
1

LIONEL MÉD INI

U F R INF OR MATIQUE

U NIV ERSITÉ CLAU D E BER NAR D LYON 1

XSL : XPATH – XSLT

D’après le cours de Yannick Prié

2010-2011 – Master SIB

M1 – UE 3 / Bloc 2

XSL : Extensible Stylesheet Language
2

 Famille de langages pour définir des transformation et des
présentations de documents XML

 Trois parties

 Xpath

 langage pour désigner des informations dans un arbre XML sous la
forme de chemins (paths)

 XSLT

 langage de description de transformations à opérer sur un arbre XML

 transcodage d’un document XML vers un autre document XML

 XSL Formatting Objects (XSL-FO)

 Langage de spécification de formatages (pour construire des formes
physiques de présentation)

XPath
3

 Recommandation W3C

 Versions

 Xpath 1.0 : 16/11/1999

 Xpath2.0 : 23/01/2007

 Objectif :

 localiser des documents / identifier des sous-structures
dans ceux-ci

 Utilisé par d’autres spécifications XML

 XPointer, XQuery, XSLT…

Contexte et éléments XML
4

 La signification d’un élément peut dépendre de son
contexte
 <book><title>…</title></book>

<person><title>…</title></person>

 Supposons que l’on cherche le titre d’un livre, pas le titre
d’une personne

 Idée

 exploiter le contexte séquentiel et hiérarchique de XML pour
spécifier des éléments par leur contexte (i.e. leur position dans la
hiérarchie)

 exemple : book/title ≠ person/title

Xpath : principe général
5

 Décrire un modèle de chemin dans un arbre XML
 expression

 Récupérer les nœuds qui répondent à ce chemin en utilisant
l’expression
 résultat de l’application de l’expression à l’arbre XML

 Une expression sera utilisée et appliquée au sein de différentes
syntaxes
 URL : http://abc.com/getQuery?/book/intro/title

 XSL : <xsl:pattern match="chapter/title">…</xsl:pattern>

 Xpointer :
<link href="./doc.xml#xptr(book/intro/title)">
Link to introductory title

</link>

<!-- la valeur de l’attribut href est celle de l’élément title
situé dans l’élément intro, situé dans l’élément book, éléments
qui se trouvent dans le fichier doc.xml, lui-même situé dans le
dossier où se trouve le fichier XML en cours -->

Document/arbre/nœuds Xpath
6

 Dans XML
 arbre XML = élément XML

 Dans Xpath
 arbre XPATH = arbre avec toutes les informations

repérables dans un document XML:
 noeuds éléments (= nœud XML)

 noeud racine (représente tout le doc XML)

 noeuds attributs
 noeuds textes
 noeuds instructions de traitement
 noeuds commentaires
 (noeuds espaces de nom)

http://abc.com/getQuery?/book/intro/title
http://abc.com/getQuery?/book/intro/title

2

Version XML
7

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="fichier.xsl"
type="text/xsl"?>

<book>

<title att3="toto" att2="15">blabla</title>

<chapter att1="toto">

<para>blublu</para>

</chapter>

<chapter att1="tata">

<para>bloblo</para>

<note>

<para>youpi</para>

</note>

<para>blibli</para>

</chapter>

</book>

<!-- bloublou -->

Exemple de référence
8

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Elément
chapter

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

(adapté d’après le cours de T. Accary)

Chemins de localisation
9

 Les expressions identifient des noeuds par leur
position dans la hiérarchie

 Permet de
 monter/descendre dans la hiérarchie de l’arbre XML

 aller voir les voisins (frères) d’un noeud

 en fait : suivre des axes

 Un chemin peut être
 relatif

 à partir de l’endroit où l’on est

 absolu

 à partir de la racine

Chemins relatifs
10

 On se place dans le contexte d’un nœud

 A partir de là, on explore l’arbre XML, et on garde les nœuds qui
vérifient l’expression

 Exemple
 para (ou child::para) sélectionnera les fils du nœud courant qui

ont le nom 'para'

<chapter> <!– Noeud courant -->
<para>…</para> <!-- Sélectionné -->
<note>

<para>…</para> <!– Non sélectionné -->
<note>

<para>…</para> <!-- Sélectionné -->
</chapter>

Chemins absolus
11

 Expression identique aux chemins relatifs, mais

 tout chemin absolu commence par '/’

 signifie qu’on part de l’élément racine

 Exemple

 Trouver tous les éléments 'para' dans un ’chapter'

 /book/chapter/para
<book> <!-- racine -->

<chapter>

<para>…</para> <!-- Sélectionné -->
<note>

<para>…</para>

<note>

<para>…</para> <!-- Sélectionné -->

</chapter>

<chapter>

<para>…</para> <!-- Sélectionné -->

</chapter>

<book>

Chemins à plusieurs étapes
12

 Séparer les étapes par des '/'

 Exemple
 book/title (version courte)

 child::book/child::title (version longue)

 depuis le noeud courant, on sélectionne d’abord book, qui
devient le contexte courant, puis on sélectionne title

3

Notion d’étape Xpath
13

 Une étape contient trois composants
Axe :: Filtre [Prédicat]

 axe
 sens de parcours des nœuds

 filtre
 type des nœuds retenus

 prédicats
 propriétés satisfaites par les nœuds retenus

 on peut enchaîner les prédicats

 Exemple
 child :: chapter [@att1 = "toto"]

 Remarques
 il existe une syntaxe bavarde (verbose) et une syntaxe

raccourcie, plus pratique
 possibilité de multiples expressions séparées par ‘|’

 équivalent d’un OU

14

 Expression = séquence d’étapes

 On part du nœud contexte (ou de la racine)

 on évalue l’étape 1

 on récupère un ensemble de nœuds

 pour chacun de ces nœuds

 il devient le nœud contexte

 on évalue l’étape 2

 on récupère un ensemble de nœuds

• pour chacun de ces nœuds

• ...

Evaluation d’une expression Xpath

/child::book/child::chapter/attribute::att1

/book/chapter/@att1 (expression raccourcie)

15

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Elément
chapter

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

nœud initial

16

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Elément
chapter

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

étape 1

/child::book/child::chapter/attribute::att1

/book/chapter/@att1 (expression raccourcie)

17

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Elément
chapter

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

étape 2

/child::book/child::chapter/attribute::att1

/book/chapter/@att1 (expression raccourcie)

18

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Elément
chapter

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

étape 3

/child::book/child::chapter/attribute::att1

/book/chapter/@att1 (expression raccourcie)

4

Axes : directions à suivre
19

 self:: (abrégé : .)

 child:: (abrégé : rien)

 attribute:: (abrégé :@)

 parent:: (abrégé : ..)

 descendant::

 descendant-or-self:: (abrégé : //)

 ancestor::

 ancestor-or-self::

 following::

 following-sibling::

 preceding::

 preceding-sibling::

Axe :: Filtre [Prédicat]

Axe self : self::*

20

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud

contexte
Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Axe :: Filtre [Prédicat]

Axe child : child::*

21

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud
contexte

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Axe :: Filtre [Prédicat]

Axe attribute : attribute::*

22

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud
contexte

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Axe :: Filtre [Prédicat]

Axe parent : parent::*

23

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud
contexte

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Axe :: Filtre [Prédicat]

24

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud
contexte

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Axe :: Filtre [Prédicat]

Axe descendant : descendant::*

5

25

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud
contexte

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Pour récupérer tous les nœuds, utiliser
/descendant-or-self::node()

Axe :: Filtre [Prédicat]

Axe descendant-or-self : descendant-or-self::* Axe ancestor : ancestor::*

26

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud
contexte

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Axe :: Filtre [Prédicat]

Axe ancestor-or-self : ancestor-or-self::*

27

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud
contexte

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Axe :: Filtre [Prédicat]

Axe preceding : preceding::*

28

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud
contexte

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Remarque : on ne met
pas les ancêtres
et les attributs

Axe :: Filtre [Prédicat]

Axe preceding-sibling : preceding-sibling::*

29

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud
contexte

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Axe :: Filtre [Prédicat]

Axe following : following::*

30

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Nœud
contexte

Remarque : on ne met
ni les descendants ni les attributs

Axe :: Filtre [Prédicat]

6

Axe following-sibling : following-sibling::*

31

Document
-

Instruction
xml-stylesheet

...

Elément
book

Commentaire
-

bloublou

Elément
chapter

Nœud
contexte

Elément
title

Elément
para

Elément
para

Elément
para

Attr
att3

toto

Attr
att2

15

Attr
att1

toto

Attr
att1

tata

Texte
-

bloblo

Texte
-

blibli

Texte
-

blublu

Texte
-

blabla

Elément
para

Texte
-

youpi

Elément
note

Axe :: Filtre [Prédicat]

Filtres
32

 Filtrage par le type
 Éléments

 Attributs

 Instructions de traitement

 Filtrage par le nom

Axe :: Filtre [Prédicat]

Filtrage par le type
33

 node()
 garde tout nœud

 text()
 noeud gardé si textuel

 comment()
 noeud gardé si commentaire

 processing-instruction()
 noeud gardé si instruction de traitement

Axe :: Filtre [Prédicat]

Filtrage par le nom
34

 Nom connu
 /book/chapter/note

 (= /child::book/child::chapter/child::note)

 Nom inconnu
 Utiliser le joker '*' pour tout élément simple

 A/*/B permet de trouver A/C/B et A/D/B

 version longue : child::*

 Utilisation de plusieurs astérisques, plusieurs niveaux de
correspondance

 attention à contrôler ce qui se passe
 nombre de niveaux

 éléments trouvés

 Pour un attribut
 @nom-attribut

Axe :: Filtre [Prédicat]

Quelques exemples
35

 chapter//para (noeud contexte = book)
child::chapter/descendant-or-self::node()/child::para

 .//para (noeud contexte = book)
self::node()/descendant-or-self::node()/child::para

 ../title (noeud contexte = chapter)
parent::node()/child::title

 note | /book/title (noeud contexte = 2ème chapter)

 ./* (noeud contexte = book)

 /comment()

 .//para/text() (noeud contexte = book)

 /descendant::node()/@att2

 //para/@*

Axe :: Filtre [Prédicat]

Filtres avec prédicats
36

 Les chemins de localisation ne sont pas forcément assez
discriminants
 peuvent fournir une liste de noeuds

 Qu’on peut filtrer à nouveau avec des prédicats
 prédicat indiqué entre crochets '[]'

 si ce qui est dans le prédicat est Vrai : on garde

 Le prédicat le plus simple utilise la fonction position()
 para[position() = 1] //1er para

 chapter[2] //2eme chapter

 Possibilité de combiner les tests avec 'and' et 'or'
 //*[self::chapter and @att1="tata"]

Premier test

vrai ou faux ?

Deuxième test

vrai ou faux ?

Axe :: Filtre [Prédicat]

7

Tests sur les positions / texte
37

 last()

 Récupère le dernier noeud dans la liste

 count()

 Evalue le nombre d’items dans la liste
child::chapter [count(child::para) = 2]

 string(…)

 Récupére le texte d’un élément en enlevant toutes balises

Axe :: Filtre [Prédicat]

Exemples
38

 /book/chapter[@att1]

 les nœuds chapter qui ont un attribut att1

 /book/chapter[@att1="tata"]

 les nœuds chapter qui ont un attribut att1 valant ‘tata’

 /book/chapter/descendant::text()[position()=1]

 Le(s) premier(s) nœud(s) de type Text descendants d’un
/book/chapter

 s’abrège en /book/chapter/descendant::text()[1]

 /book/chapter[count(para)=2]

 Les nœuds chapter qui ont deux enfants de type para

 //chapter[child::note]

 Les nœuds chapter qui ont des enfants note

Axe :: Filtre [Prédicat]

Prédicat : divers
39

 Pour les booléens
 not(), and, or

 Pour les numériques
 <, >, != (différent)

 +, -, *, div (division entière), mod (reste div entière)

 number() pour essayer de convertir
 autres opérateurs : round(), floor(), ceiling()

 Exemples
 para [not(position() = 1)]

 para [position() = 1 or last()]

 //node()[number(@att2) mod 2 = 1]

 les nœuds avec un attribut att2 impair

Axe :: Filtre [Prédicat]

Tests sur les chaînes
40

 Possibilité de tester si les chaînes contiennent
des sous-chaînes
 <note>hello there</note>

 note [contains(text(), "hello")]

 <note>hello there</note>

 l’expression précédente ne fonctionne pas

(note/text() donne "there")

 utiliser plutôt note[contains(., "hello")]

 '.' est le nœud courant, et on parcourra tous les enfants

Axe :: Filtre [Prédicat]

Tests sur les chaînes (2)
41

 starts-with(chaine, motif)

 note[starts-with(., "hello")]

 string(chaine)

 note[contains(.,string("12"))]

 string-after(chaine, terminateur)

 string-before(chaine, terminateur)

 substring(chaine, offset, longueur)

Axe :: Filtre [Prédicat]

Tests sur les chaînes (3)
42

 normalize(chaine)

 enlève les espaces en trop

 translate(chaine, source, replace)

 translate(., "+", "plus")

 concat(strings)

 string-length(string)

Axe :: Filtre [Prédicat]

8

Encore des exemples
43

 /book/chapter/child::para[child::note or text()]

 Tout élément para fils de chapter ayant au moins un fils note ou un fils
text

 /descendant::chapter[attribute::att1 or @att2]

 Tout élément chapter ayant un attribut att1 ou att2

 //*[note]

 Tout élément ayant un fils note

 * [self::note or self::para] (dans le contexte de
chapter)
 Tout élément note ou para fils du nœud contexte

Quelques fonctions
44

 S’appliquent sur un ensemble de noeuds
 id(liste identificateurs) : récupère les éléments ayant ces

identificateurs
 nécessité d’avoir DTD / schéma
 Ex. id(‘id54’ ‘678’)

 count()
 compte le nombre de nœuds. Ex. count(//para)

 max()
 rend la valeur maximale

 sum()
 rend la somme (les nœuds doivent correspondre à des valeurs

numériques, traductibles par number())

 distinct-values() (Xpath 2.0)
 élimine les doublons

Conclusion sur XPath
45

 Xpath permet de retrouver toutes sortes d’information dans les
documents XML

 requêtes

 transformation : lire une information sous une forme, l’écrire sous une
autre forme  XSLT

 Nous avons vu les grands principes
 pour la description systématique de la syntaxe

 sites de références

 pour plus d’exemples

 sites avec tutoriaux

 Ce cours : présentation de XPATH 1.0

 des améliorations dans XPATH 2.0

XSLT : Qu’est ce qu’une feuille de style ?
46

 Ensemble d’instructions qui contrôlent une mise en
page d’un document
 passage de la partie logique à la partie physique

 possibilité d’utiliser différentes feuilles de style pour des
rendus différents à partir d’une même source

 papier, Web, téléphone…

Spécifications de feuilles de style
47

 DSSSL - Document Style and Semantics
Specification Language
 Standard lié à SGML pour la présentation et la conversion de

documents

 CSS - Cascading Style Sheet
 Syntaxe simple pour assigner des styles à des éléments XML

(géré par les navigateurs web)

 XSL - Extensible Stylesheet Language
 Combinaison des possibilité de DSSSL et CSS avec une

syntaxe XML

 une feuille de style XSL est un fichier XML

XSL
48

 Extensible Stylesheet Language
 Transformer du XML vers un autre format

 XML, HTML, texte…

 Pour présenter les informations

 Pour transformer les informations d’un format à un autre

 Pendant le développement de XSL, on s’est aperçu que XSL faisait deux
choses différentes

 définir des éléments pour présenter du contenu

 définir une syntaxe pour transformer des éléments XML et des structures de
documents

 XSL a donc été divisé entre
 XSL – XML Stylesheet Language (XSL-FO)

 XSLT – XSL Transformations

 Xpath est utilisé pour accéder aux informations

9

Possibilités de XSLT
49

 Rajouter du texte à du contenu

 Effacer, créer, réordonner et trier des éléments

 Réutiliser des éléments ailleurs dans le document

 Transformer des données entre deux formats XML différents

 Utiliser un mécanisme récursif pour explorer le document

 …

XSLT
50

 Langage de programmation déclaratif

 On déclare et on décrit des transformations
 d’un fichier (arbre) d’entrée

 vers un fichier (arbre) de sortie

 dans un document XML (lui-même un arbre)

 Description des transformations
 modèles ou règles (templates) de transformation qui décrivent les

traitements appliqués à un nœud

 chaque modèle correspond à un motif (pattern) qui décrit des
éléments auxquels il s’applique en utilisant Xpath

 Espace de nom spécifique
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

Spécifier une feuille de style
51

 Utiliser une instruction de traitement dans le
prologue du document XML qui doit être
transformé
<?xml-stylesheet

href="le-fichier-style.xsl"

type="application/xml+xsl" ?>

 Possibilité de mettre plusieurs choix
 le processeur XSL choisira la feuille de style la plus

adéquate

Spécification XSLT
52

 Disponible sur http://www.w3.org/TR/xslt
 définit 34 éléments et leurs attributs
 mais on peut se débrouiller en utilisant juste

stylesheet

template

apply-templates

output

 A connaître pour utiliser XSL
 les espaces de noms (namespaces)
 XPath

Élément de feuille de style
53

 L’élément racine est stylesheet

 La feuille de style est un ensemble de règles de transformation
(template)

Espace de
nom XSL

Règles

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version = "1.0" >

<xsl:template ... >

<!-- instructions de

traitements à effectuer -->

</xsl:template >

...

<xsl:template ... >

<!-- instructions de

traitements à effectuer -->

</xsl:template >

</xsl:stylesheet>

Un premier exemple
54

<?xml version="1.0"?>

<doc>Hello</doc>

<?xml version="1.0"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="doc">

<out>Résultat : <xsl:value-of select="."/></out>

</xsl:template>

</xsl:stylesheet>

<out>Résultat : Hello</out>

L’application de la feuille de style XSL
au document XML de départ donne
le document de sortie

10

12 éléments de premier niveau
55

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:import href="..."/>

<xsl:include href="..."/>

<xsl:strip-space elements="..."/>

<xsl:preserve-space elements="..."/>

<xsl:output method="..."/>

<xsl:key name="..." match="..." use="..."/>

<xsl:decimal-format name="..."/>

<xsl:namespace-alias stylesheet-prefix="..." result-prefix="..."/>

<xsl:attribute-set name="..."> ... </xsl:attribute-set>

<xsl:variable name="...">...</xsl:variable>

<xsl:param name="...">...</xsl:param>

<xsl:template match="..."> ... </xsl:template> ou

<xsl:template name="..."> ... </xsl:template>

</xsl:stylesheet>

Élément output
56

 Pour spécifier le format de sortie
<xsl:output method="xml"

indent="yes"

encoding="iso-8859-1" />

 Attributs de output

 method : xml, html, text

 indent : yes, no

 encoding

 standalone (si on génère du XML)

 …

Principe du traitement XSLT
57

 Effectué récursivement sur une liste de nœuds
 la liste initiale contient uniquement le nœud racine du document XML à

traiter (= nœud contextuel)

 Pour chaque nœud de la liste
 recherche d’un template (règle) qui lui corresponde

 le pattern permet de trouver le nœud

 exécution du template

 écriture du contenu du template sur la sortie

 exécution des instructions présentes dans le template
 réécriture

 appel de nouveaux templates avec nouveau nœud contexte, etc.

 Écrire une feuille de style = écrire des templates
 plus ou moins complexes

Feuilles de style XSL
58

Template1

Template2

Template3

Template4

Template5

Template6

…

xxx

yyy

zzz

…

Transformation XSLT =
parcours de l’arbre du
document de départ

en appliquant les
règles de réécriture

définies dans les
templates

aaa

bbb

xxx

…

Élément template
59

 Pour spécifier une règle de transformation
<xsl:template match="expression">

…
</xsl:template>

 L’attribut match a pour valeur une expression Xpath
 limitée aux axes child, attribute, descendant-or-self

 c’est le pattern associé au template

 Si le résultat de cette expression correspond à un nœud de la
liste courante
 la règle est sélectionnée
 le nœud en question devient nœud contextuel dans le template

 Remarque
 si on a plusieurs templates candidats, il faut utiliser des règles de

priorité pour déterminer lequel utiliser

Élément template (suite)
60

 Contenu de l’élément xsl:template
 du texte, qui peut contenir des balises

 ce texte est inséré dans l’arbre destination
 ex. : "<out>Résultat : </out>"

 des instructions qui décrivent des traitements à effectuer
 le résultat de leur exécution sera inséré à leur place dans l’arbre

destination
 ex. : <xsl:value-of select="." />

 Exemple

<xsl:template match="doc">
<out>Résultat : <xsl:value-of select="."/></out>

</xsl:template>
Traduction : à chaque fois qu’il y a un élément doc permettant de

sélectionner le template, il faut écrire “<out>Résultat : <xsl:value-of

select="."/></out>”, puis exécuter l’instruction xsl:value-of, et

remplacer cette instruction par le résultat de son exécution

11

Quelques « éléments instructions » à mettre dans un
élément template (2ème niveau)

 xsl:apply-templates

 Signifie qu’on doit continuer à appeler les règles sur les enfants du noeud courant.
L'attribut select permet de spécifier éventuellement le ou les éléments sur lesquels
continuer d’appliquer les templates

 xsl:call-template

 Permet de charger/appeler un template spécifique (par son nom)

 xsl:choose

 Structure conditionnelle de type "case" (utilisé en combinaison avec xsl:when et/ou
xsl:otherwise)

 xsl:if

 Permet d'effectuer un test conditionnel sur le modèle indiqué

 xsl:comment

 Crée un commentaire dans l'arbre résultat

 xsl:copy

 Copie le noeud courant dans l'arbre résultat (mais pas les attributs et enfants)

 xsl:copy-of

 Copie le noeud sélectionné et ses enfants et attributs

 xsl:element

 Crée un élément avec le nom spécifié

 xsl:for-each

 Permet d'appliquer un canevas à chaque noeud correspondant au modèle

Élément apply-templates : sans attribut
62

 Indique au processeur XSL de traiter les éléments enfants
directs du nœud courant en leur appliquant les règles
définies dans la feuille XSL
 bref, « continuer le traitement sur les enfants »

 Traitement récursif
<p>C’est très important cette
chose.</p>

<xsl:template match="p">

Para <xsl:apply-templates/>
</xsl:template>

<xsl:template match="b">
Bold <xsl:apply-templates/>

</xsl:template>

p

b b

=> Para Bold Bold

Élément apply-Templates : sans attribut
63

 Autre exemple
<xsl:template match= "book">

<html:p>
Un livre : <xsl:apply-templates/>

</html:p>
</xsl:template>

 Remarque
 On ne peut pas ré-arranger la structure hiérachique d’un document

XML source (le document XSL serait mal formé)
<xsl:template match="firstname">
<html:p><xsl:apply-templates/>

</xsl:template>
<xsl:template match="lastname">
<xsl:apply-templates/></html:p>

</xsl:template>
<= mauvais

Élément apply-templates : avec attribut select

64

 L'attribut select permet de spécifier certains éléments enfants
auxquels la transformation doit être appliquée
 plus spécifique que <xsl:apply-templates />

 Utilisation de patterns Xpath pour sélectionner les enfants
<Biblio auteur="Sartre">On trouve notamment <Livre>La nausée</Livre>
et <Livre>Les mains sales</Livre>.</Bilio>

<xsl:template match="Biblio">
Ouvrages : <xsl:apply-templates select="Livre" />

</xsl:template>

<xsl:template match="Livre">
<xsl:value-of select="." />

</xsl:template>

 Remarque : plusieurs éléments possèdent cet attribut select
 apply-templates, value-of, copy-of, param, sort, variable,
with-param

=> Ouvrages :

La nausée Les

mains sales

Élément xsl:value-of
65

 Pour convertir l’objet spécifié par un attribut
'select' en une chaîne de caractères
 cf. fonction string() de xpath

 Exemple
<p>Hello world</p>

<xsl:template match="p">

<e><xsl:value-of select="."/></e>

</xsl:template>

donnera

<e>Hello world.<e>

Valeurs d’attributs
66

 Utiliser l’élément xsl:value-of avec un attribut
select

<full-name first="John" second="Smith"/>

--

<xsl:template match="full-name">

<person1>

<xsl:value-of select="@first"> +

<xsl:value-of select="@second">

</person1>

<person2 name="{@first} {@second}" />

<!-- SYNTAXE SPECIALE -->

</xsl:template>

<person1>John + Smith</person1>

<person2 name="John Smith"/>

12

Règles par défaut : racine/éléments
67

 Quand aucune règle n’est sélectionnée, XSLT applique des règles
par défaut

 Première règle par défaut
 pour les éléments et la racine du document.

<xsl:template match="* | /">

<xsl:apply-templates/>

</xsl:template>

 on demande l’application de règles pour les fils du noeud courant
(éléments ou textuels)

 conséquence

 pas obligatoire de faire une règle pour la racine du document à
transformer

Règles par défaut : texte et attributs
68

 Par défaut, on insère dans le document résultat la valeur du
noeud Text, ou de l’attribut.

 Deuxième règle par défaut
<xsl:template match="text() | @*">

<xsl:value-of select="."/>

</xsl:template>

 Conséquence

 si on se contente des règles par défaut, on obtient la concaténation de
noeuds de type text()

 par défaut, les nœuds attributs ne sont pas atteints (il faut des règles
pour les atteindre)

 Feuille de style XSLT minimale
<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl=http://www.w3.org/1999/XSL/Transform" />

Règles par défaut : autres nœuds
69

 Pour les instructions de traitement et les commentaires :
on ne fait rien.

 Troisième règle par défaut
<xsl:template

match="processing-instruction()

| comment()"/>

 Si on ne les sélectionne pas explicitement, en définissant
une règle pour les traiter, il ne se passe rien.

Élément sort
70

 Permet de spécifier que les éléments sont triés
suivant une certaine propriété

<list>

<item>ZZZ</item>

<item>AAA</item>

<item>MMM</item>

</list>

<xsl:template match="list">

<xsl:apply-templates>

<xsl:sort/>

</xsl:apply-templates>

</xsl:template>

<list>

<item code="Z">aaa</item>

<item code="A">bbb</item>

<item code="M">ccc</item>

</list>

<xsl:template match="list">

<xsl:apply-templates>

<xsl:sort select="@code"/>

</xsl:apply-templates>

</xsl:template>

AAAMMMZZZ

bbbcccaaa

Attributs de l’élément sort
71

 Attribut 'order’
 pour classer croissant ou décroissant

 'ascending' ou 'descending'

 Attribut 'data-type’
 pour indiquer si les données à prendre en compte sont une simple

chaîne ou doivent être interprétées comme des nombres
 'text' (par défaut) ou 'number'

 Attribut 'case-order’
 ordre majuscules / minuscules

 'lower-first' ou 'upper-first'

Élément number
72

 Pour la numérotation automatique
 <xsl:template match="item">

<xsl:number/><xsl:apply-templates/>

</xsl:template>

 Attributs
 level = 'single' ou 'any' ou 'multiple'

 count = "list-1|list-2"

 format = "1.A" (également "I" et "i")

 from = "3"

 grouping-separator = ","

 grouping-size = "3"

 value = "position()"

http://www.w3.org/1999/XSL/Transform

13

Attribut mode
73

 Attribut de l’élément template

 Permet de spécifier quelle règle utiliser en fonction de
l’élément retrouvé

<xsl:template match="chapter/title">

<html:h1><xsl:apply-templates/></html:h1>

</xsl:template>

<xsl:template match="chapter/title" mode="h3">

<html:h3><xsl:apply-templates/></html:h3>

</xsl:template>

<xsl:template match="intro">

<xsl:apply-templates

select="//chapter/title" mode="h3"/>

</xsl:template>

Spécifie le mode à utiliser

Élément variable
74

 On peut déclarer et utiliser des variables en XSLT

 <xsl:variable name="colour">red</xsl:variable>

 définition de la variable colour avec valeur red

 Une variable est référencée avec la notation $

 <xsl:value-of select="$colour"/>

 On peut aussi l’utiliser dans les éléments de sortie

 <ajr:glyph colour="{$colour}"/>

Appel explicite de templates

75

 Si on a besoin plusieurs fois du même formatage
 on nomme le template pour pouvoir l’appeler

<xsl:template name="CreateHeader">

<html:hr/>

<html:h2>***<xsl:apply-templates/>***</html:h2>

<html:hr/>

</xsl:template>

...

<xsl:template match="title">

<xsl:call-template name="CreateHeader" />

</xsl:template>

<xsl:template match="head">

<xsl:call-template name="CreateHeader" />

</xsl:template>

Passer des paramètres à un template
76

 L’élément param, une variable spéciale
 <xsl:param name="nom">valeur par defaut</xsl:param>

 <xsl:with-param name="nom">nouvelle valeur</xsl:with-param>

 L’élément call-template peut passer une
nouvelles valeur de param à un template
 <xsl:template match="name">

<xsl:call-template name="salutation">

<xsl:with-param name="greet">Hello </xsl:with-param>
</xsl:call-template>

</xsl:template>

<xsl:template name="salutation">

<xsl:param name="greet">Dear </xsl:param>

<xsl:value-of select="$greet"/>
<xsl:apply-templates/>

</xsl:template>

valeur par défaut

remplacera
la valeur

par défaut

Créer des éléments
77

 Utiliser l’élément xsl:element

 Exemple
<part><title>Le titre</title></part>

<xsl:template select= "part" >

<xsl:element name="partie">

<xsl:value-of select= "./title"/ >

</xsl:element>

</xsl:template>

<partie>Le titre</partie>

Créer des éléments
78

 Utilisation avec des variables
 <xsl:template name="CreateHeader">

<xsl:param name="level">3</xsl:param>

<xsl:element namespace="html" name="h{$level}">

<xsl:apply-templates/>

</xsl:element>

</xsl:template>

<xsl:template match="title">

<xsl:call-template name="CreateHeader">

<xsl:with-param name="level">1</xsl:with-param>

</xsl:call-template>

</xsl:template>

14

Copier des éléments
79

 Élément 'copy'
 copie le nœud courant (mais pas les fils et les attributs)
 <xsl:template match="h1|h2|h3|h4|h5|h6|h7">

<xsl:copy>

Header: <xsl:apply-templates/>

</xsl:copy>

</xsl:template>

 Pour créer de nouveaux attributs : xsl:attribute
 <xsl:template match="h1|h2|h3|h4|h5|h6|h7">

<xsl:copy>

<xsl:attribute name="style">purple</xsl:attribute>

Header: </xsl:apply-templates />

</xsl:copy>

</xsl:template>

Crée des éléments copiés avec
un attribut style qui vaut purple

Ex. <h3 style="purple">

Élément attribute-set
80

 Utilisé pour stocker des groupes d’attributs

<xsl:attribute-set name="class-and-color">

<xsl:attribute name="class">standard</xsl:attribute>

<xsl:attribute name="color">red</xsl:attribute>

</xsl:attribute-set>

<xsl:template match="h1|h2|h3|h4|h5|h6|h7">

<xsl:copy>

<xsl:use-attribute-sets name="class-and-color” />

Header: <xsl:apply-templates/>

</xsl:copy>

</xsl:template>

Élément copy-of
81

 Peut copier des fragments du fichier d’entrée sans
perdre les attributs

<xsl:template match="body">

<body>

<xsl:copy-of select="//h1 | //h2" />

<xsl:apply-templates/>

</body>

</xsl:template>

Élément for-each
82

 Pour répéter une opération sur des éléments
<liste>

<item><title>Titre1</title><year>2000</year></item>

<item><title>Titre2</title><year>1998</year></item>

</liste>

--

<xsl:template match="liste">

<xsl:for-each select="./item">

<xsl:sort select="year"/>

<!-- traitement pour chaque item -->

<p><xsl:value-of select="./title"/></p>

</xsl:for-each>

</xsl:template>

--

<p>Titre2</p><p>titre1</p>

Conditions
83

 On peut faire un test 'if' pendant le traitement

<xsl:template match="para">

<html:p>

<xsl:if test="position() = 1">

<xsl:attribute name="style">color: red</xsl:attribute>

</xsl:if>

<xsl:if test="position() > 1">

<xsl:attribute name="style">color: blue</xsl:attribute>

</xsl:if>

<xsl:apply-templates/>

</html:p>

</xsl:template>

Conditions (2)
84

 Les éléments 'choose', 'when', 'otherwise'

<xsl:template match="para">

<html:p>

<xsl:choose>

<xsl:when test="position() = 1">

<xsl:attribute name="style">color: red</xsl:attribute>

</xsl:when>

<xsl:otherwise>

<xsl:attribute name="style">color: blue</xsl:attribute>

</xsl:otherwise>

<xsl:apply-templates/>

</xsl:choose>

</html:p>

</xsl:template>

15

Éléments import / include
85

 Pour composer une feuille de style à partir de plusieurs
fichiers XSL

<xsl:stylesheet … >

<xsl:import href="tables.xsl” />

<xsl:import href="features.xsl” />

<!-- ordre important, seul cas pour

les éléments de premier niveau -->

<xsl:template … > … </xsl:template>

…

</xsl:stylesheet>

 Inclure des fichiers XML : xsl:include

 comportement équivalent à xsl:import

 mais pas de possibilité d’écraser une définition importée par une
définition de plus haut-niveau  erreur si deux définitions similaires

XSL – Formatting objects
86

 Spécification des objets de formatage à associer à des
éléments XML, pour sorties papier, audio, écran,
téléphone portable, etc.

 Ensemble de « zones » (area) qui se suivent ou se
contiennent les unes les autres

Un exemple XSL-FO
87

<?xml version="1.0" encoding="UTF-8"?>

<root xmlns="http://www.w3.org/1999/XSL/Format"

font-size="16pt">

<layout-master-set>

<simple-page-master

margin-right="15mm" margin-left="15mm"

margin-bottom="15mm" margin-top="15mm"

page-width="210mm" page-height="297mm"

master-name="bookpage">

<region-body region-name="bookpage-body"

margin-bottom="5mm" margin-top="5mm" />

</simple-page-master>

</layout-master-set>

<page-sequence master-reference="bookpage">

<title>Hello world example</title>

<flow flow-name="bookpage-body">

<block>Hello XSLFO!</block>

</flow>

</page-sequence>

</root>

Conclusion sur XSL
88

 XSL n’est pas un langage de feuilles de styles
 XPath : parcours d’arbre / localisation de nœuds

 XSLT : transformation d’arbres

 XSL fait appel à des principes non présentés ici
 Xpath : bases de données

 XSLT : un début de programmation ?

 Remerciements
 Ce cours s’appuie largement sur celui d’Alan Robinson

http://industry.ebi.ac.uk/~alan/XMLWorkshop/

 Cours Bernd Ammann programmation XSLT

Exercice (suite en TD)
89

<carte>

<titre>Dr.</titre>

<nom>Paul Durand</nom>

<telephone inter="33">4 78 34 25
12</telephone>

<telephone inter="33">6 12 45 25
12</telephone>

<adresse>

<rue>Impasse des Fleurs</rue>

<code>69001</code>

<ville>Lyon</ville>

<pays>France</pays>

</adresse>

<courriel>

paul.durand@provider.com</courriel>

</carte>

<card>

<name title="Dr.">

Paul Durand</name>

<address>

<street>Impasse des
Fleurs</street>

<zipcode>69001 Lyon</zipcode>

<country>France</country>

</address>

<phones>

<phone>(33)4 78 34 25 12</phone>

<phone>(33)6 12 45 25 12</phone>

</phones>

</card>

Ecrire une feuille de style XSLT
permettant de passer du document

carte1.xml à card1.xml
carte1.xml

card1.xml

http://industry.ebi.ac.uk/~alan/XMLWorkshop/

