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Numerical schemes for Low Mach Number flows

A

ura
y and 
onvergen
e of low Ma
h number �ow simulationsLow Ma
h number �ows are di�
ult to 
ompute a

urately with numeri
al methods developed for highspeed �ows. Sin
e the �ow time s
ales may be very di�erent at low Ma
h number, expli
it methods requirethe use of very small time steps. On the other hand, impli
it methods 
an be 
umbersome be
ause of theill-
onditioned system to solve. Pre
onditioning te
hniques exist, but modify the properties of the numeri
als
hemes and the pertinen
e of those approa
hes for long time integration remains a parti
ular issue.
The obje
tive of this study is to analyse the low Ma
h number behaviour of a sele
tion of numeri
al s
hemesThe inspe
ted methods use expli
it or impli
it time integration, with a Finite Volume, Finite Elementor Finite Di�eren
e spatial dis
retization and are either 
entered or upwind s
hemes derived fromGodunov's method. The study fo
uses on the appli
ation to the simulation of the 2D 
ompressible Taylorvortex �ow, solution of the 
ompressible Euler (invis
id) equations.

Motivation

A simple �ow : the invis
id, 2D, Taylor vortex
u(x, t = 0) = u0(x) = (∂yψ0,−∂xψ0)

P (x, t = 0) = 1 +M2P2(x)

ρ(x, t = 0) = 1with ψ0 = π−1 sin(πx) sin(πy)and ∇P2 = −u0.∇u0

Streamlines at t = 0 (ψ0 = Ct).
u.n = 0 at the boundary.

Initial conditions Low Ma
h number M expansion using 2 time-s
ales (t, τ = t/M )
u(x, t) = u0(x) +M2 [u2(x, t) + δu2(x, τ )] +M3δu3(x, τ, t) + · · ·

P (x, t) = 1 + M2P2(x) + M3 δP3(x, τ ) + M4 [

P 4(x, t) + δP4(x, τ, t)
]

+ · · ·

ρ(x, t) = 1 +M2ρ2(x, t) +M3δρ3(x, τ ) +M4 [ ρ4(x, t) + δρ4(x, τ, t)] + · · ·entropi
 terms, a
ousti
 terms, (.) denotes average over the τ time s
ale.At t = 0, entropy has O(M2) variations throughout the �ow. At the leading order, density variations resultfrom entropy adve
tion along the 
losed streamlines of the u0 �eld. Density variations at O(M2) have thetime-period O(1). Due to stret
hing by the �ow, these variations are su
h that their radial length s
alesde
rease as t−1 and displays a striped pattern. Sin
e material derivative of density is not zero during thispro
ess, a 
ompressible 
ontribution is generated in the velo
ity �eld on the time s
ale O(1). The �owadapts to the divergen
e-free 
onditions at t = 0 by generating an a
ousti
 response on the short time s
ale
τ = t/M 
hara
terized by O(M2) variations for the velo
ity �eld and O(M3) for density and pressure.

Asymptotic expansion

Four di�erent s
hemes representative of numeri
al methods for 
ompressible �ows are evaluated using threespatial dis
retization te
hniques :(a) 2nd order impli
it 
entered s
heme with FV approximation,(b) 2nd order expli
it (upwind) Roe-Turkel s
heme with FE/FV approximation,(
) 4th-order expli
it (
entered) Padé s
heme with FD approximation,(d) 5th-order expli
it (upwind) WENO s
heme with FD approximation.Spatial and temporal dis
retization errors are evaluated in the 
ase of one dimensional linear adve
tion on aregular mesh of size h. Dissipation and dispersion errors are evaluated using standard Fourier analysis for apropagating wave of wavenumber k.- Centered s
hemes (impli
it 
entered s
heme and 
ompa
t Padé s
heme) are less dissipative than the twoupwind s
hemes.- High-order s
hemes (Padé and WENO) have less dispersion error than se
ond-order s
hemes.- FV 2nd order s
hemes are relatively a

urate as 
ompared to the high order FD s
hemes and espe
iallymu
h more pre
ise than the standard 2nd order FD s
heme.
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Dispersive error
Spe
tral error analysis for the 1D linear adve
tion equation for CFL = 0.6

Numerical schemes
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Results

Comparison of s
hemes
• Expli
it 2nd s
heme, even with low Ma
h number pre
onditioning: the most dissipative but robust
• Impli
it 2nd 
entered s
heme: 
aptures the slow-time density variations without dissipation and with asmall dispersion error. For CFL smaller than one, a
ousti
 pressure levels are 
orre
tly predi
ted. ForCFL larger than one, a
ousti
 �u
tuations are �ltered without alteration of the slow-time solution.
• Expli
it high order s
hemes: both 
orre
tly predi
t the slow time density variations on a rather 
oarsemesh size. Even if the high-order Padé 
entered s
heme needs low pass spatial �ltering, it is less dissipativethan the WENO-Roe upwind s
heme and provides the best results.
• Impli
it high order �nite volume 
entered s
hemes seems a promising way to 
ombine the advantages ofboth approa
hes.

Comments
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