Comparaison de schémas implicites et explicites, centrés et décentrés en maillage mobile pour la simulation d'écoulements compressés

> Marc Buffat¹ Anne Cadiou ² Lionel Le Penven ² Catherine Le Ribault²

> > ¹UCB Lyon I, LMFA UMR 5509

²CNRS, LMFA UMR 5509

CFT'04 Monastir (Tunisie) Avril 2004

Plan de l'exposé

- 2 Méthodes Numériques
- Oécroissance d'un tourbillon
- 4 Compression d'un tourbillon

4 3 b

Introduction

• Ecoulements de tumble compressés (chambre de combustion)

Difficultés des simulations numériques

- Ecoulement compressible à bas Mach.
- Maillages mobiles
- Condition de stabilité basée sur c (célérité) et non u (vitesse)

$$CFL = \frac{(u+c)\Delta t}{\Delta x} \approx \frac{c\Delta t}{\Delta x}$$

Introduction

Ecoulements de tumble compressés (chambre de combustion)

Difficultés des simulations numériques

- Ecoulement compressible à bas Mach
- Maillages mobiles
- Condition de stabilité basée sur c (célérité) et non u (vitesse)

$$CFL = rac{(u+c)\Delta t}{\Delta x} pprox rac{c\Delta t}{\Delta x}$$

Equations de conservation pour $W = \left[\rho, \rho \overrightarrow{U}, E = \frac{p}{\gamma-1} + \frac{1}{2}\rho U^2\right]$

Difficultés numériques: flux d'Euler $\mathcal{F}(W) = \mathcal{A}(W)W$

schéma explicite avec cdt de stabilité CFL

- Schéma explicite centré d'ordre 2 instable
- Schéma explicite décentré (suivant les valeurs propres a de A)
- Schéma explicite d'ordre élevé (i.e. >2)

schéma implicite CFL >>

Schéma implicite centré non linéaire.

< ロト < 同ト < 回ト < ヨト

Equations de conservation pour $W = \left| \rho, \rho \overrightarrow{U}, E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho U^2 \right|$

Difficultés numériques: flux d'Euler $\mathcal{F}(W) = \mathcal{A}(W)W$

schéma explicite avec cdt de stabilité CFL < 1

- Schéma explicite centré d'ordre 2 instable
- Schéma explicite décentré (suivant les valeurs propres a de A)
- Schéma explicite d'ordre élevé (i.e. >2)

schéma implicite CFL >> 1

• Schéma implicite centré non linéaire

< ロト < 同ト < 回ト < ヨト

¬....

Equations de conservation pour $W = \left[\rho, \rho \overrightarrow{U}, E = \frac{p}{\gamma-1} + \frac{1}{2}\rho U^2\right]$

$$\frac{\partial W}{\partial t} + \underbrace{\operatorname{div} \left(\mathcal{A}(W) W \right)}_{\text{flux d'Euler}} = \underbrace{\operatorname{div} \left(\mathcal{R}(W) \right)}_{\text{flux visqueux}} + \underbrace{\mathcal{S}(W)}_{\text{source}}$$

Difficultés numériques: flux d'Euler $\mathcal{F}(W) = \mathcal{A}(W)W$

schéma explicite avec cdt de stabilité CFL < 1

- Schéma explicite centré d'ordre 2 instable
- Schéma explicite décentré (suivant les valeurs propres a de A)
- Schéma explicite d'ordre élevé (i.e. >2)

schéma implicite *CFL* >> 1

• Schéma implicite centré non linéaire

¬....

Equations de conservation pour $W = \left[\rho, \rho \overrightarrow{U}, E = \frac{p}{\gamma-1} + \frac{1}{2}\rho U^2\right]$

$$\frac{\partial W}{\partial t} + \underbrace{\operatorname{div} \left(\mathcal{A}(W) W \right)}_{\text{flux d'Euler}} = \underbrace{\operatorname{div} \left(\mathcal{R}(W) \right)}_{\text{flux visqueux}} + \underbrace{\mathcal{S}(W)}_{\text{source}}$$

Difficultés numériques: flux d'Euler $\mathcal{F}(W) = \mathcal{A}(W)W$

schéma explicite avec cdt de stabilité CFL < 1

- Schéma explicite centré d'ordre 2 instable
- Schéma explicite décentré (suivant les valeurs propres a de A)
- Schéma explicite d'ordre élevé (i.e. >2)

schéma implicite CFL >> 1

Schéma implicite centré non linéaire

э

(日) (四) (日) (日) (日)

changement de variable

$$\chi = \frac{x}{L(t)}$$

transformation domaine (EF)

$$\int_{\mathbf{e}_k} \mathbf{f} \cdot \boldsymbol{\psi}_i d\boldsymbol{\omega} = \int_{\widehat{\mathbf{e}}} \widehat{\mathbf{f}} \cdot N_i d\mathbf{e}t(J) d\widehat{\boldsymbol{\omega}}$$

formulation conservative (VF)

 $\frac{d}{dt} \int_{V_k} \rho f \, d\omega = -\int_{\Gamma_k} \rho f \, \overrightarrow{U} \cdot \overrightarrow{n} \, d\Gamma + \int_{V_k} S \, d\omega$

3

changement de variable

$$\chi = \frac{x}{L(t)}$$

transformation domaine (EF)

$$\int_{e_k} f.\psi_i d\omega = \int_{\widehat{e}} \widehat{f}.N_i det(J) d\widehat{\omega}$$

formulation conservative (VF)

 $\frac{d}{dt} \int_{V_k} \rho f \, d\omega = -\int_{\Gamma_k} \rho f \, \overrightarrow{U} \cdot \overrightarrow{n} \, d\Gamma + \int_{V_k} S \, d\omega$

<ロ> (四) (四) (三) (三) (三)

changement de variable

$$\chi = \frac{x}{L(t)}$$

transformation domaine (EF)

$$\int_{e_k} f.\psi_i d\omega = \int_{\widehat{e}} \widehat{f}.N_i det(J) d\widehat{\omega}$$

formulation conservative (VF)

 $\frac{d}{dt} \int_{V_k} \rho f \, d\omega = -\int_{\Gamma_k} \rho f \, \overrightarrow{U} \cdot \overrightarrow{n} \, d\Gamma + \int_{V_k} S \, d\omega$

changement de variable

$$\chi = \frac{x}{L(t)}$$

transformation domaine (EF)

$$\int_{e_k} f.\psi_i d\omega = \int_{\widehat{e}} \widehat{f}.N_i det(J) d\widehat{\omega}$$

formulation conservative (VF)

$$\frac{d}{dt} \int_{V_k} \rho f \, d\omega = -\int_{\Gamma_k} \rho f \, \overrightarrow{U} \cdot \overrightarrow{n} \, d\Gamma + \int_{V_k} \mathcal{S} \, d\omega$$

イロト イポト イヨト イヨト

3

Code E.F. + LES sur maillage non structuré (Duchamp 1999)

- Solveur de Rieman bas Mach RoeTurkel (Viozat 1997)
- Contrôle de la dissipation et de la dispersion

- precision O(dt⁴, h²) avec
 Runge Kutta 4
- décomposition de domaine (calcul //e)

CFT'04: schémas bas Mach en écoulement compressé

イロト イワト イヨト イヨ

Code E.F. + LES sur maillage non structuré (Duchamp 1999)

- Solveur de Rieman bas Mach RoeTurkel (Viozat 1997)
- Contrôle de la dissipation et de la dispersion

- precision O(dt⁴, h²) avec
 Runge Kutta 4
- décomposition de domaine (calcul //e)

CFT'04: schémas bas Mach en écoulement compressé

Code E.F. + LES sur maillage non structuré (Duchamp 1999)

- Solveur de Rieman bas Mach RoeTurkel (Viozat 1997)
- Contrôle de la dissipation et de la dispersion

- precision O(dt⁴, h²) avec
 Runge Kutta 4
- décomposition de domaine (calcul //e)

- 4 同 ト 4 回 ト 4 回

Code E.F. + LES sur maillage non structuré (Duchamp 1999)

- Solveur de Rieman bas Mach RoeTurkel (Viozat 1997)
- Contrôle de la dissipation et de la dispersion
 - Buffat, Cadiou, Le Penven, Le Ribault

- precision O(dt⁴, h²) avec
 Runge Kutta 4
- décomposition de domaine (calcul //e)

CFT'04: schémas bas Mach en écoulement compressé

- 4 同 ト 4 三 ト 4 三

• Code E.F. + LES sur maillage non structuré (Duchamp 1999)

- Solveur de Rieman bas Mach RoeTurkel (Viozat 1997)
- Contrôle de la dissipation et de la dispersion
 - Buffat, Cadiou, Le Penven, Le Ribault

- precision O(dt⁴, h²) avec
 Runge Kutta 4
- décomposition de domaine (calcul //e)

CFT'04: schémas bas Mach en écoulement compressé

< (日) × (1)

• Code E.F. + LES sur maillage non structuré (Duchamp 1999)

- Solveur de Rieman bas Mach RoeTurkel (Viozat 1997)
- Contrôle de la dissipation et de la dispersion
 - Buffat, Cadiou, Le Penven, Le Ribault

- precision O(dt⁴, h²) avec
 Runge Kutta 4
- décomposition de domaine (calcul //e)

CFT'04: schémas bas Mach en écoulement compressé

Code "NadiaDF"

• Code D.F. d'ordre élevé explicite (R.K. 4) sur maillage structuré

PADE: Lele 1992
reconstruction des dérivées ordre 4
$$\alpha F'_{i-1} + F'_i + \alpha F'_{i+1} = a \frac{F_{i+1} - F_{i-1}}{2\Delta x}$$

avec $\alpha = \frac{1}{4}, a = \frac{4}{3}$
système tri-diagonal (Thomas)

WENO: Jiang & Shu 1996

reconstruction des fluxs ordre 5

$$F_{i+\frac{1}{2}} = \sum_{r=0}^{2} \omega_r F_{i+\frac{1}{2}}^{+,r} + \sum_{r=0}^{2} \omega_{2-r} F_{i+\frac{1}{2}}^{-,r}$$

- 《冊》 《王》 《王

э

Code "NadiaDF"

Code D.F. d'ordre élevé explicite (R.K. 4) sur maillage structuré

イロト 不得下 イヨト イヨト

-

Code "NadiaDF"

Code D.F. d'ordre élevé explicite (R.K. 4) sur maillage structuré

イロト 不得下 イヨト イヨト 三臣

Code VF parallèle en C++ sur maillage non structuré

$$\frac{3W^{n+1} - 4W^n + W^{n-1}}{2\Delta t} = F(W^{n+1})$$

A Schámo V E implicito BDE

• Newton
$$G(W^{n+1}) = 0$$

$$\left(\frac{\partial \mathbf{G}}{\partial \mathbf{W}}\right)_{k} \left(\mathbf{W}_{k+1}^{n+1} - \mathbf{W}_{k}^{n+1}\right) = \mathbf{G}(\mathbf{W}_{k}^{n+1})$$

• Schéma centré d'ordre 2

$$\overline{\frac{\partial W}{\partial x_i}} = \frac{1}{V_k} \int_{\Gamma_k} W \, n_i \, d\Gamma$$

- LibMesh (Kirk 2002) gestion maillage en //e en C++ avec adapation (AMR)
- PETSC (Barry 2001) résolution système linéaire en //e (MPI) Krilov, MultiGrille

イロト イポト イヨト イヨト

-

METIS (Karypis 1996) partitionnement

Code VF parallèle en C++ sur maillage non structuré

• Schéma V.F. implicite BDF
$$\frac{3W^{n+1} - 4W^n + W^{n-1}}{2\Delta t} = F(W^{n+1})$$

• Newton $G(W^{n+1}) = 0$

$$\left(\frac{\partial G}{\partial W}\right)_k \left(W_{k+1}^{n+1} - W_k^{n+1}\right) = G(W_k^{n+1})$$

• Schéma centré d'ordre 2

$$\frac{\overline{\partial W}}{\partial x_i} = \frac{1}{V_k} \int_{\Gamma_k} W \, n_i \, d\Gamma$$

- LibMesh (Kirk 2002) gestion maillage en //e en C++ avec adapation (AMR)
- PETSC (Barry 2001) résolution système linéaire en //e (MPI) Krilov, MultiGrille

< ロト < 同ト < 回ト < ヨト

• METIS (Karypis 1996) partitionnement

Code VF parallèle en C++ sur maillage non structuré

• Schéma V.F. implicite BDF
$$\frac{3W^{n+1} - 4W^n + W^{n-1}}{2\Delta t} = F(W^{n+1})$$

• Newton
$$G(W^{n+1}) = 0$$

$$\left(\frac{\partial G}{\partial W}\right)_{k} \left(W_{k+1}^{n+1} - W_{k}^{n+1}\right) = G(W_{k}^{n+1})$$

• Schéma centré d'ordre 2

$$\overline{\frac{\partial W}{\partial x_i}} = \frac{1}{V_k} \int_{\Gamma_k} W \, n_i \, d\Gamma$$

- LibMesh (Kirk 2002) gestion maillage en //e en C++ avec adapation (AMR)
- PETSC (Barry 2001) résolution système linéaire en //e (MPI) Krilov, MultiGrille

- 4 同 ト - 4 三 ト - 4 三

• METIS (Karypis 1996) partitionnement

Code VF parallèle en C++ sur maillage non structuré

• Schéma V.F. implicite BDF
$$\frac{3W^{n+1} - 4W^n + W^{n-1}}{2\Delta t} = F(W^{n+1})$$

• Newton
$$G(W^{n+1}) = 0$$

$$\left(\frac{\partial G}{\partial W}\right)_{k} \left(W_{k+1}^{n+1} - W_{k}^{n+1}\right) = G(W_{k}^{n+1})$$

• Schéma centré d'ordre 2

$$\overline{\frac{\partial W}{\partial x_i}} = \frac{1}{V_k} \int_{\Gamma_k} W \, n_i \, d\Gamma$$

- LibMesh (Kirk 2002) gestion maillage en //e en C++ avec adapation (AMR)
- PETSC (Barry 2001) résolution système linéaire en //e (MPI) Krilov, MultiGrille

- 4回 ト 4回 ト 4回

• METIS (Karypis 1996) partitionnement

Code VF parallèle en C++ sur maillage non structuré

• Schéma V.F. implicite BDF

$$\frac{3W^{n+1} - 4W^n + W^{n-1}}{2\Delta t} = F(W^{n+1})$$

• Newton
$$G(W^{n+1}) = 0$$

$$\left(\frac{\partial G}{\partial W}\right)_{k} \left(W_{k+1}^{n+1} - W_{k}^{n+1}\right) = G(W_{k}^{n+1})$$

• Schéma centré d'ordre 2

$$\overline{\frac{\partial W}{\partial x_i}} = \frac{1}{V_k} \int_{\Gamma_k} W \, n_i \, d\Gamma$$

- LibMesh (Kirk 2002) gestion maillage en //e en C++ avec adapation (AMR)
- PETSC (Barry 2001) résolution système linéaire en //e (MPI) Krilov, MultiGrille

• METIS (Karypis 1996) partitionnement

Code VF parallèle en C++ sur maillage non structuré

• Schéma V.F. implicite BDF
$$\frac{3W^{n+1} - 4W^n + W^{n-1}}{2\Delta t} = F(W^{n+1})$$

• Newton
$$G(W^{n+1}) = 0$$

$$\left(\frac{\partial G}{\partial W}\right)_{k} \left(W_{k+1}^{n+1} - W_{k}^{n+1}\right) = G(W_{k}^{n+1})$$

• Schéma centré d'ordre 2

$$\overline{\frac{\partial W}{\partial x_i}} = \frac{1}{V_k} \int_{\Gamma_k} W \, n_i \, d\Gamma$$

- LibMesh (Kirk 2002) gestion maillage en //e en C++ avec adapation (AMR)
- PETSC (Barry 2001) résolution système linéaire en //e (MPI) Krilov, MultiGrille

• METIS (Karypis 1996) partitionnement

Préconditionnement bas Mach

dépendance des variables d'état en fonction du Mach

$$\rho = \theta(1)$$
 et $u = \theta(1)$ mais $E = \theta(Ma^{-2})$ et $\rho = \theta(Ma^{-2})$

NadiaLES

Roe-Turkel (Viozat 1999)

- préconditionnement
 de Δp en (β²)
- variables entropiques $[p, \vec{u}, S]$:

 $\beta \approx Ma$

NadiaVF

• décomposition de *E*_t et *p*

$$E_t(x,t) = \frac{1}{\gamma - 1} P_0(t) + E'(x,t)$$

$$p(x,t) = P_0(t) + p'(x,t)$$

• équation pour E'

 $E'(x,t) = \theta(1) \text{ et } p'(x,t) = \theta(1)$ $P_0(t) = \left(\frac{V(0)}{V(t)}\right)^{\gamma} \int_{V(0)} p(x,t) \, dx$

< ロト < 同ト < 回ト < ヨト

Préconditionnement bas Mach

dépendance des variables d'état en fonction du Mach

$$\rho = \theta(1)$$
 et $u = \theta(1)$ mais $E = \theta(Ma^{-2})$ et $\rho = \theta(Ma^{-2})$

NadiaLES

Roe-Turkel (Viozat 1999)

- préconditionnement de Δp en (β^2)
- variables entropiques [p, u, S]:

 $\beta pprox \textit{Ma}$

NadiaVF

• décomposition de *E*_t et *p*

$$E_t(x,t) = \frac{1}{\gamma - 1} P_0(t) + E'(x,t)$$

$$p(x,t) = P_0(t) + p'(x,t)$$

• équation pour E'

 $E'(x,t) = \theta(1) \text{ et } p'(x,t) = \theta(1)$ $P_0(t) = \left(\frac{V(0)}{V(t)}\right)^{\gamma} \int_{V(0)} p(x,t) \, dx$

< ロト < 同ト < 回ト < ヨト

Préconditionnement bas Mach

dépendance des variables d'état en fonction du Mach

$$\rho = \theta(1)$$
 et $u = \theta(1)$ mais $E = \theta(Ma^{-2})$ et $\rho = \theta(Ma^{-2})$

NadiaLES

Roe-Turkel (Viozat 1999)

- préconditionnement
 de Δp en (β²)
- variables entropiques $[p, \vec{u}, S]$:

 $\beta \approx Ma$

NadiaVF

• décomposition de *E*_t et *p*

$$E_t(x,t) = \frac{1}{\gamma - 1} P_0(t) + E'(x,t)$$

$$p(x,t) = P_0(t) + p'(x,t)$$

• équation pour E'

$$E'(x,t) = \theta(1) \text{ et } p'(x,t) = \theta(1)$$

$$P_0(t) = \left(\frac{V(0)}{V(t)}\right)^{\gamma} \int_{V(0)} p(x,t) \, dx$$

- * 同 * * き * * き *

Décroissance d'un tourbillon

solution analytique

- tourbillon de Taylor $Re = \frac{U_{max}L}{v} = 1000$
- solution *Ma* = 0 (non entropique)

•
$$L = 1$$
, $U_{max} = 1$, $\rho_0 = 1$, $p_0 = \frac{\rho_0}{\gamma Ma^2}$

Questions sur les schémas numériques ?

Fluctuation de densité?

- spatiale: $\Delta \rho = \frac{\rho_0}{\gamma \rho_0} \Delta p = Ma^2 \Delta p$ (si isentropique)
- temporelle: ondes acoustiques de célérité $pprox c_0 = \sqrt{2}$

$$\sqrt{\frac{\gamma p_0}{\rho_0}} = Ma^{-1}$$

Convergence vers la solution Ma = 0?

Décroissance d'un tourbillon

solution analytique

- tourbillon de Taylor $Re = \frac{U_{max}L}{v} = 1000$
- solution *Ma* = 0 (non entropique)

•
$$L = 1, U_{max} = 1, \rho_0 = 1, \rho_0 = \frac{\rho_0}{\gamma Ma^2}$$

		· · · · · · · · · · · · · · · · · · ·	
		· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
4	1	110000000000000000000000000000000000000	۲
4	4	111000000000000000000000000000000000000	t
4	ŧ	111110000000000000000000000000000000000	t
1	1	111111111111111	t
1	Ì.	<i>】↓↓↓↓↓↓↓↓</i>	Ť.
1	1	222222222222	t
Ţ	1	111111111111111111111111111111111111111	t
Ŧ	1	111111111111111111111	t
T	1	1111111111111111111111111	t.
I	I	【【】↓↓↓↓、、・・・・・・・・・・・	t
Ţ	1	44444444444477777777	t
Į.	Į.	えららららっっーーノノノノノナナ	t
1	Ì.	しししいいいいーーーノノノノノナナ	t
4	ŧ	111223333377777777	t
4	٩	\\\\\\\\ <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	t
+	۸	< < < < < < < < < < < < < < < < < < <	۰
٠	•	· · · · · · · · · · · · · · · · · · ·	٠
	-	·	

< ロト < 同ト < 回ト < 三ト

- 10

Questions sur les schémas numériques?

Fluctuation de densité?

- spatiale: $\Delta \rho = \frac{\rho_0}{\gamma \rho_0} \Delta \rho = M a^2 \Delta \rho$ (si isentropique)
- temporelle: ondes acoustiques de célérité $\approx c_0 = \sqrt{\frac{\gamma p_0}{p_0}} = Ma^{-1}$

Convergence vers la solution Ma = 0?

Fluctuation de densité

FIG.: fluctuations $\rho - 1$ à Ma = 0.1 (NadiaVF, NadiaDF, NadiaLES)

• allure identique à Ma = 0.01 avec une amplitude plus faible

	NadiaVF	NadiaDF WENO	NadiaDF Padé	NadiaLES
<i>Ma</i> = 0.1	0.3710^{-2}	0.3410^{-2}	0.3410^{-2}	0.4410^{-2}
<i>Ma</i> = 0.01	0.8410^{-4}	0.3410^{-4}	0.3410^{-4}	0.3810^{-3}

TAB.: maximum des fluctuations de densité: $ho_{max}ho_{min}$ en 80 2

Buffat, Cadiou, Le Penven, Le Ribault CFT'04: schémas bas Mach en écoulement compressé

Fluctuation de densité

FIG.: fluctuations $\rho - 1$ à Ma = 0.1 (NadiaVF, NadiaDF, NadiaLES)

• allure identique à Ma = 0.01 avec une amplitude plus faible

	NadiaVF	NadiaDF WENO	NadiaDF Padé	NadiaLES
<i>Ma</i> = 0.1	$0.37 10^{-2}$	0.3410^{-2}	0.3410^{-2}	0.4410^{-2}
<i>Ma</i> = 0.01	0.8410^{-4}	0.3410^{-4}	0.3410^{-4}	0.3810^{-3}

TAB.: maximum des fluctuations de densité: $\rho_{max} - \rho_{min}$ en 80²

Viscosité numérique v_h des schémas fonction de *h* et *Ma*

Viscosité numérique v_h des schémas fonction de *h* et *Ma*

avec les schémas d'ordre élevé et le schéma implicite si CFL < 1

• Analyse en un point (près de la paroi) pour CFL = 0.5 et 10.0

FIG.: fluctuations en un point (0.5, 0.12) pour ρU , ρV et E_t à Ma = 0.1

Schéma implicite amortit les ondes si CFL >

célérité $c_0 = Ma^{-1} \rightsquigarrow$ ondes acoustiques générées par la C.I. onde dissipée par viscosité

avec les schémas d'ordre élevé et le schéma implicite si CFL < 1

• Analyse en un point (près de la paroi) pour CFL = 0.5 et 10.0

FIG.: fluctuations en un point (0.5,0.12) pour ρU , ρV et E_t à Ma = 0.1

Schéma implicite amortit les ondes si CFL > 1

célérité $c_0 = Ma^{-1} \rightsquigarrow$ ondes acoustiques générées par la C.I. onde dissipée par viscosité

avec les schémas d'ordre élevé et le schéma implicite si CFL < 1

• Analyse en un point (près de la paroi) pour CFL = 0.5 et 10.0

FIG.: fluctuations en un point (0.5,0.12) pour ρU , ρV et E_t à Ma = 0.1

Schéma implicite amortit les ondes si CFL > 1célérité $c_0 = Ma^{-1} \rightsquigarrow$ ondes acoustiques générées par la C.I. onde dissipée par viscosité

Compression d'un tourbillon

 Model du tumble dans une chambre de combustion

Parametres

 $\begin{aligned} & \textit{Re} = \frac{U_{max}L(0)}{v} = 1000 \text{ (stable)} \\ & \textit{L}(t) = 1 - \frac{V_p}{\omega} + \frac{V_p}{\omega} \sin \omega t \\ & \textit{V}_p = 0, 144, \omega = 0, 36 \end{aligned}$

solution analytique

- tourbillon compressé
- solution Ma = 0

•
$$\rho(t) = \rho_0 \frac{L(0)}{L(t)}, \, p_0 = \frac{\rho_0}{\gamma M a^2}$$

• accélération suivant v

• dissipation visqueuse

CFT'04: schémas bas Mach en écoulement compressé

Compression d'un tourbillon

 Model du tumble dans une chambre de combustion

Parametres

 $\begin{aligned} & \textit{Re} = \frac{U_{max}L(0)}{v} = 1000 \text{ (stable)} \\ & \textit{L}(t) = 1 - \frac{V_p}{\omega} + \frac{V_p}{\omega} \sin \omega t \\ & \textit{V}_p = 0, 144, \omega = 0, 36 \end{aligned}$

solution analytique

- tourbillon compressé
- solution Ma = 0

•
$$\rho(t) = \rho_0 \frac{L(0)}{L(t)}, \, \rho_0 = \frac{\rho_0}{\gamma M a^2}$$

- accélération suivant v
- dissipation visqueuse

Buffat, Cadiou, Le Penven, Le Ribault CFT'04: schémas bas Mach en écoulement compressé

) Q (?

Solution numérique

 Evolution de la vitesse au cours du temps pour Ma = 0.1 et Ma = 0.01

Champ de vitesse

tous les schémas prédisent un champ de vitesse pprox solution $\mathit{Ma}=0$

Buffat, Cadiou, Le Penven, Le Ribault

CFT'04: schémas bas Mach en écoulement compressé

イロト 不得下 イヨト イヨト

.....

Solution numérique

 Evolution de la vitesse au cours du temps pour Ma = 0.1 et Ma = 0.01

Champ de vitesse

tous les schémas prédisent un champ de vitesse \approx solution Ma = 0

Buffat, Cadiou, Le Penven, Le Ribault

CFT'04: schémas bas Mach en écoulement compressé

イロト 不得下 不同下 不同下

Fluctuation de densité

FIG.: fluctuations $\rho - 5$ à Ma = 0.1 (NadiaVF, NadiaDF, NadiaLES)

	NadiaVF	NadiaWENO	NadiaPADE	NadiaLES
<i>Ma</i> = 0.1	0.4010^{-1}	0.5610 ⁻¹	0.6610^{-1}	0.1110 ⁻¹
<i>Ma</i> = 0.01	0.41 10 ⁻³	0.4410^{-1}	0.2910^{-1}	$0.97 10^{-2}$

TAB.: maximum des fluctuations de densité: $\rho_{max} - \rho_{min}$ (fin comp.) en 40²

avec les schémas d'ordre élevé et le schéma implicite si CFL < 1

Analyse en un point (près du piston) pour CFL = 0.5 et 10.0

FIG.: fluctuations en un point (0.88,0.5) pour ρU et E_t à Ma = 0.1

Schéma implicite amortit les ondes si *CFL* > 1 ondes acoustique ($c_0 \approx Ma^{-1}$) amplifiées par la compression \rightsquigarrow pble avec les schémas d'ordre élevé (instabilité)

avec les schémas d'ordre élevé et le schéma implicite si CFL < 1

• Analyse en un point (près du piston) pour CFL = 0.5 et 10.0

FIG.: fluctuations en un point (0.88,0.5) pour ρU et E_t à Ma = 0.1

Schéma implicite amortit les ondes si CFL > 1

ondes acoustique ($c_0 \approx Ma^{-1}$) amplifiées par la compression \rightarrow pble avec les schémas d'ordre élevé (instabilité)

avec les schémas d'ordre élevé et le schéma implicite si CFL < 1

• Analyse en un point (près du piston) pour CFL = 0.5 et 10.0

FIG.: fluctuations en un point (0.88,0.5) pour ρU et E_t à Ma = 0.1

Schéma implicite amortit les ondes si CFL > 1

ondes acoustique ($c_0 \approx Ma^{-1}$) amplifiées par la compression \rightarrow pble avec les schémas d'ordre élevé (instabilité)

Buffat, Cadiou, Le Penven, Le Ribault CF

CFT'04: schémas bas Mach en écoulement compressé

Coût des différents schémas

	NadiaVF	NadiaPADE	NadiaWENO	NadiaLES
<i>Ma</i> = 0.1	837	14900	52200	17216
<i>Ma</i> = 0.01	7686		298700	156000

TAB.: Nbre d'itérations en temps cas 40²

Temps CPU par itération

- NadiaVF (Pentium IV 2.7 Ghz):≈ 0.3s(Ma = 0.01) et ≈ 0.7s(Ma = 0.1)
- NadiaDF (Pentium IV 1.7 Ghz) PADE: pprox 0.04s et WENO:pprox 0.07s
- NadiaLES (Pentium IV 1.7 Ghz) maillage 3D $(3 * 40^2)$: \approx 0.6s

イロト イポト イヨト イヨト

Coût des différents schémas

	NadiaVF	NadiaPADE	NadiaWENO	NadiaLES
<i>Ma</i> = 0.1	837	14900	52200	17216
<i>Ma</i> = 0.01	7686		298700	156000

TAB.: Nbre d'itérations en temps cas 40²

Temps CPU par itération

- NadiaVF (Pentium IV 2.7 Ghz):≈ 0.3s (Ma = 0.01) et ≈ 0.7s (Ma = 0.1)
- NadiaDF (Pentium IV 1.7 Ghz) PADE: $\approx 0.04s$ et WENO: $\approx 0.07s$
- NadiaLES (Pentium IV 1.7 Ghz) maillage 3D (3 + 40²):≈ 0.6s

(日) (四) (日) (日) (日)

Conclusion

comparaison des schémas à bas Mach:

- schéma explicite de Roe "NadiaLES" le plus diffusif, mais assez robuste
- schémas d'ordre élevée "NadiaDF" les moins diffusifs mais captent des ondes (instabilité ?), très sensibles aux C.L.
- schéma implicite "NadiaVF" centré le plus efficace à bas Mach si CFL > 1 filtrage des ondes acoustiques générées par les C.I.

Poursuite des études

analyse des côuts en 3D pour de la LES comparaison avec des solutions compressibles (analyse asymptotique)

Conclusion

comparaison des schémas à bas Mach:

- schéma explicite de Roe "NadiaLES" le plus diffusif, mais assez robuste
- schémas d'ordre élevée "NadiaDF" les moins diffusifs mais captent des ondes (instabilité ?), très sensibles aux C.L.
- schéma implicite "NadiaVF" centré le plus efficace à bas Mach si CFL > 1 filtrage des ondes acoustiques générées par les C.I.

Poursuite des études

analyse des côuts en 3D pour de la LES comparaison avec des solutions compressibles (analyse asymptotique)

Compression en 3D

• Calcul spectral *Ma* = 0 (Le Penven 2002)

FIG.: compression d'un tourbillon perturbé en 3D à Re = 6000 (t = 0, 3, 5, 8)

▲ □ ▶ ● ● ▶ □