AN
Université Claude Bernard , Lyon 1

M1IF13 — Web avanceé, Web mobile
Le framework Spring

I Master 1 Informatique

Lionel Médini
Février 2024

Plan

| .
Rappel : Inversion >
Spring Web MVC

N
d trol i
e c o “ ro e Azrtlrr:ei p(::))jets et conclusion

* Principe général
— Une application (Web) complexe fait nécessairement appel a
du code externe pour gérer des services non métier
e sécurité
* persistance

=>» Qui controle le flot d’exécution d’une application ?

e votre code
* un des outils que vous utilisez

— En programmation classique
 D’ou provient le main ?

— En MVC

e Quidirige le controleur ?

Plan
- _ .
Rappel : Inversion >
Spring Web MVC

de contrale Spring Boot

Autres projets et conclusion

I- Différence bibliotheque / framework

c c
o Q
+— +—
> >
O O
) ‘U
X x
L)
© ©
+— +—
9 ©
(I L

— Remarque : dans la littérature, on trouve |'appellation
« framework » pour beaucoup de choses qui n’en sont pas

Le framework
Spring

I * Bref historique

— Juin 2003 :

* Premiere version de Spring framework

— 2004 :

e Création de la société SpringSource par Rod Johnson

e publication du livre“Expert One-on-One J2EE Design and
Development” qui justifie la création de Spring

— Depuis :
e Adoption par une tres large communauté
(y compris de grandes entreprises)
 Nombreux sous-projets : Spring Security, Spring Data, Spring
AMOQP...

— Actuellement : V. 5.3.15 (framework) ,

Le framework
Spring

I e Fondements

— Réaction a Java 2 EE
* EJB2 : trop complexes
* Framework intégrant de nombreuses fonctionnalités

=>» Architecture autour d’un « conteneur léger »
=>»Les composants sont des POJO
=» Intégration de fonctionnalités fournies par d’autres
projets Open Source
=>» Struts, Hibernate, JUnit, Aspect), JSF...

=>» La configuration tient une part centrale de la conception
=>» « Opinionated »

5

Plan
s> Introduction

ArCh itECtu re Spring Core

Spring Web MVC

g IObaIe Spring Boot

Autres projets et conclusion

}' Spring Framework Runtime

Data Access/Integration Web
e ORM WebSocket

OXM JMS

: Portlet
Transactions

Core Container

Core Context

Source : http://docs.spring.io/spring-framework/docs/current/spring-

framework-reference/html/overview.html (V3) 6

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/overview.html

Spring loC
Container (core)

I e RoOle

— Implémente le pattern loC
* Fournit un conteneur
* Gere et met en ceuvre les composants (beans)
— Applique la configuration
* Injection de dépendances par constructeur ou par setters

— Fournit un contexte applicatif

— Fournit des services annexes

 AOP, communication orientée message, événements,
services spécifiques a I'application (Web...) 7

Spring loC
Container (core)

I * |Interfaces principales

— org.springframework.beans.BeanFactory
* |Instancie les beans

* Injecte les dépendances / gére la configuration
— org.springframework.context.ApplicationContext
e Dérive de la précédente

* Représente (en partie) le conteneur (!)

* Rajoute des services : AOP, messages, événements...

ApplicationContext

I * Implémentations dans les applications standalone

— ClassPathXmlApplicationContext ou
FileSystemXmlApplicationContext

— Dépend de la méthode d’acces au fichier de config Spring

— Ainstancier dans la classe principale de I'application

=>» Crée un conteneur lié au contexte applicatif

— Exemples
ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");

ou

ApplicationContext context = new ClassPathXmlApplicationContext("services.xml",
"daos.xml"); 9

http://static.springsource.org/spring/docs/current/api/org/springframework/context/support/ClassPathXmlApplicationContext.html
http://static.springsource.org/spring/docs/current/api/org/springframework/context/support/FileSystemXmlApplicationContext.html

Plan
Introduction

Exe m p I e > Spring Core

Spring Web MVC

d’application Spring Boot

Autres projets et conclusion

// create and configure beans
ApplicationContext context =
new ClassPathXmlApplicationContext ("services.xml",

"daos.xml") ;
// retrieve configured instance

PetStoreService service =
context.getBean ("petStore", PetStoreService.class);

// use configured instance
List<String> userlList = service.getUsernamelList () ;

Source : docs.spring.io

10

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#beans-factory-client

ApplicationContext

I * Implémentations dans les applications Web

— Instanciation par le conteneur Web a partir du fichier de
configuration de I'application (web.xml)

— Crée un conteneur Spring lié au contexte

— Utilisation d’'un ContextLoader

e org.springframework.web.context.ContextLoaderListener
(a partir de Servlet 2.4)

 Remarque : ContextLoaderServlet (jusqu’a Servlet 2.3) ne fait
plus partie de I’API depuis Spring 3.0

— Remarque

|| faut s’assurer que le fichier web.xml est bien pris en compte
par le conteneur de servlets 11

Plan
Introduction
> Spring Core

Composants Spring Web MVC

Spring Boot
Autres projets et conclusion

I * Les beans Spring sont des POJOs

— Instanciés par le conteneur
(a partir de BeanDefinitions)
* Nom (id)

* Classe (pleinement qualifiée)

 Dépendances
* Scope
— Exemple

<bean id="exampleBean" class="examples.ExampleBean"/>

Doc : https://docs.spring.io/spring/docs/5.1.2 . RELEASE/spring-framework-
reference/core.html#tbeans-definition 2

https://docs.spring.io/spring/docs/5.1.2.RELEASE/spring-framework-reference/core.html#beans-definition

Composants

I * |njection de dépendances

— Par constructeur

— Par propriétés (setters)
* Scopes

— Singleton (défaut)

— Prototype : une instance par dépendance d’un autre
bean

— Request, session, global session : spécifique au
conteneur Web

— User-defined

13

Composants

I Techniqguement, il existe plusieurs sortes de beans

— Controller
— Service
— Resource

 Conventions de nommage

— Utiliser les mémes conventions que pour les instances
d’objets (camel-case)

— Sinon : risque d’erreur si un élément fait de
I'introspection

14

Configuration

I * Référentiel de dépendances

— Définit un ensemble de beans

— Précise leurs dépendances
e Valeurs d’initialisation
e Collaborateurs

— 3 syntaxes
* XML

* Annotations
* Programmation

— Remarque : il peut y avoir plusieurs configurations
dans un méme conteneur 15

Plan

Introduction
- - > Spring Core
Configuration Spring Web MVC
Spring Boot
Autres projets et conclusion

* Configuration par fichier XML

<?xml version="1.0" encoding="UTF-8"7?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans

. . . . : — "
Injection par S Injection par r pring-beans.xsd">
Collaborateur
constructeur setter
<]m;; —_— = l T ——TTTT — J;\!j .b T P~ o e o

<constructor-arg type="String" wvalue="Bonjour"/>
<property name="propl" value="I1 fait beau"/>

<property name="prop2" ref="Titi"/>
</bean>

<bean 1d="Titi" class="monPackage.beans.TitiBean"/>
</beans>
16

Configuration

* Configuration par annotations

— Nécessite un fichier de configuration — presque — vide

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-
context.xsd">
<context:annotation-config/>
<context:component-scan base-package="mon.package.de.base"/>
</beans>

17

Configuration

I e Configuration par annotations

— Annotations de classes
e @Component : composant générique
 @Repository : dérive de @Component, dédié a la persistance

e @Service : dérive de @Component, dédié aux services (objets
du modele)

e @Controller : dérive de @Component, voir Spring Web MVC
— Annotations internes aux classes (setters)

e @Required : force le conteneur a injecter une valeur
(définie explicitement ou par autowiring)

e @Autowired : injection par résolution du référentiel de

dépendances
18

Plan
Introduction
> Spring Core

Configuration Spring Web MVC

Spring Boot
Autres projets et conclusion

I Exemple de bean annoté

@Service

public class SimpleMovielister {
private MovieFinder movieFinder;
private ActorFinder actorFinder;

dRequired

public void setMovieFinder (MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

dAutowired

public void setActorFinder (MovieFinder actorFinder) {
this.actorFinder = actorFinder;

19

Configuration

I * Configuration par programmation (1/2)

— On crée une classe de configuration

* Annotation : @Configuration

— On vy déclare les beans

* Annotation : @Bean

— On instancie le contexte en lui passant cette classe en
parametre

20

Plan
Introduction
> Spring Core

Configuration Spring Web MVC

Spring Boot
Autres projets et conclusion

I * Configuration par programmation (1/2)

— Exemple

@Configuration
public class AppConfig {
@Bean
public MyService myService () {
return new MyServicelImpl ()

———————— dans le main --------
ApplicationContext ctx = new
AnnotationConfigApplicationContext (AppConfig.class);

MyService myService = ctx.getBean (MyService.class);
21

myService.doStuff ();

Configuration

I * Configuration par programmation (2/2)

— Autre méthode
e |nstancier un contexte vide

e Utiliser context.register()

public static void main (String[] args) {
AnnotationConfigApplicationContext ctx =
new AnnotationConfigApplicationContext ()

ctx.register (AppConfig.class, OtherConfig.class):;
ctx.register (AdditionalConfig.class);

ctx.refresh ()
MyService myService = ctx.getBean (MyService.class);

myService.doStuff () ;

22

Configuration

I * Résolution automatique du référentiel de

dépendances (autowiring)

— S’applique spécifiquement a chaque bean
<bean id="Titi" class="TitiBean" autowire="constructor"/>

 Annotation @Autowired

— Valeurs
* no (défaut) : pas d’autowiring
* byName : par nom de propriété
* byType : par type de propriété

 constructor : par type d’arguments du constructeur .

Configuration

I * |Interfaces d’« awareness »

— Par défaut, un bean ne connait pas le conteneur.

— |l est possible de rendre le conteneur visible par un
bean a l'aide de lI'interface ApplicationContextAware

public class MonBean implements ApplicationContextAware

— En fait, on peut rendre un bean « aware » de
différentes parties du framework
e Contexte (conteneur)
e Contexte Web
* Son nom de bean dans la configuration...

24

Configuration

I * Gestion du cycle de vie

— |l est possible de spécifier les méthodes de cycle de
vie d’un bean dans la configuration

— On appelle ces méthodes « initialization callback » et
« destruction callback »

<bean 1d="exampleBean" class="examples.ExampleBean"
init-method="init"
destroy-method="destroy"/>

— Spring fournit des mécanismes plus fins a I'aide des
interfaces LifeCycle et LifeCycleProcessor .

Plan
Introduction
> Spring Core

Configuration Spring Web MVC

Spring Boot
Autres projets et conclusion

| * Remarques

— |l existe de nombreuses autres options de
configuration

e Collections
 Nested beans

=>» https://docs.spring.io/spring/docs/current/spring-
framework-reference/core.html

26

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html

Plan
Introduction
Spring Core

Spri ng Web MVC > Spring Web MVC

Spring Boot
Autres projets et conclusion

I e MVCde type 2

— Front controller : DispatcherServlet (fournie par Spring)
— Controleurs délégués : composants (@Controller)

Delegate Handle
Incoming request request
request
Front
|
Return Delegate Create

response rendering model
of response
Return
control Render
response
Servlet engine
(e.g. Tomcat)

Source : http://docs.spring.io/spring/docs/3.2.x/spring-framework-
reference/html/mvc.html 27

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html

Plan
Introduction

WebApplication Spring Core

> Spring Web MVC

Context Spring Boot

Autres projets et conclusion

I e Hiérarchies de contextes

— Root : 1 contexte DispatcherServlet

commun a 'application| [serviet WebApplicationContext

(containing controllers, view resalvers,
and other web-related beans)

— Servlet : des contextes
spécifiques a chaque il BN o

DispatChe rse rVIet * Delegates if no bean found
Root WebApplicationContext

(containing middle-tier services, datasources, etc.)

‘ Services Repositories

HandlerMapping

Source : https://docs.spring.io/spring/docs/
5.0.1.RELEASE/spring-framework-reference/

images/mvc-context-hierarchy.png 2

https://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/images/mvc-context-hierarchy.png

WebApplication
Context

e Configuration d’un Servlet WebApplicationContext
(obligatoire) 1/2

<web-app>
<servlet>
<servlet-name>example</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>example</servlet-name>
<url-pattern>/example/*</url-pattern>
</servlet-mapping>
</web-app>

— Remarques

* Cette configuration nécessite un fichier de configuration de
composants nommé : /WEB-INF/example-servlet.xml

* Mapper les URLs sur /* est une mauvaise idée... 29

Plan

Introduction

WebApplication Spring Core

> Spring Web MVC

Context Spring Boot

Autres projets et conclusion

* Configuration d’un Servlet WebApplicationContext
(obligatoire) 2/2

<web-app>
<servlet>
<servlet-name>example</servlet-name>
<servlet-
class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<init-param>
<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/tpspring-servlet.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>example</servlet-name>
<url-pattern>/example/*</url-pattern>
</servlet-mapping>
</web-app>

30

— Permet de choisir le(s) nom(s) du(des) fichier(s) XML

Plan
Introduction

WebApplication Spring Core

> Spring Web MVC

Context Spring Boot

Autres projets et conclusion

I * Configuration du Root WebApplicationContext

(facultatif)
— Exemple de fichier web.xml

<webapp>
<listener>

<listener-class>
org.springframework.web.context.ContextLoaderListener

</listener-class>
</listener>

<context-param>
<param-name>contextConfigLocation</param-name>

<param-value>/WEB-INF/daoContext.xml
/WEB-INF/applicationContext.xml</param-value>
</context-param>
</webapp>

31

Plan
Introduction

Spring Core
Composants MVC . sicwe v

Spring Boot

Autres projets et conclusion

 Exemple de contrbéleur annoté

@Controller
@RequestMapping (" /appointments")
public class AppointmentsController {
private final AppointmentBook appointmentBook;

@Autowired
public AppointmentsController (AppointmentBook apptmentBook) ({
this.appointmentBook = apptmentBook;

@RequestMapping (method = RequestMethod.GET)

public String get () {
return "appointments/today";

32

Plan
Introduction

Frameworks MVC : Spring Core

> Spring Web MVC

Spri ng Spring Boot

Autres projets et conclusion

[Spring Web MVC

— Méthodes de service (Handler methods)

* Annotées avec @RequestMapping (ou @GetMapping,
@PostMapping...)

* Permettent
— De récupérer les parametres de la requéte
— De faire du data binding entre les parametres et le modele
— D’appeler les beans concernés

— De passer les infos (Mode1) nécessaires a la vue pour générer la
réponse

* https://docs.spring.io/spring/docs/current/spring-
framework-reference/web.html#tmvc-ann-methods 33

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-ann-methods

Plan
Introduction

Frameworks MVC : Spring Core

> Spring Web MVC

Spri ng Spring Boot

Autres projets et conclusion

Spring Web MVC

— Méthodes de service (Handler methods)

» Signature « flexible »
— Parametres
» Model, @ModelAttribute
» Parametres de la requéte : @RequestParam

» Parametres « classiques des servlets : ServletRequest,
ServletResponse, HttpSession

» ...
— Valeurs de retour
» String : nom de vue (cf. slide suivant)
» Objet View
Objet ModelAndView
» String annotée @ResponseBody

>

v

» ..

» https://docs.spring.io/spring/docs/current/spring-framework-
reference/web.html#mvc-ann-methods 34

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-ann-methods

Plan

Introduction

Frameworks MVC : Spring Core

> Spring Web MVC

spri ng Spring Boot

Autres projets et conclusion

* Spring Web MVC
— Méthodes de service (Handler methods)
* Exemples

@RequestMapping
@ModelAttribute
public wvoid populateModel (@RequestParam String number, Model model) ({

model .addAttribute (accountRepository.findAccount (number)) ;
// add more

@PostMapping ("/login")
public ModelAndView login (LoginData loginData) ({

1f (LOGIN.equals(loginData.isValid())) {
return new ModelAndView ("success", new User("test"))
} else {

return new ModelAndView("failure", null);

Composants MVC

I * View resolving

— Obijectif : faire correspondre une vue au retour du
controleur

— Interface View

* Traite la requéte en fonction d’une technologie de vue
(JSP, JSF...)

— Interface ViewResolver
e Fournit un mapping entre nom de vue et objet View

36

Plan

Introduction

Spring Core
Composants MVC . sicweswic

Spring Boot

Autres projets et conclusion

I * View resolving

— Exemple de configuration

<bean 1d="viewResolver"
class="org.springframework.web.servlet.view.UrlBasedV
iewResolver">
<property name="viewClass"
value="org.springframework.web.servlet.view.JstlView"
/>
<property name="prefix" wvalue="/WEB-INF/jsp/"/>
<property name="suffix" value=".]jsp"/>

</bean>
37

Spring Boot

I * Position du probleme

— Actuellement : de nombreux projets peuvent étre liés
a une application Spring

— Framework puissant mais lourd a configurer
* Objectif général

— Simplifier la configuration des projets
* Principe général

— Convention over configuration

38

Spring Boot

I * Principes

— Créer facilement une application Java standalone
* Avec tres peu de configuration
— Les choix de configuration par défaut sont déja faits (« opinionated »)
* Capable de faire tourner une application Spring (Web ou non)

e Avec en standard la gestion d’un ensemble de préoccupations
non fonctionnelles

— serveurs embarqués, sécurité, métrigues, configuration externalisée...

— Pas de génération de code ni de fichier de configuration
XML

— Une interface en ligne de commande pour démarrer plus
rapidement

39

Spring Boot

I e Utilisation

— Créer un projet Maven qui hérite d’'un parent
* spring-boot-starter-parent
— Insérer les dépendances et les plugins nécessaires dans le
pom.xml|
— Lier le code a une classe principale
* public static void main
— Lancer l'application
* Avec un goal Maven spécifique : mvn spring-boot:run

* Comme une application Java standard : java -jar ...
* Générer un fichier war et le déployer sur votre serveur

40

Plan
Introduction
- Spring Core
Sprlng Boot Spring Web MVC
> Spring Boot
Autres projets et conclusion

 Exemple

<parent>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.0.BUILD-SNAPSHOT</version>
<relativePath/>

</parent>

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
41

Spring Boot

I * Fonctionnement

— @EnableAutoConfiguration déclenche un ensemble de
mécanismes qui « devinent » la configuration en fonction
des dépendances dans le pom.xml

* Exemple : spring-boot-starter-web = projet Web
* Spring boot essaye aussi de deviner a partir des dépendances
non « spring-boot-starter-... »

— La méthode main appelle la méthode run de
SpringApplication avec en argument

* Le composant Spring principal

* Les arguments éventuellement passés en ligne de commande
42

Plan
Introduction
Spring Core

spring BOOt Spring Web MVC

> Spring Boot
Autres projets et conclusion

* Exemple

import
import
import
import

@Controller

org.
org.
org.
org.

springframework.boot. *;
springframework.boot.autoconfigure. *;
springframework.stereotype.*;
springframework.web.bind.annotation.*;

@EnableAutoConfiguration
public class SampleController {
@RequestMapping ("/")
@ResponseBody
String home () {
return "Hello World!"; }
public static void main(String[] args) throws Exception ({

SpringApplication.run(SampleController.class, args);

43

Spring Boot

I e Structuration du code (annotations)

— @EnableAutoConfiguration Identifie la classe
principale et démarre la détection de configuration

— @ComponentScan déclenche la recherche de
composants dans les sous-packages

— @Configuration spécifie une classe de configuration
(annotation Spring standard)

44

Spring Boot

I e Structuration du code (annotations)

— @SpringBootApplication
* Rassemble les annotations
— @ComponentScan
— @Configuration
— @EnableAutoConfiguration
e A utiliser
— Pour « économiser » les annotations dans un projet standard

— Quand la classe principale n’est pas seule dans un package

45

Plan
Introduction
Spring Core

spring BOOt Spring Web MVC

> Spring Boot
Autres projets et conclusion

I e Starters

— Dépendances standard aux autres projets Spring dans le
pom.xml

— Permettent a Spring Boot de générer une configuration

— Forme
 Starters « officiels » : spring-boot-starter-*
* Possibilité de créer ses starters soi-méme : moi-spring-boot-
starter
— Liste des starters officiels

https://docs.spring.io/spring-boot/docs/current-
SNAPSHOT/reference/htmlsingle/#using-boot-starter i

https://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#using-boot-starter

Spring Boot

I e Structuration du code (bonnes pratiques)

— Pas de « default package »

— Position de la classe principale (point d’entrée)

* A laracine et les autres packages au-dessous (meilleure
solution)

* Pas seule dans un package (utiliser 'annotation
@SpringBootApplication)

— Préférer les classes de configuration Java plutét que
les fichiers de configuration XML

47

Spring Boot

I * Configuration spécifique

— Si besoin de modifier la configuration par défaut

@Configuration
@EnableAutoConfiguration (

exclude={DataSourceAutoConfiguration.class})
public class MyConfiguration {

}

48

Plan
Introduction
- Spring Core
Sprlng Boot Spring Web MVC
> Spring Boot
Autres projets et conclusion

| * Création d’un projet vide

Spring Initializr : https://start.spring.io/

49

https://start.spring.io/

Spring AOP

I * Deux outils de POA dans Spring

— Spring AOP : basé sur CGLIB (dans Spring Core depuis
V5)

— Aspect] (depuis la version 2.5)
* Spring AOP
— Utilise des classes et de |la configuration

e Un aspect est une classe « normale » (POJO)

* Les pointcuts relient le code de |'application aux méthodes
d’un aspect

— Permet le weaving a la compilation et a I'exécution

50

Plan
Introduction
- Spring Core
S p rl n g AO P Spring Web MVC
Spring Boot
> Autres projets et conclusion

* Spring AOP
— Exemple 1 : configuration XML

<aop:config>
<aop:polintcut id="servicePointcut"
expression="execution (* ew.service.*.*(..))"/>
<aop:aspect id="loggingAspect" ref="monLogger">
<aop:before method="logMethodEntry"
pointcut-ref="servicePointcut"/>
<aop:after-returning method="logMethodExit"
returning="result" pointcut-
ref="servicePointcut"/>
</aop:aspect>
</aop:config>

<bean id="monLogger" class="ew.aop.MonLogger"/>
<bean name="monService" class="ew.service.MonService" /> =

Plan
Introduction
- Spring Core
S p rl n g AO P Spring Web MVC
Spring Boot
> Autres projets et conclusion

* Spring AOP

— Exemple 2 : annotations
@Aspect

@Component
public class ExampleAspect {
@Before ("execution (* com.xyz.myapp.dao.*.*(..))")
public void doAccessCheck () {
//
}

@QAround ("com.xyz.myapp.SystemArchitecture.businessService () ")
public Object doBasicProfiling(ProceedingJdoinPoint pjp) throws
Throwable {
// start stopwatch
Object retVal = pjp.proceed();
// stop stopwatch
return retVal;

Source : https://docs.spring.io/spring/docs/5.1.2.RELEASE/spring-framework-reference/core.html#taop-advice52

https://docs.spring.io/spring/docs/5.1.2.RELEASE/spring-framework-reference/core.html#aop-advice

Conclusion

I * Avantages de Spring

— Légereté du framework (...)

— S’appuie sur des solutions open source eéprouvees
— Possibilité de « plugger » d’autres fonctionnalités

— Configuration rapide des applications « simples »

— Tres utilisé

— Documentation abondante

53

Conclusion

I * Faiblesses de Spring

— Complexité croissante
e Beaucoup de sous-projets
» 3 types de configurations possibles

 Trop de « magie » ?

— Choix entre Spring et Java EE moins évident
* EJB 3.0 plus simples

54

Plan
Introduction
Spring Core

Références Spring Web MVC

Spring Boot
> Autres projets et conclusion

I * http://spring.io

* http://docs.spring.io/spring/docs/current/spring-
framework-reference/html/

* http://docs.spring.io/spring/docs/current/spring-
framework-reference/html/mvc.html

* http://projects.spring.io/spring-boot/

* https://docs.spring.io/spring-boot/docs/current-
SNAPSHOT/reference/htmlsingle/

* http://docs.spring.io/spring/docs/current/javadoc-api/

* https://github.com/spring-projects/spring-mvc-showcase

55

http://www.jmdoudoux.fr/java/dej/chap-spring.htm
http://www.jmdoudoux.fr/java/dej/chap-spring.htm
http://www.jmdoudoux.fr/java/dej/chap-spring.htm
http://www.jmdoudoux.fr/java/dej/chap-spring.htm
http://www.jmdoudoux.fr/java/dej/chap-spring.htm
http://www.jmdoudoux.fr/java/dej/chap-spring.htm
http://www.jmdoudoux.fr/java/dej/chap-spring.htm

