
Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

TI 1 : Méthodes de

conception de systèmes

d’information distribués

Master 2 Traitement de l’Information

Lionel Médini

Septembre 2010

d’information distribués

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Objectif visé

• Ne plus concevoir “from scratch”

• S’insérer dans un SI existant

• Moyens

Présentation générale de ce cours

• Moyens

• Paradigmes de programmation avancés

• Principes des outils de mise en oeuvre de SI
distribués

• Introduction à l’urbanisation des SI

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Paradigmes de programmation avancés

• Patrons de conception

• Conteneurs d’objets

• Programmation orientée aspects

Thèmes abordés dans ce cours

• Programmation orientée aspects

• Conception et déploiement de SI distribués

• Principes de communication entre objets

• Quelques frameworks existants

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Paradigmes de programmation avancés

– Patrons de conception

– Conteneurs d’objets

– Programmation orientée aspects

Thèmes abordés dans ce cours

– Programmation orientée aspects

– Outils de programmation récents

– Frameworks

– EJB

• Introduction à l’urbanisation des SI

– La métaphore de la ville

– Référentiels et outils existants

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Plan du cours

• Outils de programmation avancés
– Retour sur les patrons de conception

– Inversion de contrôle (conteneurs d’objets)
– Contexte (communication dans un conteneur)
– MVC (conteneur léger)

>

– MVC (conteneur léger)
– Annotations Java
– Programmation Orientée Aspects

• Systèmes d’information distribués
– Appel de méthodes distantes (CORBA, RMI)
– Frameworks Java
– Objets transactionnels distribués (EJB)

• Introductuion à l’urbanisation des SI

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Rappels sur les

design patterns

• Composantes d'un patron

– Nom : évocation de la solution

– Problème à solutionner

Contexte d'application du patron et limites de la

>

– Contexte d'application du patron et limites de la
solution

– Forces/contraintes de la solution par rapport au
contexte

– Solution mise en oeuvre (avec variantes éventuelles)

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

L'inversion de

contrôle (IoC)

• Problème

– Réduire les dépendances (couplage) entre des
objets dont l'implémentation peut varier

– Diminuer la complexité de gestion du cycle de vie

>

– Diminuer la complexité de gestion du cycle de vie
de ces objets (patterns singleton et factory)

• Principe

– S'appuie sur le pattern d'indirection

– Le contrôle du flot d'exécution d'une application
n'est plus géré par l'application elle-même mais par
une structure externe (conteneur)

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

L'inversion de

contrôle (IoC)

• Définition (M. Fowler)

L’IoC différencie un framework d’une bibliothèque logicielle

• Exemples

– Interface à modèle événementiel (Swing)

>

– Interface à modèle événementiel (Swing)

– Serveur Web

– Conteneurs d'objets (servlets, EJB)

• Autres noms

– Recherche / Injection de dépendances

– Injection de code

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

L'inversion de

contrôle (IoC)

• Fonctionnement

– Les constructeurs, destructeurs et certaines méthodes
des objets sont appelés par un conteneur

– Le conteneur gère les services extérieurs et isole les

>

– Le conteneur gère les services extérieurs et isole les
objets de l'application

– Le conteneur est lui-même paramétré plutôt que
programmé

– Le conteneur peut servir de pattern façade pour isoler
les couches de l'application

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

IoC :

variantes

• Injection de dépendances

– Rendre l'inversion de contrôle transparente pour les objets

– Initialisation directe des objets à partir d'un référentiel de
dépendances

>

dépendances

– Les liens des objets entre eux et avec le conteneur
deviennent implicites

– 3 méthodes d'injection

• Par constructeur

• Par accesseurs

• Par interface

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

IoC :

variantes

• Injection de dépendances

– Injection par constructeur

• Passage d'une référence aux objets connus dans le
constructeur

>

constructeur

• Exemple
public ObjetA {

ObjetB objb;
public ObjetA (ObjetB o) { (...) objb = o; (...) } (.. .) }

• Avantage : conforme aux bonnes pratiques de la POO

• Inconvénients

– Paramètres du constructeur non nommés mais ordonnés

– Devient fouillis quand il y a de nombreux paramètres

– Pas d'héritage de cette configuration entre les objets

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

IoC :

variantes

• Injection de dépendances

– Injection par modificateurs

• Utilise les modificateurs (setters) des attributs des objets

• Exemple

>

• Exemple
public ObjetA {

ObjetB objb;
public setObjb (ObjetB o) { objb = o; } (...) }

• Avantages

– Apparition explicite des noms des dépendances

– Les modificateurs peuvent effectuer des opérations complexes

• Inconvénient : non conforme à la POO (l'initialisation « sort »
du constructeur)

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

IoC :

variantes

• Injection de dépendances

– Injection par interface

• Chaque objet implémente autant d'interfaces que de
dépendances

>

dépendances

• Chaque interface définit une méthode publique d'injection

• Exemple
public class ObjetA implements InjectObjetB, ... {

ObjetB objb;
public void injectObjetB(ObjetB o) { objb = o; } (...) }

• Mêmes avantages et inconvénients que les setters

• Inconvénient supplémentaire

– forme du code imposé assez lourde

– lisibilité délicate

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

IoC :

variantes

• Injection de dépendances
– Par proxy

• Un proxy intercepte l’appel au constructeur d’un objet

• Il réalise à la fois la création et l’injection de dépendances

>

• Il réalise à la fois la création et l’injection de dépendances

– Par constructeur

– Par modificateurs

• Avantages

– Avantages de la méthode d’injection employée

– Découplage code métier / injection de dépendances grâce au proxy

• Inconvénients

– Inconvénients de la méthode d’injection employée

– Possible baisse de performances due à l’introduction du proxy

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Extension de la

notion d'IoC

• Pourquoi / comment réaliser de l'injection de
dépendances sur des valeurs et non sur des objets ?

>

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Le pattern

Contexte

• But

– Communication avec / entre les composants dans une
architecture conteneur

• Problèmes

>

• Problèmes

– Le conteneur n’a pas accès aux classes d’implémentation des
modules

– Les modules ne connaissent pas le type de conteneur

– Les modules ne doivent pas communiquer directement entre
eux (adjonction de services techniques lors de la
communication)

– Les modules ne communiquent pas avec l’extérieur

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Conteneur

Client Service

externe
Socle

Le pattern

Context

• Problème

>

Module 1 Module 2

• Communication entre les composants

• Les modules ne doivent pas communiquer directement entre
eux
(adjonction de services techniques lors de la communication)

• Communication composants � conteneur

• Les modules ne connaissent pas le type de conteneur

• Communication conteneur � composants

• Le conteneur n’a pas accès aux classes d’implémentation des
modules

• Communication entre les composants et l’extérieur

• Les modules ne communiquent pas directement avec
l’extérieur

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Le pattern

Context

• But

– Communication avec / entre les composants dans une
architecture conteneur

• Principe

>

Conteneur

Socle Module

• Principe

Client

1. new context()

2. setContext(c)

3. getService()

C
o
n
te
x
te

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Le pattern

Context

>

Source : http://www.dotnetguru.org/articles/articlets/contextPattern/Contexte.htm

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Le pattern

Context

• Fonctionnement

– Ajout d’un niveau d’indirection entre conteneur et composants

• Spécifique aux types de modules (servlets, EJB, POJO...)

• Spécifique au conteneur (Web, EJB...)

• Spécifique au framework (JNDI, Struts, Spring, Java EE)

>

• Spécifique au framework (JNDI, Struts, Spring, Java EE)

• Exemples

– javax.naming.InitialContext (Java SE 6) : accès au serveur de
noms JNDI

– javax.ejb.EJBContext (Java EE 5) : accès aux informations
contextuelles liées à un EJB

• Remarque

– Un composant peut avoir plusieurs contextes associés

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Conteneurs

• Instanciés par le framework avant la / les objets de la
/des application(s)

• Peuvent permettre l'accès à un contexte d'application

• 2 techniques (non incompatibles)

>

• 2 techniques (non incompatibles)
– Inversion de contrôle par configuration (statique)

• Utilise des fichiers de configuration (XML)

– Inversion de contrôle dynamique

• Le conteneur est un objet d'une application (framework)

• Il possède des méthodes appelées lors du déroulement de
l'application

• Il peut rechercher les dépendances à injecter

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Conteneurs

• Conteneurs légers (Spring, Pico, NanoContainer)
– Spécifiques à une application

– Ne contiennent que les services nécessaires

• Conteneurs lourds (Catalina, conteneurs d'EJB)

>

• Conteneurs lourds (Catalina, conteneurs d'EJB)
– Sont eux-mêmes des patterns singletons

– Peuvent gérer les objets de plusieurs applications

– Possèdent un large éventail de fonctionnalités

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Conteneurs

• Exemple de recherche de dépendances (EJB)

– Un objet accède à un autre en interrogeant le conteneur

– Exemple : appel à un annuaire JNDI pour trouver un EJB
ctx = new InitialContext (proprietes);

>

ctx = new InitialContext (proprietes);
ref = ctx.lookup("MonEJB");
home = (MonEJBHome) javax.rmi.PortableRemoteObject. narrow(ref,

MonEJBHome.class);
monEJB = home.create();

– Avantage : mécanisme d'indirection via un annuaire

– Inconvénients

• Nécessite un appel explicite au contexte

• Méthode d'appel générique qui nécessite un transtypage

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Conteneurs :

utilisation

• Gestion du cycle de vie des objets

– Génération d'événements

• Appel de méthodes spécifiques des objets par le conteneur
pour contrôler leurs changements d'états

>

pour contrôler leurs changements d'états

• Méthodes formalisées par des interfaces ou par le
paramétrage du conteneur

• Exemples : doGet(), doPost(), EJBCreate(), EJBActivate()...

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Conteneurs :

utilisation

• Gestion du cycle de vie des objets

– Gestion des singletons

• Nombre d'instances créées géré par le conteneur

• Déclaration d'une classe comme singleton dans les

>

• Déclaration d'une classe comme singleton dans les
paramètres de configuration du conteneur

• Permet de s'abstraire d'un type d'implémentation particulier
pour les singletons (exemple : classe abstraite, constructeur
privé)

• Mécanisme de création de singletons générique

• Transtypage des classes ainsi générées nécessaire

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Les frameworks

• Définition

– Outil qui contrôle le flot de déroulement de l’application

– Exemples : serveur Web, pattern MVC, serveur d’applications...

• Composants

>

• Composants

– Conteneur(s) d’objets

– Contexte(s) de l’application

– Mécanismes de configuration des applications

– Services annexes (logs, sécurité, transactions...)

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Les frameworks

• Intérêt pour le programmeur

– Évitent de reprogrammer les fonctionnalités récurrentes

– De nombreux services déjà disponibles

– Respectent les règles de bonnes pratiques

>

– Respectent les règles de bonnes pratiques

– Compréhensibilité et réusabilité des modules de l’application

• Contraintes : pour bien utiliser un framework, il faut

– En comprendre la philosophie (finalité, limites)

– En respecter les règles (API)

• Remarque

– Ne pas confondre avec une bibliothèque (composants annexes
appelés par le programme)

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Les patterns MVC

• Modèle (logique métier)
– Implémente le fonctionnement du système

– Gère les accès aux données métier

• Vue (interface)

>

• Vue (interface)
– Présente les données en cohérence avec l'état du modèle

– Capture et transmet les actions de l'utilisateur

• Contrôleur

– Gère les changements d'état du modèle

– Informe le modèle des actions utilisateur

– Sélectionne la vue appropriée

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Les patterns MVC >

Source : http://java.sun.com/blueprints/patterns/MVC-detailed.html

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Les patterns MVC

• Différentes versions

– la vue connaît le modèle ou non

– le contrôleur connaît la vue ou non

– le vue connaît le contrôleur ou non

>

– le vue connaît le contrôleur ou non

– « Mélange » avec le pattern Observer

– Un ou plusieurs contrôleurs (type 1 ou 2)

• MVC « type 2 »

– Un contrôleur principal et plusieurs « actionneurs »

– Utilisé notamment dans Struts

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Les patterns MVC

• Frameworks utilisant MVC

– Struts

– Spring

– .Net

>

– .Net

• Choix d'une solution

– dépend des caractéristiques de l'application

– dépend des autres responsabilités du contrôleur

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Autres patterns à

utiliser

• DAO

– Traitements d'accès aux données regroupés dans des
objets spécialisés

• Observateur

>

• Observateur

– Notification des changements d'états d'un objet observé à
des objets observateurs (permet un faible couplage)

• Façade, singleton...

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Références

• Ouvrages

– E. amma, R. Helm, R. Johnson, J. Vlissides (1994),
Design patterns, Elements of Reusable Object-
Oriented Software, Addison-Wesley, 395 p.

>

Oriented Software, Addison-Wesley, 395 p.

• Traduction française : Design patterns. Catalogue des
modèles de conception réutilisables, Vuibert 1999

– Martin Fowler (2002) Patterns of Enterprise
Application Architecture, Addison Wesley

• Sites
– http://liris.cnrs.fr/yannick.prie/ens/07-08/SIMA/CM-patterns.pdf
– http://www.hillside.net/patterns

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Position du problème

– Générer automatiquement certains éléments
récurrents des programmes

• Documentation

Métaprogrammation

par annotations >

• Fichiers de configuration

• Métadonnées utilisées pour la compilation

• Traitements spécifiques

– Pour cela, il faut un outil pouvant intervenir

• Sur les fichiers sources

• Sur les fichiers compilés (.class)

• Lors de l'exécution (réflection)

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Principe

– Programmation déclarative

• le concepteur décrit ce qu'il veut obtenir

• Un outil interprète ces annotations et le réalise

Métaprogrammation

par annotations >

– Avantages de la génération automatique

• Gain de temps

• Pas d'erreur de programmation

• Pas de maintenance de « side files » qui doivent être
synchonisés avec le code source (l'information est
directement stockée dans les fichiers sources)

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Fonctionnement
– Des annotations dans le code

• Programmation déclarative (indépendante de l'EDI et du
code Java)

• Exemple : les tags Javadocs

Métaprogrammation

par annotations >

• Exemple : les tags Javadocs

– Un outil capable de réaliser des tâches spécifiques à
la lecture de ces tags

• Générer de la documentation (Javadoc, XDoclet)
• Gérer les fonctions transverses (persistance des données,

transactions, sécurité : AOP)
• Gérer le cycle de vie d’objets complexes (EJBGen)
• Permettre l'introspection durant l'exécution du code

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Définition

– Annotation : mot-clé « Interface » préfixé par ‘@’
public @interface MonAnnotation {

• Remarque : toute annotation hérite implicitement de
java.lang.annotation.Annotation

Métaprogrammation

par annotations >

java.lang.annotation.Annotation

– Attributs : méthode avec type de retour et nom
/** Message décrivant la tâche à effectuer.*/

String att1();
}

– Remarque : la portée des attributs d'une annotation
est implicite et toujours public

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Utilisation dans le code

– Nom de l’annotation préfixé par ‘@’

– Devant l'élément concerné

• Types d'éléments affectés : package, class interface, enum,

Métaprogrammation

par annotations >

• Types d'éléments affectés : package, class interface, enum,
annotation, constructeur, méthode, paramètre, champ
d'une classe, variable locale

• Plusieurs annotations différentes sont autorisées sur un
même élément (mais jamais deux fois la même)

– Exemple avec une annotation simple (« marqueur »)
@MonAnnotation
public class MaClasse {

/* ... */
}

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Utilisation dans le code

– Exemple avec des attributs
@MonAnnotation (att1 = "mavaleur")
public void MaMethode() {

/* ... */

Métaprogrammation

par annotations >

}

– Remarque : la méthode standard String value();

permet d'omettre le nom de l'attribut à l'appel de
l'annotation

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Les annotations standard

– @Deprecated

– @Override

– @SuppressWarnings (String_ou_tab warnings)

Métaprogrammation

par annotations >

– @SuppressWarnings (String_ou_tab warnings)

• Permettent d'interagir avec le compilateur

• Version : API Java 2 SE 5.0

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Les méta-annotations standard

– Qualifient les annotations non standard

– @Documented

– @Inherit

Métaprogrammation

par annotations >

– @Inherit

– @Retention (duree_de_vie)
• @Retention (RetentionPolicy.SOURCE)

• @Retention (RetentionPolicy.CLASS)

• @Retention (RetentionPolicy.RUNTIME)

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Les méta-annotations standard

– @Target (type_d_element_ou_tab)
• @Target (ElementType.ANNOTATION_TYPE)

• @Target (ElementType.CONSTRUCTOR)

Métaprogrammation

par annotations >

• @Target (ElementType.CONSTRUCTOR)

• @Target (ElementType.FIELD)

• @Target (ElementType.LOCAL_VARIABLE)

• @Target (ElementType.METHOD)

• @Target (ElementType.PACKAGE)

• @Target (ElementType.PARAMETER)

• @Target (ElementType.TYPE)

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Utilisation des annotations non standard

– L'outil Annotation Processing Tool (APT)
• Génération de messages (notes, warnings, errors)
• Génération de fichiers (textes, binaires, sources et classes

Métaprogrammation

par annotations >

• Génération de fichiers (textes, binaires, sources et classes
Java)

• Syntaxe proche de celle de javac (ligne de commande +
options)

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Utilisation des annotations non standard

– L'outil Annotation Processing Tool (APT)
1.Détermine les annotations présentes dans le code source

2.Recherche les AnnotationProcessorFactories que vous avez

Métaprogrammation

par annotations >

2.Recherche les AnnotationProcessorFactories que vous avez
écrites

1. Demande aux factories les annotations qu'elles traitent

2. Demande aux factories qui traitent des annotations présentes
dans le code de fournir un AnnotationProcessor

3.Exécute les AnnotationProcessor

4.Si ces processeurs ont généré de nouveaux fichiers sources,
APT reboucle jusqu'à ce qu'il n'y ait plus de nouveaux
fichiers générés

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Utilisation des annotations non standard

– L'outil Annotation Processing Tool (APT)
• APT relie chacune des annotations figurant dans le code à

l'AnnotationProcessor la concernant

Métaprogrammation

par annotations >

• Chaque AnnotationProcessor comporte une méthode
process() qui lui indique quoi faire de l'élément annoté et
qui est exécutée par APT

• Les AnnotationProcessor sont générés par des
AnnotationProcessorFactory et reliés aux annotations par
la méthode getProcessorFor()

• Documentation :
http://java.sun.com/javase/6/docs/technotes/guides/apt/

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Utilisation des annotations non standard

– Introspection

• Dans le code de l'application

• Permet d'accéder aux annotations dont la rétention est

Métaprogrammation

par annotations >

• Permet d'accéder aux annotations dont la rétention est
RUNTIME

• Depuis Java SE 5

• Interface java.lang.AnnotatedElement (implémentée par
AccessibleObject, Class, Constructor, Field, Method et
Package)

• Méthodes getAnnotation(), getAnnotations(),
getDeclaredAnnotations(), isAnnotationPresent()

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Position du problème

– Gérer les fonctionnalités transverses d'une
application (accès aux données, transactions sécurité)

• En regroupant (vs. dispersant) le code lié à ces

Programmation orientée

aspects (AOP)
>

• En regroupant (vs. dispersant) le code lié à ces
fonctionnalités

• En les séparant de la logique métier

• Avantages : productivité, maintenance, réutilisabilité

Sans
aspect

Avec
aspect

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Limites du paradigme objet

– Données encapsulées dans les classes

• Traitements similaires sur des données différentes

– Différentes considérations (aspects) de l'application

Programmation orientée

aspects (AOP)
>

– Différentes considérations (aspects) de l'application
représentés au même niveau d'abstraction

– « Pollution » du modèle métier par les fonctionnalités
transverses

– Même avec des patrons appropriés (façade,
observateur), il reste beaucoup de code dans les
classes

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Le paradigme aspect

– Pas contradictoire, mais complémentaire au
paradigme objet

– En POA, une application comporte des classes et des

Programmation orientée

aspects (AOP)
>

– En POA, une application comporte des classes et des
aspects

• Une classe est un élément du domaine à modéliser

• Un aspect est une fonctionnalité à mettre en oeuvre dans
l'application

– Chaque aspect permet d'obtenir une « vision »
différente de l'application

• Métier, données, sécurité...

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Concepts de base / glossaire

– Tangled code

• Code embrouillé, code spaghetti.

– Crosscutting concerns

Programmation orientée

aspects (AOP)
>

– Crosscutting concerns

• Aspects de la programmation qui concernent plusieurs
classes, et qui donc transcendent le modèle objet
(synchronisation, logging, persistance…)

• Mélange, au sein d'un même programme, de sous-
programmes distincts couvrant des aspects techniques
séparés (Wikipédia)

Sources : http://fr.wikipedia.org/wiki/Programmation_orient%C3%A9e_aspect

http://www.dotnetguru.org/articles/dossiers/aop/quid/AOP15.htm

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Concepts de base / glossaire

– Weaver (tisseur d'aspects)
• Infrastructure mise en place pour greffer le code des

aspects dans le code des classes

Programmation orientée

aspects (AOP)
>

• Selon les tisseurs cette greffe peut avoir lieu
– directement sur le code source donc avant la compilation

– durant la compilation

– après la compilation sur le code compilé mais avant l’exécution

– pendant l’exécution

Sources : http://fr.wikipedia.org/wiki/Programmation_orient%C3%A9e_aspect

http://www.dotnetguru.org/articles/dossiers/aop/quid/AOP15.htm

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Concepts de base / glossaire

– Joinpoint (point de jonction)
• Endroit du code où il est autorisé d'ajouter un aspect

(avant, autour de, à la place ou après l'appel d'une
fonction)

Programmation orientée

aspects (AOP)
>

fonction)
• Dans 80% des cas, liés aux méthodes

• Parfois liés aux classes, interfaces, attributs, exceptions...

– Pointcut (point de coupe)
• Endroit du code où est effectivement inséré le greffon

Sources : http://fr.wikipedia.org/wiki/Programmation_orient%C3%A9e_aspect

http://www.dotnetguru.org/articles/dossiers/aop/quid/AOP15.htm

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Concepts de base / glossaire

– Crosscut (coupe)
• Ensemble ou sous-ensemble des points de jonction liés à

un aspect dans une application

Programmation orientée

aspects (AOP)
>

• Permet de définir la structure transversale d'un aspect

– Advice (greffon)
• Fragment de code qui sera activé à un certain point de

coupe du système

• 4 types : before, after returning, after throwing, around

Sources : http://fr.wikipedia.org/wiki/Programmation_orient%C3%A9e_aspect

http://www.dotnetguru.org/articles/dossiers/aop/quid/AOP15.htm

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• Outils et frameworks OA

– Disponibles dans de nombreux langages

• Java, C++, PHP, Python, CommonLisp, Ruby...

– Outils Java (tisseurs)

Programmation orientée

aspects (AOP)
>

– Outils Java (tisseurs)
• AspectJ

– De loin le plus connu

– Tisseur d'aspect à la complilation

– Génère du bytecode

– Utilisation de fichiers XML ou d'annotations Java

– Plugin Eclipse

– Frameworks Java : JBoss, Spring

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

• POA et méthodes de conception

– Au départ, surtout un paradigme de programmation

– Bien isoler les responsabilité des objets

– Mise en relation et amélioration des patterns du GoF

Programmation orientée

aspects (AOP)
>

– Mise en relation et amélioration des patterns du GoF

•Importances des rôles dans les patterns

•Exemple principal : pattern Observateur

•Pattern disséminé dans le code

•Notification = crosscut

– Implémentation avec AspectJ

Source : http://hannemann.pbwiki.com/f/OOPSLA2002.pdf

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Conclusion

• N’hésitez pas à faire appel à

– Différents paradigmes de conception

• Objet : bonnes pratiques

• Aspects : encore en évolution• Aspects : encore en évolution

• Distribué...

– Des outils facilitant la programmation

• Frameworks

• Bibliothèques de composants

• Outils de déploiement...

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Références utilisées

pour ce cours

• Design patterns
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html

http://hillside.net/patterns/onlinepatterncatalog.htm

http://www.martinfowler.com/http://www.martinfowler.com/

http://liris.cnrs.fr/yannick.prie/ens/07-08/SIMA/CM-patterns.pdf

http://www.dotnetguru.org/articles/articlets/contextPattern/Contexte.

htm

• Conteneurs
http://www.dotnetguru.org/articles/dossiers/ioc/ioc.htm

http://www.picocontainer.org/

http://www.nanocontainer.org/

Plan
Rappels sur les patrons de conception

Inversion de contrôle et contexte

Les patterns MVC

Métaprogrammation par annotations

Programmation orientée aspects

Références utilisées

pour ce cours

• Annotations Java
http://java.sun.com/javase/6/docs/technotes/guides/apt/GettingStarte

d.html

http://adiguba.developpez.com/tutoriels/java/tiger/annotations/http://adiguba.developpez.com/tutoriels/java/tiger/annotations/

• POA
http://hannemann.pbwiki.com/Design+Patterns

http://fr.wikipedia.org/wiki/Programmation_orient%C3%A9e_aspect

http://www.dotnetguru.org/articles/dossiers/aop/quid/AOP15.htm#_T

oc47186529

http://www.eclipse.org/aspectj/index.php

