Université Claude Bernard yon 1

Tl 1 : Methodes de
conception de systemes
d’information distribues

I Master 2 Traitement de I'Information

Lionel Médini
Septembre 2010

Présentation générale de ce cours

I e Objectif visé

* Ne plus concevoir “from scratch”
e S’'insérer dans un Sl existant
* Moyens
e Paradigmes de programmation avancés
* Principes des outils de mise en oeuvre de Sl
distribués
* [ntroduction a I'urbanisation des Sl

Themes abordés dans ce cours

I e Paradigmes de programmation avancés

e Patrons de conception
 Conteneurs d’objets
 Programmation orientée aspects
e Conception et déploiement de S| distribués
* Principes de communication entre objets

e Quelgues frameworks existants

Themes abordés dans ce cours

I e Paradigmes de programmation avancés

— Patrons de conception
— Conteneurs d’objets
— Programmation orientée aspects
— Outils de programmation récents
— Frameworks
— EJB

e Introduction a l'urbanisation des Sl
— La métaphore de la ville
— Référentiels et outils existants

Plan du cours

I e QOutils de programmation avancés

— Retour sur les patrons de conception
— Inversion de contrble (conteneurs d’objets)
— Contexte (communication dans un conteneur)
— MVC (conteneur léger)

— Annotations Java

— Programmation Orientée Aspects

e Systemes d’information distribués

— Appel de méthodes distantes (CORBA, RMI)

— Frameworks Java

— Objets transactionnels distribués (EJB)

* |ntroductuion a l'urbanisation des Si

Rappels sur les
design patterns

I e Composantes d'un patron

— Nom : évocation de la solution
— Probleme a solutionner

— Contexte d'application du patron et limites de |la
solution

— Forces/contraintes de la solution par rapport au
contexte

— Solution mise en oeuvre (avec variantes éventuelles)

L'inversion de
controle (1oC)

I e Probleme

— Réduire les dépendances (couplage) entre des
objets dont l'implémentation peut varier

— Diminuer la complexité de gestion du cycle de vie
de ces objets (patterns singleton et factory)

* Principe
— S'appuie sur le pattern d'indirection

— Le contrdle du flot d'exécution d'une application
n'est plus géré par l'application elle-méme mais par
une structure externe (conteneur)

Plan

vz — d Rappels sur les patrons de conception
L I nve rs I o n e > Inversion de controle et contexte
~ Les patterns MVC
contrOIe (IOC) Métaprogrammation par annotations

Programmation orientée aspects

I e Définition (M. Fowler)

L’loC différencie un framework d’une bibliotheque logicielle

e Exemples
— Interface a modele événementiel (Swing)
— Serveur Web

— Conteneurs d'objets (servlets, EJB)

* Autres noms
— Recherche / Injection de dépendances

— Injection de code

L'inversion de
controle (1oC)

I e Fonctionnement

— Les constructeurs, destructeurs et certaines methodes
des objets sont appelés par un conteneur

— Le conteneur gere les services extérieurs et isole les
objets de |'application

— Le conteneur est lui-méme paramétreé plutot que
programme

— Le conteneur peut servir de pattern facade pour isoler
les couches de l'application

loC :
variantes

I * Injection de dépendances

— Rendre l'inversion de contrdle transparente pour les objets

— Initialisation directe des objets a partir d'un référentiel de
dépendances

— Les liens des objets entre eux et avec le conteneur
deviennent implicites
— 3 méthodes d'injection
 Par constructeur
* Par accesseurs

e Par interface

loC :
variantes

I * Injection de dépendances

— Injection par constructeur

e Passage d'une référence aux objets connus dans le
constructeur

 Exemple
public ObjetA {
ObjetB objb;
public ObjetA (ObjetB 0) {(...) objb =o0; (...) } (..)}

e Avantage : conforme aux bonnes pratiques de la POO

* |nconvénients
— Parametres du constructeur non nommeés mais ordonnés
— Devient fouillis quand il y a de nombreux parametres

— Pas d'héritage de cette configuration entre les objets

loC :
variantes

I * Injection de dépendances

— Injection par modificateurs
e Utilise les modificateurs (setters) des attributs des objets

 Exemple
public ObjetA {
ObjetB obijb;
public setObjb (ObjetB o) {objb =o0;}(...)}

* Avantages

— Apparition explicite des noms des dépendances

— Les modificateurs peuvent effectuer des opérations complexes

e Inconvénient : non conforme a la POO (l'initialisation « sort »
du constructeur)

loC :
variantes

I * Injection de dépendances

— Injection par interface

e Chaque objet implémente autant d'interfaces que de
dépendances

Chaque interface définit une méthode publique d'injection

e Exemple
public class ObjetA implements InjectObjetB, ... {
ObjetB obijb;
public void injectObjetB(ObjetB 0) { objb =o0;} (...) }

 Mémes avantages et inconvénients que les setters

* Inconvénient supplémentaire
— forme du code imposé assez lourde
— lisibilité délicate

loC :
variantes

I * Injection de dépendances

— Par proxy
* Un proxy intercepte I'appel au constructeur d’un objet

* || réalise a la fois la création et I'injection de dépendances

— Par constructeur

— Par modificateurs
* Avantages

— Avantages de la méthode d’injection employée

— Découplage code métier / injection de dépendances grace au proxy
* Inconvénients

— Inconvénients de la méthode d’injection employée

— Possible baisse de performances due a I'introduction du proxy

Plan
EXte n s i o n d e I a Rappels sur les patrons de conception
> Inversion de controle et contexte
Les patterns MVC

n Ot i o n d ¥ I oc Métaprogrammation par annotations

Programmation orientée aspects

I e Pourquoi / comment réaliser de l'injection de

dépendances sur des valeurs et non sur des objets ?

Le pattern
Contexte

I- But

— Communication avec / entre les composants dans une
architecture conteneur

e Problemes

— Le conteneur n’a pas acces aux classes d'implémentation des
modules

— Les modules ne connaissent pas le type de conteneur

— Les modules ne doivent pas communiquer directement entre
eux (adjonction de services techniques lors de |la
communication)

— Les modules ne communiquent pas avec |'extérieur

Plan

Le patte rn Rappels sur les patrons de conception
> Inversion de controle et contexte
Les patterns MVC
conteXt Métaprogrammation par annotations

Programmation orientée aspects

I e Probleme

e Communication entre les composants et I’extérieur

e Les modules ne communiquent pas directement avec
I’extérieur

Plan

Le patte rn Rappels sur les patrons de conception
> Inversion de controle et contexte
Les patterns MVC
conteXt Métaprogrammation par annotations

Programmation orientée aspects

I- But

— Communication avec / entre les composants dans une
architecture conteneur

* Principe

Plan

Le atte rn Rappels sur les patrons de conception
p > Inversion de controle et contexte
Les patterns MVC

conteXt Métaprogrammation par annotations

Programmation orientée aspects

% Contenesur i

Clarit
I I I
| | Contexte |
l l Heovs ConrbExtl) l
| | memsimm ke e |
e
I ogus Serwite |
I
I
I
Sa{Transaclionil) - |
Rensesgne services lechnigue |
I
Cantext() ==
hﬂm&-& Contexie
I

| GetCurren{Transaction(} |

EI"- Demande s Contecdueiies J
|
i

Source :

Le pattern
Context

e Fonctionnement

— Ajout d’un niveau d’indirection entre conteneur et composants
e Spécifique aux types de modules (servlets, EJB, POJO...)
e Spécifique au conteneur (Web, EJB...)

e Spécifiqgue au framework (JNDI, Struts, Spring, Java EE)

e Exemples

— javax.naming.InitialContext (Java SE 6) : acces au serveur de
noms JNDI

— javax.ejb.EJBContext (Java EE 5) : acces aux informations
contextuelles liées a un EJB

* Remarque

— Un composant peut avoir plusieurs contextes associés

Conteneurs

I e |nstanciés par le framework avant la / les objets de la

/des application(s)
 Peuvent permettre |'acces a un contexte d'application

e 2 techniques (non incompatibles)

— Inversion de controle par configuration (statique)
e Utilise des fichiers de configuration (XML)

— Inversion de controle dynamique
e Le conteneur est un objet d'une application (framework)

|| possede des méthodes appelées lors du déroulement de
I'application

|| peut rechercher les dépendances a injecter

Conteneurs

I Conteneurs légers (Spring, Pico, NanoContainer)

— Spécifiques a une application

— Ne contiennent que les services nécessaires
 Conteneurs lourds (Catalina, conteneurs d'EJB)

— Sont eux-mémes des patterns singletons

— Peuvent gérer les objets de plusieurs applications

— Possedent un large éventail de fonctionnalités

Conteneurs

I e Exemple de recherche de dépendances (EJB)

— Un objet accede a un autre en interrogeant le conteneur

— Exemple : appel a un annuaire JNDI pour trouver un EJB

ctx =new InitialContext (proprietes);
ref = ctx.lookup("MonEJB");
home = (MonEJBHome) javax.rmi.PortableRemoteObject. narrow(ref,

MonEJBHome.class);
monEJB = home.create();

— Avantage : mécanisme d'indirection via un annuaire

— Inconvénients

e Nécessite un appel explicite au contexte

« Méthode d'appel générique qui nécessite un transtypage

Conteneurs:
utilisation

I e Gestion du cycle de vie des objets

— Génération d'événements

e Appel de méthodes spécifiques des objets par le conteneur
pour controler leurs changements d'états

e Méthodes formalisées par des interfaces ou par le
paramétrage du conteneur

e Exemples : doGet(), doPost(), EJBCreate(), EJBActivate()...

Conteneurs:
utilisation

I e Gestion du cycle de vie des objets

— Gestion des singletons
e Nombre d'instances créées géré par le conteneur

e Déclaration d'une classe comme singleton dans les
parametres de configuration du conteneur

Permet de s'abstraire d'un type d'implémentation particulier
pour les singletons (exemple : classe abstraite, constructeur
prive)

 Mécanisme de création de singletons générique

e Transtypage des classes ainsi générées nécessaire

Les frameworks

I e Définition

— Outil qui controle le flot de déroulement de I"application

— Exemples : serveur Web, pattern MVC, serveur d’applications...

e Composants
— Conteneur(s) d’objets
— Contexte(s) de I'application
— Mécanismes de configuration des applications

— Services annexes (logs, sécurité, transactions...)

Les frameworks

I * |ntérét pour le programmeur

— Evitent de reprogrammer les fonctionnalités récurrentes
— De nombreux services déja disponibles
— Respectent les regles de bonnes pratiques

— Compréhensibilité et réusabilité des modules de I'application

 Contraintes : pour bien utiliser un framework, il faut
— En comprendre la philosophie (finalité, limites)
— En respecter les regles (API)

* Remarque

— Ne pas confondre avec une bibliotheque (composants annexes
appelés par le programme)

Les patterns MVC

I * Modele (logiqgue métier)

— Implémente le fonctionnement du systeme
— Gere |les acces aux données métier
* Vue (interface)
— Présente les données en cohérence avec l'état du modele
— Capture et transmet les actions de |'utilisateur
e Contrbleur
— Gere les changements d'état du modele
— Informe le modele des actions utilisateur

— Sélectionne |la vue appropriée

Plan

Rappels sur les patrons de conception

Inversion de controle et contexte
Les patterns MVC | ienomnc

Métaprogrammation par annotations
Programmation orientée aspects

Model
* Encapsulates application state
» Hesponds to state queries
» Exposes application
functionality

State = Nofifies views of changes State

Change

Change
Notification

il i

View View Selection Controller

* Defines application behavior
* Maps user actions to
model updates
= Selects wiew for response
* One faor each functionality

* Henders the models
* Requests updates from models

* Sends user gestures to cantroller 1T 1111°

« Allows controller to select view User Gestures

Method Invocations

11 Events

Source : http://java.sun.com/blueprints/patterns/MVC-detailed.html

Les patterns MVC

I e Différentes versions

— |la vue connait le modele ou non

— le controleur connait la vue ou non

— |le vue connait le contréleur ou non
— « Mélange » avec le pattern Observer
— Un ou plusieurs contréleurs (type 1 ou 2)
e MVC« type 2 »
— Un controleur principal et plusieurs « actionneurs »

— Utilisé notamment dans Struts

Plan
Rappels sur les patrons de conception
Inversion de controle et contexte

Les patterns Mvc > Les patterns MVC

Métaprogrammation par annotations
Programmation orientée aspects

I e Frameworks utilisant MVC

— Struts
— Spring
— .Net

e Choix d'une solution

— dépend des caractéristiques de l'application

— dépend des autres responsabilités du controleur

Plan

A“tres patte r“s é Rappels sur les patrons de conception

Inversion de controle et contexte

> Les patterns MVC

Uti I ise r Métaprogrammation par annotations

Programmation orientée aspects

I' DAO

— Traitements d'acces aux données regroupés dans des
objets spécialisés

e Observateur

— Notification des changements d'états d'un objet observé a
des objets observateurs (permet un faible couplage)

 Facade, singleton...

Réféerences

I * Ouvrages

— E. amma, R. Helm, R. Johnson, J. Vlissides (1994),
Design patterns, Elements of Reusable Object-
Oriented Software, Addison-Wesley, 395 p.

e Traduction francaise : Design patterns. Catalogue des
modeles de conception réutilisables, Vuibert 1999

— Martin Fowler (2002) Patterns of Enterprise
Application Architecture, Addison Wesley

e Sites

Meétaprogrammation
par annotations

I e Position du probleme

— Générer automatiquement certains éléments
récurrents des programmes
* Documentation
e Fichiers de configuration
e Métadonnées utilisées pour la compilation
e Traitements spécifiques
— Pour cela, il faut un outil pouvant intervenir
e Sur les fichiers sources

e Sur les fichiers compilés (.class)
e Lors de |'exécution (réflection)

Meétaprogrammation
par annotations

I * Principe

— Programmation déclarative
e |e concepteur décrit ce qu'il veut obtenir
e Un outil interprete ces annotations et le réalise

— Avantages de |la génération automatique
e Gain de temps
e Pas d'erreur de programmation

e Pas de maintenance de « side files » qui doivent étre
synchonisés avec le code source (l'information est
directement stockée dans les fichiers sources)

Meétaprogrammation
par annotations

I e Fonctionnement

— Des annotations dans le code

 Programmation déclarative (indépendante de I'EDI et du
code Java)

e Exemple : les tags Javadocs

— Un outil capable de réaliser des taches spécifiques a
la lecture de ces tags
e Générer de la documentation (Javadoc, XDoclet)

e Gérer les fonctions transverses (persistance des données,
transactions, sécurité : AOP)

e Gérer le cycle de vie d’objets complexes (EJBGen)
e Permettre l'introspection durant I'exécution du code

Meétaprogrammation
par annotations

I e Définition

— Annotation : mot-clé « Interface » préfixé par ‘@’
public @interface MonAnnotation {

e Remarque : toute annotation hérite implicitement de
java.lang.annotation.Annotation

— Attributs : méthode avec type de retour et nom
[** Message décrivant la tache a effectuer.*/
String att1();

}

— Remarque : la portée des attributs d'une annotation
est implicite et toujours public

Meétaprogrammation
par annotations

I e Utilisation dans le code

— Nom de I'annotation préfixé par ‘@’

— Devant |I'élément concerné

e Types d'éléments affectés : package, class interface, enum,
annotation, constructeur, méthode, parametre, champ
d'une classe, variable locale

e Plusieurs annotations différentes sont autorisées sur un
méme élément (mais jamais deux fois [la méme)

— Exemple avec une annotation simple (« marqueur »)

@MonAnnotation

public class MaClasse {
[* .. *

}

Plan
Rappels sur les patrons de conception

M etaprog ram matlon Inversion de controle et contexte
- Les patterns MVC
pal' anI‘Otatlons > Métaprogrammation par annotations

Programmation orientée aspects

I e Utilisation dans le code

— Exemple avec des attributs
@MonAnnotation (attl = "mavaleur")

public void MaMethode() {
[¥
}
— Remarque : la méthode standard string value();
permet d'omettre le nom de |'attribut a I'appel de

I'annotation

Plan
Rappels sur les patrons de conception

M etaprog ram matlon Inversion de controle et contexte
- Les patterns MVC
pal' anI‘Otatlons > Métaprogrammation par annotations

Programmation orientée aspects

I e Les annotations standard

— @Deprecated
— @Override
— @SuppressWarnings (String_ou_tab warnings)

 Permettent d'interagir avec le compilateur
* Version : APl Java 2 SE 5.0

Plan

” - Rappels sur les patrons de conception
M etaprog ram matlon Inversion de controdle et contexte
- Les patterns MVC
par anI‘Otatlons > Métaprogrammation par annotations

Programmation orientée aspects

I e Les méta-annotations standard

— Qualifient les annotations non standard
— @Documented
— @Inherit

— @Retention (duree _de vie)
e @Retention (RetentionPolicy.SOURCE)
e @Retention (RetentionPolicy.CLASS)
e @Retention (RetentionPolicy.RUNTIME)

Meétaprogrammation
par annotations

I e Les méta-annotations standard

— @Target (type_d_element_ou_tab)
e @Target (ElementType. ANNOTATION_TYPE)
e @Target (ElementType.CONSTRUCTOR)
e @Target (ElementType.FIELD)
e @Target (ElementType.LOCAL_VARIABLE)
e @Target (ElementType.METHOD)
o @Target (ElementType.PACKAGE)
e @Target (ElementType.PARAMETER)
e @Target (ElementType.TYPE)

Plan
Rappels sur les patrons de conception

M etaprog ram matlon Inversion de controle et contexte
- Les patterns MVC
pal' anI‘Otatlons > Métaprogrammation par annotations

Programmation orientée aspects

I e Utilisation des annotations non standard

— L'outil Annotation Processing Tool (APT)
e Génération de messages (notes, warnings, errors)

e Génération de fichiers (textes, binaires, sources et classes
Java)

e Syntaxe proche de celle de javac (lighe de commande +
options)

Meétaprogrammation
par annotations

I e Utilisation des annotations non standard

— L'outil Annotation Processing Tool (APT)
1.Détermine les annotations présentes dans le code source

2.Recherche les AnnotationProcessorFactories que vous avez
écrites
1. Demande aux factories les annotations qu'elles traitent
2.Demande aux factories qui traitent des annotations présentes
dans le code de fournir un AnnotationProcessor

3.Exécute les AnnotationProcessor

4.Si ces processeurs ont généré de nouveaux fichiers sources,
APT reboucle jusqu'a ce qu'il n'y ait plus de nouveaux
fichiers générés

Meétaprogrammation
par annotations

I e Utilisation des annotations non standard

— L'outil Annotation Processing Tool (APT)

e APT relie chacune des annotations figurant dans le code a
I'AnnotationProcessor la concernant

e Chaque AnnotationProcessor comporte une méthode
process() qui lui indique quoi faire de I'élément annoté et
qui est exécutée par APT

e Les AnnotationProcessor sont générés par des
AnnotationProcessorFactory et reliés aux annotations par
la méthode getProcessorFor()

e Documentation :
http://java.sun.com/javase/6/docs/technotes/guides/apt/

Meétaprogrammation
par annotations

I e Utilisation des annotations non standard

— Introspection
e Dans le code de I'application

* Permet d'accéder aux annotations dont la rétention est
RUNTIME

* DepuisJava SE 5

* Interface java.lang.AnnotatedElement (implémentée par
AccessibleObject, Class, Constructor, Field, Method et
Package)

e Méthodes getAnnotation(), getAnnotations(),
getDeclaredAnnotations(), isSAnnotationPresent()

Programmation orientée
aspects (AOP)

I e Position du probleme

— Gérer les fonctionnalités transverses d'une
application (acces aux données, transactions sécurité)

e Enregroupant (vs. dispersant) le code lié a ces
fonctionnalités

* En les séparant de la logique métier
e Avantages : productivité, maintenance, réutilisabilité

<:: E:> IIIIIII
Sans Avec

aspect aspect

Programmation orientée
aspects (AOP)

I e Limites du paradigme objet

— Données encapsulées dans les classes
* Traitements similaires sur des données différentes

— Différentes considérations (aspects) de |'application
représentés au méme niveau d'abstraction

— « Pollution » du modele métier par les fonctionnalités
transverses

— Méme avec des patrons appropriés (facade,
observateur), il reste beaucoup de code dans les
classes

Programmation orientée
aspects (AOP)

I e Le paradigme aspect

— Pas contradictoire, mais complémentaire au
paradigme objet
— En POA, une application comporte des classes et des
aspects
e Une classe est un élément du domaine a modéliser
* Un aspect est une fonctionnalité a mettre en oeuvre dans
I'application
— Chaque aspect permet d'obtenir une « vision »
difféerente de |'application

e Métier, données, sécurité...

Programmation orientée
aspects (AOP)

I e Concepts de base / glossaire

— Tangled code

e Code embrouillé, code spaghetti.

— Crosscutting concerns

e Aspects de la programmation qui concernent plusieurs
classes, et qui donc transcendent le modele objet
(synchronisation, logging, persistance...)

e Mélange, au sein d'un méme programme, de sous-
programmes distincts couvrant des aspects techniques
séparés (Wikipédia)

Sources :
http://www.dotnetguru.org/articles/dossiers/aop/quid/AOP15.htm

Programmation orientée
aspects (AOP)

I e Concepts de base / glossaire

— Weaver (tisseur d'aspects)

e Infrastructure mise en place pour greffer le code des
aspects dans le code des classes

e Selon les tisseurs cette greffe peut avoir lieu
— directement sur le code source donc avant la compilation
— durant la compilation
— apres la compilation sur le code compilé mais avant I'exécution
— pendant I'exécution

Sources :
http://www.dotnetguru.org/articles/dossiers/aop/quid/AOP15.htm

Programmation orientée
aspects (AOP)

I e Concepts de base / glossaire

— Joinpoint (point de jonction)

e Endroit du code ou il est autorisé d'ajouter un aspect
(avant, autour de, a la place ou apres I'appel d'une
fonction)

 Dans 80% des cas, liés aux méthodes
e Parfois liés aux classes, interfaces, attributs, exceptions...

— Pointcut (point de coupe)

e Endroit du code ou est effectivement inséré le greffon

Sources :
http://www.dotnetguru.org/articles/dossiers/aop/quid/AOP15.htm

Programmation orientée
aspects (AOP)

I e Concepts de base / glossaire

— Crosscut (coupe)

 Ensemble ou sous-ensemble des points de jonction liés a
un aspect dans une application

 Permet de définir |la structure transversale d'un aspect

— Advice (greffon)

* Fragment de code qui sera activé a un certain point de
coupe du systeme

e 4 types : before, after returning, after throwing, around

Sources :
http://www.dotnetguru.org/articles/dossiers/aop/quid/AOP15.htm

Plan
Rappels sur les patrons de conception

P I'Og I'am matlo“ orlentee Inversion de controle et contexte
Les patterns MVC

as peCtS (Ao P) Métaprogrammation par annotations

> Programmation orientée aspects

I e Qutils et frameworks OA

— Disponibles dans de nombreux langages
e Java, C++, PHP, Python, CommonlLisp, Ruby...

— Qutils Java (tisseurs)
e Aspect]

— De loin le plus connu

— Tisseur d'aspect a la complilation

— Génere du bytecode

— Utilisation de fichiers XML ou d'annotations Java

— Plugin Eclipse
— Frameworks Java : JBoss, Spring

Programmation orientée
aspects (AOP)

I * POA et méthodes de conception

— Au départ, surtout un paradigme de programmation
— Bien isoler les responsabilité des objets
— Mise en relation et amélioration des patterns du GoF
e|mportances des roles dans les patterns
eExemple principal : pattern Observateur
ePattern disséminé dans le code
eNotification = crosscut
— Implémentation avec Aspect)

Source : http://hannemann.pbwiki.com/f/OOPSLA2002.pdf

Conclusion

I e N'hésitez pas a faire appel a

— Différents paradigmes de conception
e Objet : bonnes pratiques
e Aspects : encore en évolution

e Distribué...
— Des outils facilitant la programmation
 Frameworks

e Bibliotheques de composants

e Outils de déploiement...

Références utilisees
pour ce cours

I * Design patterns

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html
http://hillside.net/patterns/onlinepatterncatalog.htm
http://www.martinfowler.com/
http://liris.cnrs.fr/yannick.prie/ens/07-08/SIMA/CM-patterns.pdf

http://www.dotnetguru.org/articles/articlets/contextPattern/Contexte.
htm

e Conteneurs

http://www.dotnetguru.org/articles/dossiers/ioc/ioc.htm
http://www.picocontainer.org/

http://www.nanocontainer.org/

Références utilisees
pour ce cours

I e Annotations Java

http://java.sun.com/javase/6/docs/technotes/guides/apt/GettingStarte
d.html

http://adiguba.developpez.com/tutoriels/java/tiger/annotations/

* POA

http://hannemann.pbwiki.com/Design+Patterns
http://fr.wikipedia.org/wiki/Programmation_orient%C3%A9e_aspect

http://www.dotnetguru.org/articles/dossiers/aop/quid/AOP15.htm# T
0c47186529

http://www.eclipse.org/aspectj/index.php

