
1

Design patterns :de la réutilisation dans les SI
Université Claude Bernard Lyon 1 – M1 InformatiqueM1IF01 – Gestion de projet et génie logiciel
Lionel Médini – septembre 2025D’après le cours de Yannick Prié

L.M
édi

ni-
UC

BL

2

Plan
 Introduction
 Principes GRASP
 Design patterns
 Patterns architecturaux
 Conclusion

L.M
édi

ni-
UC

BL

3

Réutilisation
 Constante de la conception d’outils en général– Dois-je tout concevoir depuis zéro ?– Que puis-je récupérer ?– Dans quel contexte ?

L.M
édi

ni-
UC

BL

4

Réutilisation en informatique
 Réutilisation de code métier– Sous la forme de bibliothèques /composants– À acheter / fabriquer
 Réutilisation de code générique– Sous la forme de frameworks– À utiliser en les spécialisant
 Réutilisation de principes de conception– Dès que des principes se révèlent pertinents• Abstraction• Réutilisation Design patterns

L.M
édi

ni-
UC

BL

5

Généralités sur les patterns
 Définition– Modèle de solution à un problème de conceptionclassique, dans un contexte donné
 Objectifs– Identifier, catégoriser et décrire un problème et lasolution proposée– Faire émerger la solution globale grâce àl’application d’un ensemble de patterns
 Spécification de la solution– Structure et/ou comportement d’une société d’objets

L.M
édi

ni-
UC

BL

6

Historique
 Origine en architecture– Ouvrage : A pattern language: Towns, Buildings,Construction, Christopher Alexander (1977)
 « Récupération » en IHM (Interaction design)– Ouvrage : User Centered System Design, DonaldNorman & Stephen Draper (1986)
 …Puis en conception informatique– 1987 : 1er projet de conception mettant en oeuvre desDP par K. Beck & W. Cunningham, Tektronix– 1991 : Gang Of Four : Erich Gamma, Richard Helm,Ralph Johnson & John Vlissides ; Design Patterns:Elements of Reusable Object-Oriented Software– 1994 : the Hillside Group créent une série deconférences : Pattern Languages of Programs

http://wiki.c2.com/?GangOfFour
http://wiki.c2.com/?HillsideGroup

L.M
édi

ni-
UC

BL

7

Éléments d’un patron (1/3)
 Nom– Évocateur– Concis (un ou deux mots)
 Problème– Points bloquants que le patron cherche à résoudre
 Contexte initial– Comment le problème survient– Quand la solution fonctionne
 Forces/contraintes– Forces et contraintes interagissant au sein du contexte– Détermination des compromis

(O. Aubert)

L.M
édi

ni-
UC

BL

8

Éléments d’un patron (2/3)
 Solution– Comment mettre en œuvre la solution ?– Point de vue statique (structure) et dynamique (interactions)– Description abstraite• Élément de conception, relation, responsabilités, collaboration– Variantes de solutions
 Contexte résultant– Description du contexte résultant de l’application du patronau contexte initial– Conséquences positives et négatives
 Exemples– Illustrations simples d’application du pattern– Applications dans des cas réels

(O. Aubert)

L.M
édi

ni-
UC

BL

9

Éléments d’un patron (3/3)
 Justification– Raisons fondamentales conduisant à l’utilisation du patron– Réflexions sur la qualité du patron
 Patrons associés– Similaires– Possédant des contextes initial ou résultant proches
 Discussion– Avantages, inconvénients– Conseils d’application / d’implémentation– Variantes– Autres…

(O. Aubert)

L.M
édi

ni-
UC

BL

10

Les patrons sont
 Des solutions éprouvées à des problèmes récurrents
 Spécifiques au domaine d’utilisation
 Rien d’exceptionnel pour les experts d’un domaine
 Une forme littéraire pour documenter des pratiques
 Un vocabulaire partagé pour discuter de problèmes
 Un moyen efficace de réutiliser et partager de l’expérience

(O. Aubert)

L.M
édi

ni-
UC

BL

11

Les patrons ne sont pas
 Limités au domaine informatique
 Des idées nouvelles
 Des solutions qui n’ont fonctionné qu’une seule fois
 Des principes abstraits ou des heuristiques
 Une panacée

(O. Aubert)

L.M
édi

ni-
UC

BL

Principles Are Not Patterns
 Principes généraux très utiles, mais qui nes’appliquent pas à un problème concret
 Exemples– “Patterns” GRASP– Keep it Simple, Stupid (KISS)– Don't Repeat Yourself (DRY) / Duplication is Evil (DIE)• "Every piece of knowledge must have a single, unambiguous,authoritative representation within a system"• S’applique à tout le système : code, configuration, modèles,documentation, etc.– You aren’t gonna use it• Issu de l’extreme programming (XP)

12

L.M
édi

ni-
UC

BL

Principles Are Not Patterns
 Exemples– SOLID• Single responsibility– Voir forte cohésion• Open/closed– les classes doivent être ouvertes à l’extension, mais fermées à lamodification• Liskov substitution– “Substituabilité” d’un objet par ses sous-types– Voir Design by Contract• Interface segregation– Utiliser l’interface la plus spécifique possible• Dependency inversion– Dépendre d’une abstraction (interface) et non d’une implémentation

13

L.M
édi

ni-
UC

BL

14

Types de patterns
 Idiomes de programmation– Techniques, styles spécifiques à un langage
 Patrons de conception– conception• interaction de composants– architecture• conception de systèmes
 Patrons d’analyse
 Patrons d’organisation
 …

(O. Aubert)

L.M
édi

ni-
UC

BL

15

Classifications des patterns de conception
 Par scope– Classe : statique, interne à uneclasse ou ses sous-classes– (Société d’) objet(s) : mis en oeuvrepar les relations dynamiquesentre objets– Application : permettent de mettreen place l’architecture généraled’une application ou d’un framework
 Par objectif– Création, structure, comportement,concurrence…

Designpatterns

Architecturalpatterns

Designpatterns

L.M
édi

ni-
UC

BL

Contenu de ce cours
 Beaucoup (trop ?) de choses– Principes / définitions– Liste de patterns• Ordonnée par catégories• Non exhaustive• Et pourtant très longue– Synthèse / généralisation
 À considérer comme des pointeurs

16

L.M
édi

ni-
UC

BL

17

Plan
 Introduction
 Principes GRASP
 Design patterns
 Patterns architecturaux
 Conclusion

L.M
édi

ni-
UC

BL

18

Conception pilotée par les responsabilités
 Métaphore

 Concrètement– penser l’organisation des composantsen termes de responsabilitéspar rapport à des rôles,au sein de collaborations

Concevoir une société d’objets responsablesqui collaborent dans un objectif commun

L.M
édi

ni-
UC

BL

19

Conception pilotée par les responsabilités
 Rôle– contrat, obligation vis-à-vis du fonctionnement global• remplit une partie de l’objectif• déduit de l’expression des besoins en phase de conception
 Responsabilité– abstraction de comportement permettant des’acquitter d’un rôle• une responsabilité n’est pas une méthode• les méthodes s’acquittent des responsabilités
 Collaboration– échanges d’informations entre responsabilités• interfaces entre les classes / packages / composants• types de communication (appel de méthode, événement…)

L.M
édi

ni-
UC

BL

20

Deux catégories de responsabilités pour les objets
 Savoir– connaître les données privées encapsulées– connaître les objets connexes– connaître les attributs à calculer ou dériver
 Faire– faire quelque chose soi-même (ex. créer un autreobjet, effectuer un calcul)– déclencher une action d’un autre objet– contrôler et coordonner les activités d’autres objets

L.M
édi

ni-
UC

BL

21

Exemples (bibliothèque)
 Savoir– Livre est responsable de la connaissance de son numéroISBN– Abonné est responsable de savoir s’il lui reste la possibilitéd’emprunter des livres
 Faire– Abonné est responsable de la vérification du retard sur leslivres prêtés

L.M
édi

ni-
UC

BL

22

General Responsibility Assign-mentSoftware Patterns (GRASP)
 Ensemble de principes (plutôt que patterns) générauxd’affectation de responsabilités pour aider à la conceptionorientée-objet– raisonner objet de façon méthodique, rationnelle, explicable
 Utile pour l’analyse et la conception– réalisation d’interactions avec des objets
 Référence : Larman 2005

23

9 patterns GRASP
1. Expert eninformation
2. Créateur
3. Faible couplage
4. Forte cohésion

5. Fabrication pure
6. Indirection
7. Protection desvariations
8. Polymorphisme
9. Contrôleur

Principes

Outils

Applications

L.M
édi

ni-
UC

BL

24

Expert (GRASP)
 Problème– Quel est le principe général d’affectation desresponsabilités aux objets ?
 Solution– Affecter la responsabilité à l’expert eninformation• la classe qui possède les informationsnécessaires pour s’acquitter de la responsabilité

L.M
édi

ni-
UC

BL

25

Expert : exemple
 Bibliothèque : qui doit avoir la responsabilité deconnaître le nombre d’exemplaires disponibles ?

Livre
ISBNtitre

Exemplaire
Dispo :boolean

Abonné
IDAbonné

0..*
emprunte

Bibliothèque
nom

0..*

contient

L.M
édi

ni-
UC

BL

26

Expert : exemple
Commencer avec la question– De quelle information a-t-on besoin pour déterminer lenombre d’exemplaires disponibles ?• Disponibilité de toutes les instances d’exemplaires
Puis– Qui en est responsable ?• Livre est l’Expert pour cette information

L.M
édi

ni-
UC

BL

27

Expert : exemple
Livre

ISBNTitre
getNbExemplairesDispo()

Exemplaire
Dispo :boolean

Abonné
IDAbonné0..*

emprunte

L.M
édi

ni-
UC

BL

28

Expert (suite)
 Tâche complexe– Que faire quand l’accomplissement d’uneresponsabilité nécessite de l’information répartieentre différents objets ?
 Solution : décomposer la tâche– Déterminer des « experts partiels »– Leur attribuer les responsabilités correspondantaux sous-tâches– Faire jouer la collaboration pour réaliser la tâcheglobale

29

Expert : exemple (suite)
Livre

ISBNTitre
getNbExemplairesDispo()

Exemplaire
Dispo :boolean

Abonné
IDAbonné0..*

emprunte

Bibliothèque

getNbLivresEnRayon()
contient

30

Expert : exemple (suite)

Bibliothèque
Livres[]:Livre

Exemplaire
Dispo :boolean

Livre
ISBNTitre

n=getNbLivresEnRayon
:Bibliothèque

Livres[0]:Livre

:Exemplaire

1
n2=getNbExemplaires

1.1
d=getDispo

Livres[1]:Livre :Exemplaire

2
n2=getNbExemplaires

2.1 d=getDispo

:Exemplaire
1.2 d=getDispo

L.M
édi

ni-
UC

BL

31

Expert : discussion
 Modèle UML approprié– Quel modèle UML utiliser pour cette analyse ?• Domaine : classes du monde réel• Conception : classes logicielles– Solution :• Si l’information est dans les classes de conception, lesutiliser• Sinon essayer d’utiliser le modèle du domaine pour créerdes classes de conception et déterminer l’expert eninformation
 Diagrammes UML utiles– Diagrammes de classes : information encapsulée– Diagrammes de communication + diagrammes declasses partiels : tâches complexes

L.M
édi

ni-
UC

BL

32

Expert : discussion
 Avantages– Conforme aux principes de base en OO• encapsulation• collaboration– Définitions de classes légères, faciles à comprendre,à maintenir, à réutiliser– Comportement distribué entre les classes qui ontl’information nécessaire

→ Systèmes robustes et maintenables

L.M
édi

ni-
UC

BL

33

Expert : discussion
 Le plus utilisé de tous les patterns d’attribution de responsabilités
 Autres noms (AKA - Also Known As)– Mettre les responsabilités avec les données– Qui sait, fait– Faire soi-même
 Patterns liés (voir plus loin)– Faible couplage– Forte cohésion

L.M
édi

ni-
UC

BL

34

Créateur (GRASP)(Creator)
 Problème– Qui doit avoir la responsabilité de créer une nouvelleinstance d’une classe donnée ?
 Solution– Affecter à la classe B la responsabilité de créer uneinstance de la classe A si une - ou plusieurs - de cesconditions est vraie :• B contient ou agrège des objets A• B enregistre des objets A• B utilise étroitement des objets A• B a les données d’initialisation qui seront transmises auxobjets A lors de leur création– B est un Expert en ce qui concerne la création de A

L.M
édi

ni-
UC

BL

35

Créateur : exemple
 Bibliothèque : qui doit être responsable de la création de Pret ? BasePret contient des Pret : elle doit les créer.

BasePret Pret
date

0..*

Exemplaire

L.M
édi

ni-
UC

BL

36

Créateur : discussion
 Guide pour attribuer une responsabilité pourla création d’objets– une tâche très commune en OO
 Finalité : trouver un créateur pour qui il estnécessaire d’être connecté aux objets créés– favorise le Faible couplage• Moins de dépendances de maintenance, plusd’opportunités de réutilisation
 Pattern liés– Faible couplage– Fabrique, Monteur…

L.M
édi

ni-
UC

BL

37

Faible couplage (GRASP)(Low coupling)
 Problème– Comment minimiser les dépendances ?– Comment réduire l’impact des changements ?– Comment améliorer la réutilisabilité ?
 Solution– Affecter les responsabilités des classes de sorte que le couplage restefaible– Appliquer ce principe lors de l’évaluation des solutions possibles

L.M
édi

ni-
UC

BL

38

Couplage
 Définition– Mesure du degré auquel un élément est lié à un autre, en aconnaissance ou en dépend
 Exemples classiques de couplage de TypeX vers TypeYdans un langage OO– TypeX a un attribut qui réfère à TypeY– TypeX a une méthode qui référence TypeY– TypeX est une sous-classe directe ou indirecte de TypeY– TypeY est une interface et TypeX l’implémente

L.M
édi

ni-
UC

BL

39

Faible couplage (suite)
 Problèmes du couplage fort– Un changement dans une classe force à changertoutes ou la plupart des classes liées– Les classes prises isolément sont difficiles àcomprendre– Réutilisation difficile : l’emploi d’une classenécessite celui des classes dont elle dépend
 Bénéfices du couplage faible– Exactement l’inverse

L.M
édi

ni-
UC

BL

40

Faible couplage (suite)
 Principe général– Les classes, très génériques et très réutilisables parnature, doivent avoir un faible couplage
 Mise en œuvre– déterminer plusieurs possibilités pour l’affectationdes responsabilités– comparer leurs niveaux de couplage en termes de• Nombre de relations entre les classes• Nombre de paramètres circulant dans l’appel desméthodes• Fréquence des messages• …

L.M
édi

ni-
UC

BL

41

Faible couplage : exemple

:Register :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

:Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

Que choisir ?

L.M
édi

ni-
UC

BL

42

Faible couplage : autre exemple
:GestionPret

preter(li: Livre, …)
li:Livre

1:isbn=getISBN()

:Pret
2:SetISBN(isbn)

:GestionPret :Pret
1:SetLivre(li)

:Livre
1.1:getISBN()

preter(li: Livre, …)

Que choisir ?

 Pour l’application de bibliothèque, il faut mettre l’ISBN d’unExemplaire dans le Prêt.

L.M
édi

ni-
UC

BL

43

Faible couplage : discussion
 Un principe à garder en tête pour toutes lesdécisions de conception
 Ne doit pas être considéré indépendammentd’autres patterns comme Expert et Fortecohésion– en général, Expert soutient Faible couplage
 Pas de mesure absolue de quand un couplageest trop fort
 Un fort couplage n’est pas dramatique avecdes éléments très stables– java.util par exemple

L.M
édi

ni-
UC

BL

44

Faible couplage : discussion (suite)
 Cas extrême de faible couplage– des objets incohérents, complexes, qui font tout letravail– des objets isolés, non couplés, qui servent àstocker les données– peu ou pas de communication entre objets

→ mauvaise conception qui va à l’encontre desprincipes OO (collaboration d’objets, fortecohésion)
 Bref– un couplage modéré est nécessaire et normal pourcréer des systèmes OO

L.M
édi

ni-
UC

BL

45

Forte cohésion (GRASP)(High cohesion)
 Problème : maintenir une complexité gérable– Comment s’assurer que les objets restent• compréhensibles ?• faciles à gérer ?– Comment s’assurer – au passage – que les objetscontribuent au faible couplage ? Solution– Attribuer les responsabilités de telle sorte que lacohésion reste forte– Appliquer ce principe pour évaluer les solutionspossibles

L.M
édi

ni-
UC

BL

46

Cohésion(ou cohésion fonctionnelle)
 Définition– mesure informelle de l’étroitesse des liens et de laspécialisation des responsabilités d’un élément(d’une classe)• relations fonctionnelles entre les différentes opérationseffectuées par un élément• volume de travail réalisé par un élément– Une classe qui est fortement cohésive• a des responsabilités étroitement liées les unes aux autres• n’effectue pas un travail gigantesque
 Un test– décrire une classe avec une seule phrase

L.M
édi

ni-
UC

BL

47

Forte cohésion (suite)
 Problèmes des classes à faible cohésion– Elle effectuent• trop de tâches• des tâches sans lien entre elles– Elles sont• difficiles à comprendre• difficiles à réutiliser• difficiles à maintenir• fragiles, constamment affectées par le changement
 Bénéfices de la forte cohésion : …

L.M
édi

ni-
UC

BL

48

Forte cohésion : exemple

 On délègue la responsabilité de mettre l’ISBN au prêt

 On rend GestionPret partiellement responsable de la mise en
place des ISBN

 GestionPret sera responsable de beaucoup d’autres fonctions

: GestionPret
preter(li: Livre, …)

li:Livre1:getISBN()

:Pret2:setISBN(isbn)

: GestionPret :Pret
1:setLivre (li)

li:Livre
1.1:getISBN()

preter(li: Livre, …)

L.M
édi

ni-
UC

BL

49

Forte cohésion : discussion
 Forte cohésion va en général de paire avec Faible couplage
 C’est un pattern d’évaluation à garder en tête pendant toute laconception

 Permet l’évaluation élément par élément(contrairement à Faible couplage)

L.M
édi

ni-
UC

BL

50

Forte cohésion : discussion
 Citations– [Booch] : Il existe une cohésion fonctionnellequand les éléments d’un composant (e.g. lesclasses)« travaillent tous ensemble pour fournir uncomportement bien délimité »– [Booch] : « la modularité est la propriété d’unsystème qui a été décomposé en un ensemblede modules cohésifs et peu couplés »

L.M
édi

ni-
UC

BL

51

Fabrication pure (GRASP)(Pure fabrication)
 Problème– Que faire• pour respecter le Faible couplage et la Forte cohésion• quand aucun concept du monde réel (objet du domaine)n’offre de solution satisfaisante ?
 Solution– Affecter un ensemble fortement cohésifà une classe artificielle ou de commodité,qui ne représente pas un concept du domaine• entité fabriquée de toutes pièces

L.M
édi

ni-
UC

BL

52

Fabrication pure (GRASP)
 Exemple typique : quand utiliser l’Expert en information– lui attribuerait trop de responsabilités (contrarie Fortecohésion)– le lierait à beaucoup d’autres objets (contrarie Faible couplage)
 Mise en œuvre– Déterminer les fonctionnalités « annexes » de l’Expert eninformation– Les regrouper dans des objets• aux responsabilités limitées (fortement cohésifs)• aussi génériques que possible (réutilisables)– Nommer ces objets• pour permettre d’identifier leurs responsabilités fonctionnelles• en utilisant si possible la terminologie du domaine

L.M
édi

ni-
UC

BL

53

Fabrication pure : exemple
 Problème– les instances de Prêt doivent être enregistrées dans une BD
 Solution initiale (d’après Expert)– Prêt a cette responsabilité– cela nécessite• un grand nombre d’opérations de BD

→ Prêt devient donc non cohésif• de lier Prêt à une BD
→ Le couplage augmente pour Prêt

Prêt
livresPrêtés:LivreidAbonnéServeur:SGBD
editerBulletin()insertionBD(Object)majBD(Object)…

L.M
édi

ni-
UC

BL

54

Fabrication pure : exemple (suite)
 Constat– l’enregistrement d’objets dans une BD estune tâche générique utilisable par denombreux objets• pas de réutilisation, beaucoup de duplication
 Solution avec Fabrication pure– créer une classe artificielle GestionArchivage
 Avantages– Gains pour Prêt• Forte cohésion et Faible couplage– Conception de GestionArchivage « propre »• relativement cohésif, générique et réutilisable

GestionArchivage
Serveur:SGBD
insertion(Object)maj(Object)…

Prêt
livresPrêtés:LivreidAbonné
editerBulletin()…

L.M
édi

ni-
UC

BL

55

Fabrication pure : discussion
 Choix des objets pour la conception– Décomposition représentationnelle(objets du domaine)• Conforme au principe de base de l’OO : réduire ledécalage des représentations entre le réel et le modèle– Décomposition comportementale (Fabricationpure)• sorte d’objet « centré-fonction » qui rend des servicestransverses dans un projet (POA)

→ Ne pas abuser des Fabrications pures

L.M
édi

ni-
UC

BL

56

Fabrication pure : discussion
 Règle d’or– Concevoir des objets Fabrication pure en pensant à leur réutilisabilité• s’assurer qu’ils ont des responsabilités limitées et cohésives Avantages– Supporte Faible couplage et Forte cohésion– Améliore la réutilisabilité Patterns liés– Faible couplage, Forte cohésion, Contrôleur, Adaptateur, Observateur, Visiteur Paradigme lié– Programmation Orientée Aspects

L.M
édi

ni-
UC

BL

57

Indirection (GRASP)
 Problème– Où affecter une responsabilité pour éviter le couplage entredeux entités (ou plus)• de façon à diminuer le couplage (objets dans deux couchesdifférentes)• de façon à favoriser la réutilisabilité (utilisation d’une API externe) ?
 Solution– Créer un objet qui sert d’intermédiaire entre d’autrescomposants ou services• l’intermédiaire crée une indirection entre les composants• l’intermédiaire évite de les coupler directement

L.M
édi

ni-
UC

BL

58

Indirection (GRASP)
 Utilité– Réaliser des adaptateurs, façades, etc. (patternProtection des variations) qui s’interfacent avecdes systèmes extérieurs• Exemples : proxys, DAO, ORB– Réaliser des inversions de dépendances entrepackages
 Mise en œuvre– Utilisation d’objets du domaine– Création d’objets• Classes : cf. Fabrication pure• Interfaces : cf. Fabrication pure + Polymorphisme

L.M
édi

ni-
UC

BL

59

Indirection : exemple
 Bibliothèque : accès à un système de stockagepropriétaire

:Prêt « actor »:SystèmeStockage

:AdaptateurStockage:Prêt « actor »:SystèmeStockage

enregistrePrêt()
xxx()

enregistrePrêt() insertion() xxx()

- Méthode stable- Reste dans la couche métier

Communication réseau(socket TCP)

L.M
édi

ni-
UC

BL

60

Indirection : discussion
 Remarques– Beaucoup de Fabrications pures sont créées pour des raisonsd’indirection– Objectif principal de l’indirection : faible couplage
 Adage (et contre adage)– « En informatique, on peut résoudre la plupart des problèmesen ajoutant un niveau d’indirection » (David Wheeler)– « En informatique, on peut résoudre la plupart des problèmesde performance en supprimant un niveau d’indirection »
 Patterns liés– GRASP : Fabrication pure, Faible couplage, Protection desvariations– GoF : Adaptateur, Façade, Observateur…

L.M
édi

ni-
UC

BL

61

Protection des variations (GRASP)(Protected variations)
 ProblèmeComment concevoir des objets, systèmes, sous-systèmespour que les variations ou l’instabilité de certains élémentsn’aient pas d’impact indésirable sur d’autres éléments ?
 Solution– Identifier les points de variation ou d’instabilitéprévisibles– Affecter les responsabilités pour créer une interface(au sens large) stable autour d’eux (indirection)

L.M
édi

ni-
UC

BL

62

Protection des variations (GRASP)
 Mise en œuvre– Cf. patterns précédents (Polymorphisme,Fabrication pure, Indirection)
 Exemples de mécanismes de PV– Encapsulation des données, brokers, machinesvirtuelles…
 Exercice– Stockage de Prêt dans plusieurs systèmesdifférents– Utiliser Indirection + Polymorphisme

L.M
édi

ni-
UC

BL

63

Protection des variations : discussion
 Ne pas se tromper de combat– Prendre en compte les points de variation• Nécessaires car identifiés dans le système existant ou dans les besoins– Gérer sagement les points d’évolution• Points de variation futurs, « spéculatifs » : à identifier (ne figurent pas dans lesbesoins)• Pas obligatoirement à implémenter• Le coût de prévision et de protection des points d’évolution peut dépasser celuid’une reconception

→ Ne pas passer trop de temps à préparer des protections qui neserviront jamais

L.M
édi

ni-
UC

BL

64

Protection des variations : discussion
 Différents niveaux de sagesse– le novice conçoit fragile– le meilleur programmeur conçoit tout de façon souple et engénéralisant systématiquement– l’expert sait évaluer les combats à mener
 Avantages– Masquage de l’information– Diminution du couplage– Diminution de l’impact ou du coût du changement

L.M
édi

ni-
UC

BL

65

Ne pas parler aux inconnus(Don’t talk to strangers)
 Cas particulier de Protection des variations– protection contre les variations liées aux évolutions destructure des objets
 Problème– Si un client utilise un service ou obtient de l’informationd’un objet indirect (inconnu)via un objet direct (familier du client),comment le faire sans couplage ?
 Solution– Éviter de connaître la structure d’autres objets indirectement– Affecter la responsabilité de collaborer avec un objet indirectà un objet que le client connaît directementpour que le client n’ait pas besoin de connaître ce dernier.

L.M
édi

ni-
UC

BL

66

Ne pas parler aux inconnus (suite)
 Cas général à éviter a.getB().getC().getD().methodeDeD();– Si l’une des méthodes de la chaîne disparaît, A devientinutilisable
 Préconisation– Depuis une méthode, n’envoyer des messages qu’aux objetssuivants• l’objet this (self)• un paramètre de la méthode courante• un attribut de this• un élément d’une collection qui est un attribut de this• un objet créé à l’intérieur de la méthode
 Implication– ajout d’opérations dans les objets directs pour servird’opérations intermédiaires

L.M
édi

ni-
UC

BL

67

Ne pas parler aux inconnus : exemple
 Comment implémenter disponible() dans GestionPret ?

GestionPret

emprunter(li:Livre)disponible(li:Livre)

Livre
ISBN
exemplaires():Vector…

Exemplaire

disponible():Boolean…

nbExDispo():Int

 Remarque– Pattern connu aussi comme« Loi de Demeter »

L.M
édi

ni-
UC

BL

68

Polymorphisme (GRASP)
 Problème– Comment gérer des alternatives dépendantes des types ?– Comment créer des composants logiciels « enfichables » ?
 Solution– Affecter les responsabilités aux types (classes) pourlesquels le comportement varie– Utiliser des opérations polymorphes
 Polymorphisme– Donner le même nom à des services dans différents objets– Lier le « client » à un supertype commun

L.M
édi

ni-
UC

BL

69

Polymorphisme (GRASP)
 Principe– Tirer avantage de l’approche OO en sous-classant lesopérations dans des types dérivés de l’Expert en information• L’opération nécessite à la fois des informations et uncomportement particuliers
 Mise en œuvre– Utiliser des classes abstraites• Pour définir les autres comportements communs• S’il n’y a pas de contre-indication (héritage multiple)– Utiliser des interfaces• Pour spécifier les opérations polymorphes– Utiliser les deux (CA implémentant des interfaces)• Fournit un point d’évolution pour d’éventuels cas particuliers futurs

L.M
édi

ni-
UC

BL

70

Polymorphisme : exemple
 Bibliothèque : qui doit être responsable de savoir siun exemplaire est disponible ?

<<interface>>Exemplaire

disponible()

ExemplaireElectronique

disponible()

ExemplairePapier

disponible()

Bibliothèque

getDispoExemplaires()
Livre

ISBN()

1 *

L.M
édi

ni-
UC

BL

71

Polymorphisme : discussion
Autre solution (mauvaise)– Utiliser une logique conditionnelle (test sur le type d’un objet)au niveau du client• Nécessite de connaître toutes les variations de type• Augmente le couplage
 Avantages du polymorphisme– Évolutivité• Points d’extension requis par les nouvelles variantes faciles àajouter (nouvelle sous-classe)– Stabilité du client• Introduire de nouvelles implémentations n’affecte pas les clients
 Patterns liés– Protection des variations, Faible couplage
 Principe lié– Design by Contract (SOLID)

L.M
édi

ni-
UC

BL

72

Contrôleur (GRASP)(Controller)
 Problème– Quel est le premier objet au delà de l’IHMqui reçoit et coordonne (contrôle)une opération système (événement majeur entrant dans lesystème) ?
 Solution– Affecter cette responsabilité à une classe quireprésente• Soit le système global, un sous-système majeur ou unéquipement sur lequel le logiciel s’exécute

→ contrôleur Façade ou variantes• Soit un scénario de cas d’utilisation dans lequell’événement système se produit
→ contrôleur de CU ou contrôleur de session

L.M
édi

ni-
UC

BL

73

Contrôleur (GRASP)
 Principes– un contrôleur est un objet qui ne fait rien• reçoit les événements système• délègue aux objets dont la responsabilité est de les traiter– il se limite aux tâches de contrôle et de coordination• vérification de la séquence des événements système• appel des méthodes ad hoc des autres objets– il n’est donc pas modélisé en tant qu’objet dudomaine → Fabrication pure
Règle d’or– Les opérations système des CU sontles messages initiaux qui parviennent au contrôleurdans les diagrammes d’interaction entre objets dudomaine

L.M
édi

ni-
UC

BL

74

Contrôleur (GRASP)
 Mise en œuvre– Au cours de la détermination du comportement dusystème (besoins, CU, DSS), les opérationssystème sont déterminées et attribuées à uneclasse générale Système– À l’analyse/conception, des classes contrôleursont mises en place pour prendre en charge cesopérations

L.M
édi

ni-
UC

BL

75

Contrôleur : exemple
 Pour la gestion d’une bibliothèque, qui doit êtrecontrôleur pour l’opération système emprunter ?
 Deux possibilités1. Le contrôleur représente lesystème global:ControleurBiblio2. Le contrôleur ne gère que lesopérations système liées aucas d’utilisation emprunter:GestionPret
 La décision d’utiliser l’une ou l’autre solution dépendd’autres facteurs liés à la cohésion et au couplage

Bibliothèque
preterLivre()enregistrerMembre()…..

L.M
édi

ni-
UC

BL

76

Contrôleur Façade
 Représente tout le système– exemples : ProductController, RetailInformationSystem, Switch, Router,NetworkInterfaceCard, SwitchFabric, etc.
 À utiliser quand– il y a peu d’événements système– il n’est pas possible de rediriger les événements systèmes à un contrôleur alternatif

L.M
édi

ni-
UC

BL

77

Contrôleur Façadetrop chargé (pas bon)
 Pas de focus, prend en charge de nombreux domaines deresponsabilité– un seul contrôleur reçoit tous les événements système– le contrôleur effectue la majorité des tâches nécessaires pourrépondre aux événements système• un contrôleur doit déléguer à d’autres objets les tâches à effectuer– il a beaucoup d’attributs et gère des informations importantes dusystème ou du domaine• ces informations doivent être distribuées dans les autres objets• ou doivent être des duplications d’informations trouvées dans d’autresobjets
 Solution– ajouter des contrôleurs– concevoir des contrôleurs dont la priorité est de déléguer

L.M
édi

ni-
UC

BL

78

Contrôleur de cas d’utilisation (contrôleurdélégué)
 Un contrôleur différent pour chaque cas d’utilisation– Commun à tous les événements d’un cas d’utilisation– Permet de connaître et d’analyser la séquence d’événements système et l’état dechaque scénario
 À utiliser quand– les autres choix amènent à un fort couplage ou à une cohésion faible (contrôleurtrop chargé - bloated)– il y a de nombreux événements système qui appartiennent à plusieurs processus

→ Permet de répartir la gestion entre des classes distinctes et faciles à gérer
 Élément artificiel : ce n’est pas un objet du domaine

L.M
édi

ni-
UC

BL

79

Remarque : couche présentation
 Les objets d’interface graphique (fenêtres, applets) etla couche de présentation ne doivent pas prendre encharge les événements système– c’est la responsabilité de la couche domaine ou application

:JFramePret

1:valider()

onPretLivre()

:Abonné

: JFramePret

1:emprunterItem()

onPretLivre()

:GestionPret :Abonné
1.1:valider()

L.M
édi

ni-
UC

BL

80

Contrôleur : discussion
 Avantages– Meilleur potentiel de réutilisation• permet de réaliser des composants métier et d’interface« enfichables »– « porte d’entrée » des objets de la couche domaine– la rend indépendante des types d’interface (Web, client riche,simulateur de test…)è Niveau d’indirection matérialisant la séparation Modèle-Vueè Brique de base pour une conception modulaire– Meilleure « architecturation » des CU
 Patterns liés– Indirection, Couches, Façade, Fabrication pure,Commande

L.M
édi

ni-
UC

BL

81

Les patterns GRASP et les autres
 D’une certaine manière, tous les autres patterns sont– des applications,– des spécialisations,– des utilisations conjointesdes 9 patterns GRASP, qui sont les plus généraux.

L.M
édi

ni-
UC

BL

82

Plan
 Introduction
 Principes GRASP
 Design patterns
 Patterns architecturaux
 Conclusion

L.M
édi

ni-
UC

BL

Définition
 Bonnes pratiques de combinaison d’unensemble de modules, d’objets ou de classes– Réutilisabilité– Maintenabilité– Vocabulaire commun
 Portée– Met en scène plusieurs éléments(différence GRASP)– Résout un problème localisé à un contexterestreint (différence architecture)
 Vocabulaire– Instances, rôles, collaboration

83

L.M
édi

ni-
UC

BL

Catégories de design patterns
 Création– Processus d’instanciation / initialisation des objets
 Structure– Organisation d’un ensemble de classes à travers un module(statique)
 Comportement– Organisation des rôles pour la collaboration d’objets (dynamique)
Source : http://fr.wikipedia.org/wiki/Patron_de_conception

84

http://fr.wikipedia.org/wiki/Patron_de_conception

L.M
édi

ni-
UC

BL

Patterns de création
 Singleton (Singleton)
 Fabrique (Factory Method)
 Fabrique abstraite (Abstract Factory)
 Monteur (Builder)
 Prototype (Prototype)

85

L.M
édi

ni-
UC

BL

86

Singleton
 Objectif– S’assurer d’avoir une instance unique d’uneclasse• Point d’accès unique et global pour les autres objets• Exemple : Factory Fonctionnement– Le constructeur de la classe est privé(seules les méthodes de la classe peuvent yaccéder)– l’instance unique de la classe est stockée dansune variable statique privée– Une méthode publique statique de la classe• Crée l’instance au premier appel• Retourne cette instance

L.M
édi

ni-
UC

BL

87

Singleton

Source :http://fr.wikipedia.org/wiki/Singleton_(patron_de_conception)

http://fr.wikipedia.org/wiki/Singleton_(patron_de_conception)

L.M
édi

ni-
UC

BL

88

Notion de Fabrique (Factory)
 Classe responsable de la création d’objets– lorsque la logique de création est complexe– lorsqu’il convient de séparer les responsabilité decréation
 Fabrique concrète = objet qui fabrique desinstances
 Avantages par rapport à un constructeur– la classe a un nom– permet de gérer facilement plusieurs méthodes deconstruction avec des signatures similaires– peut retourner plusieurs types d’objets(polymorphisme)

L.M
édi

ni-
UC

BL

89

Factory method
 Factory– un objet qui fabrique des instances conformes à uneinterface ou une classe abstraite– par exemple, une Application veut manipuler desdocuments, qui répondent à une interface Document• ou un HealthProfessional veut gérer des Patient…

L.M
édi

ni-
UC

BL

90

Factory - Fabrique

(From Grand’s book.)

La question est : commentApplication peut-elle créer desinstances de Document sanscouplage avec les sous-classes ?

(T. Horton, CS494)

L.M
édi

ni-
UC

BL

91

Solution : utiliser une classe DocumentFactory pour créer différentstypes de documents

(From Grand’s book.)

(T. Horton, CS494)

L.M
édi

ni-
UC

BL

92

Factory Method Pattern : structure générale

discriminator :paramètreindiquant quel typede sous-classe deProduct créer

(T. Horton, CS494)

(From Grand’s book.)

L.M
édi

ni-
UC

BL

Abstract Factory
 Objectif– Création de familles d’objets– Généralisation du pattern Factory Method
 Fonctionnement : « fabrication de fabriques »• Regroupe plusieurs Factories en une fabrique abstraite• Le client ne connaît que l’interface de la fabrique abstraite• Il invoque différentes méthodes qui sont déléguées àdifférentes fabriques concrètes

93

L.M
édi

ni-
UC

BL

Abstract Factory

Source : http://fr.wikipedia.org/wiki/Fabrique_abstraite_(patron_de_conception)
94

http://fr.wikipedia.org/wiki/Fabrique_abstraite_(patron_de_conception)

L.M
édi

ni-
UC

BL

Monteur (Builder)
 Objectif– Instancier et réaliser la configuration initiale d’un objet en s’abstrayantde l’interface de l’objet– Fournir une instance à un client
 Remarques– S’applique en général à des objets complexes– Différence avec le pattern [Abstract] Factory• Plutôt utilisé pour la configuration que pour la gestion du polymorphisme

95

L.M
édi

ni-
UC

BL

Monteur (Builder)

Source : http://commons.wikimedia.org/wiki/File:Monteur_classes.png

96

http://commons.wikimedia.org/wiki/File:Monteur_classes.png

L.M
édi

ni-
UC

BL

Prototype
 Objectifs– Réutiliser un comportement sans recréer une instance• Économie de ressources
 Fonctionnement– Recopie d’une instance existante (méthode clone())– Ajout de comportements spécifiques :« polymorphisme à pas cher »

97

L.M
édi

ni-
UC

BL

Prototype

Source : http://fr.wikipedia.org/wiki/Prototype_(patron_de_conception)
 Remarque– Implémentation choisie pour l’héritage en JavaScript (pas de classes)

98

http://fr.wikipedia.org/wiki/Prototype_(patron_de_conception)

L.M
édi

ni-
UC

BL

Patterns de structure
 Objet composite (Composite)
 Adaptateur (Adapter)
 Façade (Facade)
 Proxy (Proxy)
 Décorateur (Decorator)

99

L.M
édi

ni-
UC

BL

100

Composite
 Objectif– Représenter une structure arborescente d’objets– Rendre générique les mécanismes de positionnement /déplacement dans un arbre• Exemple : DOM Node
 Fonctionnement– Une classe abstraite (Composant) qui possède deux sous-classes• Feuille• Composite : contient d’autres composants

L.M
édi

ni-
UC

BL

101

Composite

Source : http://fr.wikipedia.org/wiki/Objet_composite
 Remarque– Pourquoi une relation d’agrégation et non de composition ?

http://fr.wikipedia.org/wiki/Objet_composite

L.M
édi

ni-
UC

BL

Adaptateur (Adapter, Wrapper)
 Objectif– Résoudre un problème d’incompatibilité d’interfaces (API)• Un client attend un objet dans un format donné• Les données sont encapsulées dans un objet qui possède une autre interface
 Fonctionnement– Insérer un niveau d’indirection qui réalise la conversion
 Patterns liés– Indirection, Proxy

102

L.M
édi

ni-
UC

BL

Adaptateur (Adapter, Wrapper)

Source : http://fr.wikipedia.org/wiki/Adaptateur_(patron_de_conception)

103

http://fr.wikipedia.org/wiki/Adaptateur_(patron_de_conception)

L.M
édi

ni-
UC

BL

Façade
 Objectif– Cacher une interface / implémentation complexe• rendre une bibliothèque plus facile à utiliser, comprendreet tester;• rendre une bibliothèque plus lisible;• réduire les dépendances entre les clients de labibliothèque
 Fonctionnement– Fournir une interface simple regroupant toutes lesfonctionnalités utiles aux clients
 Patterns liés– Indirection, Adaptateur

104

105

Façade
Client Classes

Subsystem classes

106

Façade : solution
Client Classes

Subsystem classes

Facade

L.M
édi

ni-
UC

BL

Proxy
 Objectif– Résoudre un problème d’accès à un objet• À travers un réseau• Qui consomme trop de ressources…
 Fonctionnement– Créer une classe qui implémente la même interface– La substituer à la classe recherchée auprès du client
 Patterns liés– Indirection, État, Décorateur

107

L.M
édi

ni-
UC

BL

Proxy

Source : http://en.wikipedia.org/wiki/Proxy_pattern

108

http://en.wikipedia.org/wiki/Proxy_pattern

L.M
édi

ni-
UC

BL

Décorateur
 Objectif– Résister au changement• Principe général :

•

• Permettre l’extension des fonctionnalités d’uneapplication sans tout reconcevoir
 Fonctionnement– Rajouter des comportements dans une classe quipossède la même interface que celle d’origine– Appeler la classe d’origine depuis le décorateur– Effectuer des traitements « autour » de cet appel 109

Les classes doivent être ouvertes à l’extension,mais fermées à la modification

L.M
édi

ni-
UC

BL

Décorateur

Source : http://en.wikipedia.org/wiki/Decorator_pattern
110

http://en.wikipedia.org/wiki/Decorator_pattern

L.M
édi

ni-
UC

BL

Décorateur
 Utilisation courante– Rajouter un comportement à un comportement existant
 Exemple

 Pattern lié– Proxy
 Pattern antagoniste– Polymorphisme

111

:etudiant
mange()

:avecFromageD
getNbCalories()

:avecPimentD
getNbCalories()

:pizzaMargarita
getNbCalories()

engloutit

L.M
édi

ni-
UC

BL

Patterns de comportement
 Interpréteur (Interpreter)
 Commande (Command)
 Mémento (Memento)
 État (State)
 Stratégie (Strategy)
 Visiteur (Visitor)
 Chaîne de responsabilité (Chain of responsibility)
 Observateur (Observer)
 Fonction de rappel (Callback)
 Promesse (Promise)

112

L.M
édi

ni-
UC

BL

Interpréteur
 Objectif– Évaluer une expression dans un langage particulier• Exemples : expressions mathématiques, SQL…
 Fonctionnement– Stocker l’expression dans un « contexte » (pile)– Définir les classes de traitement terminales et nonterminales, à l’aide de la même interface

113

L.M
édi

ni-
UC

BL

Interpréteur

Source : http://en.wikipedia.org/wiki/Interpreter_pattern
114

http://en.wikipedia.org/wiki/Interpreter_pattern
http://en.wikipedia.org/wiki/Interpreter_pattern

L.M
édi

ni-
UC

BL

Commande
 Objectif– Encapsuler la logique métier d’un objet derrièreune interface standardisée
 Fonctionnement– Un Receiver exécute les commandes– Des ConcreteCommand appellent chaqueméthode métier du Receiver– Une Command décrit l’interface desConcreteCommand– Un Invoker stocke les instances deConcreteCommand pour pouvoir les appeler demanière standardisée

115

L.M
édi

ni-
UC

BL

Commande

 Remarque– Ce pattern introduit un couplage fort entre ses élémentsSource : http://en.wikipedia.org/wiki/Command_pattern

116

http://en.wikipedia.org/wiki/Command_pattern

L.M
édi

ni-
UC

BL

Memento
 Objectif– Restaurer un état précédent d’un objet sans violerle principe d’encapsulation (pas d’attributs publics)
 Fonctionnement– Sauvegarder les états de l’objet d’origine(Originator) dans un autre objet : Memento– Transmettre ce Memento à un « gardien »(CareTaker) pour son stockage• Memento doit être opaque pour le CareTaker, qui ne doitpas pouvoir le modifier– Ajouter à l’Originator des méthodes desauvegarde et de restauration

117

L.M
édi

ni-
UC

BL

Memento

Source : http://sourcemaking.com/design_patterns/memento

118

http://sourcemaking.com/design_patterns/memento
http://sourcemaking.com/design_patterns/memento

L.M
édi

ni-
UC

BL

État (State)
 Objectif– Changer le comportement apparent d’un objet enfonction de son état• Généralisation des automates à états (IA)
 Fonctionnement– Une interface (State) définit le comportement– Des ConcreteState implémentent les comportements– Un Context stocke l’état courant et appelle lescomportements correspondants– Les ConcreteState peuvent changer l’état courantdans le contexte

119

L.M
édi

ni-
UC

BL

État (State)

 Pattern lié– StratégieSource : http://fr.wikipedia.org/wiki/État_(patron_de_conception)

120

http://fr.wikipedia.org/wiki/État_(patron_de_conception)
http://fr.wikipedia.org/wiki/État_(patron_de_conception)
http://fr.wikipedia.org/wiki/État_(patron_de_conception)

L.M
édi

ni-
UC

BL

Stratégie
 Objectif– Permettre (et orchestrer) le changementdynamique de comportement d’un objet
 Fonctionnement– Désencapsuler les comportements de la classemère de l’objet– Les déporter dans des classes liées, à l’aide d’uneinterface commune– Permettre au client d’utiliser une implémentationquelconque de cette interface– Utiliser un contexte qui gère les changementsd’implémentation

121

L.M
édi

ni-
UC

BL

Stratégie
 Principe général de conception– Ouvert-fermé (encore)• Les modules doivent être– Ouverts pour l’extension

→ prévoir dans l’architecture des points d’extensions– Fermés pour la modification
→ Le code testé n’est pas modifié• Privilégier la relation « a un »à la relation « est un »

 Pattern lié– État, Décorateur

122

L.M
édi

ni-
UC

BL

Stratégie

Source : http://en.wikipedia.org/wiki/Strategy_patternhttp://sourcemaking.com/design_patterns/strategy
123

http://en.wikipedia.org/wiki/Strategy_pattern
http://en.wikipedia.org/wiki/Strategy_pattern
http://sourcemaking.com/design_patterns/strategy
http://sourcemaking.com/design_patterns/strategy

L.M
édi

ni-
UC

BL

Visiteur
 Objectif– Séparer un comportement de la structure d’objetsà laquelle il s’applique– Ajouter de nouvelles opérations sans modifiercette structure
 Fonctionnement– Ajout aux classes de fonctions « virtuelles »génériques qui redirigent les opérations vers uneclasse spécifique « Visiteur » (Fabrication pure)– Cette classe redirige les opérations vers lesbonnes implémentations « double dispatch »

124

L.M
édi

ni-
UC

BL

 Principe général de conception– Ouvert-fermé

Visiteur

Image : By Vanderjoe - Own work, CC BY-SA 4.0,https://commons.wikimedia.org/w/index.php?curid=63201110
Source : https://en.wikipedia.org/wiki/Visitor_pattern

125

https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Visitor_pattern

L.M
édi

ni-
UC

BL

Chaîne de responsabilité
 Objectif– Effectuer plusieurs traitements non liés pour unemême requête(séparer les responsabilités)• Selon la même interface• En évitant le couplage entre les objets qui réalisent lestraitements
 Fonctionnement– Interface commune à tous les handlers– Chaînage des handlers
 Pattern lié– Faible couplage, Décorateur

126

L.M
édi

ni-
UC

BL

Chaîne de responsabilité

Source :http://www-sop.inria.fr/axis/cbrtools/usermanual-eng/Patterns/Chain.html
 Variante :– Arbre de responsabilités (dispatcher)

127

http://www-sop.inria.fr/axis/cbrtools/usermanual-eng/Patterns/Chain.html

L.M
édi

ni-
UC

BL

128

Observateur (Observer)
 Contexte– Plusieurs objets souscripteurs sont concernéspar les changements d’état d’un objet diffuseur
 Objectifs– Comment faire pour que chacun d’eux soit informé de ceschangements ?– Comment maintenir un faible couplage entre diffuseur etsouscripteurs ?
 Fonctionnement (théorique)– Définir une interface « Souscripteur » ou « Observer »– Faire implémenter cette interface à chaque souscripteur– Le diffuseur peut enregistrer dynamiquement lessouscripteurs intéressés par un événement et le leursignaler

L.M
édi

ni-
UC

BL

129

Observateur (Observer)
 Fonctionnement– Un Observateur s’attache à un Sujet– Le sujet notifie ses observateurs en cas de changementd’état
 En pratique– Subject : classe abstraite– ConcreteSubject : classe héritant de Subject– Observer : classe (utilisée comme classe abstraite)– ConcreteObserver : classe héritant d’Observer
 Autres noms– Publish-subscribe, ou « Pub/Sub » (Diffusion-souscription)– Modèle de délégation d’événements

L.M
édi

ni-
UC

BL

Observateur (Observer)

Source : http://en.wikipedia.org/wiki/Observer_pattern

130

http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Observer_pattern

L.M
édi

ni-
UC

BL

Observateur (Observer)
 Utilisation en Java :– Les classes java.util.Observer et java.util.Observablesont dépréciées depuis avril 2016• Modèle événementiel pas assez précis• Ordre des notifications non spécifié• Implémentation non thread-safe
• Mais le pattern en lui-même reste valable• Utiliser le modèle événementiel de java.beans(PropertyChangeEvent, PropertyChangeListener)• Utiliser les files et sémaphores (java.util.concurrent) avecdes threads• Utiliser votre propre implémentation si besoin

131

https://docs.oracle.com/javase/9/docs/api/deprecated-list.html
https://docs.oracle.com/javase/9/docs/api/deprecated-list.html
https://docs.oracle.com/javase/9/docs/api/deprecated-list.html
https://docs.oracle.com/javase/9/docs/api/deprecated-list.html
https://docs.oracle.com/javase/9/docs/api/deprecated-list.html
https://docs.oracle.com/javase/9/docs/api/deprecated-list.html

L.M
édi

ni-
UC

BL

Fonction de rappel (Callback)
 Objectif– Définir un comportement sans savoir à quelmoment il sera déclenché
 Exemples d’utilisation– Synchrone : déclenchement par une bibliothèqueexterne– Asynchrone : modèle événementiel
 Autre nom– Principe d’Hollywood« N’appelez pas, on vous rappellera. »

132

L.M
édi

ni-
UC

BL

Fonction de rappel (Callback)
 Fonctionnement– Langages fonctionnels : passer une fonctionen paramètre d’une autre fonction(fonctions d’ordre supérieur)– Langages objet : passer un objet(qui encapsule un comportement)en paramètre d’une méthode d’un autre objet
 Patterns liés– Inversion de Contrôle (IoC), Observer

133

L.M
édi

ni-
UC

BL

Fonction de rappel (Callback)

Source : http://en.wikipedia.org/wiki/Callback_(computer_science)

134

http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Callback_(computer_science)

L.M
édi

ni-
UC

BL

Promesse (Promise)
 Problème– Certains objets ont des comportements déclenchéspar des événements extérieurs
 Objectif– Spécifier le comportement d’un objet• Sans savoir comment il sera déclenché (asynchrone)• Sans en connaître le résultat
 Fonctionnement– Créer un objet Promise qui encapsule cecomportement et possède trois états• Pending : la promesse n’a pas été appelée• Fulfilled : elle a été appelée et s’est correctement déroulée• Rejected : elle a été appelée et a échoué

135

L.M
édi

ni-
UC

BL

Promesse (Promise)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

136

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

L.M
édi

ni-
UC

BL

Promesse (Promise)
 Discussion– Pattern beaucoup utilisé en JS (intégré) à ES6– N’est qu’une simplification de l’encapsulation decallbacks
 Variantes / extensions– Promise.all()– Promise.race()
 Patterns liés– Callback

137

L.M
édi

ni-
UC

BL

138

Plan
 Introduction
 Principes GRASP
 Design patterns
 Patterns architecturaux
 Conclusion

L.M
édi

ni-
UC

BL

Patterns architecturaux
 Objectif– Conception de systèmes d’information
 Principes– Organisation d’une société de classes / d’objets• Répartition / structuration des rôles– Souvent présents dans les frameworks
 Exemples de problèmes abordés– Performance matérielle– Disponibilité– Réutilisation– …

139

L.M
édi

ni-
UC

BL

Patterns architecturaux
 Niveau de granularité– Au-dessus des patterns précédents• Peuvent réutiliser d’autres design patterns
 Références– Conception de systèmes d’information pourl’entreprise (« Enterprise Architecture »)• Modélisation de l’entreprise par les processus :http://en.wikipedia.org/wiki/Enterprise_modelling• Enterprise Architecture (en général) :http://en.wikipedia.org/wiki/Enterprise_architecture
 Autre nom– Patterns applicatifs

140

http://en.wikipedia.org/wiki/Enterprise_modelling
http://en.wikipedia.org/wiki/Enterprise_architecture

L.M
édi

ni-
UC

BL

Patterns architecturaux
 Exemples– Architecture en couches– Architecture multi-tiers– MV*– IoC– Contexte– Observer ?– DAO, DTO

141

142

Pattern Couches
Présentation(Vue)

(Application)Domaine

ServiceMiddleware

Fondation /Données

L.M
édi

ni-
UC

BL

Architecture multi-tiers
 Objectif– Découpler les différentes fonctionnalités d’un programme (séparationdes préoccupations)• Gestion des données, algorithmes métier, présentation…
 Fonctionnement– Concevoir séparément chacune de ces fonctionnalités– Les isoler les unes des autres (autant que possible)

143

L.M
édi

ni-
UC

BL

Architecture multi-tiers
 Exemple (M1IF03)

 Pattern lié– Couches
144

Client Serveur

Données
RequêtesHTTP

RéponsesHTTP

HTTP Interface Métier

HTTPHTML

L.M
édi

ni-
UC

BL

145

Modèle-Vue-Contrôleur
 Problème– Comment rendre le modèle (domaine métier) indépendantdes vues (interface utilisateur) qui en dépendent ?– Réduire le couplage entre modèle et vue
 Solution– Insérer une couche supplémentaire (contrôleur) pour lagestion des événements et la synchronisation entre modèleet vue

L.M
édi

ni-
UC

BL

Modèle-Vue-Contrôleur (suite)
 Modèle (logique métier) – Implémente le fonctionnement du système– Gère les accès aux données métier
 Vue (interface) – Présente les données en cohérence avec l'état dumodèle– Capture et transmet les actions de l'utilisateur
 Contrôleur– Gère les changements d'état du modèle– Informe le modèle des actions utilisateur– Sélectionne la vue appropriée

146

L.M
édi

ni-
UC

BL

147

Modèle-Vue-Contrôleur (suite)

Source originale : BluePrint Java (Sun), non maintenue par Oracle.

L.M
édi

ni-
UC

BL

148

Modèle-Vue-Contrôleur (suite)
 Différentes versions– la vue connaît le modèle ou non– le contrôleur connaît la vue ou non– le vue connaît le contrôleur ou non– « Mélange » avec le pattern Observer– Un ou plusieurs contrôleurs (« type 1 » / « type 2 »)– Push-based vs. pull-based
 Choix d'une solution– dépend des caractéristiques de l'application– dépend des autres responsabilitésdu contrôleur

L.M
édi

ni-
UC

BL

149

Modèle-Vue-Contrôleur (suite)

Modèle
Vue

Contrôleur

 Version modèle passif– la vue se construit à partir du modèle– le contrôleur notifie le modèle des changementsque l’utilisateur spécifie dans la vue– le contrôleur informe la vue que le modèle achangé et qu’elle doit se reconstruire

L.M
édi

ni-
UC

BL

150

Modèle-Vue-Contrôleur (suite)
 Version modèle actif– quand le modèle peut changer indépendamment ducontrôleur– le modèle informe les abonnés à l’observateur qu’ils’est modifié– ceux-ci prennent l’information en compte (contrôleuret vues)

Modèle
Vue

Contrôleur

« interface »Observateur
« implements »

« implements »

L.M
édi

ni-
UC

BL

151

Autres patterns MV*
 Model-View-Adapter (MVA)– Pas de communication directe entre modèle et vue• Un pattern Adapteur (Médiateur) prend en charge les communications• Le modèle est intentionnellement opaque à la vue– Il peut y avoir plusieurs adapteurs entre le modèle et la vue
 Model-View-Presenter (MVP)– La vue est une interface statique (templates)– La vue renvoie (route) les commandes au Presenter– Le Presenter encapsule la logique de présentation et l’appelau modèle
 Model-View-View Model (MVVM)– Mélange des deux précédents : le composant View Model• Sert de médiateur pour convertir les données du modèle• Encapsule la logique de présentation– Autre nom : Model-View-Binder (MVB)

L.M
édi

ni-
UC

BL

Inversion de Contrôle (IoC)
 Objectif– Ne pas réimplémenter le code « générique » d’uneapplication– Permettre l’adjonction simple• De composants spécifiques métier• De services annexes disponibles par ailleurs
 Fonctionnement– Utiliser un Conteneur capable de• Gérer le flot de contrôle de l’application• Instancier des composants• Résoudre les dépendances entre ces composants• Fournir des services annexes(sécurité, accès aux données…)

152

L.M
édi

ni-
UC

BL

Inversion de Contrôle (IoC)
 Exemple

 Autre nom– Injection de dépendances 153

Code del’application Framework

Bibliothèque

Bibliothèque

Bibliothèque

Code del’application

Code del’application

Code del’application

Flo
td’

exé
cut

ion

Flo
td’

exé
cut

ion

L.M
édi

ni-
UC

BL

Patrons architecturaux
 Patrons applicatifs (suite)– Patrons d’authentification• Directe, à l’aide d’une plateforme• Single Sign On (CAS)– Patrons d’autorisation• Rôles, attributs, activité, utilisateur, heure…– Patrons de sécurité• Checkpoint, standby, détection/correction d’erreurs

154

L.M
édi

ni-
UC

BL

Patrons architecturaux
 Patrons de données– Architecture des données• Transactions, opérations, magasins, entrepôts– Modélisation de données• Relationnelle, dimensionnelle– Gouvernance des données (Master Data Management)• Réplication, services d’accès, synchronisation

155

L.M
édi

ni-
UC

BL

Patrons architecturaux
 Patrons de données– Sauvegarde• Data Access Object (DAO)– Objet (fabrication pure) qui centralise le lien vers unsupport de persistance• Object-Relational Mapping (ORM)– Objet (adapter) qui encapsule traduction de la logiquemétier en opérations de persistance (requêtes)– (Dé)sérialisation• Data Transfer Object (DTO)– Représentation sans comportement (sérialisable) d’unobjet métier

156

L.M
édi

ni-
UC

BL

Patrons architecturaux
 Types d’architectures et d’outils– Plateformes de composants (frameworks)– Architectures orientées services (SOA)– Extract Transform Load– Enterprise Application Infrastructure / Enterprise Service Bus

157

L.M
édi

ni-
UC

BL

158

Plan
 Introduction
 Principes GRASP
 Design patterns
 Patterns architecturaux
 Conclusion

L.M
édi

ni-
UC

BL

159

Pour aller plus loin...
 Patterns of Enterprise Application Architecture– Origine• Livre de Martin Fowler, Dave Rice, Matthew Foemmel, Edward Hieatt,Robert Mee, and Randy Stafford, 2002– Contenu• Formalisation de l’expérience de développement d’« EnterpriseApplications »• Généralisation d’idiomes de plusieurs langages• Une quarantaines de patterns souvent assez techniques– Exemples• Service Layer, Foreign Key Mapping, MVC, Front Controller, DTO,Registry, Service Stub…– Référence• http://martinfowler.com/eaaCatalog/

http://martinfowler.com/eaaCatalog/

L.M
édi

ni-
UC

BL

160

Anti-patterns
 Erreurs courantes de conception documentées
 Caractérisés par– Lenteur du logiciel– Coûts de réalisation ou de maintenance élevés– Comportements anormaux– Présence de bogues
 Exemples– Action à distance• Emploi massif de variables globales, fort couplage– Coulée de lave• Partie de code encore immature mise en production, forçant lalave à se solidifier en empêchant sa modification– …
 Référence– http://en.wikipedia.org/wiki/Anti-pattern

http://en.wikipedia.org/wiki/Anti-pattern

L.M
édi

ni-
UC

BL

161

IDE « orientés-Design Patterns »
 Fournir une aide à l’instanciation ou au repérage de patterns– nécessite une représentation graphique (au minimum collaborationUML) et le codage de certaines contraintes
 Instanciation– choix d’un pattern, création automatique des classescorrespondantes
 Repérage– assister l’utilisateur pour repérer• des patterns utilisés (pour les documenter)• des « presque patterns » (pour les refactorer en patterns)
 Exemples d’outils– Eclipse + plugin UML– Describe + Jbuilder– IntelliJ– …

L.M
édi

ni-
UC

BL

162

Conclusion
 On a vu assez précisément les principes lesplus généraux (GRASP)
 On a survolé quelques design patterns– un bon programmeur doit les étudier et enconnaître une cinquantaine
 On a évoqué les patterns architecturaux– Ils permettent de comprendre le fonctionnementdes outils (frameworks)
 On a à peine abordé les anti-patterns– Les connaître est le meilleur moyen de détecter quevotre projet est en train de …

L.M
édi

ni-
UC

BL

163

Remerciements
 Yannick Prié
 Laëtitia Matignon
 Olivier Aubert

L.M
édi

ni-
UC

BL

Références
 Ouvrage du « Gang of Four »– Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides (1994), Designpatterns, Elements of Reusable Object-Oriented Software, Addison-Wesley, 395 p.(trad. française : Design patterns. Catalogue des modèles de conceptionréutilisables, Vuibert 1999)
 Plus orienté architecture– Martin Fowler (2002) Patterns of Enterprise Application Architecture, AddisonWesley
 En Français– Eric Freeman, Elisabeth Freeman, Kathy Sierra, Bert Bates, Design Patterns – Têtela première, O’Reilly Eds., 640 p., 2005.

164

L.M
édi

ni-
UC

BL

Références
 Sur le Web– Généralités sur les Design patterns• http://fr.wikipedia.org/wiki/Patron_de_conception• http://en.wikipedia.org/wiki/Category:Software_design_patterns• http://en.wikipedia.org/wiki/Architectural_pattern• http://stackoverflow.com/questions/4243187/difference-between-design-pattern-and-architecture• http://martinfowler.com/eaaCatalog/• http://www.hillside.net/patterns• http://java.sun.com/blueprints/corej2eepatterns/– Historique, classification• https://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html• http://people.cs.umu.se/jubo/ExJobbs/MK/patterns.htm• http://wiki.c2.com/?HistoryOfPatterns

165

http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/Architectural_pattern
http://stackoverflow.com/questions/4243187/difference-between-design-pattern-and-architecture
http://stackoverflow.com/questions/4243187/difference-between-design-pattern-and-architecture
http://martinfowler.com/eaaCatalog/
http://www.hillside.net/patterns
http://java.sun.com/blueprints/corej2eepatterns/
https://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html
https://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html
https://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html
http://people.cs.umu.se/jubo/ExJobbs/MK/patterns.htm
http://people.cs.umu.se/jubo/ExJobbs/MK/patterns.htm
http://wiki.c2.com/?HistoryOfPatterns

L.M
édi

ni-
UC

BL

Références
 Sur le Web– Promesse• https://www.promisejs.org/– Design by Contract• https://en.wikipedia.org/wiki/Design_by_contract• https://hillside.net/plop/plop97/Proceedings/dechamplain.pdf– Enterprise Integration Patterns• https://en.wikipedia.org/wiki/Enterprise_Integration_Patterns• https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html• https://www.enterpriseintegrationpatterns.com/– Antipatterns• https://sourcemaking.com/antipatterns/software-development-antipatterns• http://c2.com/cgi/wiki?AntiPatternsCatalog

166

https://www.promisejs.org/
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Design_by_contract
https://hillside.net/plop/plop97/Proceedings/dechamplain.pdf
https://hillside.net/plop/plop97/Proceedings/dechamplain.pdf
https://hillside.net/plop/plop97/Proceedings/dechamplain.pdf
https://en.wikipedia.org/wiki/Enterprise_Integration_Patterns
https://en.wikipedia.org/wiki/Enterprise_Integration_Patterns
https://en.wikipedia.org/wiki/Enterprise_Integration_Patterns
https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/
https://sourcemaking.com/antipatterns/software-development-antipatterns
http://c2.com/cgi/wiki?AntiPatternsCatalog

L.M
édi

ni-
UC

BL

167Source : https://javaranch.com/granny.jsp

Takeaways…

https://javaranch.com/granny.jsp
https://javaranch.com/granny.jsp

