
04/10/2010

1

Master 2 Traitement de l’Information

Lionel Médini

Octobre 2010

TI 1 : Méthodes de

conception de systèmes

d’information distribués

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Plan du cours

• Outils de programmation avancés

• Systèmes d’information distribués

• Objets transactionnels distribués

– Exemples d’EJB 2 et de descripteurs de déploiement

– EJB 3 : POJO et annotations

– OSGi

• Introduction à l’urbanisation des SI

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

Les JavaBeans

(1996)

• Définition
– Composants logiciels réutilisables d’applications non réparties (en

pratique, des classes Java)

• Structure
– Les propriétés sont cachées et accessibles par des méthodes publiques

public String getNom() et

public void setNom(String valeur)

– Les autres méthodes sont privées

• Utilisation depuis une JSP

– Déclaration : <jsp:useBean class="package.NomBean" id="testbean"

scope="application" />

– Accès : <%= testbean.getProperty0() %>

>
Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

Les JavaBeans

(1996)

• Communications entre beans : le modèle événementiel
– Principe des « écouteurs » (listeners) Java : un objet s’enregistre comme

écouteur d’un certain événément (interface java.util.EventListener)

– Un bean peut d’émettre un événement (classe java.util.EventObject), « capté »
par le ou les écouteurs.

⇒ Les beans peuvent être assemblés en applications

• Persistance : un bean doit pouvoir être sauvegardé et restitué (en pratique, il
doit implémenter java.io.Serializable)

• Interface : un bean peut être manipulé visuellement dans un outil d’aide à la
construction d’applications (dans ce cas, étendre java.awt.Component)

• Introspection
– les propriétés et événements des beans sont découverts par introspection par

l’outil de construction d’application (classe XXXBeanInfo qui implémente
java.beans.BeanInfo)

– La découverte des beans peut être réalisée par une instance de la classe
java.beans.Introspector

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

Les JavaBeans dans

pages JSP

• Principe repris dans les conteneurs Web

• Définition d’un bean dans une classe simple
– Avec un nom déclaré dans le descripteur de l’application Web

– Avec des propriétés (attributs) et des accesseurs standards

• Utilisation avec des tags standards JSP
<jsp:useBean id="cart" scope="session" class="session.Carts" />

<jsp:setProperty name="cart" property="*" />

<jsp:useBean id="checking" scope="session" class="bank.Checking" >

<jsp:setProperty name="checking" property="balance" value="0.0" />

</jsp:useBean>

(source : http://java.sun.com/products/jsp/tags/11/syntaxref11.fm14.htm)

>
Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

Les JavaBeans dans

les conteneurs légers

• Principe repris dans plusieurs frameworks
– Struts

– Spring

• Caractéristiques
– Identiques aux JavaBeans « POJO »

– Pas d’interface graphique

• Exemples d’utilisation (Struts)
<bean:define id="coucou" value="Bonjour + <%= user.getName() %>"

scope="session"/>

<bean:resource id="config" name="/WEB-INF/config.xml"/>

<bean:include id="menu" page="/menu.jsp?message=Welcome"/>

>

04/10/2010

2

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

Les Enterprise

JavaBeans (1998)

• Définition

– Composant transactionnel accessible à distance

– Représente une partie de la logique métier d’une application

• Trois types de beans

– Beans session
• Représentent les processus métiers

• Ne peuvent avoir qu’un seul client à un moment donné

– Beans entités
• Permettent d’accéder aux données persistantes (SGBD…)

• Fournissent une représentation de ces données sous forme d’objets

– Beans messages
• Peuvent échanger des messages asynchrone par l’intermédiaire de

Java Message Service (JMS)

>
Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

Les Enterprise

JavaBeans

• Historique

– Mars 1998 : EJB 1.0
• EJB session uniquement

– Novembre 1999 : EJB 1.1
• Sécurité, première version des EJB entités

– Août 2001 : EJB 2.0
• Interfaces locales et distantes, EJB messages, EJB-QL

– Novembre 2003 : EJB 2.1
• Modification de l’EJB-QL

– Mai 2006 : EJB 3.0
• Simplification du développement et du déploiement

– Encore en développement : EJB 3.1
• Différentes fonctionnalités dont « EJB Lite »

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

Les Enterprise

JavaBeans

• Un EJB est déployé dans un serveur
d’applications J2EE / JEE5

– Fournit différents services
• Exemples : aspects distribués (JNDI), gestion du cycle de

vie, sécurité transactions, persistence…

– Instancie et communique avec un conteneur d’EJB
• Fournit les services du serveur d’applications aux EJB…

• …via un objet EJBContext spécialisé pour chaque type de
bean

• Appelle les méthodes exposées par la / les interfaces de
l’EJB (pattern IoC)

>
Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

Les Enterprise

JavaBeans

• Un EJB expose aux clients différents types d’interfaces

– Fonctionnelles (EJB 1 et 2)
• Interfaces « Home »

– Gestion du cycle de vie (création/destruction des instances)

• Interfaces métier

– Méthodes mises à disposition par la classe d’implémentation

� Disparition des interfaces Home en EJB 3.0

– En fonction du type d’accès (depuis EJB 2.0)
• Locales

• Distantes

• Les beans entités et messages ne sont en général pas
accédés par les clients mais par d’autres beans

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Les EJB 2.0

• Fonctionnement du serveur et du client

Serveur de noms JNDI

Application cliente distante

Client

CalcRemote

Home_stub

CalcRemote

_stub

Serveur EJB

Conteneur EJB

CalcBean

CalcHome

Calc

a. création

b. bind

2. create

1. lookup

3.create

4. Création d’un objet EJB, en retour

de la méthode create()
5. add

7. add6. add

Remarque : les opérations a et b sont effectuées au

lancement du conteneur

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

Gestion du cycle de vie

(par le conteneur)

• Pooling d’instances
– Le conteneur possède un « pool » (réserve) d’instances qui lui

évitent de créer et de détruire des objets pour chaque client
– Le conteneur crée une instance de la classe d’implémentation

d’un bean et la place dans le pool
• À l’appel de la méthode create() par un client
• S’il n’en a aucun de disponible
• Dans la limite du nombre fixé par l’administrateur

– Fonctionnement pour les différents types de beans
• Les beans session sans état, une fois créés, restent opérationnels. Après

utilisation, ils sont remis dans le pool ou détruits par le conteneur
• Les beans session avec états sont désactivés (ejbPassivate()) et réactivés

(ejbActivate()) en fonction des besoins du conteneur
• Les beans entités sont également remis dans le pool après utilisation

>

04/10/2010

3

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB session

• Principes de base

– Représentent les processus métiers

– Méthodes accessibles par le client

– Ne peuvent avoir qu’un seul client à un moment
donné

– Deux types de Beans session
• Avec états : c’est le même client qui réalise toutes les

invocations (exemple : panier électronique)

• Sans état : le Bean peut être utilisé successivement par

plusieurs clients (exemple : calcul d’une distance)

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB session

• Gestion du cycle de vie
– États d’un bean session

• Inexistant
– Levée d’une exception à partir de n’importe quelle

méthode
⇒Doit être créé par une méthode newInstance(), suivie de

setSessionContext()

• Prêt (avec et sans état)
– Le bean est accessible par un client
– Il peut exécuter des méthodes métier

• Passivé (avec état uniquement)
– Le bean n’est plus associé à un client
– Il peut être réactivé par le conteneur

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB session

• Exemples de nommage pour un EJB session sans état
Calc (calculatrice)

– Interfaces home
public interface CalcHome extends EJBHome {

public Calc create() throws RemoteException, CreateException; }

public interface CalcHomeLocal extends EJBLocalHome {

public CalcLocal create() throws CreateException; }

– Interfaces métier
public interface Calc extends EJBObject {

public double add(double val1, double val2) throws RemoteException;}

public interface CalcLocal extends EJBLocalObject {

public double add(double val1, double val2); }

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB session

• Classe d’implémentation (nom : CalcBean)

– Code de la logique métier

– Implémente une interface spécifique au type d’EJB
• javax.ejb.SessionBean

• javax.ejb.EntityBean

• javax.ejb.MessageDrivenBean

– Contenu
• Méthodes métiers : add()

• Constructeur sans paramètre : CalcBean()

• Méthode de création : ejbCreate()

• Méthodes de gestion du cycle de vie : ejbActivate(),

ejbPassivate(), ejbRemove()

} Implémentent l’interface

javax.ejb.EnterpriseBean

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB session

• Classe d’implémentation (nom : CalcBean)

>

import javax.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class CalcBean implements SessionBean {

public double add(double val1, double val2) {
return val1+val2; }

public CalcBean() {}
public void ejbCreate() {}
public void setSessionContext(SessionContext sc) {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbRemove() {}

}

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Principes généraux

– Permettent l’accès aux données métier persistantes
• BD, XML…

• Système propriétaire

• Système de stockage hétérogène

– Un EJB entité représente un concept métier
• Exemple : un compte en banque, un client, un achat…

– Identification de l’instance par une classe de clé primaire
(Int, String, Object…)

⇒Il peut y avoir autant d’instances d’EJB entités que de
données archivées

⇒Pooling d’instances

>

04/10/2010

4

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Gestion du cycle de vie
– États d’un bean entité

• Inexistant
– Levée d’une exception à partir de n’importe quelle méthode
⇒Doit être créé par une méthode newInstance(), suivie de setEntitycontext()

• Dans le pool
– Le bean est desactivé et n’est associé à aucune donnée
⇒Peut être activé

• Prêt
– Le bean est associé à un objet entité déterminé (il connaît sa clé primaire)
– Il peut exécuter des méthodes métier
– Le conteneur appelle les méthodes ejbLoad() et ejbStore() pour gérer la

synchronisation du bean avec le support de persistance

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Accès aux données métier d’un EJB entité

– Identification de l’instance par sa clé primaire

– Données accessibles
• Par des méthodes spécifiques

– Implémentées dans la classe d’implémentation

– Mapping avec le support de persistance dans le descripteur de

déploiement

(utilisation d’un langage de requêtes ad hoc : EJB-QL)

• Par plusieurs clients en même temps
– Accès successifs sans transaction

– Accès transactionnels simultanés

⇒Gestion des accès concurrents

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Gestion de la persistance

– Il faut pouvoir sauvegarder l’état d’un bean

(sérialisation)

– La sauvegarde et la restauration des données sont

des étapes critiques (gestion des transactions)

• Deux méthodes
– CMP : Container Managed Persistance

– BMP : Bean Managed Persistance

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP

– L’interface métier distante
• Définit l’interface métier accessible (données et méthodes)

• Déclare des méthodes qui lancent des exceptions
javax.rmi.RemoteException

• Dérive de EJBObject : méthodes particulières héritées
– public Object getPrimaryKey() throws RemoteException

– public Boolean isIdentical(EJBObject) throws RemoteException

– public void remove() throws RemoteException, RemoveException

– L’interface métier locale
• Mêmes méthodes que l’interface distante a priori

• Pas d’exception RemoteException

public interface Exemple extends EJBObject {

public InfosExemple getInfosExemple() throws remote Exception;
public void setInfosExemple(InfosExemple ie) throws

remoteException;
...

}

public class InfosExemple implements java.io.Serial izable {

public final Integer champInt;
public final String champString;

public InfosExemple(Integer i, String s) {
champInt = i;
champString = s;

}
}

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP

– L’interface home distante
• Méthodes spécifiques héritées

– void remove(Handle), void remove(Object)

• Méthodes à déclarer
– Création (createXxx) : insertion dans la dase de données

public MonEJB create(…) throws RemoteException, CreateException

– Finder (findXxx) : recherche de bean(s) existant(s)

public MonEJB findByPrimaryKey(int) throws RemoteException,

FinderException

public Collection findByChampTexte(String) throws…

» Déclarations obligatoires

» Implémentées par le conteneur (requêtes EJB QL)

public Collection findByCategorie(String categorie) ;

<entity>
<display-name>ExempleEJB</display-name>
<ejb-name>ExempleEJB</ejb-name>
...
<abstract-schema-name> ExempleSN</abstract-schema-name>
...

<query>
<query-method>

<method-name> findByCategorie</method-name>
<method-params>

<method-param>java.lang.String</ method-param>
</method-params>

</query-method>
<ejb-ql>
select Object(a) from ExempleSN a where a.categorie = ?1

</ejb-ql>
</query>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP

– L’interface home locale
• Mêmes méthodes que l’interface distante a priori

• Pas d’exception RemoteException

>

04/10/2010

5

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP/BMP

– La classe d’implémentation
• Bean BMP : codage de la sérialisation dans cette classe

• Bean CMP : classe déclarée abstraite pour que le conteneur
puisse la sous-classer et implémenter les méthodes de
gestion de la persistance

• Contenu (BMP)
– Déclaration des méthodes de gestion des champs

– Méthodes métiers (déclarées dans les interfaces métier)

– Constructeur sans paramètre (appelé par le conteneur)

– Méthodes de création (déclarées dans les interfaces home)

– Méthodes sans entités (déclarées dans les interfaces home)

– Méthodes internes d’accès aux données (méthodes Select)

– Méthodes de rappel (appelées par le conteneur)

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP

– La classe d’implémentation
• Déclaration des méthodes de gestion des champs

public abstract String getChampTexte();

public abstract void setchampTexte(String texte);

public abstract Integer getChampInt();

public abstract void setchampInt(Integer int);

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP

– La classe d’implémentation
• Déclaration des méthodes de gestion des champs

public abstract String getChampTexte();

public abstract void setchampTexte(String texte);

public abstract Integer getChampInt();

public abstract void setchampInt(Integer int);

• Implémentation des méthodes métier
Cf. beans session

• Constructeur
…

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP
– La classe d’implémentation

• Méthodes de création
– ejbCreateXxx() : initialise la création du bean

» Met à jour les champs à partir des paramètres (utilise les setters)
» Implémentation des méthodes déclarées dans les interfaces home
» Type de la valeur de retour = type de la clé primaire
» Doit retourner null (c’est le conteneur qui retrouve la clé primaire)
public Integer ejbCreateAvecUnParametre(Type1 param1) throws

CreateException {

if (param1==null) throw new CreateException;

else setParam1(param1);

return null; }

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP

– La classe d’implémentation
• Méthodes de création

– ejbPostCreateXxx() : appelée une fois le support de persistance (BD) mis à

jour

» Traitements nécessaires pour finaliser la création du bean

» Ne doivent pas obligatoirement comporter une clause throw

CreateException

» Type de retour void

» Mêmes noms et paramètres que la méthode create() correspondante

public void ejbPostCreateAvecUnParametre(Type1 param1) { }

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP

– La classe d’implémentation
• Méthodes sans entité : ejbHomeXxx

– Doivent être déclarées dans les interfaces Home

– Permettent de faire des traitements de lots

Ex : trouver combien de clients se sont connectés à une certaine date.

– Peuvent utiliser des méthodes Finder ou des requêtes à la base

– Peuvent nécessiter de nombreux accès aux données

⇒ À ne pas utiliser

>

04/10/2010

6

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP

– La classe d’implémentation
• Méthodes Select : ejbSelectXxx

– Méthode abstraite (instanciée par le conteneur)

– À usage interne (contrairement aux méthodes Finder)

– Déclaration :

public abstract Collection ejbSelectObjetsCommeCa(String ca) throws

FinderException;

– Association avec une requête EJB QL définie dans le descripteur de

déploiement

<query>
<query-method>

<method-name>
ejbSelectObjetsCommeCa

</method-name>
<method-params>

< method-param> java.lang.String</ method-param>
</method-params>

</query-method>
<ejb-ql>
select a.idDonnees from DonneesSN a where a.champCa = ?1

</ejb-ql>
</query>

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP

– La classe d’implémentation
• Les méthodes de rappel : setEntitycontext(),

unsetEntitycontext(), ejbActivate(), ejbLoad(), ejbStore(),
ejbRemove(), ejbPassivate()

– Sont appelées par le conteneur pour communiquer avec le bean

– Pour les beans CMP, 5 d’entre elles n’ont pas besoin d’être définies, mais il

faut en fournir une implémentation vide :

public void ejbXxx() {}

– Les méthodes de contexte permettent de mettre à jour une variable

globale de type EntityContext de la classe d’implémentation

public abstract class MonEJBBean implements javax.e jb.EntityBean {

EntityContext ec = null;
public void setEntitycontext(javax.ejb.EntityContex t param) {

ec = param; }
public void unsetEntitycontext() {

ec = null; }
public void ejbActivate() { }
public void ejbLoad() { }
public void ejbStore() { }
public void ejbRemove() { }
public void ejbPassivate() { }

[…]
}

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0EJB entités

• Développement d’un bean CMP

– La clé primaire
• Permet d’identifier le bean de manière unique

• Classe sérialisable
– Dérivant de java.lang.Object (Integer, String…)

– Spécifique au bean MonBeanId, mais la clé doit être composée d’un seul

champ

– Classe annexe sérialisable : méthodes à implémenter

» Constructeur par défaut

» public boolean equals(Object other)

» public int hashcode ()

• Le descripteur de déploiement doit indiquer
– Le type de la classe (balise <prim-key-class>)

– Le nom du champ (balise <primkey-field>)

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Packaging

• Assembler tous les éléments dans un fichier ear

– Interfaces métier et home (locales et/ou distantes)
Calc.class, CalcLocal.class, CalcHome.class, CalcHomeLocal.class

– Classe d’implémentation

CalcBean.class

– Classe de clé primaire (beans entités)

MyEntityBeanKey.class

– Descripteur de déploiement

ejb-jar.xml

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Déploiement

• Réalisé par le serveur d’applications

– Extraction du contenu du EAR/JAR

– Lecture du fichier ejb-jar.xml

– Génération du code déployé (code nécessaire à la
communication du bean et de ses clients)

• Objets EJB local et distant

– Implémentent l’interface métier

– Peuvent prendre en charge les fonctions de gestion de l’EJB (persistance,

sécurité, transactions…)

• Objets EJB Home local et distant

– Implémentent l’interface home (méthode create())

• Stubs, skeletons, etc. en fonction du type de serveur

– Enregistrement d’une référence à l’objet EJB Home dans un
serveur de noms accessible via JNDI

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Déploiement

• Descripteur de déploiement

– Indique au serveur J2EE la structure d’un EJB

– Exemple de descripteur pour un EJB session sans état

>

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"

"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

<description>Descripteur de déploiement du bean Calc</description>

<display-name>Calc</display-name>

<enterprise-beans>

<session>

<description>Calculatrice simple</description>

<display-name>Calc</display-name>

<ejb-name>Calc</ejb-name>

<home>calcul.CalcHome</home>

<remote>calcul.Calc</remote>

<ejb-class>calcul.CalcBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>Calc</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

04/10/2010

7

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Déploiement

• Descripteur de déploiement

– Indique au serveur J2EE la structure d’un EJB

– Exemple de descripteur pour un EJB entité CMP

>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc. //DTD Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>
<ejb-jar>

<enterprise-beans>
<entity>

<ejb-name>ExempleBean</ejb-name>
<home>com.demo.ExempleHome</home>
<remote>com.demo.ExempleObject</remote>
<ejb-class>com.demo.ExempleBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<abstract-schema-name>ExempleSN</abstract-schema-na me>
<cmp-field>

<field-name>ExempleId</field-name>
</cmp-field>
<cmp-field>

<field-name>ExempleData</field-name>
</cmp-field>
<primkey-field>ExempleId</primkey-field>
<query>

<query-method>
<method-name>findByCategorie</method-name>
<method-params>

<method-param>java.lang.String</ method-param>
</method-params>

</query-method>
<ejb-ql>select Object(a) from ExempleSN a where a.c ategorie = ?1</ejb-ql>

</query>
<query>...</query>

</entity>
</enterprise-beans>
<assembly-descriptor>

...

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

Programmation

du client

• Tâches à effectuer

– Contact du serveur de noms (cf. RMI)

– Récupération d’une référence sur l’interface home

distante du bean

– Création d’un objet EJB pour accéder au bean

– Invocation des méthodes métier

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0

import javax.naming.InitialContext;

import javax.naming.Context;

import javax.rmi.PortableRemoteObject;

public class CalcClient {

public static void main(String args[]) {

try {

// Obtention du contexte initial par défaut

Context initialContext = new InitialContext();

//Recherche de l'interface home de distante de l'EJB

Object objref = initialContext.lookup("Calc");

CalcHome home = (CalcHome)PortableRemoteObject.narrow(objref, CalcHome.class);

// Création du bean

Calc myCalc = home.create();

// Utilisation du bean

System.out.println("3 + 2 = " + myCalc.add(3., 2.));

} catch (Exception e) {

e.printStackTrace(); }

}

}

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Conclusion

• Les EJB 2 sont des composants

– Sûrs

– Pratiques

– Puissants

– Extensibles

– … mais pas simples

⇒ Nécessitent une modélisation approfondie de
l’application

⇒Ne pas « bypasser » l’IDE de génération

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Les EJB 3.0

• Principe

– Conserver/augmenter la puissance des EJB 2
• Mêmes mécanismes sous-jacents

• Intégration de fonctionnalités JEE5

– Simplifier l’utilisation pour le développeur
• Utilisation de POJOs

• Annotations Java

• Injection de dépendances

• Utilisation de l’API Persistence 1.0 (mapping
objet/relationnel)

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Les EJB 3.0

• Simplifications

– Disparition des interfaces Home et de leurs

méthodes dans la classe d’implémentation

– Utilisation d’annotations dans des classes Java

standard (POJO)

– Injection de dépendances (par setters) par le

conteneur

– Méthodes callback interceptors (appelées par des

annotations) pour la gestion du cycle de vie

– Classes interceptor permettant de regrouper tous

les traitements liés au cycle de vie (POA)

>

04/10/2010

8

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Les EJB 3.0

• Classe d’implémentation

– Classe Java standard (POJO)

– Déclaration : public (mais pas final ni

static)

– Constructeur sans argument

– Annotations permettant
• L’injection de dépendances

• L’appel des méthodes callbacks interceptors

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Exemples

• Code pour un EJB session sans état

>

import javax.ejb.Remote;

@Remote

public interface PremierEJB3 { Interface

public String ditBonjour(String aQui); distante

}

--

import javax.ejb.Stateless;

@Stateless

public class PremierEJB3Bean implements PremierEJB3 { Classe

public String ditBonjour(String aQui) { d’implémentation

return "Bonjour " + aQui + " !!!";

}

}

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

public class ClientPremierEJB3 {

public static void main(String[] args) {

try {

Context context = new InitialContext(); Client

PremierEJB3 beanRemote = (PremierEJB3) (appelle directement l’interface métier)

context.lookup("PremierEJB3Bean/remote");

System.out.println(beanRemote.ditBonjour("ClientPremierEJB3"));

} catch (NamingException e) {

e.printStackTrace();

}

} (source : http://www.eclipsetotale.com/articles/Introduction_EJB3_avec_Eclipse.html)

}

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Exemples

• Code pour un EJB entité CMP

>

import java.io.Serializable;

import javax.persistence.Entity;

import javax.persistence.Id;

@Entity

public class Produit implements Serializable { EJB entité

@Id

private String id;

private String libelle;

private int quantiteEnStock;

public Produit() { super(); }

public Produit(String id) { this.id = id; }

public Produit(String id, String libelle, int quantiteEnStock) {

this.id = id;

this.libelle = libelle;

this.quantiteEnStock = quantiteEnStock; }

public String getLibelle() { return libelle; }

public void setLibelle(String libelle) { this.libelle = libelle; }

public int getQuantiteEnStock() { return quantiteEnStock; }

public void setQuantiteEnStock(int quantiteEnStock) { this.quantiteEnStock = quantiteEnStock; }

public String getId() { return id; }

public String toString() {return "Produit n°" + id + " - " + libelle + " - quantité disponible : " + quantiteEnStock; }

}

(source : http://www.eclipsetotale.com/articles/Introduction_EJB3_avec_Eclipse.html)

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Exemples

• Code pour un EJB entité CMP

>

<persistence>

<persistence-unit name="IntroEJB3"> Fichier persistence.xml (JPA)

<jta-data-source>java:/DefaultDS</jta-data-source>

<properties><property name="hibernate.hbm2ddl.auto" value="update"/></properties>

</persistence-unit>

</persistence> (source : http://www.eclipsetotale.com/articles/Introduction_EJB3_avec_Eclipse.html)

import java.util.List;

import javax.ejb.Remote;

@Remote

public interface GestionDeStock { Interface de l’EJB client

public void ajouter(Produit produit); (session sans état)

public Produit rechercherProduit(String id);

public List<Produit> listerTousLesProduits();

}

import java.util.List;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

@Stateless

public class GestionDeStockBean implements GestionDeStock {

@PersistenceContext Classe d’implémentation

EntityManager em; de l’EJB client

public void ajouter(Produit produit) { em.persist(produit); }

public Produit rechercherProduit(String id) { return em.find(Produit.class, id); }

public List<Produit> listerTousLesProduits() {

return em.createQuery("SELECT p FROM Produit p ORDER BY p.quantiteEnStock").getResultList(); }

}

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Le framework OSGi

• Généralités

– À l’origine (1998), Open Services Gateway Initiative

– Framework open source supporté par l’OSGi Alliance

– Fondation de l’OSGi Alliance : 1999

– Spécifications en « Releases »

– Nombreuses applications industrielles

– Nombreux frameworks applicatifs

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Le framework OSGi

• Objectifs du framework

– Instancier des objets dynamiquement en dehors de

l’initialisation des classes

– Pouvoir obtenir une nouvelle implémentation
• à chaque invocation de méthode

• À chaque mise à jour distante de la classe

– Instanciation en Java « classique »

�Approche par interface

exemple1.QuelqueChose objet = new exemple2.AutreChos e();

>

04/10/2010

9

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Le framework OSGi

• Fonctionnement du chargement dynamique

– Couplage léger entre demandeur et fournisseur de la
classe

• Seule l’interface du service est couplée au client

• L’implémentation est chargée à l’exécution

• Remarques
– Plus de constructeur � injection de dépendances

– Nécessite de savoir où trouver les implémentations

URLClassLoader myCL = new URLClassLoader(“http://www. somewhere.biz”);

Class myClass = myCl.load(“foo.AServiceImpl”);
test.Service exemple = (test.Service)myClass.newInst ance();

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Le framework OSGi

• Caractéristiques du framework

– Orienté composants (services)

– Léger

– Dynamique : déploiement (chargement /
déchargement) d’applications « à chaud »

– S’appuie sur un annuaire de composants
• Capable de localiser les composants

• Capable d’envoyer le code au client

– Résolution des dépendances versionnées de code

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Le framework OSGi

• Caractéristiques d’un composant

– Nom OSGi : « bundle »

– Téléchargé à partir d’une URL

– Packagé dans un jar avec
• Un point de lancement : interface Activator

• Des bibliothèques de code

• Des ressources (code natif, documents…)

public void start(BundleContext bc) throws BundleExcepti on;

public void stop(BundleContext bc) throws BundleExceptio n;

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Le framework OSGi

• Types d’applications ciblées

– À l’origine : mise à jour de modems / passerelles

– Depuis : a priori

• Toute application décomposable en Java

• Tout système multi-applications

• Exemples d’utilisation
– Plateformes dynamiques (API UPnP)

– Plateformes mobiles (J2ME), embarquées (mBedded)

– Frameworks : Jonas, Eclipse Equinox, Fuse ESB 4…

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Le framework OSGi

• Fonctionnalités (©2008 S. Frénot, D. Donsez, N. Le Sommer)

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Le framework OSGi

• Références sur OSGi

– Cours de Stéphane Frénot (CITI, INSA Lyon), donné à

l’école Intergiciel et Construction d’Applications
Réparties

– Projet Apache Felix : http://felix.apache.org/

– Site officiel OSGi : http://www.osgi.org/

• Remarque :
– Référence sur les bundles disponibles :

http://www.osgi.org/Repository/HomePage

>

04/10/2010

10

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Conclusion

• La réutilisation comme principe général de
conception

– Sélectionner les outils disponibles…
• Un framework

• Des bibliothèques

– …en fonction de vos besoins
• Nécessite d’avoir correctement spécifié les besoins et

réalisé le travail d’analyse

�Objectif : limiter le plus possible les développements

à la logique métier

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Conclusion

• Choix d’un framework
– Identifier le gain : services proposés / lourdeur de

l’outil

– S’attacher à la finalité d’un framework et non à ce que
l’on peut faire avec

• Les utilisateurs peuvent être perdus par une utilisation non
standard d’un outil

– Évolutivité des solutions proposées
• Penser à l’évolution de votre application

– Passage à l’échelle

– Nouveaux services

– Intégration de technologies futures

>

Plan
Généralités
Principes : EJB 2.0
Évolutions : EJB 3.0Conclusion

• Modularité : penser composants dès les
spécifications

– Précision de la phase de conception et d’analyse

(cahier des charges)

– Utiliser des solutions standard
• Surtout si vos applications s’insèrent dans un SI existant et si

d’autres peuvent devoir s’interfacer avec

• Prévoir la possibilité de changer radicalement d’interface
– RIA / RDA

– Terminaux mobiles

– Services Web

>

