
TI 1 : Méthodes de

conception de systèmes

d’information distribués

Master 2 Traitement de l’Information

Lionel Médini

Septembre 2010

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

Plan du cours

• Outils de programmation avancés

• Systèmes d’information distribués

– Appel de méthodes distantes (RPC)

– Objets hétérogènes distribués (CORBA) – Objets hétérogènes distribués (CORBA)

– Objets Java distribués (RMI, RMI/IIOP)

– Synthèse

– Frameworks Java (Struts, Spring, JEE 5)

• Objets transactionnels distribués

– Exemples d’EJB 2 et de descripteurs de déploiement

– EJB 3 : POJO et annotations

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

Objets distribués

Approche orientée objet
Architectures distribuées
• Exemples d’application : agence de voyage en

ligne

} Objets distribués

>

ligne
• Exemples d’objets distribués

– Logique applicative client (connexion, recherche
commandes)

– Gestion sécurisée des paiements
– Gestion des réservations
– Interrogation des fournisseurs de voyages
– …

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

Infrastructures

middleware

• But : gestion des communications entre les
objets hétérogènes via le réseau dans les
architectures distribuées

• Exemples

>

• Exemples

– RPC (Sun, Microsoft...)

– CORBA (OMG)

– RMI (Java)

– RMI/IIOP (Java)

– Java EE (Sun)

– .Net (Microsoft)

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RPC

• Origine
– Créé pour le système de fichiers NFS
– Version « originale » : Sun RPC (libre)
– Dernière RFC : 1057, juin 1988

• Principe

>

• Principe
– Appel de fonctions distantes
– Fonctionne sur un mode client-serveur
– Langages de programmation hétérogènes
– Transparence des appels distants pour les

composants locaux

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RPC

• Fonctionnement
- Des composants locaux (stub et skeleton) masquent la

couche réseau au client et au serveur

>

Client

Stub

Appel de procédure via une

Couche communication (réseau)

Serveur

Skeleton

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RPC

• Fonctionnement
- Au niveau logique, les prototypes des fonctions et

types de données exposés sont décrits dans un
langage commun (IDL)

>

langage commun (IDL)

Client

Stub IDL

Serveur

Skeleton

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RPC

• Langages/notions de base
– Stub/skeleton

• Proxys de gestion des communications entre objets
• Stub : proxy côté client

>

• Stub : proxy côté client
• reçoit et achemine les requêtes du client
• récupère les réponses et les transmet au client

• Skeleton : proxy côté serveur
• Récupère les requêtes et les transmet au serveur
• reçoit et achemine les réponses du serveur

• Spécifiques aux langages, couches de
communication, types d’objets

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RPC

• Langages/notions de base
– IDL : langage neutre de spécification

d’interfaces
• Représentation des interfaces (informations

>

• Représentation des interfaces (informations
échangées) dans le même langage

• Typage des données en XDR (eXternal Data
Representation : dernière RFC : 4506)

• Traduction (projection) des interfaces dans
différents langages (C, C++, SmallTalk, Ada95 et
Cobol OO, Java, Eiffel et Common Lisp)

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RPC

• Conclusion
– Limité à l’appel de méthodes (pas d’objet)
– Introduit les principes fondamentaux

– d’indirection dans l’accès aux ressources distantes
– de serveur d’application

>

– de serveur d’application

• Remarques
– Plusieurs versions, incompatibles entre elles
– Implémentation sur HTTP : XML-RPC

• Références
– http://www.ietf.org/rfc/rfc1057.txt
– http://www.crevola.org/francois/?content=articles&

show=1

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• But
– Communication entre objets hétérogènes et distants
– Invocation de « services » entre objets d’applications

distribuées

• Principes généraux

>

• Principes généraux
– Séparation stricte Implémentation/Interface
– Localisation transparente des objets

• Caractéristiques techniques
– Architecture client/serveur
– Objets distribués ou non
– Multi-plateforme

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA
>

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

Code
programmeur

Communication

logique
Client Servant

COS
Naming
Service

Resolve Bind

>

programmeur logique

IIOP

Communication

réseau

ORB ORB

TCPTCP

Stub Skeleton

Librairies
fournies

Système
d’exploitation

Code généré
par le compilateur

IDL

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• Objets/librairies

– ORB : Couche « communication » intégrée aux objets

• Responsable des mécanismes nécessaires pour

– Trouver l'implémentation de l'objet pour la requête

>

– Trouver l'implémentation de l'objet pour la requête

– Préparer cette implémentation à recevoir la requête

– Communiquer les données constituant la requête

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• Objets/librairies

– ORB : Couche « communication » intégrée aux objets

• L'interface que voit le client est indépendante

– De l'endroit où l'objet est situé

>

– De l'endroit où l'objet est situé

– Du langage dans lequel l'objet est implémenté

• Un ORB contient

– Une interface IDL

– Un support au service de nommage COS

– Un support IIOP

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• Objets/librairies

– Stub : proxy client

– Skeleton : proxy serveur

• CORBA COS : services objets communs

} s’interfacent avec un ORB

>

• CORBA COS : services objets communs

– Naming Service : service de nommage permettant
de retrouver les objets servants pour les clients

– Life Cycle Service

– Object Transaction Service

– Security Service

– …

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• Langages/protocoles
– IDL : langage neutre de spécification

d’interfaces
• Traduction effectuée à la compilation (statique)

>

• Traduction effectuée à la compilation (statique)
• Utilise un compilateur IDL spécifique au langage

utilisé pour produire
–Un stub/skeleton lié à un ORB

–Une description des interfaces des services
Interface Chat {

void SetMessage (in string auteur, in string
texte);

}

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• Langages/protocoles

– IIOP : protocole de communication entre ORB

• Transmission des messages

• Implémentation de GIOP sur TCP

>

• Implémentation de GIOP sur TCP

• Échange de messages entre « ORB »

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• Langages/protocoles

– DII : accès dynamique aux serveurs

• Permet de « court-circuiter » un ORB

• Découverte dynamique de nouveaux objets

>

• Découverte dynamique de nouveaux objets

• Construction et distribution d’invocation

• Réception de réponses

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• Exemple d’utilisation

– Fichier Chat.idl
interface Chat {

void setMessage (in string auteur, in string texte);
}

>

}

– Compilation
idlj –fallTIE Chat.idl

– Interface que doit implémenter le servant
public interface ChatOperations {

void setMessage (String auteur, String texte);
}

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• Exemple d’utilisation

– Interface distante que doit implémenter le servant
public interface Chat extends ChatOperations,
org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity
{}

>

{}

– Classe skeleton
Chat_Tie

– Classe stub
ChatStub

– Classe contenant des méthodes auxiliaires :
ChatHelper

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• Exemple d’utilisation

– À Programmer
class ChatServant implements ChatOperations {

void setMessages (String auteur, String texte){…}

>

}

class ChatServer {
public static void main (String args[]){…}

}

class ChatClient {
public static void main (String args[]){…}

}

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA

• Exemple d’utilisation

– Lancement

• Serveur de noms (machine m1)
tnameserv (depuis JDK 1.3)

>

tnameserv (depuis JDK 1.3)

• Serveur (machine m2)
java ChatServer –ORBInitialHost m1

• Client(machine m3)
java ChatClient –ORBInitialHost m1

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RMI

• Mêmes principes de base que CORBA

• Limité à Java (objets non hétérogènes)
• Plus de langage de spécification d’interfaces

>

• Plus de langage de spécification d’interfaces

• Protocole de communication : JRMP

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

Code
programmeur

Communication

logique
Client Servant

JNDI

Resolve Bind

RMI >

programmeur logique

JRMP

Communication

réseau

RMI RMI

TCPTCP

Stub Skeleton

Librairies
fournies

Système
d’exploitation

Code généré
par le compilateur

RMI

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RMI

• Exemple d’utilisation

– Interface Java
package monchat;
import java.rmi.*;

public interface Chat extends Remote {

>

public interface Chat extends Remote {

public void setMessage (String auteur, String texte)
throws RemoteException;}

– Classe skeleton
ChatServant_Skel

– Classe stub
ChatServant_Stub

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RMI

• Exemple d’utilisation

– À Programmer
class ChatServant extends UnicastRemoteObject implements

Chat {
void setMessages (String auteur, String texte){…} }

>

void setMessages (String auteur, String texte){…} }

class ChatServer {
public static void main (String args[]){…} }

class ChatClient {
public static void main (String args[]){…} }

– Compilation
rmic monchat.Chat

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RMI

• Exemple d’utilisation
– Serveur de noms

rmiregistry (méthodes lookup() et bind())

– Lancement
• Serveur de noms (machine m1)

>

• Serveur de noms (machine m1)
rmiregistry

• Serveur (machine m2)
java -Djava.rmi.server.codebase=http://m1/ ChatServer

• Client(machine m3)
java -Djava.rmi.server.codebase=http://m1/ ChatClient

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RMI/IIOP

Code
programmeur

Communication

logique
Client Servant

COS Naming
Service

Resolve Bind

• Protocole de
communication : IIOP

• Permet l’interopérabilité
RMI / CORBA

>

programmeur logique

IIOP

Communication

réseau

RMI RMI

TCPTCP

Stub Skeleton

Librairies
fournies

Système
d’exploitation

Code généré
par le compilateur

RMI avec option iiop

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RMI/IIOP

• Exemple d’utilisation (différences avec RMI)
– Implémentation du servant

class ChatServant extends PortableRemoteObject
implements Chat {
void setMessages (String auteur, String

>

void setMessages (String auteur, String
texte){…} }

– Transtypage complexe

– Compilation : rmic –iiop monchat.Chat

– Packages à importer

• Javax.rmi (servant, serveur, client)

• Javax.naming (serveur, client)

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

RMI/IIOP

• Exemple d’utilisation (différences avec RMI)

• Lancement

• Serveur de noms (machine m1)
tnameserv

>

tnameserv

• Serveur (machine m2) :
java -Djava.rmi.server.codebase=http://m1/ ChatServer

• Client(machine m3) :
java -Djava.rmi.server.codebase=http://m1/ ChatClient

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

CORBA + RMI/IIOP

Servant

COS Naming
Service

resolve

bind

Client

JNDI – bind

JNDI – lookup

>

Client
RMI

Servant
RMI

RMI

RMI
Stub

Skeleton

Client
CORBA

Servant
CORBA

ORB

ORB

Stub

Skeleton

Réseau sur IIOP

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

Conclusion

• Principes fondamentaux
– Objets client, servant et serveur
– Invocation d’objets distants transparente pour le client
– Échange de messages conformes à des descriptions

>

– Échange de messages conformes à des descriptions
d’interfaces

– Service de nommage

• Limites
– Requiert la programmation du serveur
– Requiert l’inscription dans le serveur de noms
– Interfaces Générées à la compilation (CORBA non-DII)

• Mise en place « lourde » pour le développeur

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

• Géré : accès aux services transversaux
– Nommage (serveur de noms)
– Transactions
– Persistance

Conclusion
>

– Persistance
– Sécurité…

• Non géré : optimisation des accès aux ressources
– Pools de connexion ou de threads
– Activation et désactivation des objets
– Répartition de la charge
– Tolérance aux pannes

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

• CORBA
– http://www.omg.org
– http://corba.developpez.com/cours/
– http://corba.developpez.com/presentation.htm

• RMI et RMI/IIOP

Références
>

• RMI et RMI/IIOP
– http://java.sun.com/products/jdk/rmi/
– http://java.sun.com/j2se/1.4.2/docs/api/

• Exemples de code RMI et RMI/IIOP
– http://java.sun.com/developer/codesamples/index.html
– http://thomasfly.com/RMI/rmi_tutorial.html
– http://www-128.ibm.com/developerworks/java/rmi-

iiop/space.html

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

• Caractéristiques
– Développement d’applications Web
– Fondé sur le pattern MVC 2

– Un contrôleur unique (ActionServlet)
– Un délégateur de requêtes (ActionMapping)

Struts

http://struts.apache.org/
>

– Un délégateur de requêtes (ActionMapping)
– Des « workers » (Action, *.do)
– Des composants (Beans) pour le modèle métier

– S’appuie sur les technologies servlets, JSP, JSTL...

• Avantage
– Très connu / utilisé

• Inconvénients
– Limité aux applications simples (modèle métier = quelques

classes Java)
– Difficilement testable

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

• Caractéristiques
– Framework fondé sur MVC 2
– Conteneur léger
– Support AOP : AspectJ
– Intégration d’autres frameworks : Struts, JSF, AJAX DWR,

Spring

http://www.springframework.org/
>

– Intégration d’autres frameworks : Struts, JSF, AJAX DWR,
support de portlets, ORM, JUnit...

• Avantages
– Framework complet de développement d’applications
– S’appuie sur d’autres frameworks ayant fait leurs preuves

• Inconvénient
– Choix des solutions a priori

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

• Caractéristiques
– Plutôt une spécification qu’un framework
– Intégré aux serveurs d’applications Java
– Permet le développement d’applications intégrant des EJB

– Conteneur EJB

JEE5

http://java.sun.com/javaee/
>

– Conteneur EJB
– Serveur JNDI
– Gestion des services spécifiques (JPA, JMS...)

• Avantage
– Très complet
– Simplifié depuis la spécification EJB 3.0

• Inconvénient
– Trop complet ?

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

• But : développement, déploiement et exécution des
applications distribuées

• Mêmes principes de base que les infrastructures
middleware…

JEE5

http://java.sun.com/javaee/
>

middleware…
– Communication synchrone (RMI/IIOP) et asynchrone (JMS)

entre objets distribués, serveurs de nom (JNDI), intégration
d’objets CORBA (JavaIDL)…

• …plus de nombreux services techniques supplémentaires
– Génération d’objets transactionnels distribués (EJB), gestion du

cycle de vie des objets, gestion des transactions (JTA et JTS),
sécurité, accès aux BD (JDBC), interfaces graphiques
dynamiques (Servlets , JSP, JSF)…

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

Container Web Accès aux
systèmes
existants

JNDI
Web Services

APIs
Java Persistence

API

Serv
let

JSP

JSP

L’architecture JEE5
>

Serveur
d’applications

Client Web

Applet ou client

autonome

Systèmes existants

(CICS, progiciels)

Serveur de BD

Container EJB

existants

JDBC

JavaMail
Java Message

Service API

Java Authorization
Contract for
Containers

JSP

Bean Bean

Bean

Java
Transaction

API

Plan

Généralités

Objets distribués hétérogènes

Objets distribués homogènes

Synthèse objets distribués

Les frameworks Java

Exemple de service

JEE5

• Java Persistence API (JSR 220)
• The Java Persistence API provides a POJO

persistence model for object-relational mapping.
• The Java Persistence API was developed by the

EJB 3.0 software expert group as part of JSR 220,

>

EJB 3.0 software expert group as part of JSR 220,
but its use is not limited to EJB software
components. It can also be used directly by web
applications and application clients, and even
outside the Java EE platform, for example, in Java
SE applications.

• http://java.sun.com/javaee/technologies/persiste
nce.jsp

