Université Claude Bernard || Lyon 1

Tl 1 : Méthodes de
conception de systémes
d’information distribués

Master 2 Traitement de I'Information
Lionel Médini
Octobre 2010

Plan

Généralités
Principes : EJB 2.0
Evolutions : EJB 3.0

Plan du cours

I ¢ Qutils de programmation avancés

Systémes d’information distribués

Objets transactionnels distribués
— Exemples d’EJB 2 et de descripteurs de déploiement
— EJB 3 : POJO et annotations
— OSGi

Introduction a I'urbanisation des SI

Plan

> Généralités
Principes : EJB 2.0
Evolutions : EJB 3.0

Les JavaBeans
(1996)

Définition
— Composants logiciels réutilisables d’applications non réparties (en
pratique, des classes Java)
Structure
— Les propriétés sont cachées et accessibles par des méthodes publiques
public String getNom() et
public void setNom(String valeur)
— Les autres méthodes sont privées
Utilisation depuis une JSP
— Déclaration : <jsp:useBean class="package.NomBean" id="testbean"
scope="application" />
— Acces : <%= testbean.getProperty0() %>

Plan

> Généralités
Principes : EJB 2.0
Evolutions : EJB 3.0

Les JavaBeans
(1996)

« Communications entre beans : le modéle événementiel

— Principe des « écouteurs » (listeners) Java : un objet s’enregistre comme
écouteur d’un certain événément (interface java.util.EventListener)

— Un bean peut d’émettre un événement (classe java.util.EventObject), « capté »
par le ou les écouteurs.

= Les beans peuvent étre assemblés en applications

* Persistance : un bean doit pouvoir étre sauvegardé et restitué (en pratique, il

doit implémenter java.io.Serializable)

* Interface : un bean peut étre manipulé visuellement dans un outil d’aide a la

construction d’applications (dans ce cas, étendre java.awt.Component)

¢ Introspection

— les propriétés et événements des beans sont découverts par introspection par
I'outil de construction d’application (classe XXXBeanInfo qui implémente
java.beans.Beaninfo)

— La découverte des beans peut étre réalisée par une instance de la classe
Jjava.beans.Introspector

Plan

> Généralités
Principes : EJB 2.0
Evolutions : EJB 3.0

Les JavaBeans dans
pages JSP

Principe repris dans les conteneurs Web
Définition d’un bean dans une classe simple

— Avec un nom déclaré dans le descripteur de I'application Web
— Avec des propriétés (attributs) et des accesseurs standards
Utilisation avec des tags standards JSP

<jsp:useBean id="cart" scope="session" class="session.Carts" />
<jsp:setProperty name="cart" property="*" />

<jsp:useBean id="checking" scope="session" class="bank.Checking" >
<jsp:setProperty name="checking" property="balance" value="0.0" />

</jsp:useBean>

(source : http://java.sun.com/products/jsp/tags/11/syntaxref11.fm14.htm)

Plan

> Généralités
Principes : EJB 2.0
Evolutions : EJB 3.0

Les JavaBeans dans
les conteneurs légers

* Principe repris dans plusieurs frameworks
— Struts
— Spring
* Caractéristiques
— ldentiques aux JavaBeans « POJO »
— Pas d’interface graphique
¢ Exemples d’utilisation (Struts)
<bean:define id="coucou" value="Bonjour + <%= user.getName() %>
scope="session"/>
<bean:resource id="config" name="/WEB-INF/config.xml"/>
<bean:include id="menu" page="/menu.jsp?message=Welcome"/>

Plan
> Généralités

Les Enterprise prinipes £18 2.0
Evolutions : EJB 3.0
JavaBeans (1998)

I * Définition
— Composant transactionnel accessible a distance
— Représente une partie de la logique métier d’une application

¢ Trois types de beans
— Beans session
* Représentent les processus métiers
* Ne peuvent avoir qu’un seul client a un moment donné
— Beans entités
* Permettent d’accéder aux données persistantes (SGBD...)
* Fournissent une représentation de ces données sous forme d’objets
— Beans messages

* Peuvent échanger des messages asynchrone par l'intermédiaire de
Java Message Service (JMS)

Plan
> Généralités

Les Enterprise prinipes £18 2.0
Evolutions : EJB 3.0
JavaBeans

I ¢ Historique
— Mars 1998 : EJB 1.0
* EJB session uniquement
— Novembre 1999 : EJB 1.1
* Sécurité, premiére version des EJB entités
— Ao(t 2001 : EJB 2.0
* Interfaces locales et distantes, EJB messages, EJB-QL
— Novembre 2003 : EJB 2.1
* Modification de I'EJB-QL
— Mai 2006 : EJB 3.0
* Simplification du développement et du déploiement
— Encore en développement: EJB 3.1
+ Différentes fonctionnalités dont « EJB Lite »

Plan
> Généralités

Les Enterprise prinipes £18 2.0
Evolutions : EJB 3.0
JavaBeans

I e Un EJB est déployé dans un serveur
d’applications J2EE / JEE5
— Fournit différents services
¢ Exemples : aspects distribués (JNDI), gestion du cycle de
vie, sécurité transactions, persistence...
— Instancie et communique avec un conteneur d’EJB
* Fournit les services du serveur d’applications aux EJB...

e ...via un objet EJBContext spécialisé pour chaque type de
bean

* Appelle les méthodes exposées par la / les interfaces de
I'EJB (pattern loC)

Plan
> Généralités

Les Enterprise prinipes £18 2.0
Evolutions : EJB 3.0
JavaBeans

I ¢ Un EJB expose aux clients différents types d’interfaces
— Fonctionnelles (EJB 1 et 2)
 Interfaces « Home »
— Gestion du cycle de vie (création/destruction des instances)
* Interfaces métier
— Méthodes mises a disposition par la classe d’implémentation
=> Disparition des interfaces Home en EJB 3.0
— En fonction du type d’acces (depuis EJB 2.0)
* Locales
* Distantes

* Les beans entités et messages ne sont en général pas
accédés par les clients mais par d’autres beans

Plan
Généralités
> Principes : EJB 2.0

Les EJB 2.0 Evolutions :E16 3.0

I ¢ Fonctionnement du serveur et du client

J Serveur de noms JNDI [

1. lookup b.bind

S a. création
CalcRemote screate. @S CalcHome Y-
Home_stub
2. create

Client 4. Création d'un objet EJB, en retour
S add de la méthode create()
CalcRemote
| 6 add 7.add
_stub T

Application cliente distante Conteneur EJB

Remarque : les opérations a et b sont effectuées au
lancement du conteneur Serveur EJB

Plan
Généralités

Gestion du cycle de vie . ‘oo
Evolutions : EJB 3.0
(par le conteneur)

I ¢ Pooling d’instances
— Le conteneur posséde un « pool » (réserve) d’instances qui lui
évitent de créer et de détruire des objets pour chaque client
— Le conteneur crée une instance de la classe d'implémentation
d’un bean et la place dans le pool
« Alappel de la méthode create() par un client
¢ S’iln’en a aucun de disponible
* Dans la limite du nombre fixé par I'administrateur
— Fonctionnement pour les différents types de beans
* Les beans session sans état, une fois créés, restent opérationnels. Apres
utilisation, ils sont remis dans le pool ou détruits par le conteneur
* Les beans session avec états sont désactivés (ejbPassivate()) et réactivés|
(ejbActivate()) en fonction des besoins du conteneur
* Les beans entités sont également remis dans le pool apres utilisation

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

EJB session

I * Principes de base
— Représentent les processus métiers
— Méthodes accessibles par le client
— Ne peuvent avoir qu’un seul client a un moment
donné
— Deux types de Beans session
¢ Avec états : c’est le méme client qui réalise toutes les
invocations (exemple : panier électronique)

¢ Sans état : le Bean peut étre utilisé successivement par
plusieurs clients (exemple : calcul d’une distance)

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

EJB session

* Gestion du cycle de vie

— Etats d’un bean session
* Inexistant
— Levée d’une exception a partir de nimporte quelle
méthode
=Doit é&tre créé par une méthode newlInstance(), suivie de
setSessionContext()
¢ Prét (avec et sans état)
— Le bean est accessible par un client
— |l peut exécuter des méthodes métier
* Passivé (avec état uniquement)
— Le bean n’est plus associé a un client
— |l peut étre réactivé par le conteneur

Plan
Généralités
> Principes : EJB 2.0

EJB session

Evolutions : EJB 3.0

* Exemples de nommage pour un EJB session sans état
Calc (calculatrice)

— Interfaces home
public interface CalcHome extends EJBHome {
public Calc create() throws RemoteException, CreateException; }
public interface CalcHomeLocal extends EJBLocalHome {
public CalcLocal create() throws CreateException; }
— Interfaces métier
public interface Calc extends EJBObject {
public double add(double vall, double val2) throws RemoteException;}
public interface CalcLocal extends EJBLocalObject {
public double add(double vall, double val2); }

Plan
Généralités
> Principes : EJB 2.0

EJB session

Evolutions : EJB 3.0

I * Classe d’'implémentation (nom : CalcBean)
— Code de la logique métier

— Implémente une interface spécifique au type d’EJB
* javax.ejb.SessionBean
* javax.ejb.EntityBean
* javax.ejb.MessageDrivenBean
— Contenu
¢ Méthodes métiers : add()
« Constructeur sans parametre : CalcBean()
¢ Méthode de création : ejbCreate()

* Méthodes de gestion du cycle de vie : ejbActivate(),
ejbPassivate(), ejpbRemove()

Implémentent l'interface
javax.ejb.EnterpriseBean

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

EJB session

I * Classe d’'implémentation (nom : CalcBean)

import javax.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class CalcBean implements SessionBean {

public double add(double vall, double val2) {
return vall+val2; }

public CalcBean() {}

public void ejbCreate() {}

public void setSessionContext(SessionContext sc) {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void ejpbRemove() {}

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

EJB entités

I * Principes généraux
— Permettent I'accés aux données métier persistantes
« BD, XML...
* Systéme propriétaire
* Systéme de stockage hétérogene
— Un EJB entité représente un concept métier
* Exemple : un compte en banque, un client, un achat...
— Identification de I'instance par une classe de clé primaire
(Int, String, Object...)
=l peut y avoir autant d’instances d’EJB entités que de
données archivées
=Pooling d’instances

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EJB 3.0

EJB entités

e Gestion du cycle de vie

— Etats d’un bean entité

* Inexistant
— Levée d’une exception a partir de nimporte quelle méthode
=Doit étre créé par une méthode newlnstance(), suivie de setEntitycontext(

* Dansle pool
— Le bean est desactivé et n’est associé a aucune donnée
=Peut étre activé
* Prét
— Le bean est associé a un objet entité déterminé (il connait sa clé primaire)
— Il peut exécuter des méthodes métier
— Le conteneur appelle les méthodes ejbLoad() et ejbStore() pour gérer la
synchronisation du bean avec le support de persistance

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EJB 3.0

EJB entités

¢ Acces aux données métier d’un EJB entité
— |dentification de I'instance par sa clé primaire
— Données accessibles
¢ Par des méthodes spécifiques
— Implémentées dans la classe d’'implémentation
— Mapping avec le support de persistance dans le descripteur de

déploiement
(utilisation d’un langage de requétes ad hoc : EJB-QL)
* Par plusieurs clients en méme temps
— Accés successifs sans transaction
— Accés transactionnels simultanés
=Gestion des accés concurrents

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EJB 3.0

EJB entités

I * Gestion de la persistance

— Il faut pouvoir sauvegarder I'état d’'un bean
(sérialisation)

— La sauvegarde et la restauration des données sont
des étapes critiques (gestion des transactions)

¢ Deux méthodes
— CMP : Container Managed Persistance
— BMP : Bean Managed Persistance

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EJB 3.0

EJB entités

public interface Exemple extends EJBObject{

public InfosExemple getinfosExemple() throws remote Exception;
public void setinfosExemple(InfosExemple ie) throws

remoteException;

}

public class InfosExemple implements java.io.Serial izable {

public final Integer champint;
public final String champString;

public InfosExemple(Integer i, String s) {
champlint=1i;
champsString = s;
}
}

Plan

Généralités
Principes : EJB 2.0
Evolutions : EJB 3.0

EJB entités

public Collection findByCategorie(String categorie)

<entity>
<display-name>ExempleEJB</display-name>
<ejb-name>ExempleEJB</ejb-name>

<abstract-schema-name> Exenpl eSN</abstract-schema-name>

<query>
<query-method>
<method-name> fi ndByCat egor i e</method-name>
<method-params>
<method-param>java.lang.String</ method-param>
</method-params>
</query-method>
<ejb-ql>
sel ect Object(a) from Exenpl eSN a where a.categorie = ?1
</ejb-ql>
</query>

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EJB 3.0

EJB entités

I e Développement d’'un bean CMP
— L'interface home locale

* Mémes méthodes que l'interface distante a priori
* Pas d’exception RemoteException

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

EJB entités

I e Développement d’un bean CMP/BMP

— La classe d’implémentation
¢ Bean BMP : codage de la sérialisation dans cette classe
* Bean CMP : classe déclarée abstraite pour que le conteneur
puisse la sous-classer et implémenter les méthodes de
gestion de la persistance
¢ Contenu (BMP)
— Déclaration des méthodes de gestion des champs
— Méthodes métiers (déclarées dans les interfaces métier)
— Constructeur sans parametre (appelé par le conteneur)
— Méthodes de création (déclarées dans les interfaces home)
— Méthodes sans entités (déclarées dans les interfaces home)
— Méthodes internes d’accés aux données (méthodes Select)

— Méthodes de rappel (appelées par le conteneur)

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

EJB entités

I e Développement d’'un bean CMP

— La classe d'implémentation

* Déclaration des méthodes de gestion des champs
public abstract String getChampTexte();
public abstract void setchampTexte(String texte);
public abstract Integer getChampint();
public abstract void setchamplint(Integer int);

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

EJB entités

I e Développement d’'un bean CMP

— La classe d'implémentation

* Déclaration des méthodes de gestion des champs
public abstract String getChampTexte();
public abstract void setchampTexte(String texte);
public abstract Integer getChampint();
public abstract void setchamplint(Integer int);
* Implémentation des méthodes métier
Cf. beans session
* Constructeur

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

EJB entités

I e Développement d’'un bean CMP

— La classe d’implémentation

* Méthodes de création
— ejbCreateXxx() : initialise la création du bean
» Met a jour les champs a partir des paramétres (utilise les setters)
» Implémentation des méthodes déclarées dans les interfaces home
» Type de la valeur de retour = type de la clé primaire
» Doit retourner null (c’est le conteneur qui retrouve la clé primaire)
public Integer ejbCreateAvecUnParametre(Typel param1) throws
CreateException {
if (param1==null) throw new CreateException;
else setParam1(param1);
return null; }

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

EJB entités

I e Développement d’'un bean CMP

— La classe d'implémentation

* Méthodes de création
— ejbPostCreateXxx() : appelée une fois le support de persistance (BD) mis a
jour
» Traitements nécessaires pour finaliser la création du bean
» Ne doivent pas obligatoirement comporter une clause throw
CreateException

» Type de retour void
» Mémes noms et parameétres que la méthode create() correspondante
public void ejbPostCreateAvecUnParametre(Typel param1) { }

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

EJB entités

I e Développement d’'un bean CMP

— La classe d'implémentation

* Méthodes sans entité : ejbHomeXxx
— Doivent étre déclarées dans les interfaces Home
— Permettent de faire des traitements de lots
Ex : trouver combien de clients se sont connectés a une certaine date.
— Peuvent utiliser des méthodes Finder ou des requétes a la base
— Peuvent nécessiter de nombreux accés aux données
= A ne pas utiliser

EJB entités

Evolutions : EJB 3.0

I e Développement d’'un bean CMP
— La classe d’implémentation

<query>
<query-method>
<method-name>
ej bSel ect bj et sCommeCa

Plan Plan
Généralités Généralités
> Principes : EJB 2.0

> Principes : EJB 2.0
Evolutions : EJB 3.0

EJB entités

e Développement d’'un bean CMP
— La classe d'implémentation

public abstract class MonEJBBean implements javax.e
EntityContext ec = null;

public void setEntitycontext(javax.ejb.EntityContex

jb.EntityBean {

EJB entités

Evolutions : EJB 3.0

I e Développement d’'un bean CMP
— La clé primaire

* Permet d’identifier le bean de maniere unique
* Classe sérialisable
— Dérivant de java.lang.Object (Integer, String...)

— Spécifique au bean MonBeanld, mais la clé doit étre composée d’un seul
champ

— Classe annexe sérialisable : méthodes a implémenter
» Constructeur par défaut
» public boolean equals(Object other)
» public int hashcode ()
* Le descripteur de déploiement doit indiquer
— Le type de la classe (balise <prim-key-class>)
— Le nom du champ (balise <primkey-field>)

t param) {
ec = param; }
</method-name> public void unsetEntitycontext() {
<method-params> ec= nu!l;)_ !
< method-param> j ava. | ang. St ri ng</ method-param> public void ejbActivate() { }
</method-params> pUbI!c VO!d ej.hl‘oad(Y
</ thod> public void ejbStore() { }
query-metho public void ejbRemove() {}
<ejb-ql>) public void ejbPassivate() {}
sel ect a.idDonnees from DonneesSN a where a.chanpCa = ?1
<fejb-ql> [..]
</query> }
Plan Plan
Généralités Généralités
> Principes : EJB 2.0

> Principes : EIB 2.0
Evolutions : EJB 3.0

Packaging

I e Assembler tous les éléments dans un fichier ear
— Interfaces métier et home (locales et/ou distantes)
Calc.class, CalcLocal.class, CalcHome.class, CalcHomeLocal.class

— Classe d’'implémentation
CalcBean.class

— Classe de clé primaire (beans entités)
MyEntityBeanKey.class

— Descripteur de déploiement
ejb-jar.xml|

Plan
Généralités

> Principes : EJB 2.0
Evolutions : EIB 3.0

Déploiement

I * Réalisé par le serveur d’applications
— Extraction du contenu du EAR/JAR
— Lecture du fichier ejb-jar.xml

— Génération du code déployé (code nécessaire a la
communication du bean et de ses clients)
* Objets EJB local et distant
— Implémentent I'interface métier

— Peuvent prendre en charge les fonctions de gestion de I'EJB (persistance,
sécurité, transactions...)

* Objets EJB Home local et distant
— Implémentent I'interface home (méthode create())
* Stubs, skeletons, etc. en fonction du type de serveur

— Enregistrement d’une référence a I'objet EJB Home dans un
serveur de noms accessible via JNDI

<?xml version="1.0" encoding="1S0-8859-1"?>

<IDOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
“http://java.sun.com/dtd/ejbjar_2_0.dtd">

<ejbjar>
<description>Descripteur de déploiement du bean Cale</description>
<display-name>Calc</display-name>
<enterprise-beans>
<session>

description>Calculatrice simpl ription:
<display-name>Calc</display-name>
<ejb-name>Calc</ejb-name>
<home>calcul.CalcHome</home>
<remote>calcul.Calc</remote>
<ejb-class>calcul.CalcBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</ fon-t
</session>

</enterprise-beans>
<assembly-descriptor>

VP

<container-transaction>
<method>
<ejb-name>Calc</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

<IDOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.
“hitp:/fjava.sun.com/dtd/ejb-jar_2_0.dtd'>
<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>ExempleBean</ejb-name>

/IDTD Enterprise JavaBeans 2.0/EN'

demo.ExempleOl

b)
g demo. J

P
prim-+ lang. prim-key-cl
<reentrant>False</reentrant>

b h

<cmp-field>
<field-name>Exempleld</field-name>

<lemp-field>

<cmp-field>

ta</field

</cmp-field>
K field
primkey primkey
<query>
<query-method>
thod. i

g
<method-params>

lang.String</ method-p:
</method-params>
</query-method>
<ejb-gl>select Object(a) from ExempleSN a where a.c
<lquery>
<query>...</query>
<lentity>
<lenterprise-beans>
<assembly-descriptor>

ategorie = ?1</ejb-ql>

Programmation
du client

e Taches a effectuer
— Contact du serveur de noms (cf. RMI)

— Récupération d’une référence sur I'interface home
distante du bean

— Création d’un objet EJB pour accéder au bean
— Invocation des méthodes métier

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.rmi.PortableRemoteObject;

public class CalcClient {
public static void main(String args[]) {
try {
// Obtention du contexte initial par défaut
Context initialContext = new InitialContext();

//Recherche de I'interface home de distante de I'EJB
Object objref = initialContext.lookup("Calc");
CalcHome home = (CalcHome)PortableRemoteObject.narrow(objref, CalcHome.class);

// Création du bean
Calc myCalc = home.create();

// Utilisation du bean
System.out.printIn("3 + 2 =" + myCalc.add(3., 2.));

} catch (Exception e) {
e.printStackTrace(); }

Conclusion

* Les EJB 2 sont des composants
—Sars
— Pratiques
— Puissants
— Extensibles
— ... mais pas simples
= Nécessitent une modélisation approfondie de
I"application
=Ne pas « bypasser » I'IDE de génération

Les EJB 3.0

I * Principe

— Conserver/augmenter la puissance des EJB 2
* Mémes mécanismes sous-jacents
* Intégration de fonctionnalités JEES

— Simplifier 'utilisation pour le développeur
» Utilisation de POJOs
* Annotations Java
* Injection de dépendances

e Utilisation de I’API Persistence 1.0 (mapping
objet/relationnel)

Les EJB 3.0

 Simplifications

— Disparition des interfaces Home et de leurs
méthodes dans la classe d’'implémentation

— Utilisation d’annotations dans des classes Java
standard (POJO)

— Injection de dépendances (par setters) par le
conteneur

— Méthodes callback interceptors (appelées par des
annotations) pour la gestion du cycle de vie

— Classes interceptor permettant de regrouper tous
les traitements liés au cycle de vie (POA)

Plan

Généralités

Principes : EJB 2.0
> Evolutions : EJB 3.0

Les EJB 3.0

I ¢ Classe d’'implémentation

— Classe Java standard (POJO)
— Déclaration : public (mais pas final ni
static)
— Constructeur sans argument
— Annotations permettant
* L'injection de dépendances
* L'appel des méthodes callbacks interceptors

import javax.ejb.Remote;

@Remote

public interface PremierEJB3 { Interface
public String ditBonjour(String aQui); distante

}

import javax.ejb.Stateless;

@stateless

public class PremierEJB3Bean implements PremierEJB3 { Classe
public String ditBonjour(String aQui) { d’implémentation

return "Bonjour " +aQui + " I1";

}

}

import javax.naming Context;
import javax.naming InitialContext;
import javax.naming.NamingException;
public class ClientPremierEJB3 {
public static void main(String(] args) {
try
Context context = new InitialContext(); Client
PremierEJB3 beanRemote = (PremierEJB3) (appelle directement Iinterface métier)
context.lookup("Premier€/B3Bean/remote");
tem.out.pri itBonjour("ClientPremierEJB3"));
} catch (NamingException e) {
e.printStackTrace();

} (source : http:// _EJB3_avec_Eclipse.html)

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.1d;

@Entity
public class Produit implements Serializable { EJB entité

@
private String id;

private String libelle;
private int quantiteEnStock;

public Produit() { super(); }
public Produit(String id) { this.id = id; }
public Produit(String id, String libelle, int quantiteEnStock) {
this.id = id;
this.libelle = libelle;
this.quantiteEnStock = quantiteEnStock; }
public String getLibelle() { return libelle; }
public void setLibelle(String libelle) { this.libelle = libelle; }
public int getQ i) { return }
public void setQ i { thi =)
public String getid() { return id; }
public String toString() {return "Produit n°" +id + " - " + libelle + " - quantité disponible : " + quantiteEnStock; }

(source : http://ww ion_EJB3_avec_Eclipse.html)

import java.util List;
import javax.ejb.Remote;

@Remote

public interface GestionDeStock {
public void ajouter(Produit produit);
public Produit rechercherProduit(String id);
public List<Produit> listerTousLesProduits();

}

Interface de PEJB client
(session sans état)

import java.util.List;

import javax.ejb.Stateless;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@stateless
public class GestionDeStockBean implements GestionDeStock {

@PersistenceContext
EntityManager em;

Classe d'implémentation
de I'EJB client

public void ajouter(Produit produit) { em.persist(produit); }
public Produit rechercherProduit(String id) { return em.find(Produit.class, id); }
public List<Produit> listerTousLesProduits() {
return em.createQuery("SELECT p FROM Produit p ORDER BY p.quantiteEnStock").getResultlist(); }
}

<persistence>
<persistence-unit name="IntroEJB3">
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties><property name="hibernate.hbm2ddl.auto" value="update"/></properties>
</persistence-unit>
</persistence> (source : http://

Fichier persistence.xml (JPA)

Jarticl

_EJB3_avec_Eclipse.html)

Le framework OSGi

Plan

Généralités

Principes : EJB 2.0

Evolutions : EIB 3.0
>

I e Généralités

— A I'origine (1998), Open Services Gateway Initiative
— Framework open source supporté par I'OSGi Alliance
— Fondation de I'OSGi Alliance : 1999

— Spécifications en « Releases »

— Nombreuses applications industrielles

— Nombreux frameworks applicatifs

Plan

Généralités

Principes : EJB 2.0

Evolutions : EIB 3.0
>

Le framework OSGi

I ¢ Objectifs du framework

— Instancier des objets dynamiquement en dehors de
I'initialisation des classes
— Pouvoir obtenir une nouvelle implémentation
¢ a chaque invocation de méthode
« Achaque mise a jour distante de la classe

— Instanciation en Java « classique »

|exemp|el.QuquueChose objet = new exemple2.AutreChos e();

=>Approche par interface

Plan

Généralités

Principes : EJB 2.0

Evolutions : EJB 3.0
>

Le framework OSGi

I ¢ Fonctionnement du chargement dynamique

URLClassLoader myCL = new URLClassLoader(“http://www.
Class myClass = myCl.load(“foo.AServicelmpl”);
test.Service exemple = (test.Service)myClass.newlInst ance();

somewhere.biz");

— Couplage léger entre demandeur et fournisseur de la
classe
¢ Seule I'interface du service est couplée au client
¢ L'implémentation est chargée a I'exécution
* Remarques
— Plus de constructeur = injection de dépendances
— Nécessite de savoir ou trouver les implémentations

Plan

Généralités

Principes : EJB 2.0

Evolutions : EJB 3.0
>

Le framework OSGi

I e Caractéristiques du framework
— Orienté composants (services)
— Léger
— Dynamique : déploiement (chargement /
déchargement) d’applications « a chaud »

— S’appuie sur un annuaire de composants
* Capable de localiser les composants
¢ Capable d’envoyer le code au client

— Résolution des dépendances versionnées de code

Plan

Généralités

Principes : EJB 2.0

Evolutions : EJB 3.0
>

Le framework OSGi

I e Caractéristiques d’un composant
— Nom 0SGi : « bundle »
— Téléchargé a partir d’'une URL
— Packagé dans un jar avec

* Un point de lancement : interface Activator
public void start(BundleContext bc) throws BundleExcepti on;

public void stop(BundleContext bc) throws BundleExceptio n;

* Des bibliotheques de code
¢ Des ressources (code natif, documents...)

Plan

Généralités

Principes : EJB 2.0

Evolutions : EJB 3.0
>

Le framework OSGi

I e Types d’applications ciblées
— Alorigine : mise & jour de modems / passerelles
— Depuis : a priori
* Toute application décomposable en Java
¢ Tout systéme multi-applications
e Exemples d’utilisation
— Plateformes dynamiques (APl UPnP)
— Plateformes mobiles (J2ME), embarquées (mBedded)
— Frameworks : Jonas, Eclipse Equinox, Fuse ESB 4...

Plan

Généralités

Principes : EJB 2.0

Evolutions : EJB 3.0
>

Le framework OSGi

I e Fonctionnalités (©2008 s. Frénot, D. Donsez, N. Le Sommer)

+ Application Mode!

+ Signed Bundies
+ Dodaraive Savices
Power Mana nt

+ Device Manﬁmem

+ Secrly Polickes

+ DiagnostiMonlioring
+ Framework Layerir

+ Initial PrDvlSlollyggng

+ UPnP

+ Deployment

+ Framework

+ HTTP

. L

+ Dﬁlﬁei\cﬂ!ss

2000 2001 2003 2005

Plan

Généralités

Principes : EJB 2.0

Evolutions : EJB 3.0
>

Le framework OSGi

I » Références sur OSGi
— Cours de Stéphane Frénot (CITI, INSA Lyon), donné a
I’école Intergiciel et Construction d’Applications
Réparties
— Projet Apache Felix :
— Site officiel OSGi :
* Remarque:
— Référence sur les bundles disponibles :

Conclusion

|° La réutilisation comme principe général de
conception
— Sélectionner les outils disponibles...
¢ Un framework
¢ Des bibliothéques
—...en fonction de vos besoins
* Nécessite d’avoir correctement spécifié les besoins et
réalisé le travail d’analyse
=>»Objectif : limiter le plus possible les développements
a la logique métier

Conclusion

¢ Choix d’'un framework

— Identifier le gain : services proposés / lourdeur de
I'outil
— S’attacher a la finalité d’un framework et non a ce que
I'on peut faire avec
* Les utilisateurs peuvent étre perdus par une utilisation non
standard d’un outil
— Evolutivité des solutions proposées
* Penser a |’évolution de votre application
— Passage a I'échelle
— Nouveaux services
— Intégration de technologies futures

Conclusion

|° Modularité : penser composants dés les
spécifications
— Précision de la phase de conception et d’analyse
(cahier des charges)
— Utiliser des solutions standard

* Surtout si vos applications s’insérent dans un Sl existant et si
d’autres peuvent devoir s’interfacer avec
* Prévoir la possibilité de changer radicalement d’interface
— RIA/RDA
— Terminaux mobiles
— Services Web

