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AbstratAs a onsequene of the Helmholtz-Hodge theorem, any divergene-free vetor�eld an be deomposed in two L2-orthogonal, solenoidal vetor �elds expressedin terms of projetions of the veloity and vortiity �elds, on an arbitrary di-retion in spae. Based on this type of deomposition and the hoie of thewall-normal diretion, an e�ient spetral ode is developed for inompressible�ows developing between two parallel walls. The method relies on a weak formu-lation of the Navier-Stokes equations in the two orresponding divergene-freesubspaes. The approximation is based on Fourier expansions in two diretionsand on the Chebyshev basis proposed by Moser et al. in the third diretion inorder to satisfy the wall boundary onditions. The method auray is validatedfor the plane Poiseuille linear stability problem and ompared with the ase ofa spetral olloation method. Simulations of by-pass transition in boundarylayers developing between two parallel walls are then presented. Sine, by on-strution, the two orthogonal vetor �elds of the deomposition are assoiatedrespetively to the Orr-Sommerfeld and the Squire modes of the linear stabilitytheory, the method makes it possible to evaluate kineti energy transfers due tothe oupling between these two salar modes and their interations with the base�ow. The deomposition is also used to desribe the struture of �nite-lengthstreaks in the earlier stages of transition.Key words: Spetral method, Galerkin method, Helmholtz-Hodgedeomposition, vetor �eld deomposition, bypass transition, boundary layer,hannel �ow
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1. IntrodutionThe problem of transition from laminar to turbulent �ow has been the sub-jet of intense study in the �eld of �uid mehanis sine the pioneer work ofReynolds (1883). The hallenges that have to be addressed when one wantsto aurately simulate laminar-turbulent transition in �uid �ow are numerous.Among other, very high auray of the numerial method is mandatory to ob-tain meaningful results (see the review in Rempfer [25℄). Due to their high au-ray, spetral methods are exellent andidates to simulate transition in simplegeometry, in partiular with periodi boundary onditions (Gottlieb and Orszag[13℄, Canuto et al. [7℄). Among spetral methods, pseudo-spetral/olloationmethods are more popular than Galerkin/projetion spetral methods beauseeasier to formulate and implement. As pointed out by Boyd [4℄, the reasonis simply that it is generally easier to evaluate a funtion than it is to inte-grate it. However Galerkin methods have spei� advantages. They are basedon variational formulations whih preserve essential properties of the ontinuousproblem suh as oerivity, ontinuity and symmetry of the bi-linear form (Shenand Tang [29℄). Besides from a numerial point of view, in time-marhing prob-lems, the matries assoiated with Galerkin impliit or semi-impliit methodsare banded matries and Galerkin method are usually muh faster than the ol-loation ones (Boyd [4℄). Among Galerkin methods applied for inompressible�ow solution, spetral solenoidal Galerkin or Petrov�Galerkin shemes are par-tiularly attrative, beause pressure is eliminated from the sheme by suitablyprojeting the equations on solenoidal subspaes (Canuto et al. [7℄).The main objetive of this paper is to present a spetral projetion methodfor inompressible �ow simulation based on an orthogonal deomposition of theveloity into two solenoidal �elds and to apply it for the problem of boundarylayer bypass transition in a plane hannel on�guration. It is well-known thatthe linear stability problem of parallel shear �ows an be formulated onve-niently in terms of Orr-Sommerfeld and Squire equations, whih are the twosalar di�erential equations for the normal veloity and vortiity omponents(Shmid and Henningson [28℄). Correlatively, one an ask whether the normalveloity and the normal vortiity an be used to obtain an orthogonal deompo-sition of the veloity vetor appliable to non-linear simulation of inompressiblewall-bounded �ows. The answer is positive and an be viewed as a onsequeneof the Helmholtz-Hodge deomposition theorem. Using this orthogonal deom-position, an e�ient parallel spetral ode has been developed for on�gurationsof plane hannel �ows. The approximation is based on Fourier expansions intwo diretions and on the Chebyshev basis proposed by Moser et al. [22℄ inthe third diretion in order to satisfy the wall boundary onditions. The fringetehnique of Bertolotti et al. [3℄ is used to adapt the method for the simulationof physial on�gurations that are not doubly-periodi.The struture of this paper is as follows. The problem and methodologyare �rst presented in Setion 2 together with the priniple of the orthogonaldeomposition and its onstrution for periodi �ows in two diretions. Theassoiated numerial method is desribed in Setion 3. The linear stability2
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Figure 1: Computational domain Ω.problem for the plane Poiseuille �ow is �rst onsidered for validation in Setion4 and the method is ompared with a spetral olloation method. Setion 5 isdediated to simulations of turbulent bypass transition in a plane hannel �ow,and more preisely in the entrane region where the two boundary layers are stillthin ompared to the hannel width. For these simulations, the external pertur-bations are taken in the form proposed by Zaki and Durbin [31℄ and di�erentamplitudes are onsidered. The results are similar to those presented by Zakiand Durbin [31℄ and Shlatter et al. [26℄ for a boundary layer over a �at plate.The orthogonal deomposition is used to haraterize energy transfers duringthe �rst stages prior to turbulent transition, and to enlighten the struture of�nite-length streaks.2. Methodology2.1. Governing equationsConsider an inompressible, Newtonian �uid moving between two �xed, par-allel plates distant from 2h apart. After saling the veloities by a onstant speed
U0 and the lengths by h, the �ow equations read

∂u

∂t
+ u.∇u + ∇p−

1

Re
∆u = f (1)

∇.u = 0 in Ω (2)where u(x, y, z, t) is the veloity vetor, p the pressure divided by density,
Re = U0h/ν the Reynolds number and ν the kinemati visosity of the �uid.The omputational domain onsidered hereafter is de�ned by the parallelepiped
Ω = [0, Lx]× [−1, 1]× [0, Lz] aligned with the referene axes (x, y, z) and delim-ited by the walls (see Figure 1). The boundary onditions for u are the no-slipondition on the walls and periodiity in diretions x and z. The volume fore3



f is zero exept in a small region of length Lf downstream at Lx−Lf < x < Lxwhere the following expression is used:
f = λ(x) (U − u) (3)In this expression, λ(x) is a smooth, positive funtion and U is a presribed�ow �eld. The volume fore is introdued in order to simulate �ows that arenot naturally periodi in the x diretion, while keeping the bene�ts of Fourierexpansions in this diretion. The method, due to Bertolotti et al. [3℄, is usuallyreferred to as the "fringe method". In setion 5, it will be applied to the aseof boundary layers developing under the e�et of a pressure drop between thesetions x = 0 and x = Lx − Lf . By adjusting U so as to obtain the desiredinput �ow at x = 0, the fore will at downstream, in the "fringe domain", as arestoring term foring the �ow progressively to periodiity. The fringe methodis analyzed in details by Nordström et al. [23℄.2.2. Variational formulationFollowing Pasquarelli et al. [24℄, the weak formulation of equations (1-2) iswritten in a divergene-free funtion spae. The inner produt is de�ned by:

< u,v >w=

ˆ

Ω

u(x, y, z).v(x, y, z)w(y) dxdydz (4)where w(y) is a positive weight funtion. The spae W of divergene-free trialfuntions and the spae V of test funtions are de�ned as follows (for onise-ness the de�nition of the Sobolev spaes is omitted, see Pasquarelli et al. [24℄for further information):
W = {u(x, y, z)periodi in (x, z)withu(x,±1, z) = 0 /∇.u = 0} (5)
V = {v(x, y, z)periodi in (x, z)withv(x,±1, z) = 0 /∇.(wv) = 0} (6)The weak formulation is obtained by using the inner produt of the Navier-Stokes equation (1) with a test funtion v. Using the divergene theorem, theboundary onditions and the test funtions properties (6), the variational for-mulation equivalent to (1-2) is written:Findu ∈ W suh that, ∀v ∈ V,

<
∂u

∂t
,v >w −

1

Re
< ∆u,v >w = < F,v >w (7)

= < f − ∇p0 + u × (∇ × u),v >wIn this expression, ∇p0 represents the average of ∇p over the domain Ω, andis a vetor onstant in spae, parallel to the plane x, z. The derivation of (7)makes use of the identity u.∇u = ∇(u2/2) + (∇ × u) × u. Note that thepotential part of the onvetive aeleration, as well as the variations of the4



pressure gradient, are eliminated through the projetion proedure on the spaeof divergene-free funtions W . For the generalized Stokes problem in whih Fis a given funtion, Pasquarelli et al. [24℄ prove the equivalene of (1-2) with thevariational problem (7) and the uniqueness of the solution of (7).2.3. Orthogonal deomposition of veloity �eld2.3.1. A orollary to Helmholtz-Hodge deomposition theoremApproximation methods for the solution of (7) need divergene-free basisfuntions in the spae of solutions W . The hoie of the basis funtions thatwill be used in the following refers to a property of orthogonal deompositionof vetor �elds. This property is a onsequene of the Helmholtz-Hodge de-omposition theorem and an be stated as follows. Every square integrable,three-dimensional vetor �eld an be split into two parts, whih are orthogonalwith respet to the L2 inner produt. One part is a two-dimensional, divergene-free vetor �eld and is normal to an arbitrary hosen diretion of spae and theseond vetor �eld is suh that its url is normal to the spei�ed diretion. Inorder to satisfy orthogonality, one of the two vetor �elds must generally omplyto some spei� boundary onditions. An outline of the demonstration is nowpresented for the ase of vetor �elds that are doubly periodi in the diretionsnormal to the diretion hosen for the deomposition, whih is the ase thatwill be onsidered in the following. It should be noted that the proposed de-omposition is valid under more general onditions (Le Penven and Bu�at [17℄)inluding the fat that the domain of u an be bounded or not. Sine the mainlines of the demonstration remain the same, the following statement is kept asgeneral as possible, exept for the referene to the boundary onditions neededfor orthogonality.Let be (x, y, z) a artesian oordinate system, ex, ey, ez , the assoiated unitvetors and ∇⊥ = (∂x, 0, ∂z)
t the projetion of the gradient operator on theplane normal to ey. Let us onsider a smooth vetor �eld and its projetion u⊥on the plane normal to ey:
u⊥ = u − (u.ey)eyThe �eld u is supposed to be doubly periodi in (x, z) and its mean value ina plane parallel to (x, z) over a periodiity ell will be denoted as u(y). Usingthe Helmholtz-Hodge theorem (Chorin and Marsden [8℄, Majda and Bertozzi[20℄), this two-dimensional �eld an be deomposed into two doubly periodi,

L2 orthogonal �elds: a two-dimensional, divergene-free vetor usq satisfying
usq(y) = 0 and the gradient of a salar potential, suh that:

u⊥ = usq + ∇⊥φNote that the ondition of zero mean value usq(y) = 0 is required to satisfythe orthogonality property with respet to the L2 norm over the periodiityell. In the general (not periodi) ase, this ondition would be replaed by theondition that usq has zero normal value on the domain of u (Le Penven andBu�at [17℄). 5



Coming bak to the initial vetor �eld u, the following deomposition isobtained: u = uos + usq where uos is de�ned by uos = (u.ey)ey + ∇⊥φ.Orthogonality of usq and uos is readily veri�ed as well as the two propertiesmentioned in the introdution of the setion: usq.ey = 0 and (∇ × uos).ey =
0. Moreover, when the vetor �eld u is divergene-free, the two terms of thedeomposition are also divergene-free.When the periodiity ell is simply onneted, the two-dimensional solenoidal�eld usq admits a vetor potential ψey, assoiated with a stream funtion ψwhih an be hosen suh that ψ = 0. The potential φ an be split into aperiodi part φ1 and a linear part φ0 satisfying respetively to φ1 = 0 and
∇⊥φ0 = u⊥. In that ase, the orthogonal deomposition reads:

u = uos + usq with uos = u⊥(y) + (u.ey)ey + ∇⊥φ1, usq = ∇ × ψey (8)Speializing to the ase of solenoidal vetor �elds and taking the divergene andthe url of equation (8), the potential φ1 and the stream funtion ψ are foundto be the unique solutions of:
∇2

⊥φ1 = −∂y(u.ey) with φ1(y) = 0, ∇2
⊥ψ = (∇ × u) .ey with ψ(y) = 0 (9)This system shows that the potential φ1 is determined uniquely by the y-omponent of the veloity u.ey, and the stream funtion ψ by the y-omponentof the url (∇ × u) .ey.At this point, a justi�ation must be given for the notation: uos + usq.For parallel, inompressible �ows, i.e. in whih the veloity is expressed as

U = U(y)ex, the linear stability theory is generally formulated in terms of twosalar di�erential equations for the perturbation: the Orr-Sommerfeld equationfor the y-omponent of the veloity perturbation and the Squire equation forthe y-omponent of its vortiity (Shmid and Henningson [28℄). By analogy,as they are de�ned respetively by the normal omponent of veloity and thenormal omponent of vortiity, the two vetor �elds of the deomposition havebeen denominated as the Squire (usq) and the Orr-Sommerfeld (uos) veloity�elds.2.3.2. Appliation to doubly-periodi hannel �owsComing bak to the �ow problem de�ned in Setion 2.1, the deomposition
u = uos + usq is applied to the veloity �eld, solution of (7), taking ey as theunit vetor normal to the walls. In that ase, the uos veloity �eld (denoted byOS veloity) has zero wall-normal vortiity and its normal veloity is equal tothe wall-normal veloity of u. The usq vetor �eld usq (denoted by SQ veloity)has zero wall-normal veloity and its wall normal vortiity is equal to the wall-normal vortiity. Moreover, its averages in the planes of onstant y vanish, asrequired by the orthogonality ondition.Thanks to the periodiity property in x and z, an expression for uos and usqan be found, using the Fourier expansion of the vetor �eld:

u(x, y, z, t) =

∞∑

m=−∞

∞∑

p=−∞

u
mp(y, t) eı(αmx+βpz) (10)6



where u
mp(y, t) is the omplex vetor of the Fourier oe�ients. Equation (9)an be solved easily, and expliit expressions an be obtained for u

mp
os and u

mp
sq ,respetively the Fourier oe�ients of the OS and SQ veloity vetors. Theseexpressions appear as funtions of vmp(y) and ωmp(y), the Fourier omponentsof the wall-normal veloity and wall-normal vortiity. For a non zero wavenumber k =

√
α2

m + β2
p , the OS veloity Fourier vetor u

mp
os is obtained as

u
mp
os =

(
ı
αm

k2
∂yv

mp , vmp , ı
βp

k2
∂yv

mp

)t (11)and the SQ veloity Fourier vetor u
mp
sq by

u
mp
sq =

(
−ı

βp

k2
ωmp , 0 , ı

αm

k2
ωmp

)t (12)The Fourier oe�ient for m = n = 0 orresponds to the ontribution of themean �eld ū(y). In that ase, the deomposition is:
u

00
os = (ū(y), 0, w̄(y))t , u

00
sq = 0Realling that the Fourier oe�ients of the vortiity vetor are obtained by

∇̂×u
mp, with the operator de�nition ∇̂ = (ıαm, ∂y, ıβp), it an be noted thatboth veloity and vortiity Fourier vetors verify orthogonality onditions, i.e.:

u
mp
os .u

mp
sq = 0 (13)

(
∇̂ × u

mp
os

)
.
(
∇̂ × u

mp
sq

)
= 0Thus, algebrai orthogonality in the Fourier spae appears as the ounterpartof funtional orthogonality with respet to the L2 inner produt in the physialspae. Again, the deomposition in the Fourier spae u

mp = u
mp
os + u

mp
sq isunique. The OS vortiity and the SQ veloity Fourier vetors are parallel tothe wall. In addition, both are orthogonal to the wave-vetor k = (αm, 0, βp),sine they are solenoidal vetors �elds.Denoting by Wmp the funtion spae of the Fourier oe�ients u

mp, theabove orthogonal deomposition indues a deomposition of Wmp into two or-thogonal subspaes WOS
mp and WSQ

mp spanned by vetors of the form (11) and(12) respetively.In order to satisfy the no-slip boundary onditions at the walls, the funtions
vmp(y) and ωmp(y) must verify the following onditions:

vmp(±1) = 0, ∂yv
mp(±1) = 0, ωmp(±1) = 0 (14)3. Numerial methodThe approximation u

h of the solution of equation (7) is the result of a two-step proess. First, the doubly in�nite Fourier sum (10) is trunated by retaining7



only M and P omponents in eah periodi diretion. Seondly, an approxima-tion spaeWh
mp for eah resolved Fourier oe�ients u

mp(y, t) is onstruted byhoosing two �nite sets of N trial funtions {vi(y)} and {ωi(y)} omplying withthe boundary onditions (14). The following approximations an be written:
vmp(y) =

N−1∑

j=0

αmp
OS,j vj(y), ωmp(y) =

N−1∑

j=0

αmp
SQ,j ωj(y)Using relations (11) and (12), the two assoiated sets of trial vetors {ump

OS,j}and {ump
SQ,j} an be de�ned, and the omplex vetor funtion u

mp(y, t) an thenbe expressed as:
u

mp =

N−1∑

j=0

αmp
OS,j u

mp
OS,j +

N−1∑

j=0

αmp
SQ,j u

mp
SQ,j (15)Similarly to the de�nition of Wh

mp, the spae V h
mp of test funtions v

mp an bede�ned using a omparable deomposition.In the spaes Wh
mp and V h

mp, the inner produt assoiated with (4) is:
(ump,vmp)w =

ˆ +1

−1

u
mp(y).vmp(y)w(y) dy (16)By denoting F

mp(y, t) the Fourier oe�ients of the funtion F(x, y, z, t) in-trodued in (7) and by virtue of orthogonality of the trigonometri funtionswith respet to the inner produt (4), the disrete variational formulation equiv-alent to (7) an be written as:
∀αm, βp, �nd u

mp ∈Wh
mp, suh that ∀vmp ∈ V h

mp

(
∂ump

∂t
,vmp)w +

1

Re
((α2

m + β2
p)ump − ∂yyu

mp,vmp)w = (Fmp,vmp)w(17)Finally, by using the deomposition of the trial and test funtions, two setsof di�erential equations are obtained for the two omplex vetors of unknownoe�ients α
mp
OS = {αmp

OS,j} and α
mp
SQ = {αmp

SQ,j}:
Mmp

OS

d

dt
(αmp

OS) +
1

Re
(k2Mmp

OS + Kmp
OS)αmp

OS = b
mp
OS (18)

Mmp
SQ

d

dt
(αmp

SQ) +
1

Re
(k2Mmp

SQ + Kmp
SQ)αmp

SQ = b
mp
SQwhere Mmp

OS , Mmp
SQ and Kmp

OS , Kmp
SQ are respetively the mass and rigidity ma-tries.The trial funtions {vi(y)} and {ωi(y)} are de�ned using Chebyshev polyno-mials Ti(y) = cos[i arccos(y)] known for their property to represent eonomiallystrong gradients in near-wall regions. Their expression reads, similarly to theMoser et al. [22℄ proposal: 8



vj(y) = (1 − y2)2 Tj(y) , ωj(y) = (1 − y2)Tj(y)The polynomial prefators are hosen so that the wall boundary onditions (14)are satis�ed. The two sets of trial funtions are quasi-orthogonal sets and,in order to keep the matries sparse in (18), the Chebyshev weight funtion
w(y) = 1/

√
(1 − y2) is used in the inner produt (16). Furthermore, as theyan be expressed as integrals of Chebyshev polynomials produts , all the matrixoe�ients are alulated exatly to avoid quadrature errors.3.1. Stability and preisionIn the ase of the generalized Stokes problem (the right-hand side F is a givenfuntion), Pasquarelli et al. [24℄ proved the spetral auray of divergene-freespetral approximations, i.e. the onvergene is O(N1−s) for every s ≥ 1, andmore preisely:
∥∥u − u

h
∥∥

ω
≤ CKs(u)

(
N1−s +M1−s + P 1−s

)
∀s ≥ 1where C is a positive onstant independent of N , M , P and Ks(u) is relatedto the Ls norm of the veloity u. The temporal auray results from the useof a seond-order Crank-Niholson/Adams Bashford sheme, that has a linearstability limit CFL < 1, where the CFL number is de�ned as:

CFL = π∆t

(
M |u0|

Lx

+
N |v0|

2
+
P |w0|

Lz

) (19)where (u0, v0, w0) are the veloity omponents along x, y and z respetively and
| | is the in�nity norm.3.2. The NadiaSpetral ode1The method is implemented in C++ in the NadiaSpetral ode developedat the Laboratoire de Méanique des Fluides et d'Aoustique de l'Université deLyon. This ode is parallelized using the MPI library. The solution is advanedin time in the spetral spae, usingMP Fourier andNy = N+4Chebyshev poly-nomials. Taking into aount the symmetries of the problem, the determinationthe solution at eah time step needs the solution of 4MP real linear systemsof dimension N/2. Evaluation of the right-hand side of (18) requires the al-ulation of the non-linear terms in Fourier spae, i.e. onvolution sums. Thesesums are alulated more e�iently in physial spae using fast Fourier trans-forms. Aliasing errors from the evaluation of the nonlinear terms are removedby the 3/2-rule in the wall-parallel (x, z) plane. In the wall-normal diretion yit has been found to be more onvenient to inrease resolution as in Shlatter1for additional information see http://www.ufrmea.univ-lyon1.fr/~buffat/NadiaSpetral 9



et al. [26℄. As the linear systems an be solved independently for eah ouple ofintegers (m, p), the resolution an be e�iently parallelized on lustered om-puters by distributing the data along one of the two Fourier diretions. Howevernon-linear terms alulations require the use of FFT in plane (x, z), that needsdata transpositions, i.e. data ommuniations between omputing nodes. Asa global data transpose with MPI AlltoAll ommuniation library funtions isnot very e�ient, the data transposition has been optimized by distributing thedata among the proessors along one of the Fourier diretion, the x diretion forexample, and by using an optimized in plae point to point data transpositionfrom (x, y) to (x, z) planes. The FFTs are performed in the (x, z) planes usingreal to omplex 2D FFT with the optimized FFTW library of Frigo and Johnson[12℄. Typial running time on parallel omputer with 32 ores is 2s/time stepfor 14 million grid points.The auray of the method is validated on the evolution of the least stableOrr-Sommerfeld eigenmode Ucrit(y) in plane Poiseuille �ow omputed using lin-earized Navier-Stokes equations for α = 1, β = 0 and Re = U0h/ν = 10000 (thesale U0 is the maximum of the veloity of the base �ow). The alulated velo-ity is ompared at time t = 1 with the one obtained from the Orr-SommerfeldeigenfuntionUex = Ucrit(y) e
ıkx(x−λcritt) for di�erent spatial resolutions. Boththe L2-norm and the in�nity-norm of the relative error on eah veloity ompo-nent are plotted on Figure 2. For both norms and both veloity omponents,the spetral auray of the method is learly seen on this �gure until the errorson the initial onditions Ucrit(y) take over around 10−8.The present method has some advantages that makes it partiularly e�ientregarding omputing ost and preision. Thanks to the projetion method,eah time step requires the solution of only two 1D linear systems for eahwave number, instead of four when the pressure must be alulated. Using thevariational formulation, the matries of these linear systems are 5 and 7 bandmatries without additional oupling lines due to the boundary onditions, as inolloation formulations. Moreover, their oe�ients are alulated analytially,avoiding the ost of numerial integration and round-o� errors. As it will beseen in the following, the orthogonal deomposition of the solution also allowsa physial interpretation in terms of energy transfer.4. Linear stability analysis of plane Poiseuille �owThe NadiaSpetral ode has been validated by omparison to the linear sta-bility analysis of the plane Poiseuille �ow. The linearized Navier-Stokes equa-tions are solved using the orthogonal deomposition and the numerial methoddesribed in Setion 3. The linear systems and the assoiated eigenvalue prob-lems are solved using diret fatorisation and QR/QZ algorithms from the La-pak linear algebra pakage.The spetrum for the plane Poiseuille �ow at Re = 104 is shown on Fig-ure 3a and is ompared with the spetrum obtained by a spetral olloationmethod (osmat Matlab routine desribed in Shmid and Henningson [28℄). Us-ing the same number Ny = 256 of Chebyshev polynomials, the agreement10
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is exellent and the alulated value of the only unstable omplex frequeny
ω = 0.2375264887756 + 0.003739670625 ı oinides up to 10−12. However itshould be pointed out that the olloation method misses one eigenvalue: themode 42 with ω = 0.67408− 0.41247 ı. The number of Chebyshev polynomialsmust be twie larger, i.e. Ny = 512, to obtain this mode with the olloationmethod.The method auray is evaluated by alulating the eigenvalues for di�er-ent resolutions. To do these mode-by-mode omparisons, we �rst onsider thespeial ase of zero streamwise wave number α = 0, for whih an analytialsolution is available (Drazin and Reid [10℄). Figure 3b shows the relative errorfor the di�erent alulated modes and for di�erent values of Ny. The integer lon the �gure is the rank of the eigenvalue in order of dereasing imaginary part.It is seen that the �rst Ny/2 modes are well alulated within the �oating pointpreision, whereas the last Ny/2 modes must be disregarded. We also hekthe auray of the alulated Orr-Sommerfeld spetrum for α = 1 and β = 0,taking for Ny the powers of 2 from 64 to 1024. The lassial Y-shape of thePoiseuille �ow spetrum is obtained for the values of Ny larger than 128 (seeFigure 3a, for Re = 1000), with a well de�ned vertial branh (alled S-branh),orresponding to the asymptoti behaviour for the large negative values of theimaginary part of the frequeny (ωr = 2/3). For the lowest value Ny = 64,this vertial branh annot be observed. For all the values of Ny tested, it isnoted that, at a ertain point on the S-branh, orresponding roughly to a modenumber l ≈ Ny/2, the alulated eigenvalues depart from this asymptoti be-haviour. After this point, the omputed eigenvalues an be onsidered as beinginaurate. As proposed by Melenk et al. [21℄, the length LS of the alulatedS-branh an be taken as a measure of the numerial preision. They de�ned
LS as essentially the magnitude of the largest trustworthy eigenvalue and theypredit its asymptoti behaviour LS ≈ N2

y/Re. This asymptoti behaviour hasbeen veri�ed for di�erent resolutions Ny at Re = 104 . With Ny = 512, wefound LS = 25.27 whih is similar to the value LS = 24.33 obtained by Melenket al. [21℄ with a spetral Galerkin method using Legendre polynomials of order
N = 500. In that ase the largest trustworthy eigenvalue ωl is obtained for
l = 319, whih is lose to l ≈ Ny/2.In order to ompare with a spetral olloation method, the same validationhas been done with the Matlab osmat ode. When the number of olloationpoints is not high enough, some eigenvalues are missing (mode 26 for Ny = 128and mode 42 for Ny = 256). With Ny = 512, all eigenvalues are predited butthe method is 100 times less aurate than the Galerkin formulation, and is also
10 times slower. Indeed Galerkin methods have the advantage of using sparsematries and the boundary onditions are exatly satis�ed. Furthermore theonvergene is monotone.5. Boundary layer transition between two parallel wallsIn the last two deades, theory and omputer simulations have led to signi�-ant advanes in the understanding of boundary layer bypass transition indued12



by free-stream disturbanes (Durbin and Wu [11℄). The most outstanding fea-ture is that turbulent transition in a �at plate boundary layer an develop with-out the mediation of an unstable two-dimensional Tollmien-Shlihting mode.Bypass transition ours as an instability of ertain disturbanes of the bound-ary layer that are usually designated by the name of streaks or Klebanov modes(Jaobs and Durbin [16℄, Brandt and Henningson [5℄, Brandt et al. [6℄). Streaksan be desribed as thin jets in the streamwise diretion periodially arrangedin the spanwise diretion. From the point of view of linear stability theory, thestreaks have the property of growing transiently, although they are asymptoti-ally stable. When the streaks have grown enough, non-linear e�ets, whih areno longer negligible, an develop new instabilities. Streaks have been proved tobe optimal strutures in the sense that, in the subritial regime, they displaythe highest growing rate in a �nite time from all possible disturbanes (Ander-sson et al. [1℄, Luhini [18℄). It has also been demonstrated that they an beinitiated by taking one mode from the ontinuous spetrum of the normal velo-ity equation (Orr-Sommerfeld equation). This branh of stable modes ontainsall the modes that are non-vanishing far from the wall and thus provides a natu-ral basis for free-stream perturbations. These modes are strongly damped in theboundary layer, but the di�erenes in their penetration depth has shown to havegreat impat on the streak growth (Zaki and Durbin [31℄). In this senario oftransition, usually referred to as "bypass transition by free-steam disturbane",all the details have not yet been eluidated, in partiular the spontaneous ap-pearane of turbulent spots inside the streaky boundary layer is still not verywell understood and di�erent theories are under debate (Zaki and Durbin [31℄,Shlatter et al. [26℄).The present setion illustrates the apability of the numerial ode desribedin Setion 3 for simulating bypass transition in boundary layers developing be-tween two parallel walls. The approah assumes that the omputational domainis far enough from the inlet setion in order that the potential e�et of theleading edges an be negleted and this paper only onsiders the ase where theboundary layers are thin ompared to the hannel width (as desribed in Setion2). In the simulations, the transition in the boundary layers is fored by a free-stream perturbation onsisting in two partiular modes of the Orr-Sommerfeldequation following the proedure proposed by Zaki and Durbin [31℄.5.1. Basis �ow on�guration and parametersThe omputational domain Ω is the parallelepiped of Figure 1. As it willbe spei�ed in the next setion, the veloity in the inlet setion at x = 0 isvirtually aligned with the x diretion, its pro�le along y is uniform exept inthe two thin boundary layers lose to the walls. The referene sale U0 istaken as the mean �ow veloity through the inlet setion. As in (Jaobs andDurbin [16℄, Brandt and Henningson [5℄), the �ow at x = 0 is onsidered as thedevelopment of boundary layers that start at the distane x0 upstream of theleading edges of the walls. Aordingly, we will refer to the Reynolds number,
Rex = U0(x + x0)/ν, based on the distane from the virtual inlet setion.13



Reh Reδ∗

0
δ∗0/h Domain size Resolution

20 000 344 0.017 15h× 2h× 0.8h 728 × 193 × 98Table 1: Parameters for the presented numerial simulations.The parameters of the simulation setup are given in Table 1. The relevantparameters are the Reynolds number, Reh = U0h/ν, and δ∗0/h in whih δ∗0denotes the boundary layer displaement thikness (for eah wall) at the inlet ofthe hannel. Using the values Reh = 20 000 and δ∗0/h = 0.017, whih orrespondto a boundary layer thikness δ0,99 equal to 0.05 h, leads to a Reynolds number
Reδ∗

0
≈ 344, orresponding to Rex = 40 000. The omputational domain height

2h is equal to 114 δ∗0 and its length is 15h ≈ 852 δ∗0 in the streamwise diretionand 0.8h ≈ 45 δ∗0 in the spanwise diretion. The range of Rex values goes from
40 000 to 320 000. The extent Lf of the fringe region represents 10% of thedomain size Lx.The base �ow U

b is the two-dimensional laminar �ow orresponding to thedevelopment of two unperturbed symmetrial boundary layers. Sine an an-alytial solution is not possible for U
b, various approximate solutions, mostlyinvolving Prandtl's boundary-layer approximation, have been developed for thehannel �ow in the inlet region (Shimomukai and Kanda [30℄). Here the fol-lowing approximation has been used for the base �ow, inluding the e�et of aslight inrease of the free-stream veloity:

U b(x, y) = Ua(x) f(η), V b(x, y) = −

ˆ y

−h

∂xU
b(x, y)dy (20)with η =

h− |y|√
ν x

Ua(x)

, Ua(x) = U0

(
1 +

δ∗(x)

h

) (21)where f(η) is the Blasius pro�le and δ∗(x) the displaement thikness. At theend of the domain, the value of δ∗/h is equal to 0.0465.5.2. Free-stream perturbationZaki and Durbin [31℄ have shown that by-pass transition in boundary layersan be initiated by only two modes of the linearized equations. These modeshave zero normal vortiity and are hosen from the ontinuous branh of thespetrum. These so alled �ontinuous modes� are damped signi�antly in theboundary layer, osillate sinusoidally far from the wall and their phase veloityis lose to the free-stream veloity when the Reynolds is large enough. Theyan therefore be viewed as a onvenient base for the free-stream perturbations(Grosh and Salwen [14℄). In Zaki-Durbin model, the �rst mode (mode A)has a large wavelength in the streamwise diretion ompared to the seondone (mode B) and enters the boundary layer more deeply (Jaobs and Durbin[15℄). Mode A and B are referred to as the low and the high frequeny modes.14



Perturbation αN γN βN vN
max/U0A 4π

Lx

12π
h

10π
Lz

0.041, 0.029, 0.020B 62π
Lx

7π
h

18π
Lz

0.021, 0.015, 0.010Table 2: Parameters of the low-frequeny (N = A) and high-frequeny (N = B)perturbations used as in�ow boundary onditions. Note that vN
max is the maxi-mum of the wall normal omponent of the veloity perturbation orrespondingto three rms values vd

rms = 1.2%, 0.9%, 0.6%.Sine the normal veloity appears in the foring term of the normal vortiityequation (Squire equation), mode A reates normal vortiity and ontributesto the development of the streaks. Zaki and Durbin [31℄ use the mode B toperturb the streaks at the boundary layer edge and indue turbulent transition.Similar simulations have also been performed reently by Shlatter et al. [26℄.For the present simulations in the hannel, the perturbation has been hosenin the same way. The boundary ondition for the perturbation at the entrane
u

d(y, z, t) orresponds to the onvetion by the free stream of the two modes Aand B:
u

d(y, z, t) =
∑

N=A,B

û
N (y) e±ıαN U0t±ıβN zThe veloity vetors û

N (y) have zero normal vortiity and are suh thattheir normal omponents are eigenmodes of Orr-Sommerfeld equation. Theosillatory behaviour of the perturbation far from the walls is haraterized bya wall-normal wave number γN . Table 2 lists the relevant parameters of the twomodes used as perturbations. The numerial values are similar to those used byShlatter et al. [26℄.Pro�les of the normal omponent of û
N are presented on Figure 4 in theboundary layer region. As an be seen on this �gure, the low-frequeny pertur-bation A has the largest penetration depth. As explained by Durbin and Wu[11℄, suh a perturbation gives rise to the formation of streaks in the bound-ary layer, whose spaing is ditated by the spanwise wave-number βN . On theother hand, the high-frequeny perturbation B does not enter deeply into theboundary layer, but its interation with the perturbation A at the boundarylayer edge an indue streak instability and then turbulent transition of theboundary layer.5.3. Simulation resultsDi�erent simulations have been performed, with the parameters in Tables 1and 2, using three di�erent values of the rms value vd

rms/U0 of the wall normalveloity perturbation in the inlet setion, namely 0.6%, 0.9% and 1.2%. For eahase, the amplitude of perturbation B is half the amplitude of perturbation Aas mentioned in Table 2. For the highest ase, vd
rms = 1.2%, the maxima in theinlet pro�les for wall normal and spanwise veloity perturbations are about 5%,15
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rms = 0.9%: (a) penetrating low-frequenymode A; (b) (damped) high-frequeny mode B.whereas the streamwise maximum value is 30 times lower. Aordingly, inletperturbations onsist essentially of streamwise vorties.5.3.1. Wall frition oe�ientThe pro�les of the instantaneous skin frition oe�ients are plotted on Fig-ure 5 and ompared with the Blasius and turbulent orrelations (Shlihtingand Gersten [27℄). At large time, for vd
rms = 1.2% and vd

rms = 0.9% the transi-tion to the turbulent regime is observed within the omputational domain. For
vd

rms = 0.9% the transition is observed at a larger Rex than for vd
rms = 1.2%.Before the transition the frition oe�ient exhibits smooth long-wave periodisurges propagating downstream and, after the transition, the pro�les osillatearound the turbulent orrelation with a more spiky aspet. For vd
rms = 0.6%the long-wave osillations are damped and no transition is observed within thedomain. These results, showing that the highest in�ow intensity ase reahesa fully turbulent ondition at an earlier point upstream, are similar to thosefound by Zaki and Durbin [32℄.When the time is not large ompared to the transit time in the omputationalbox, a transient regime is observed in whih turbulene is on�ned within a smallpart of the domain (see Figure 5b at time t = 11). These turbulent spots are nowonsidered more partiularly in order to haraterize the �rst steps of transitionand all the �gures presented in the following are for time t = 11.5.3.2. Kineti energy partition of the perturbed �owIn Figure 6, the instantaneous streamwise veloity omponent is displayedin a plane parallel to the upper wall and loated inside the boundary layer. Theplot learly shows periodi streaky patterns and downstream, exept for thelowest amplitude ase, more ompliated strutures. The periodi pattern is16
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(b) t = 11Figure 5: Skin frition oe�ient Cf for di�erent amplitudes of the inlet pertur-bations at two di�erent times for vd
rms = 0.6%, 0.9%, 1.2%. The instantaneous

Cf is spatially averaged over z on the upper hannel's wall.seen propagating with the base �ow. Indeed, the rapidly-varying veloity �eldsdownstream are assoiated to the turbulent spots seen on the Cf pro�les. For allases, the spanwise spaing of the streaks is equal to the spanwise wave-numberof the inlet perturbation A. As it will be seen later, the partiular value of thestreaks size in the streamwise diretion and the wavelength observed on Figure5 are also explained by the periodi harater of the inlet perturbation. In thepresent simulations, the streaks are not imposed as inlet boundary onditions,but appear as the result of lift-up of mean momentum by the low frequenyinlet vertial perturbation vA. This mehanism is an e�ient way to generatelarge perturbations in the boundary layer, as seen in the present ase, whereinlet perturbations of 0.9% intensity indue variations on streamwise veloitythat are 25 times larger. These results are very similar to those obtained forbypass transition by Zaki and Durbin [31℄ and Shlatter et al. [26℄.To analyze the turbulent spot in the boundary layer, the perturbation �eld,
u

p = (up, vp, wp)
t, is de�ned relatively to the base �owU

b(x, y) as up(x, y, z, t) =
U(x, y, z, t)−U

b(x, y). For the value vd
rms = 0.9% at time t = 11, the maximumof the streamwise omponent up is about 0.6U0, whih is nearly 3 times largerthan the orresponding values for the other two omponents vp and wp. Theiso-ontour of up in a vertial plane orresponding to the middle of a streakis plotted on Figure 7. The regular long wavelength streak is learly seen atthe beginning of the hannel on the left with alternating negative and positiveveloity. A perturbation is seen on the right, whih orresponds to the emer-gene of a turbulent spot. As seen on Figure 7, this disturbane �rst a�ets thebakward perturbation jet, i.e. the region of negative streamwise veloity in thestreaks, near the top of the boundary layer as suggested in Zaki and Durbin[31℄.The development of a turbulent spot in the boundary layer is analyzed by17



Figure 6: Top view of instantaneous streamwise veloity at �xed wall distane
2δ∗0 for 3 di�erent amplitudes of inlet perturbation, from top to bottom: vd

rms =
0.6% , vd

rms = 0.9% and vd
rms = 1.2%. The range orresponds to the maximumrange of the base �ow with low speed streaks in blue, and high speed streaks inred. The displayed domain orresponds to the �rst half of the domain 0 ≤ x ≤ 8,and the time is t = 11.

Figure 7: Instantaneous streamwise perturbation veloity up in a vertial planorresponding to the middle of a streak (extrema of up) for vd
rms = 0.9%: iso-ontours from blue to red orresponding to −0.3 ≤ up ≤ 0.3. The displayeddomain orresponds to the �rst part of the domain 0 ≤ x ≤ 7, and the time is

t = 11.
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onsidering averages in planes (y, z). In order to emphasize the near-wall �ow,integration along y is made on the distane δ = 10δ∗0 whih is only slightly largerthan the boundary layer width in the exit setion (the boundary layer thiknessis δ0.99 ≈ 0.1 h at x = 6.5 h, i.e. the spot position). At a given value of x, uδ isde�ned as the rms value of up in the hannel setion:
uδ(x, t) =

√
1

δ Lz

ˆ −h+δ

−h

ˆ Lz

0

(up(x, y, z, t))2 dy dz (22)with similar de�nitions for vδ and wδ orresponding to vp and wp. The averagedkineti energy is then de�ned by:
Eδ(x, t) =

1

2

((
uδ

)2
+

(
vδ

)2
+

(
wδ

)2
)On Figure 8, the variations of Eδ(x, t) with x learly show that the smooth,long wavelength, osillation attenuates in the lowest perturbation ase vd

rms =
0.6%, whereas a transition to a more errati dependene is seen for the highestperturbation vd

rms = 1.2%. For vd
rms = 0.9%, large perturbations are alsolearly observed, but they are more loalized and have smaller amplitude thanfor vd

rms = 1.2%. This behaviour is muh the same as the one observed onFigure 5. As in Figure 5, the osillations seen on the pro�le of E are onveyeddownstream. The orresponding phase speed cs an serve as a measure of thebulk veloity of the streaks. Moreover, sine E is de�ned from the square ofthe perturbation veloity, the wavelength measured on the pro�les provides anestimate of half the streamwise wavelength λs. As a result, the obtained valuesgive cs ≈ 0.55U0 and cs/λs is found to math well with the inlet perturbationfrequeny U0αA/(2π).Using the orthogonal deomposition, the results an be analyzed in terms ofOS veloity u
p
os and SQ veloity u

p
sq �elds. For eah ontribution, the near-wallrms values (suh as uδ

os and uδ
sq for the streamwise omponents) are de�nedby expressions similar to (22). Here, the inlet perturbation is an OS veloity�eld, with very low streamwise omponent (|up

os| /U0 ≤ 0.1%). Streamwisevariations of the near-wall rms values of up
os and up

sq are plotted on Figure 9 for
vd

rms = 0.6% (no turbulent spot) and vd
rms = 0.9% (appearane of a turbulentspot). For both ases, a fast growth of the Squire streamwise veloity up

sq,whose rms value reahes 13% of U0, is observed with the same large wavelengthosillation as seen on the energy plot (Figure 8). As already pointed out, theobserved large values for the streamwise omponent of the SQ veloity �eldresult from reation of normal vortiity by lift-up e�et and linear interationwith the basis �ow. Another observation is the fat that the Orr-Sommerfeldstreamwise veloity up
os grows to quite large values, representing about 80%of up

sq for the higher value of vd
rms. In this ase, the OS veloity �eld andthe SQ veloity �eld ontribute to the jet-like struture of the streaks withalmost equal importane. In ontrast to the linear growth of up

sq, this inreaseof up
os is related to a nonlinear mehanism, and will be disussed below. For19
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Figure 8: Evolution of averaged value of kineti energy Eδ(x, t) in the upperboundary layer at time t = 11, for 3 di�erent amplitudes of the perturbations.the lowest perturbation vd
rms = 0.6%, after the growing phase, the SQ and theOS veloity �elds are damped by visosity and no transition is observed. For

vd
rms = 0.9%, the strong high wave-number osillations seen on the energy pro�lenear x ≈ 6h are observed on both ontributions up

os and up
sq. The near-wall rmsvalues vδ

os, vδ
sq and wδ

os, wδ
sq , for the wall-normal and the spanwise perturbationrespetively, are 10 times smaller than the values for the streamwise omponentin the streaks region, but they grow rapidly in the spot region to reah 40% of

uδ
sq. As expeted, the streaks are essentially one dimensional streamwise jet-like perturbations, and the perturbations beome three-dimensional in the spotregion.5.3.3. Orthogonal deomposition of the streak patternsInstantaneous ontours of streamwise veloity perturbation are plotted onFigures 11 and 10 together with the two ontributions resulting from the or-thogonal deomposition. In the streaks region, the plane SQ veloity �eld u

p
sq(upper plot in Figures 11 and 10a) is a regular set of vorties orthogonal to thewall, elongated in the streamwise diretion. The ontribution of these vortiesan be easily identi�ed in the total streamwise veloity perturbation up (lowerplot on Figure 10a). The OS veloity �eld u

p
os (lower plot on Figure 11 andmiddle plot on Figure 10a) is a two-dimensional �eld, onstant in the spanwisediretion, onsisting of spanwise vorties elongated in the streamwise diretion.With negative values of up

os at the edge and positive values in the near-wallregion, these vorties reinfore the forward SQ perturbation veloity up
sq in thenear-wall region and the bakward SQ perturbation veloity up

sq at the edge of20
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(a) x = 4h (b) x = 6.9hFigure 10: Instantaneous ontours of streamwise veloity perturbation (−0.3 ≤
up ≤ 0.3) for vd

rms = 0.9% displayed using the orthogonal deomposition intwo ross setions: (a) in the streaks region and (b) near the turbulent burst.From top to bottom: SQ veloity up
sq, OS veloity up

os, total perturbation up =
up

os + up
sq. 21



Figure 11: Instantaneous ontours of streamwise veloity perturbation (−0.3 ≤
up ≤ 0.3) for vd

rms = 0.9% displayed using the orthogonal deomposition: (top)SQ veloity up
sq in an horizontal plane at �xed wall distane 2δ∗0 ; (bottom) OSveloity up

os in a vertial plane.the boundary layer, as seen on the lower plot of Figure 10a. Noting that the SQhas nearly zero average in the spanwise diretion, one an onsider that, in thestreaks region, the OS veloity �eld u
p
os and the SQ veloity �eld u

p
sq representthe spanwise-averaged part and the spanwise-varying part of the perturbation

u
p, respetively. The spatial struture of both terms is skethed in Figure 12.The SQ veloity u

p
sq mainly results from linear foring in the Squire equa-tion by the low-frequeny perturbation A (αA, βA). It has the same spanwisewavelength 2π/βA as the inlet perturbation A and its streamwise wavelength

λs is related to the inlet temporal frequeny fA = αAU0/2π as seen before. Byontrast, the OS veloity u
p
os is essentially due to non-linear interations. TheOS veloity �eld plotted in Figure 12 shows a periodi row of vorties orientedin the streamwise diretion at twie the streaks frequeny. The orotative har-ater of the vorties is an indiation that the spatial spetrum of the OS vetor�eld has a large ontribution at zero frequeny in addition to the pure sinu-soidal one. These two ontributions an be explained by quadrati interationsbetween the four modes (±αA,±βA) de�ning the inlet perturbation A. Energytransfer to mode (2αA, 0) an be explained by quadrati interations betweenmodes (αA, βA) and (αA,−βA). On the other hand, the ontinuous ontri-bution is explained by interations between modes (αA, βA) and (−αA,−βA).Energy levels of these two modes of up

os are similar, and the total energy of up
osrepresents 64% of the energy of u

p
sq.In the transition region, strong osillations of the streaks are observed in thespanwise diretion. In that region, the plot of the streamwise perturbation u

p(lower plot on Figure 10b) learly shows spanwise osillations of the low speedstreaks on top of the boundary layer. Figure 10b shows that the instabilitymainly a�ets the SQ streamwise veloity up
sq, whereas the OS streamwise ve-loity up

os remains almost una�eted. These osillations are also visible on rmsvalues of up
sq (Figure 9) upstream of the spot. They are found to move down-stream at the streaks veloity cs and their time frequeny is in agreement withthe frequeny of the in�ow mode B. At the early stage, before breakdown, thisinstability ours through perturbations of the SQ streamwise veloity up

sq andlooks very similar to the transverse instabilities studied by Andersson et al. [2℄.The question naturally emerges of whether and how the OS veloity �eld22
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βA δFigure 12: Sketh of the orthogonal deomposition in the streaks region: the SQveloity u

p
sq (on the left) is the spanwise varying part of the perturbation �eld,orresponding to the linear response assoiated with a mode (αA, βA); the OSveloity �eld u

p
os (on the right) is the spanwise-averaged part of the perturbation�eld orresponding to the non linear response assoiated with modes (2αA, 0)and (0, 0).

u
p
os ats on the stability of the streaks. If αA was taken equal to zero, the twomodal ontribution to u

p
os would merge and the e�et of u

p
os would be viewedsimply as a hange in the dependene of the base �ow with respet to the wallnormal oordinate. In this situation, that orresponds to steady (or in�nite)streaks, it has been learly demonstrated that non-linear distortion of the base�ow has important e�ets on the stability of the streaks. For streaks of moder-ate amplitude, Cossu and Brandt [9℄ have shown that it tends to stabilize theBlasius pro�le with respet to Tollmien-Shlihting waves. For streaks of largeramplitude apable of ausing in�etional instability, Andersson et al. [2℄ haveshown that the instability thresholds, and also the nature of the most unstablemode, are very di�erent whether the non-linear �eld is onsidered or not. Theloation of the turbulent spots inside the streaks of �nite length remains alsoan open question. In the present simulations, the turbulent spot appears in thedownstream part of the perturbed streaks, where the OS streamwise veloity

up
os has larger values. A stability analysis of streaks of �nite length, taking intoaount the streamwise variations of the non-linear distortion of the base pro�le,should be performed to answer these questions.6. ConlusionThis paper presents numerial simulations of boundary layer transition in aplane hannel �ow. The numerial method is based on the spetral projetionon two orthogonal, divergene-free subspaes. Fourier-Chebyshev expansionsare used and, more spei�ally, the Chebyshev basis proposed by Moser et al.[22℄ in order to satisfy the wall boundary onditions. To simulate non-periodi�ows, the fringe tehnique introdued by Bertolotti et al. [3℄ is employed. An in-teresting feature of the method is the diret aess to two solenoidal vetor �eldsthat play speial roles in the early stages of turbulent transition and, also, thepossibility to quantify energy transfers between them. Another harateristiis the use of a projetion on divergene-free subspaes, ensuring that the solu-tion �eld remains solenoidal, whatever are the foring terms in the equations.23



This allows a robust and aurate implementation of non-periodi boundaryonditions using the fringe method.The approah is �rst validated on the lassial stability analysis of the planePoiseuille �ow. The results illustrate the auray of the present spetral pro-jetion method, whih allows to obtain the spetrum preisely without missingeigenvalues. Then, the method is applied to the study of turbulent transitionin the boundary layers developing in a plane hannel �ow. The onsidered aseorresponds to a large Reynolds number �ow and is suh that the transitionours while the boundary layers are still thin ompared to the hannel width.Without external perturbations, the �ow remains laminar and the lassial Bla-sius skin frition oe�ient is reovered. By-pass transition is indued in theboundary layers by external vortial disturbanes using a model similar to theone proposed by Zaki and Durbin [31℄. As the boundary layer thikness is smallompared to the hannel height, similar results are obtained to those presentedby Zaki and Durbin [31℄ and Shlatter et al. [26℄ for a boundary layer over a �atplate. Using the orthogonal deomposition of the veloity, spei� informationabout the struture of streaks of �nite length is given. Spei�ally, the streaksare found as the sum of two L2-orthogonal ontributions, one part is the SQveloity �eld u
p
sq, whih is a streamwise oriented ontribution representing 60%of the total kineti energy, the other part is the OS veloity �eld u

p
os whih is aspanwise invariant term with 40% of the kineti energy. In the early steps of thetransition, the seondary instability a�ets mainly the SQ streamwise veloity

up
sq, whereas the OS streamwise veloity up
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