y
Université Claude Bernard ‘ l yon 1

Tl 1 : Methodes de
conception de systemes
d’information distribues

I Master 2 Traitement de I'Information

Lionel Médini
Septembre 2010

Plan du cours

I e QOutils de programmation avancés

e Systemes d’information distribués
— Appel de méthodes distantes (RPC)
— Objets hétérogenes distribués (CORBA)
— Objets Java distribués (RMI, RMI/I1OP)
— Synthese
— Frameworks Java (Struts, Spring, JEE 5)
e Objets transactionnels distribués
— Exemples d’EJB 2 et de descripteurs de déploiement
— EJB 3 : POJO et annotations

Objets distribueés

I Approche orientée objet }

Architectures distribuées Objets distribues

e Exemples d’application : agence de voyage en
lighe
e Exemples d’objets distribués

— Logique applicative client (connexion, recherche
commandes)

— Gestion sécurisée des paiements

— Gestion des réservations

— Interrogation des fournisseurs de voyages

Infrastructures

middleware

I e But: gestion des communications entre les

objets hétérogenes via le réseau dans les
architectures distribuées

e Exemples
— RPC (Sun, Microsoft...)
— CORBA (OMG)
— RMI (Java)
— RMI/IIOP (Java)
— Java EE (Sun)
— .Net (Microsoft)

RPC

I * Origine

—Créé pour le systeme de fichiers NFS
—Version « originale » : Sun RPC (libre)
—Derniere RFC : 1057, juin 1988

* Principe
— Appel de fonctions distantes
—Fonctionne sur un mode client-serveur
—Langages de programmation hétérogenes
—Transparence des appels distants pour les

composants locaux

RPC

I e Fonctionnement

- Des composants locaux (stub et skeleton) masquent la
couche réseau au client et au serveur

Client Serveur

Stub Skeleton

g g

Appel de procédure via une
Couche communication (réseau)

RPC

* Fonctionnement
- Au niveau logique, les prototypes des fonctions et
types de données exposés sont décrits dans un
langage commun (IDL)

Client Serveur

Stub IDL Skeleton

RPC

I e Langages/notions de base

—Stub/skeleton
* Proxys de gestion des communications entre objets
e Stub : proxy cote client
* recoit et achemine les requétes du client
e récupere les réponses et les transmet au client
e Skeleton : proxy coté serveur
 Récupere les requétes et les transmet au serveur
* recoit et achemine les réponses du serveur
* Spécifiques aux langages, couches de
communication, types d’objets

RPC

I e Langages/notions de base

—IDL : langage neutre de spécification

d’interfaces

* Représentation des interfaces (informations
échangées) dans le méme langage

* Typage des données en XDR (eXternal Data
Representation : derniere RFC : 4506)

* Traduction (projection) des interfaces dans
différents langages (C, C++, SmallTalk, Ada95 et
Cobol OO0, Java, Eiffel et Common Lisp)

RPC

I * Conclusion

—Limité a I'appel de méthodes (pas d’objet)

—Introduit les principes fondamentaux
—d’indirection dans |'acces aux ressources distantes
—de serveur d’application

* Remarques
—Plusieurs versions, incompatibles entre elles
—Implémentation sur HTTP : XML-RPC

e Références

CORBA

 But
— Communication entre objets hétérogenes et distants
— Invocation de « services » entre objets d’applications
distribuées
e Principes généraux
— Séparation stricte Implémentation/Interface
— Localisation transparente des objets

e Caractéristiques techniques
— Architecture client/serveur

— Objets distribués ou non
— Multi-plateforme

CORBA

5] (ag) (5=] (o

Stub Slgel

DOEE 2
Protocol

Figure 2. Interoperability uses OEB to0-OFRE communication

Copynzht @ 200 Object Managemert Groap

CORBA

COS
Naming
Service
Resolve Bind
Communication
Code Client = = = = = = =» Servant
Code généré
par le compilateur Stub Skeleton
IDL ‘ ‘
Librailfies ORB - — =11OP_ _ ORB
fournies
> Communication
Systeme TCP < > TCP

d’exploitation réseau

CORBA

I e Objets/librairies

— ORB : Couche « communication » intégrée aux objets
e Responsable des mécanismes nécessaires pour
— Trouver l'implémentation de I'objet pour la requéte
— Préparer cette implémentation a recevoir la requéte

— Communiquer les données constituant la requéte

CORBA

I e Objets/librairies

— ORB : Couche « communication » intégrée aux objets
e L'interface que voit le client est indépendante
— De lI'endroit ou 'objet est situé
— Du langage dans lequel I'objet est implémenté
 Un ORB contient
— Une interface IDL
— Un support au service de nommage COS
— Un support IIOP

CORBA

I e Objets/librairies

— Stub : proxy client } s’interfacent avec un ORB
— Skeleton : proxy serveur

e CORBA COS : services objets communs

— Naming Service : service de nommage permettant
de retrouver les objets servants pour les clients

— Life Cycle Service
— Object Transaction Service
— Security Service

CORBA

I e Langages/protocoles

—IDL : langage neutre de spécification

d’interfaces
* Traduction effectuée a la compilation (statique)
e Utilise un compilateur IDL spécifique au langage
utilisé pour produire
—Un stub/skeleton lié a un ORB

—Une description des interfaces des services

Interface Chat {
void SetMessage (in string auteur, in string
texte);

}

CORBA

I e Langages/protocoles

—1IOP : protocole de communication entre ORB
* Transmission des messages
* Implémentation de GIOP sur TCP
 Echange de messages entre « ORB »

CORBA

I e Langages/protocoles

— DIl : acces dynamique aux serveurs
* Permet de « court-circuiter » un ORB
e Découverte dynamique de nouveaux objets
e Construction et distribution d’invocation
e Réception de réponses

CORBA

I Exemple d’utilisation

— Fichier Chat.idl

interface Chat {
void setMessage (in string auteur, in string texte);

}

— Compilation
idlj —fallTIE Chat.idl

— Interface que doit implémenter le servant

public interface ChatOperations {
void setMessage (String auteur, String texte);

}

CORBA

I Exemple d’utilisation

— Interface distante que doit implémenter le servant

public interface Chat extends ChatOperations,
org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity

{}
— Classe skeleton
Chat_Tie

— Classe stub
ChatStub

— Classe contenant des méthodes auxiliaires :
ChatHelper

Plan
Généralités
> Objets distribués hétérogénes

co RBA Objets distribués homogenes

Syntheése objets distribués
Les frameworks Java

I Exemple d’utilisation

— A Programmer

class ChatServant implements ChatOperations {
void setMessages (String auteur, String texte){...}

}

class ChatServer {
public static void main (String args[]){...}

}

class ChatClient {
public static void main (String args[]){...}

}

Plan
Généralités
> Objets distribués hétérogénes

co RBA Objets distribués homogenes

Syntheése objets distribués
Les frameworks Java

I Exemple d’utilisation

— Lancement

e Serveur de noms (machine m1)
thameserv (depuis JDK 1.3)

e Serveur (machine m2)
java ChatServer —ORBInitialHost m1

e Client(machine m3)
java ChatClient —ORBInitialHost m1

I e Mémes principes de base que CORBA

e Limité a Java (objets non hétérogenes)
* Plus de langage de spécification d’interfaces

e Protocole de communication : JRMP

Code
programmeur

Code généré
par le compilateur
RMI

Librairies
fournies

Systéme
d’exploitation

JNDI

Resolve Bind
Communication
Client (€= = = = = = =» Servant
logique
Stub Skeleton
RMI o= = <& = rMI
Communication
TCP [« > TCP

réseau

I Exemple d’utilisation

— Interface Java

package monchat;
import java.rmi.”*;
public interface Chat extends Remote {

public void setMessage (String auteur, String texte)
throws RemoteException;}

— Classe skeleton
ChatServant_Skel

— Classe stub
ChatServant_Stub

I Exemple d’utilisation

— A Programmer

class ChatServant extends UnicastRemoteObject implements
Chat {

void setMessages (String auteur, String texte){...} }

class ChatServer {
public static void main (String args[]){...} }

class ChatClient {
public static void main (String args[]){...} }

— Compilation
rmic monchat.Chat

I Exemple d’utilisation

— Serveur de noms
rmiregistry (méthodes lookup() etbind())

— Lancement
e Serveur de noms (machine m1)
rmiregistry

e Serveur (machine m2)
java -Djava.rmi.server.codebase=http://m1/ ChatServer

e Client(machine m3)
java -Djava.rmi.server.codebase=http://m1/ ChatClient

RMI/IIOP

e Protocole de

communication : lIOP

e Permet |'interopérabilité

RMI / CORBA

Code
programmeur

Code généré
par le compilateur
RMI avec option iiop

Librairies
fournies

Systeme
d’exploitation

COS Naming
Service

Bind

Servant

A 4

A

Skeleton

A

RMI

Resolve
Communication
Client G = = =
logique
y.
Stub
A
Communication
TCP

réseau

»
"

TCP

RMI/IIOP

I Exemple d’utilisation (différences avec RMI)

— Implémentation du servant

class ChatServant extends Port abl eRenpt e(bj ect
implements Chat {
void setMessages (String auteur, String
texte){...} }

— Transtypage complexe
— Compilation : rmic —iiop monchat.Chat

— Packages a importer
e Javax.rmi (servant, serveur, client)

e Javax.naming (serveur, client)

RMI/IIOP

I e Exemple d’utilisation (différences avec RMI)

e Lancement

e Serveur de noms (machine m1)
thameserv

e Serveur (machine m2):
java -Djava.rmi.server.codebase=http://m1/ ChatServer

e Client(machine m3):
java -Djava.rmi.server.codebase=http://m1/ ChatClient

CORBA + RMI/IIOP

COS Naming
Service

bind

JNDI

Client R A N » Servant
CORBA RMI
Client | _ _ | Servant
Stub RMI CORBA Skeleton
ORB Stub Skeleton RMI
RMI ORB

4 A

Réseau sur IIOP

Conclusion

* Principes fondamentaux

— Objets client, servant et serveur
— Invocation d’objets distants transparente pour le client
— Echange de messages conformes a des descriptions
d’interfaces
— Service de nommage
e Limites
— Requiert la programmation du serveur
— Requiert l'inscription dans le serveur de noms
— Interfaces Générées a la compilation (CORBA non-Dll)

e Mise en place « lourde » pour le développeur

Conclusion

I e Géré : acces aux services transversaux

— Nommage (serveur de noms)
— Transactions
— Persistance
— Sécurité...
* Non géré : optimisation des acces aux ressources
— Pools de connexion ou de threads
— Activation et désactivation des objets
— Répartition de la charge
— Tolérance aux pannes

Plan
Généralités
, , Objets distribués hétérogenes
Refe re“ces Objets distribués homogénes
> Syntheése objets distribués
Les frameworks Java

I * CORBA

e RMI et RMI/IIOP

e Exemples de code RMI et RMI/IIOP

Struts
http://struts.apache.org/

I e Caractéristiques

— Développement d’applications Web
— Fondé sur le pattern MVC 2

— Un contrbleur unique (ActionServlet)

— Un délégateur de requétes (ActionMapping)

— Des « workers » (Action, *.do)

— Des composants (Beans) pour le modele métier
— S’appuie sur les technologies servlets, JSP, JSTL...

 Avantage
— Tres connu / utilisé
* Inconvénients
— Limité aux applications simples (modele métier = quelques
classes Java)
— Difficilement testable

Spring

http://www.springframework.org/

I e Caractéristiques

— Framework fondé sur MVC 2

— Conteneur léger

— Support AOP : Aspect]

— Intégration d’autres frameworks : Struts, JSF, AJAX DWR,

support de portlets, ORM, JUnit...

* Avantages

— Framework complet de développement d’applications

— S’appuie sur d’autres frameworks ayant fait leurs preuves
* |Inconvénient

— Choix des solutions a priori

JEES
http://java.sun.com/javaee/

I e Caractéristiques

— Plutbt une spécification qu’un framework

— Intégré aux serveurs d’applications Java

— Permet le développement d’applications intégrant des EJB
— Conteneur EJB
— Serveur JNDI
— Gestion des services spécifiques (JPA, IMS...)

* Avantage

— Tres complet

— Simplifié depuis la spécification EJB 3.0
* Inconvénient

— Trop complet ?

JEES
http://java.sun.com/javaee/

I e But: développement, déploiement et exécution des

applications distribuées
 Mémes principes de base que les infrastructures

middleware...

— Communication synchrone (RMI/IIOP) et asynchrone (JMS)
entre objets distribués, serveurs de nom (JNDI), intégration
d’objets CORBA (JavalDL)...

e ...plus de nombreux services techniques supplémentaires
— Génération d’objets transactionnels distribués (EJB), gestion du
cycle de vie des objets, gestion des transactions (JTA et JTS),
sécurité, acces aux BD (JDBC), interfaces graphiques
dynamiques (Servlets, JSP, JSF)...

L’architecture JEES

Web Services

Java Persistence

Client Web

Applet ou client
autonome

INDI N o
> Container Web Accé‘s aux
systemes
existants
Java
Serveur '
d’ licati Transaction
applications AP
. JDBC
> Container EJB

Systémes existants
(CICS, progiciels)

JavaMail

Java Message
Service API

Java Authorization
Contract for
Containers

\ 4

Serveur de BD

Exemple de service
JEES

e Java Persistence API ()

 The Java Persistence API provides a POJO
persistence model for object-relational mapping.

 The Java Persistence APl was developed by the
EJB 3.0 software expert group as part of JSR 220,
but its use is not limited to EJB software
components. It can also be used directly by web
applications and application clients, and even
outside the Java EE platform, for example, in Java
SE applications.

