Master 1 informatique — Université Claude Bernard Lyon 1 — mardi 16 décembre 2014

MIF 13 — Programmation Web — Examen

Durée : 1 heure 30 — Documents autorisés — Ordinateurs, calculatrices et téléphones portables interdits

Questions de cours (bareme : 12 points)
Quel peut étre I'inconvénient d’un systeme de load-balancing sur les requétes idempotentes et comment y faire face ?
Les requétes idempotentes sont par nature cachables. Problémes de performance si la méme requéte est envoyée a plusieurs
serveurs > centraliser la gestion du cache. Probléme de gestion des utilisateurs identifiés 2 algo de balancing en fonction de
I’adresse IP (cf. TP1).
Indiquez les actions que doit effectuer un client pour dupliquer une ressource RESTful c6té serveur.
GET a ’'URI de la ressource,
POST a I'URI de la nouvelle ressource.
En quoi la négociation de contenus impacte-t-elle la structure d’une fonction de callback en JavaScript ?
Il faut réagir en fonction du type MIME renvoyé pour représenter la ressource par le serveur.
Comment Spring s’y prend-il pour instancier automatiquement des beans dont les constructeurs comportent des parametres ?
Pattern loC : le container Spring utilise 1) le fichier XML de config, 2) les annotations (« @Autowired ») et 3) un mécanisme
d’introspection pour résoudre le référentiel de dépendances et instancier les classes dans I'ordre nécessaire pour disposer des
instances a passer en parametre du bean.
Quel type d’outil utiliseriez-vous pour refactorer une application Java fenétrée en application Web ? Donnez un exemple d’outil
de ce type.
Bibliotheque logicielle indirecte, ex. Google Web Toolkit.
Citez deux raisons pour lesquelles on peut dire qu’une application Web utilisant REST et AJAX passe plus facilement a I’échelle
gu’une application Web « classique ».
REST : pas de stockage de I’état du client coté serveur = pas de gestion des sessions.
AJAX : déport de la mise en forme et du métier c6té client.
Dans les 2 cas, moins de ressources consommées coté serveur = les serveurs peuvent servir plus de clients.

Etude de cas (baréme : 10 points)

Suite a I'explosion des lettres de demandes de cadeaux, le Pére Noél a décidé de moderniser son infrastructure de traitement du

courrier. Il utilise actuellement une application Java qu’il a développée lui-méme pendant I'été. Cette application permet de gérer :

Les produits (cadeaux de tous types)

Les prospects (enfants ayant envoyé une lettre de demande de cadeau)

Les demandes (cadeaux demandés, ordre des souhaits)

Le suivi du stock de cadeaux (choisir les cadeaux a livrer en fonction des demandes et de la disponibilité)

L’envoi de réponses aux demandes, accompagnées de publicité ciblée en fonction des préférences des prospects

Comme il a suivi des cours de génie logiciel, le Pere Noél a congu cette application en MVC. Cette application comporte donc déja des

briques (POJOs) contenant le modéle nécessaire a son fonctionnement. Il vous a choisi(e) pour moderniser cette application et la

rendre plus efficace dans la gestion des demandes de cadeaux et plus attractive pour les clients potentiels (sociétés de fabrication de

jouets). Pour cela, vous devez mettre en place un site Web permettant (en plus de ce qui existe déja) :

De rechercher et d’accéder aux visualisations des cadeaux (pages des fabricants),

D’enrichir les descriptions des cadeaux en utilisant d’autres sources de données disponibles sur le Web sous forme de données
liées (Linked Data), de photos, etc.

De saisir directement sa demande de cadeau dans 'application,

D’accéder a la réponse a sa demande.

Comme il connait les technologies a la mode, le Pere Noél vous impose les contraintes suivantes :

L'application doit étre RESTful.
L'application doit utiliser Spring Web MVC.
Le formulaire de recherche doit offrir un systeme de suggestion automatique des noms de cadeaux.



Conception (baréme : 5 points)
7. Listez les différents éléments nécessaires au fonctionnement de votre application, en indiquant leur nature : classes Java, pages
statiques, scripts, servlets, JSP, beans (précisez le scope)...
CECI EST UN EXEMPLE DE REPONSE — TOUT AUTRE STRUCTURE SENSEE EST TOUT AUSSI VALIDE.
Coté serveur :
Controéleur principal Spring
Controleurs de CU (servlets ou classes annotées acceptées) : produit, prospect, demande, réponse...
Modele (beans) : produit, prospect, demande, réponse... + suggestion / recherche de cadeau
Vue (JSP pour HTML et XML, éventuellement classes de sérialisation pour JSON) : produit, prospect, demande, réponse... + pages
statiques et CSS
Autres : DAOs > BD, filtres pour I'authentification & autres aspects (logs...)
Coté client :
Affichage des pages transmises par le serveur
Scripts : suggestion automatique, enrichissement des données en Linked Data...
Bibliotheques JS directes : métier (jQuery), graphique (jQuery Ul / Bootstrap / Foundation...)
8. Décrivez, a I'aide de diagrammes UML appropriés, leurs communications lorsqu’un utilisateur interagit avec le formulaire de
recherche de cadeaux. Les éléments du Sl externes a votre application seront modélisés comme des boites noires.
Faire un diagramme de séquence ou de communication. Dans tous les cas, un diagramme dynamique, représentant :
Loop :
Action initiale de 'utilisateur : tape un caractére
Coté client : Interception par un script > requéte asynchrone d’autocomplétion
Coté serveur : contrdleur Spring > contréleur délégué —>interrogation du modéle (cadeaux) > renvoie une liste d’id / noms de
cadeaux > retour au controleur délégué = composition de la vue coté serveur (JSP / sérialisation JSON) =
Coté client : callback JS > Affichage d’une popup contenant les noms et cadeaux et les liens en fonction des ids
Fin Loop.
Coté client : L'utilisateur clique sur un lien > requéte synchrone
Coté serveur : contrbleur Spring = contrbleur délégué - interrogation du modele (cadeau) 2 renvoie les infos (nom,
description...) du cadeau > retour au contréleur délégué - composition de la vue coté serveur (JSP)
Coté client : Affichage de la vue = onload : script d’enrichissement LD > requéte(s) asynchrone(s) = callback : affichage des infos
récupérées

Programmation (baréme : 5 points)

9. Ecrivez la fonction JavaScript de callBack qui affiche le pop-up contenant les informations recues lors de la suggestion
automatique (précisez les noms des ressources accédées coté serveur).

10. Ecrivez la JSP qui représente la vue correspondant a un cadeau donné.



