, τ )] +M3δu3(x, τ, t) + · · ·

P (x, t) = 1 + M2P2(x) + M3 δP3(x, τ ) + M4 [

P 4(x, t) + δP4(x, τ, t)
]

+ · · ·

ρ(x, t) = 1 +M2ρ2(x, t) +M3δρ3(x, τ ) +M4 [ ρ4(x, t) + δρ4(x, τ, t)] + · · ·entropi terms, aousti terms, (.) denotes average over the τ time sale.At t = 0, entropy has O(M2) variations throughout the �ow. At the leading order, density variations resultfrom entropy advetion along the losed streamlines of the u0 �eld. Density variations at O(M2) have thetime-period O(1). Due to strething by the �ow, these variations are suh that their radial length salesderease as t−1 and displays a striped pattern. Sine material derivative of density is not zero during thisproess, a ompressible ontribution is generated in the veloity �eld on the time sale O(1). The �owadapts to the divergene-free onditions at t = 0 by generating an aousti response on the short time sale
τ = t/M haraterized by O(M2) variations for the veloity �eld and O(M3) for density and pressure.

Asymptotic expansion

Four di�erent shemes representative of numerial methods for ompressible �ows are evaluated using threespatial disretization tehniques :(a) 2nd order impliit entered sheme with FV approximation,(b) 2nd order expliit (upwind) Roe-Turkel sheme with FE/FV approximation,() 4th-order expliit (entered) Padé sheme with FD approximation,(d) 5th-order expliit (upwind) WENO sheme with FD approximation.Spatial and temporal disretization errors are evaluated in the ase of one dimensional linear advetion on aregular mesh of size h. Dissipation and dispersion errors are evaluated using standard Fourier analysis for apropagating wave of wavenumber k.- Centered shemes (impliit entered sheme and ompat Padé sheme) are less dissipative than the twoupwind shemes.- High-order shemes (Padé and WENO) have less dispersion error than seond-order shemes.- FV 2nd order shemes are relatively aurate as ompared to the high order FD shemes and espeiallymuh more preise than the standard 2nd order FD sheme.
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Dispersive error
Spetral error analysis for the 1D linear advetion equation for CFL = 0.6

Numerical schemes
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ρ2 term on a 120 × 120 grid at M = 0.01.
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Results

Comparison of shemes
• Expliit 2nd sheme, even with low Mah number preonditioning: the most dissipative but robust
• Impliit 2nd entered sheme: aptures the slow-time density variations without dissipation and with asmall dispersion error. For CFL smaller than one, aousti pressure levels are orretly predited. ForCFL larger than one, aousti �utuations are �ltered without alteration of the slow-time solution.
• Expliit high order shemes: both orretly predit the slow time density variations on a rather oarsemesh size. Even if the high-order Padé entered sheme needs low pass spatial �ltering, it is less dissipativethan the WENO-Roe upwind sheme and provides the best results.
• Impliit high order �nite volume entered shemes seems a promising way to ombine the advantages ofboth approahes.

Comments
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