Université Claude Bernard Lyon 1 -M2 TI-TI 1

TP 3 - Programmation Orientée Aspects (POA)

Objectifs pédagogiques

Comprendre et mettre en ceuvre les grands principes de la POA ; utiliser I'outil Aspect) en Java.

Introduction
Durant ce TP, vous utiliserez I'IDE Eclipse pour la programmation Java et son plugin Aspect) pour la

programmation des aspects.

Installation d’Aspect] : avant de démarrer, vous allez installer le plugin Aspect) d’Eclipse sur les

machines des salles de TP ou sur votre propre machine. Pour cela, reportez-vous au tutorial

d’installation dans le forum « métier » du module Spiral.

Prise en main d’Aspect]

1)

2)

3)

Créez un projet Aspect] vide et importez-y I'application d’annuaire d’origine (celle disponible
sur I’énoncé du TP 1)

Créez un nouvel aspect dans le projet, tant qu’a faire dans un package nommé « logging »,
avec le code en annexe.

Faites tourner ce programme et vérifiez la création et le remplissage du fichier log.txt dans le
répertoire racine du projet.

Modification d’'un aspect existant
Reprenez le code de 'aspect ALog en suivant les étapes ci-dessous :

Modifiez le pointcut « affichage » pour intercepter d’autres méthodes de sortie de la console
System.out (print...)

Modifiez I'advice correspondant pour afficher a I'écran la chaine de caracteres « [logged] »,
pour indiquer qu’un affichage a été loggé.

Attention : vous allez devoir remodifier le pointcut pour ne pas qu'’il intercepte les affichages
de I'advice.

Rajoutez un pointcut et un advice pour faire de méme avec la console d’entrée (System.in).

Conception d'un aspect
Dans cette partie, vous allez concevoir un nouvel aspect (que vous appellerez « APersist »), qui sera

utilisé pour dissocier la gestion de la persistance du code métier de I'application. Plus précisément, il

s’agit de modifier les classes de |I'annuaire de fagon a ce que la sauvegarde et le chargement de ce

dernier se fasse via un aspect. Autrement dit toute référence a la sauvegarde et au chargement de

I'annuaire doit disparaitre du code source de ces classes.

Pour cela, vous suivrez la méthode suivante :

1)

Passer en revue les éléments de votre application, et déterminer les classes métier et celles
qui relévent du traitement de la persistance. Séparer ces deux préoccupations dans des
packages différents.

2) Repérer ensuite les points de jonction correspondant aux échanges de messages entre objets
matérialisant le passage de 'une a I'autre des préoccupations (métier €-> persistance).
Formaliser les points de coupe permettant de les intercepter et supprimer les instructions
correspondantes du code métier.

3) Mettre en place des code advices qui appellent les fonctionnalités de persistance désirées.

4) Repérer les éventuelles responsabilités « mixtes » entre des classes. Déplacer ce qui reléve
de la persistance dans I'aspect en utilisant des déclarations inter-types.

Optimisation de I'annuaire
Vous allez maintenant modifier cet aspect pour :

- Ajouter une fonctionnalité permettant de modifier la description d'un site dont on donnera
I'URL. En termes d'interface, une description vide reviendra a conserver |'ancienne
description.

- Faire en sorte que la sauvegarde se fasse uniquement en cas de modification des données de
I'annuaire (si la description est inchangée, ne pas faire de sauvegarde).

Annexe : code de I'aspect ALog

package logging;
i mport java.io.FileWriter;

public aspect ALog {

FileWriter logFile = null;
/**
* Constructeur de l'aspect : initialise le fichier de log
*/
publ i c ALog() {
try {
logFile = newFileWriter("log.txt" , true);

} catch (Exception e) {
e.printStackTrace();

}
}
/**
* Point de coupe qui intercepte les appels a la méthode println
* @aram message le texteen paramétre de la méthode printin
*/
poi nt cut affichage(Object message) : ar gs(message) && call (void

java.io.PrintStream.printin(*));

/**
* Code advice contenant le code a exécuter lorsque l'aspect est
déclenché
* (@ar am message le message a afficher
*
af t er (Object message) : affichage(message) {
try{

logFile .write(newjava.util.Date().toString() +
+ message.toString());
logFile .flush();
} cat ch (Exception e) {
e.printStackTrace();
}

