Design patterns :
de la réutilisation dans les SI

Université Claude Bernard Lyon 1 — M1 Informatique
M1IFO1 — Gestion de projet et génie logiciel

Lionel Médini — septembre 2025
D’apres le cours de Yannick Prié

Plan

ntroduction

Principes GRASP
Design patterns
Patterns architecturaux
m Conclusion

Réutilisation

m Constante de la conception d’outils en général
— Dois-je tout concevoir depuis zero ?
— Que puis-je récupeérer ?
— Dans quel contexte ?

5
1
. f: L5
" i
.I.

L
o -llu
'
‘- r

-

IR R N

m L. Médini - UCBL

Réutilisation en informatique

m Réutilisation de code métier
— Sous la forme de bibliotheques /
composants
— A acheter / fabriquer

m Réutilisation de code générique
— Sous la forme de frameworks
— A utiliser en les spécialisant

m Réutilisation de principes de conception

— Des que des principes se révelent pertinents
» Abstraction

» Réutilisation Design patterns

L. Médini - UCBL

(@) ev-re |

Generalités sur les patterns

i m Définition
— Modele de solution a un probleme de conception
- classiqgue, dans un contexte donné
m Objectifs
— ldentifier, categoriser et decrire un probleme et la
solution proposée
— Faire émerger la solution globale grace a
I'application d’'un ensemble de patterns
m Specification de la solution
— Structure et/ou comportement d’'une société d’objets
_
[

L. Médini - UCBL

(@) ev-re |

Historique

m Origine en architecture
— Ouvrage : A pattern language: Towns, Buildings,
Construction, Christopher Alexander (1977)
®m « Récupération » en IHM (Interaction design)
— Ouvrage : User Centered System Design, Donald
Norman & Stephen Draper (1986)

m ...Puis en conception informatique

— 1987 : ler projet de conception mettant en oeuvre des
DP par K. Beck & W. Cunningham, Tektronix

— 1991 . Erich Gamma, Richard Helm,
Ralph Johnson & John Vlissides ; Design Patterns:
Elements of Reusable Object-Oriented Software

— 1994 : the creent une série de
conférences . Pattern Languages of Programs

L. Médini - UCBL

) - M€

http://wiki.c2.com/?GangOfFour
http://wiki.c2.com/?HillsideGroup

(O. Aubert)

Eléments d’un patron (1/3)

= Nom
— Evocateur
— Concis (un ou deux mots)
= Probleme
— Points bloguants que le patron cherche a réesoudre
m Contexte initial
— Comment le probleme survient
— Quand la solution fonctionne
m Forces/contraintes

— Forces et contraintes interagissant au sein du contexte
— Détermination des compromis

L. Médini - UCBL

(O. Aubert)

Eléments d’un patron (2/3)

m Solution
— Comment mettre en ceuvre la solution ?
— Point de vue statique (structure) et dynamique (interactions)
— Description abstraite
» Elément de conception, relation, responsabilités, collaboration
— Variantes de solutions
m Contexte résultant
— Description du contexte résultant de I'application du patron
au contexte initial
— Conseéquences positives et negatives

m Exemples

— lllustrations simples d’application du pattern
— Applications dans des cas reels

(@) ev-re |

L. Médini - UCBL

(O. Aubert)

Eléments d’un patron (3/3)

m Justification
— Raisons fondamentales conduisant a l'utilisation du patron
— Reéflexions sur la qualité du patron

m Patrons associés

— Similaires

— Possédant des contextes initial ou résultant proches
m Discussion

— Avantages, inconvénients

— Consells d'application / d'implémentation

— Variantes

— Autres...

L. Médini - UCBL

(O. Aubert)

L.es patrons sont

Des solutions éprouvees a des problemes recurrents
Speécifigues au domaine d’utilisation

Rien d’exceptionnel pour les experts d’'un domaine

Une forme littéraire pour documenter des pratiques

Un vocabulaire partagé pour discuter de problemes

Un moyen efficace de reutiliser et partager de I'expéerience

L. Médini - UCBL

(@) ev-re |

L. Médini - UCBL

(O. Aubert)

Les patrons ne sont pas

_imités au domaine informatique

Des idées nouvelles

Des solutions gqui n’ont fonctionné qu’une seule fois
Des principes abstraits ou des heuristiques

Une panacée

11

Principles Are Not Patterns

m Principes généraux tres utiles, mais qui ne
s’appliguent pas a un probleme concret

m Exemples
- — “Patterns” GRASP
— Keep it Simple, Stupid (KISS)
I — Don't Repeat Yourself (DRY) / Duplication is Evil (DIE)
» "Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system"
« S’applique a tout le systeme : code, configuration, modeles,
documentation, etc.
— You aren’t gonna use it
» |ssu de I'extreme programming (XP)
.
[

L. Médini - UCBL

(@) ev-re |

12

L. Médini - UCBL

Principles Are Not Patterns

m Exemples
— SOLID

« Single responsibility
— Voir forte cohésion
Open/closed
— les classes doivent étre ouvertes a I'extension, mais fermées a la
modification
Liskov substitution
— “Substituabilité” d’'un objet par ses sous-types
— Voir Design by Contract
Interface segregation
— Utiliser l'interface la plus spécifique possible
Dependency inversion
— Dépendre d’une abstraction (interface) et non d’'une implémentation

13

L. Médini - UCBL

Types de patterns

m Idiomes de programmation
— Techniques, styles spécifigues a un langage
m Patrons de conception

— conception
* interaction de composants

— architecture
e conception de systemes

m Patrons d’analyse

m Patrons d’organisation
m ...

(O. Aubert)

14

Classifications des patterns de conception

m Par scope -

— Classe : statique, interne a une
classe ou ses sous-classes Design

— (Sociéte d’) objet(s) : mis en oeuvre patterns
par les relations dynamiques
entre objets

— Application : permettent de mettre
en place l'architecture générale -
d’une application ou d’'un framework

m Par objectif

— Création, structure, comportement, [Design
concurrence... patterns

J\

Architectural
patterns

) \

L. Médini - UCBL

) - M€

Contenu de ce cours

m Beaucoup (trop ?) de choses
— Principes / définitions
- — Liste de patterns
* Ordonnée par categories

* Non exhaustive
« Et pourtant tres longue

— Synthese / généralisation
m A considéerer comme des pointeurs

L. Médini - UCBL

(@) ev-re |

Plan

m Introduction

m Principes GRASP

m Design patterns

m Patterns architecturaux
m Conclusion

17

L. Médini - UCBL

(@) ev-re |

Conception pilotée par les responsabilites

m Métaphore

Concevoir une société d'objets responsables
qui collaborent dans un objectif commun

m Concretement
— penser I'organisation des composants
en termes de responsabilités
par rapport a des roles,
au sein de collaborations

18

Conception pilotée par les responsabilites

m ROle

— contrat, obligation vis-a-vis du fonctionnement global
* remplit une partie de I'objectif
« déduit de I'expression des besoins en phase de conception

m Responsabilite
— abstraction de comportement permettant de
s’acquitter d’'un role

* une responsabilité n’est pas une méthode
e les méthodes s’acquittent des responsabilités

m Collaboration

— echanges d’'informations entre responsabilites
 interfaces entre les classes / packages / composants
« types de communication (appel de méthode, événement...)

19

L. Médini - UCBL

) - M€

L. Médini - UCBL

(@) ev-re |

Deux categories de responsabilites pour les objets

m Savolir
— connaitre les données privées encapsuléees
— connaitre les objets connexes
— connaitre les attributs a calculer ou dériver
m Faire
— faire quelque chose soi-méme (ex. créer un autre
objet, effectuer un calcul)
— déclencher une action d’'un autre objet
— contrOler et coordonner les activités d’'autres objets

20

L. Médini - UCBL

(@) ev-re |

Exemples (bibliotheque)

m Savolr
— Livre est responsable de la connaissance de son numero
ISBN
— Abonne est responsable de savoir s’il lui reste la possibilité
d’emprunter des livres
m Faire
— Abonne est responsable de la vérification du retard sur les
livres prétes

21

General Responsibility Assign-ment
Software Patterns (GRASP)

m Ensemble de principes (plutot que patterns) generaux
d’affectation de responsabilités pour aider a la conception
orientée-objet
— raisonner objet de facon méthodique, rationnelle, explicable

m Utile pour I'analyse et la conception
— realisation d’interactions avec des objets

m Référence : Larman 2005

m L. Médini - UCBL

22

9 patterns GRASP

1. Expert en
Information

2. Créateur

3. Falble couplage

4. Forte cohésion

Outils

N

—abrication pure
ndirection
Protection des
variations

N7

Principes

Polymorphisme
Controleur

~_

Applications

23

L. Médini - UCBL

(@) ev-re |

ExXpert (GRASP)

m Probleme

— Quel est le principe genéral d’affectation des
responsabilités aux objets ?

m Solution

— Affecter la responsabilité a I'expert en
Information

* la classe qui possede les informations
néecessaires pour s’acquitter de la responsabilité

24

Expert : exemple

= Bibliotheque : qui doit avoir la responsabilité de
connaitre le nombre d’exemplaires disponibles ?

Livre contient Bibliotheque
ISBN ‘ nom
titre
2 o..*? 0.* |
D a4 V i
= Exemplaire | emprunte Abonné
s

Dispo :boolean IDAbonné

L. Médini - UCBL

(@) ev-re |

Expert : exemple

m Commencer avec la guestion

—De guelle information a-t-on besoin pour déterminer le

nombre d’exemplaires disponibles ?
» Disponibilité de toutes les instances d’exemplaires

m Puis

—Qui en est responsable ?
e Livre est 'Expert pour cette information

26

m L. Médini - UCBL

Expert : exemple

Livre

ISBN
Titre

getNbExemplairesDispo()

|

Exemplaire

emprunte

Abonné

Dispo :boolean

IDAbonné

27

Expert (suite)

m Tache complexe
— Que faire quand 'accomplissement d’'une
responsabilité nécessite de I'information repartie
entre differents objets ?

m Solution : décomposer la tache
— Déterminer des « experts partiels »
— Leur attribuer les responsabilités correspondant
aux sous-taches
— Faire jouer la collaboration pour realiser la tache
globale

28

L. Médini - UCBL

) - M€

Expert : exemple (suite)

Hivre Bibliothéque
ll-S-tBN contient
itre
getNbExemplairesDispo() getNbLivresEnRayon()
0 *T Abonné
Exemplaire emprunte IDAbonne

Dispo :boolean

29

Expert : exemple (suite)

i .Bibliotheque
n=getNbLivresEnRayon 1
l l n2=getNbExemplaires
- |¥2 :Exemplaire
n2=getNbExemplaires T 11
Bibliothéque _ _ d=getDispo
_ _ Livres[O]:Livre
Livres]]:Livre
Livre .Exemplaire
1.2 d=getDispo
ISBN
Titre
Exemplaire Livres[1]:Livre . :Exemplaire
- Dispo :boolean 2.1 d=getDispo
[

Expert : discussion

= Modele UML approprié

— Quel modele UML utiliser pour cette analyse ?
« Domaine : classes du monde réel
» Conception : classes logicielles
— Solution :
« Sil'information est dans les classes de conception, les
utiliser
« Sinon essayer d'utiliser le modele du domaine pour creer
des classes de conception et déeterminer I'expert en
iInformation

m Diagrammes UML utiles
— Diagrammes de classes : information encapsulée
— Diagrammes de communication + diagrammes de
classes partiels : taches complexes

31

L. Médini - UCBL

) - M€

Expert : discussion

m Avantages
— Conforme aux principes de base en OO
e encapsulation
 collaboration
— Définitions de classes légeres, faciles a comprendre,
a maintenir, a reutiliser
— Comportement distribué entre les classes qui ont
I'information nécessaire
— Systemes robustes et maintenables

32

) - M€

L. Médini - UCBL

Expert : discussion

m Le plus utilisé de tous les patterns d’attribution de responsabilités

m Autres noms (AKA - Also Known As)
— Mettre les responsabilités avec les données
— Qui sait, fait
— Faire soi-méme
m Patterns liés (voir plus loin)
— Faible couplage
— Forte cohésion

L. Médini - UCBL

33

L. Médini - UCBL

—

CC

Créateur (GRASP)
(Creator)

® Probleme

— Qui doit avoir la responsabilité de créer une nouvelle
instance d’'une classe donnée ?

m Solution
— Affecter a la classe B la responsabilité de créer une
iInstance de la classe A si une - ou plusieurs - de ces
conditions est vraie :
* B contient ou agrege des objets A
* B enregistre des objets A
« B utilise étroitement des objets A
* B ales données d'initialisation qui seront transmises aux

objets A lors de leur création
— B est un Expert en ce qui concerne la création de A

34

L. Médini - UCBL

Créateur : exemple

m Bibliotheque : qui doit étre responsable de la création de Pret ?

m BasePret contient des Pret : elle doit les créer.

BasePret

Pret

date

Exemplaire

35

Creéateur : discussion

m Guide pour attribuer une responsabilité pour

la création d’objets
— une tache tres commune en OO

m Finalité : trouver un créateur pour gqui il est

necessaire d’étre connecté aux objets crées

— favorise le Faible couplage
* Moins de dépendances de maintenance, plus
d’opportunités de reutilisation

m Pattern liés
— Faible couplage
— Fabrique, Monteur...

L. Médini - UCBL

) - M€

Faible couplage (GrRASP)
(Low coupling)

= Probleme
— Comment minimiser les dépendances ?
— Comment réduire I'impact des changements ?
— Comment améliorer la réutilisabilité ?
m Solution
— Affecter les responsabilités des classes de sorte que le couplage reste
faible
— Appliquer ce principe lors de I'évaluation des solutions possibles

L. Médini - UCBL

) - M€

37

L. Médini - UCBL

(@) ev-re |

Couplage

m Définition
— Mesure du degré auquel un élément est lieé a un autre, en a
connaissance ou en depend
m Exemples classigues de couplage de TypeX vers TypeY

dans un langage OO

— TypeX a un attribut qui réfere a TypeY

— TypeX a une methode qui référence TypeY

— TypeX est une sous-classe directe ou indirecte de TypeY
— TypeY est une interface et TypeX I'implémente

38

L. Médini - UCBL

(@) ev-re |

Faible couplage (suite)

m Problemes du couplage fort
— Un changement dans une classe force a changer
toutes ou la plupart des classes liées
— Les classes prises isolément sont difficiles a
comprendre
— Reéutilisation difficile : 'emploi d’'une classe
néecessite celui des classes dont elle depend

m Bénefices du couplage faible
— Exactement l'inverse

39

Faible couplage (suite)

= Principe général
— Les classes, tres génériques et tres reutilisables par

nature, doivent avoir un faible couplage
- m Mise en ceuvre
— déterminer plusieurs possibiliteés pour I'affectation
des responsabilités
— comparer leurs niveaux de couplage en termes de
« Nombre de relations entre les classes
 Nombre de parametres circulant dans I'appel des
[

méthodes
* Fréguence des messages

L. Médini - UCBL

(@) ev-re |

L. Médini - UCBL

—
)

:
:

Faible couplage : exemple

4>
_>
makePayment() Redister 1: create() . Pavment
4>
2: addP t
addPayment(p) Sale
Que choisir ?
— —»
makePayment() ‘Register 1: makePayment() Sale

1.1. create()

'

:Payment

41

L. Médini - UCBL

(@) ev-re |

Faible couplage : autre exemple

m Pour I'application de bibliotheque, il faut mettre I'lSBN d’'un
Exemplaire dans le Prét.

preter(li: Livre, ...) l:isbn=getISBN()

—>

:GestionPret li:Livre

—>

:Pret
2:SetISBN(isbn)—*
Que choisir ?
preter(li: Livre:.’) 1:SetLivre(L>
:GestionPret ‘Pret

1.1:getISBN()}

‘Livre

42

L. Médini - UCBL

(@) ev-re |

Faible couplage : discussion

= Un principe a garder en téte pour toutes les
décisions de conception

= Ne doit pas étre considére indépendamment
d’autres patterns comme Expert et Forte

cohésion
— en general, Expert soutient Faible couplage

m Pas de mesure absolue de quand un couplage
est trop fort
m Un fort couplage n’est pas dramatique avec

des éléments tres stables
— Java.util par exemple

43

L. Médini - UCBL

(@) ev-re |

Faible couplage : discussion (suite)

m Cas extréme de faible couplage
— des objets incohérents, complexes, qui font tout le
travalil
— des objets isolés, non couplés, qui servent a
stocker les données
— peu ou pas de communication entre objets
— mauvaise conception qui va a I'encontre des
principes OO (collaboration d’objets, forte
cohésion)
m Bref
— un couplage modéré est nécessaire et normal pour
créer des systemes OO

44

L. Médini - UCBL

(@) ev-re |

Forte coheésion (GRASP)
(High cohesion)

= Probleme : maintenir une complexité gerable

— Comment s’assurer gue les objets restent
e compréhensibles ?
» faciles a gérer ?
— Comment s’assurer — au passage — que les objets
contribuent au faible couplage ?
m Solution
— Attribuer les responsabilités de telle sorte que la
cohésion reste forte

— Appliquer ce principe pour évaluer les solutions
possibles

45

L. Médini - UCBL

(@) ev-re |

Cohesion
(ou cohésion fonctionnelle)

m Définition
— mesure informelle de I'étroitesse des liens et de la
specialisation des responsabilités d’'un éléement

(d’'une classe)
* relations fonctionnelles entre les différentes opérations
effectuées par un élément
» volume de travail réalisé par un élement
— Une classe qui est fortement cohésive
» a des responsabilités étroitement liees les unes aux autres
» n’'effectue pas un travail gigantesque

m Un test
— décrire une classe avec une seule phrase

L. Médini - UCBL

I — Elles sont
[

Forte cohésion (suite)

® Problemes des classes a faible cohésion

— Elle effectuent
 trop de taches
» des taches sans lien entre elles

o difficiles a comprendre

o difficiles a réutiliser

o difficiles a maintenir

 fragiles, constamment affectées par le changement

m Bénéfices de la forte cohésion : ...

a7

L. Médini - UCBL

(@) ev-re |

Forte cohésion : exemple

preter(li: Livre, ...)

—>

: GestionPret

1:getISBN(}—

li:Livre

2:setISBN(isbn) __,

‘Pret

On rend GestionPret partiellement responsable de la mise en

place des ISBN

GestionPret sera responsable de beaucoup d’autres fonctions

preter(li: Livre, ...

1:setLivre (li)

—P>

—>

: GestionPret

‘Pret

1.1:getISBN()|

li:Livre

On délegue la responsabilité de mettre I'ISBN au prét

Forte cohésion : discussion

m Forte cohésion va en général de paire avec Faible couplage
m C’est un pattern d’evaluation a garder en téte pendant toute la

- conception

m Permet I'évaluation élément par élément
(contrairement a Faible couplage)

L. Médini - UCBL

(@) ev-re |

49

Forte cohésion : discussion

. = Citations
— [Booch] : Il existe une cohésion fonctionnelle
- guand les éléments d’'un composant (e.g. les
classes)
« travalllent tous ensemble pour fournir un
comportement bien delimité »

— [Booch] : « la modularité est la propriéeté d’un
systeme qui a été décomposé en un ensemble
de modules cohésifs et peu couplés »

_
[

L. Médini - UCBL

(@) ev-re |

50

Fabrication pure (GRASP)
(Pure fabrication)

m Probleme

— Que faire
e pour respecter le Faible couplage et la Forte cohésion
e quand aucun concept du monde réel (objet du domaine)
n’offre de solution satisfaisante ?

m Solution
— Affecter un ensembile fortement cohésif
a une classe artificielle ou de commodité,

qui ne représente pas un concept du domaine
 entité fabriquée de toutes pieces

51

(@) er-nc [

L. Médini - UCBL

Fabrication pure (GRASP)

m Exemple typique : quand utiliser I'Expert en information
— lui attribuerait trop de responsabilités (contrarie Forte
cohésion)
— le lierait a beaucoup d’autres objets (contrarie Faible couplage)

m Mise en ceuvre
— Determiner les fonctionnalités « annexes » de I'Expert en
information
— Les regrouper dans des objets
e aux responsabilités limitées (fortement cohésifs)
e aussi générigues gue possible (réutilisables)
— Nommer ces objets

» pour permettre d’identifier leurs responsabilités fonctionnelles
* en utilisant si possible la terminologie du domaine

52

(@) ev-re |

L. Médini - UCBL

Fabrication pure : exemple

= Probleme
— les instances de Prét doivent étre enregistrées dans une BD

m Solution initiale (d’apres Expert)
— Prét a cette responsabilité

— cela nécessite Prét
* un grand nombre d’opérations de BD) N
— Prét devient donc non cohésif livresPretes:Livre
e de lier Prét & une BD iIdAbonne
— Le couplage augmente pour Prét Serveur:SGBD

editerBulletin()
insertionBD(Object)
majBD(Object)

L. Médini - UCBL

(@) ev-re |

Fabrication pure : exemple (suite)

= Constat Pret
— I'enregistrement d’objets dans une BD est | livresPrétés:Livre
une tache générique utilisable par de idAbonné

nombreux objets _ _
. pas de réutilisation, beaucoup de duplication | €diterBulletin()

m Solution avec Fabrication pure

— créer une classe artificielle GestionArchivage
® Avantages

— Gains pour Prét GestionArchivage

* Forte cohésion et Faible couplage .
_ Conception de GestionArchivage « propre » | >€rveur:sGBD

* relativement cohésif, générique et réutilisable | insertion(Object)
maj(Object)

(@) ev-re |

L. Médini - UCBL

Fabrication pure : discussion

m Choix des objets pour la conception

— Décomposition représentationnelle

(objets du domaine)
e Conforme au principe de base de I'OO : reduire le
decalage des représentations entre le réel et le modele
— Décomposition comportementale (Fabrication
pure)
 sorte d’'objet « centré-fonction » qui rend des services

transverses dans un projet (POA)
— Ne pas abuser des Fabrications pures

L. Médini - UCBL

(@) ev-re |

Fabrication pure : discussion

Regle d’or
— Concevoir des objets Fabrication pure en pensant a leur réutilisabilité

e s’assurer qu’ils ont des responsabilités limitées et cohésives

Avantages
— Supporte Faible couplage et Forte cohésion
— Améliore la réutilisabilité
Patterns liés
— Faible couplage, Forte cohésion, Contrbleur, Adaptateur, Observateur, Visiteur

Paradigme lie
— Programmation Orientée Aspects

56

(@) ev-re |

L. Médini - UCBL

Indirection (GRASP)

m Probleme
— Ou affecter une responsabilité pour eviter le couplage entre

deux entites (ou plus)
« de facon a diminuer le couplage (objets dans deux couches
differentes)
« de facon a favoriser la réutilisabilité (utilisation d’'une API externe) ?

m Solution
— Créer un objet qui sert d’intermediaire entre d’autres

composants ou services
 'intermédiaire crée une indirection entre les composants
 'intermédiaire évite de les coupler directement

(@) er-nc [

L. Médini - UCBL

Indirection (GRASP)

m Utilité
— Reéaliser des adaptateurs, facades, etc. (pattern
Protection des variations) qui s’interfacent avec

des systemes extérieurs
 Exemples : proxys, DAO, ORB

— Réaliser des inversions de dépendances entre
packages
m Mise en ceuvre
— Utilisation d’objets du domaine

— Creation d’objets
» Classes : cf. Fabrication pure
 Interfaces : cf. Fabrication pure + Polymorphisme

) - M€

L. Médini - UCBL

Indirection : exemple
m Bibliotheque : acces a un systeme de stockage
propriétaire
-Prét « actor »
- :SystemeStockage
enregistrePrét ! i
XXX() ’D
: Communicz;tion réseau T :
: (socket TCP) :
‘Prét :AdaptateurStockage «aclor »
o | | :SystemeStockage
S enregistrePrét ! _ _
o insertion() ! !
% U XxX() P |
E - - Méthode stabI;z T |
- Reste dans la couche métier
g [

Indirection : discussion

® Remarques
— Beaucoup de Fabrications pures sont creées pour des raisons
d’'indirection
— Objectif principal de I'indirection : faible couplage
= Adage (et contre adage)
— « En informatique, on peut résoudre la plupart des problemes
en ajoutant un niveau d’indirection » (David Wheeler)
— « En informatique, on peut résoudre la plupart des problemes
de performance en supprimant un niveau d’indirection »

m Patterns liés
— GRASP : Fabrication pure, Faible couplage, Protection des

variations
— GoF : Adaptateur, Facade, Observateur...

60

(@) ev-re |

L. Médini - UCBL

L. Médini - UCBL

(@) ev-re |

Protection des variations (GRASP)
(Protected variations)

= Probleme

Comment concevoir des objets, systemes, sous-systemes
pour que les variations ou l'instabilité de certains éléments
n'aient pas d’'impact indésirable sur d’autres éléments ?

m Solution
— ldentifier les points de variation ou d’instabilité
prévisibles
— Affecter les responsabilités pour créer une interface
(au sens large) stable autour d’eux (indirection)

Protection des variations (GRASP)

m Mise en ceuvre
— Cf. patterns precedents (Polymorphisme,
Fabrication pure, Indirection)
m Exemples de mécanismes de PV
— Encapsulation des données, brokers, machines
virtuelles...
m Exercice

— Stockage de Prét dans plusieurs systemes
differents
— Utiliser Indirection + Polymorphisme

L. Médini - UCBL

(@) ev-re |

62

Protection des variations : discussion

m Ne pas se tromper de combat

— Prendre en compte les points de variation
- » Nécessaires car identifies dans le systeme existant ou dans les besoins
— Gerer sagement les points d’évolution
e Points de variation futurs, « spéculatifs » : a identifier (ne figurent pas dans les
besoins)
» Pas obligatoirement a implémenter
» Le colt de prevision et de protection des points d’evolution peut depasser celui
d’'une reconception

— Ne pas passer trop de temps a preparer des protections qui ne
serviront jamais

L. Médini - UCBL

63

(@) ev-re |

Protection des variations : discussion

m Différents niveaux de sagesse
— le novice concoit fragile
- — le meilleur programmeur concoit tout de facon souple et en
generalisant systematiguement
— I'expert sait évaluer les combats a mener
m Avantages
— Masquage de I'information
— Diminution du couplage
— Diminution de I'impact ou du colt du changement

L. Médini - UCBL

(@) ev-re |

L. Médini - UCBL

(@) ev-re |

Ne pas parler aux inconnus
(Don’t talk to strangers)

m Cas particulier de Protection des variations
— protection contre les variations liees aux évolutions de
structure des objets

= Probleme
— Siun client utilise un service ou obtient de I'information
d’'un objet indirect (inconnu)
via un objet direct (familier du client),
comment le faire sans couplage ?

m Solution
— Eviter de connaitre la structure d’autres objets indirectement
— Affecter la responsabilité de collaborer avec un objet indirect
a un objet que le client connait directement
pour gque le client n'ait pas besoin de connaitre ce dernier.

L. Médini - UCBL

(@) ev-re |

Ne pas parler aux inconnus (suite)

m Cas général a éviter a.getB().getC().getD().methodeDeD();
— Sil'une des méthodes de la chaine disparait, A devient
inutilisable

m Préconisation

— Depuis une meéthode, n’envoyer des messages qu’aux objets
suivants

I'objet this (self)

un parametre de la méthode courante

un attribut de this

un élément d’une collection qui est un attribut de this
un objet créé a l'intérieur de la méthode

= Implication
— ajout d’'opéerations dans les objets directs pour servir
d’opérations intermédiaires

Ne pas parler aux inconnus : exemple

= Comment impléementer disponible() dans GestionPret ?

GestionPret .
Livre

ISBN

emprunter(li:Livre) _
disponible(li:Livre) exemplaires():Vector

nbEXxDispo():Int

0 Remarque Exemplaire
— Pattern connu aussi comme
« Lol de Demeter » disponible():Boolean

(@) ev-re |

L. Médini - UCBL

Polymorphisme (GRASP)

= Probleme
— Comment gerer des alternatives dépendantes des types ?
— Comment créer des composants logiciels « enfichables » ?

m Solution
— Affecter les responsabilités aux types (classes) pour
lesquels le comportement varie
— Utiliser des opérations polymorphes

= Polymorphisme

— Donner le méme nom a des services dans différents objets
— Lier le « client » a un supertype commun

68

(@) ev-re |

L. Médini - UCBL

Polymorphisme (GRASP)

m Principe
— Tirer avantage de I'approche OO en sous-classant les
opérations dans des types dérives de I'Expert en information

» L’opération nécessite a la fois des informations et un
comportement particuliers

= Mise en ceuvre

— Utiliser des classes abstraites
» Pour définir les autres comportements communs
« S'il n'y a pas de contre-indication (héritage multiple)
— Utiliser des interfaces
» Pour spécifier les opérations polymorphes
— Utiliser les deux (CA implémentant des interfaces)
» Fournit un point d’évolution pour d’éventuels cas particuliers futurs

(@) ev-re |

L. Médini - UCBL

69

Polymorphisme : exemple

= Bibliotheque : qui doit étre responsable de savoir si
un exemplaire est disponible ?

— <<interface>>
Bibliotheque 1 x Exemplaire Livre
>
etDispoExemplaires . .
ge P plaires) disponible() ISBN()

““““““““““““““““““““

Exemplaire Exemplaire
Electronique Papier

L. Médini - UCBL

disponible() disponible()

1IN IR N
>

(@) ev-re |

Polymorphisme : discussion

m Autre solution (mauvaise)
— Utiliser une logique conditionnelle (test sur le type d’'un objet)
au niveau du client
» Nécessite de connaitre toutes les variations de type
* Augmente le couplage
m Avantages du polymorphisme
— Evolutivité
» Points d’extension requis par les nouvelles variantes faciles a
ajouter (nouvelle sous-classe)

— Stabilité du client
* Introduire de nouvelles implémentations n’affecte pas les clients
m Patterns liés
— Protection des variations, Faible couplage
m Principe lié
— Design by Contract (SOLID)

(@) ev-re |

L. Médini - UCBL

L. Médini - UCBL

(@) ev-re |

Controleur (GRASP)
(Controller)

m Probleme

— Quel est le premier objet au dela de I'HM
qui recoit et coordonne (controle)
une opération systeme (événement majeur entrant dans le
systeme) ?

m Solution

— Affecter cette responsabilité a une classe qui

représente
e Soit le systeme global, un sous-systeme majeur ou un
équipement sur lequel le logiciel s’exécute
— controleur Facade ou variantes
« Soit un scénario de cas d’utilisation dans lequel
I'’événement systeme se produit
— contrbleur de CU ou contrbleur de session

L. Médini - UCBL

(@) ev-re |

Controleur (GRASP)

m Principes

— un controleur est un objet qui ne fait rien
* recoit les événements systeme
» délegue aux objets dont la responsabilité est de les traiter

— il se limite aux taches de contrGle et de coordination
« verification de la séquence des événements systeme
« appel des méthodes ad hoc des autres objets

— il n'est donc pas modelisé en tant qu’objet du
domaine — Fabrication pure
mRegle d’'or
— Les opérations systeme des CU sont
les messages initiaux qui parviennent au controleur
dans les diagrammes d’interaction entre objets du
domaine

73

Controleur (GRASP)

m Mise en ceuvre

— Au cours de la determination du comportement du
systeme (besoins, CU, DSS), les opérations
systeme sont determinees et attribuées a une
classe générale Systeme

— A l'analyse/conception, des classes contrbleur
sont mises en place pour prendre en charge ces
opérations

74

L. Médini - UCBL

) - M€

L. Médini - UCBL

(@) ev-re |

Controleur : exemple

m Pour la gestion d'une bibliotheque, qui doit étre
contrbleur pour I'opération systeme emprunter ?

m Deux possibilités
1. Le contrbleur représente le

systeme global
:ControleurBiblio

2. Le controleur ne gere que les
opérations systeme liées au

cas d’utilisation emprunter
:GestionPret

Bibliotheque

preterLivre()
enregistrerMembre()

m La decision d’utiliser 'une ou l'autre solution dépend
d’autres facteurs liés a la cohésion et au couplage

L. Médini - UCBL

Controleur Facade

m Représente tout le systeme

— exemples : ProductController, RetailinformationSystem, Switch, Router,
NetworklInterfaceCard, SwitchFabric, etc.

= A utiliser quand
— il y a peu d’événements systeme
— il n'est pas possible de rediriger les evénements systemes a un controleur alternatif

76

Controleur Facade
trop chargé (pas bon)

m Pas de focus, prend en charge de nombreux domaines de
responsabilité
— un seul contréleur recoit tous les événements systeme
— le contrdleur effectue la majorité des taches nécessaires pour
répondre aux événements systeme
« un contrbleur doit déléguer a d’autres objets les taches a effectuer
— il a beaucoup d'attributs et gere des informations importantes du
systeme ou du domaine
« ces informations doivent étre distribuées dans les autres objets
* ou doivent étre des duplications d’informations trouvées dans d’autres
objets
m Solution
— ajouter des contrdleurs
— concevoir des contrbleurs dont la priorité est de déléguer

L. Médini - UCBL

(@) ev-re |

L. Médini - UCBL

(@) ev-re |

Controleur de cas d'utilisation (controleur
délégue)

= Un controleur différent pour chaque cas d’utilisation
— Commun a tous les événements d'un cas d’utilisation
— Permet de connaitre et d’analyser la séquence d’événements systeme et I'état de
chaque scenario
= A utiliser quand
— les autres choix amenent a un fort couplage ou a une cohésion faible (controleur

trop chargé - bloated)

— il y a de nombreux événements systeme qui appartiennent a plusieurs processus
— Permet de répartir la gestion entre des classes distinctes et faciles a gérer

= Elément artificiel : ce n’est pas un objet du domaine

Remarque : couche presentation

m Les objets d’'interface graphique (fenétres, applets) et
la couche de présentation ne doivent pas prendre en

charge les événements systeme
— c’est la responsabilité de la couche domaine ou application

onPretLivre()

i onPretLivre()
:JFramePret . [FramePret
= 1:valider() i 1:emprunteritem()
g
7 i 1.1:valider()
-Abonné :GestionPret —> -Abonné

(@) ev-re |

L. Médini - UCBL

(@) ev-re |

Controleur : discussion

m Avantages

— Meilleur potentiel de reutilisation
e permet de realiser des composants métier et d’'interface

« enfichables »
— « porte d’entrée » des objets de la couche domaine
— larend indépendante des types d’interface (Web, client riche,
simulateur de test...)
e Niveau d’indirection matérialisant la séparation Modele-Vue

e Brique de base pour une conception modulaire
— Mellleure « architecturation » des CU
m Patterns liés
— Indirection, Couches, Facade, Fabrication pure,
Commande

80

Les patterns GRASP et les autres

m D’'une certaine maniere, tous les autres patterns sont
— des applications,
— des spécialisations,
— des utilisations conjointes
des 9 patterns GRASP, qui sont les plus generaux.

m L. Médini - UCBL

Plan

m |Introduction

m Principes GRASP

m Design patterns

m Patterns architecturaux
m Conclusion

82

Définition
m Bonnes pratigues de combinaison d’un
ensemble de modules, d’'objets ou de classes
— Reéutilisabilité
— Maintenabilité
— Vocabulaire commun

m Portee
— Met en scene plusieurs élements
(différence GRASP)
— Résout un probleme localisé a un contexte
restreint (différence architecture)
= Vocabulaire
— Instances, roles, collaboration

83

(@) er-nc [

L. Médini - UCBL

L. Médini - UCBL

(@) ev-re |

Catégories de design patterns

m Creation
— Processus d’instanciation / initialisation des objets
m Structure
— Organisation d’'un ensemble de classes a travers un module
(statique)
= Comportement
— Organisation des roles pour la collaboration d’objets (dynamique)

Source :

84

http://fr.wikipedia.org/wiki/Patron_de_conception

L. Médini - UCBL

Patterns de création

m Singleton (Singleton)

m Fabrigue (Factory Method)

m Fabrique abstraite (Abstract Factory)
= Monteur (Builder)

= Prototype (Prototype)

85

Singleton

= Objectif
— S’assurer d’avoir une instance unigue d’'une

classe
« Point d’acces unique et global pour les autres objets
 Exemple : Factory

m Fonctionnement
— Le constructeur de la classe est prive
(seules les méthodes de la classe peuvent y
acceder)
— l'instance unique de la classe est stockée dans
une variable statique privée

— Une méthode publigue statique de la classe
» Creée l'instance au premier appel
* Retourne cette instance

(@) ev-re |

L. Médini - UCBL

86

L. Médini - UCBL

Singleton

Source :

Singleton

- singleton : Singleton

- Singleton()
+ getinstance() : Singleton

87

http://fr.wikipedia.org/wiki/Singleton_(patron_de_conception)

L. Médini - UCBL

(@) ev-re |

Notion de Fabrique (Factory)

m Classe responsable de la creation d’objets
— lorsque la logigue de création est complexe

— lorsqu’il convient de séparer les responsabilité de
création

m Fabrigue concrete = objet qui fabrique des
Instances

] Avantages par rapport a un constructeur
— la classe a un nom
— permet de gerer facilement plusieurs methodes de
construction avec des signatures similaires
— peut retourner plusieurs types d’objets
(polymorphisme)

88

L. Médini - UCBL

(@) ev-re |

Factory method

m Factory
— un objet qui fabrigue des instances conformes a une
Interface ou une classe abstraite
— par exemple, une Application veut manipuler des

documents, qui répondent a une interface Document
e OU un HealthProfessional veut gérer des Patient...

89

m L. Médini - UCBL

IN RN

Factory - Fabrique

(T. Horton, CS494)

1

Document j uniioaiion l
ggg:cumenr :"{ - 1 newDocument
openDocument f openDocument

%?% La question est : comment

e Application peut-elle créer des
MyDocument instances de Document sans

newDocument couplage avec les sous-
openDocument classes ?

FIGURE 5.1 Application framework.

(From Grand’s book.)

90

) ev-nc [Médini - UCBL

_—

Solution : utiliser une classe DocumentFactory pour créer différents

types de documents

(T. Horton, CS494)

Documen icati
ocument Application
-
getTitle *Edits :
newDocument newr?lg c::J mr: nrtn
openDocument —
A - 1 | requestor
“Requests-creation
creator 1
«interface»
MyDocument DocumentFactorylF
newDocument Strina):
caanil Aenniist createDocument(type:String):Document
DocumentFactory
“Creates 1

createDocument(type:String):Document

FIGURE 5.2 Application framework with document factory.

(From Grand’s book.)

91

[) ev-ne | L. Médini - UCBL

_—

(T. Horton, CS494)

Factory Method Pattern : structure générale

o . CreationRequestor
-4
> Uses
operation1
operation2 newDocument
Z% 2% k& “Requests-creation R
creator =
I I "interfaGEN
FactorylF -4 . .
ConcreteProduct discriminator :
createProduct(discriminator):Product paramétre
operation1 .
operation2 A indiquant quel type
de sous-classe de
Product créer
Factory
“Creates 1

FIGURE 5.3 Factory method pattern.

createProduct(discriminator):Product

(From Grand’s book.)

92

Abstract Factory

m Objectif
— Creation de familles d’objets
— Généralisation du pattern Factory Method

m Fonctionnement : « fabrication de fabriques »

* Regroupe plusieurs Factories en une fabrigue abstraite

 Le client ne connait que l'interface de la fabrique abstraite

* |l invoque differentes methodes qui sont déléguees a
différentes fabrigues concretes

L. Médini - UCBL

(@) ev-re |

93

__
N

COEEE L Médini - UCBL

«interface»

o FabriqueAbstraite

Abstract Factory

<—

@ CreerProduitA()

@ CreerProduitB()

«utilise»

__________________ Q Client

———

Q FabriqueConcrete2

Q FabriqueConcretel

@ CreerProduitA()

@ CreerProduitB()

@ CreerProduitA()

@ CreerProduitB()

«instancie»)

Source :

-———

|
|
|
Nk

«interface:»

o ProduitAbstraitA

é cutilise» 1

r__é__l

@ Produita1

«instancies

«instancie»

«interface»

o ProduitAbstraitB

|
|
|
Q Produita2 <~ j I
|
|
|
1

r__A__I

Q ProduitB1

Q ProduitB2

«instancie»

wutilisex

94

http://fr.wikipedia.org/wiki/Fabrique_abstraite_(patron_de_conception)

Monteur (Builder)

m Objectif
— Instancier et réaliser la configuration initiale d’un objet en s’abstrayant

- de l'interface de I'objet
— Fournir une instance a un client

m Remarques
— S'appliqgue en général a des objets complexes

— Différence avec le pattern [Abstract] Factory
» Plutot utilisé pour la configuration que pour la gestion du polymorphisme

L. Médini - UCBL

95

(@) ev-re |

m L. Médini - UCBL

.

Monteur (Builder)

Source :

Directeur

+ constructeur() : void

|
|
|

for (Monteur monteur:structure) {
monteur.construireUnePartie()

el
+ construireUnePartie() : void
5 7
MonteurConcret

+ construireUnePartie() : void
+ getResultat() : void

Produit

http://commons.wikimedia.org/wiki/File:Monteur_classes.png

L. Médini - UCBL

(@) ev-re |

Prototype

m Objectifs

— Reutiliser un comportement sans recreer une instance
« Economie de ressources

m Fonctionnement
— Recopie d’'une instance existante (méethode clone())

— Ajout de comportements spécifiques :
« polymorphisme a pas cher »

97

m L. Médini - UCBL

IR 1 B

Prototype

Client

Prototype

+0peration () :woid

Source :

® Remarque

— Implémentation choisie pour I'héritage en JavaScript (pas de classes)

Prototype +Clone () :wvoid

&

ConcretePrototypel ConcretePrototyped

+Clone () :woid

+Clone () :woid

http://fr.wikipedia.org/wiki/Prototype_(patron_de_conception)

m L. Médini - UCBL

Patterns de structure

m ODbjet composite (Composite)
m Adaptateur (Adapter)

m Facade (Facade)

m Proxy (Proxy)

m Décorateur (Decorator)

Composite

m Objectif
— Représenter une structure arborescente d’objets
— Rendre génériqgue les mécanismes de positionnement /
deplacement dans un arbre
 Exemple : DOM Node
= Fonctionnement

— Une classe abstraite (Composant) qui possede deux sous-

classes
* Feuille
« Composite : contient d’autres composants

L. Médini - UCBL

100

m L. Médini - UCBL

IR 1 B

Composite

Feuille

Composant
+ opération() 0..*
Composite

+ opération()

Source :

® Remarque

— Pourquoi une relation d’agregation et non de composition ?

+ + + +

opération()
ajouter()
retirer()
getEnfant()

101

http://fr.wikipedia.org/wiki/Objet_composite

Adaptateur (Adapter, Wrapper)

m Objectif
— Résoudre un probleme d’'incompatibilité d’'interfaces (API)

« Un client attend un objet dans un format donné
* Les données sont encapsulées dans un objet qui possede une autre interface

m Fonctionnement
— Insérer un niveau d’indirection qui réalise la conversion

m Patterns liés
— Indirection, Proxy

102

) - M€

L. Médini - UCBL

Adaptateur (Adapter, Wrapper)

| Client ‘ [1Adaptateur
Class “ Cible | Interface

= Méthodes
W Reguetd]

() Iadaptateur

((Kdaptatewr (Adapte
Class % Adapté Class
| & Méthodes “| @ méthodes

’-’___‘__.- ‘% Requete() | ‘% RequeteSpécifique()

Adapté-=Requetespécifigue])

Source :

103

5|
¥ ¥
|

m L. Médini - UCBL

http://fr.wikipedia.org/wiki/Adaptateur_(patron_de_conception)

Facade

m Objectif

— Cacher une interface / implémentation complexe

» rendre une bibliotheque plus facile a utiliser, comprendre
et tester;

* rendre une bibliotheque plus lisible;

réduire les dépendances entre les clients de la
bibliotheque

m Fonctionnement
— Fournir une interface simple regroupant toutes les
fonctionnalités utiles aux clients
m Patterns lies
— Indirection, Adaptateur

L. Médini - UCBL

104

(@) ev-re |

Facade

B
_—

Subsystem classes

105

Facade : solution

Client Classes

- - Subsystem classes

106

Proxy

m Objectif

— Résoudre un probleme d’acces a un objet
« A travers un réseau
» Qui consomme trop de ressources...

m Fonctionnement
— Créer une classe qui implemente la méme interface
— La substituer a la classe recherchée aupres du client
m Patterns lies
— Indirection, Etat, Décorateur

(@) er-nc [

L. Médini - UCBL

107

Proxy

Client <<interface>>
__________ > Subject

—{>| DoAction() <—

delegate

Proxy RealSubject

DoAction() DoAction()

Source :

108

IR R N

m L. Médini - UCBL

http://en.wikipedia.org/wiki/Proxy_pattern

L. Médini - UCBL

(@) ev-re |

Deécorateur

m Objectif

— Reésister au changement
* Principe général :

Les classes doivent étre ouvertes a I'extension,
mais fermées a la modification

e Permettre I'extension des fonctionnalités d’'une
application sans tout reconcevoir

m Fonctionnement
— Rajouter des comportements dans une classe qui
possede la méme interface que celle d’origine
— Appeler la classe d’origine depuis le décorateur

— Effectuer des traitements « autour » de cet appel 109

m L. Médini - UCBL

IR 1 B

Deécorateur

Source :

Component

+ operation()

1

ConcreteComponent

+ operation()

Decorator

- component

+ operation()

ConcreteDecorator

+ operation()

110

http://en.wikipedia.org/wiki/Decorator_pattern

Deécorateur

m Utilisation courante
— Rajouter un comportement a un comportement existant

= Exemple
.etudiant . | :avecFromageD :avecPimentD :pizzaMargarita
engloutit
M —)| —)
mange() getNbCalories() getNbCalories() getNbCalories()

m Pattern lié
— Proxy

m Pattern antagoniste
— Polymorphisme

111

(@) er-nc [

L. Médini - UCBL

Patterns de comportement

Interpréteur (Interpreter)

Commande (Command)

Mémento (Memento)

Etat (State)

Stratégie (Strategy)

Visiteur (Visitor)

Chaine de responsabilitée (Chain of responsibility)
Observateur (Observer)

Fonction de rappel (Callback)

Promesse (Promise)

L. Médini - UCBL

112

Interpréteur

m Objectif
— Evaluer une expression dans un langage particulier
 Exemples : expressions mathématiques, SQL...

® Fonctionnement
— Stocker I'expression dans un « contexte » (pile)
— Définir les classes de traitement terminales et non

terminales, a I'aide de la méme interface

113

) - M€

L. Médini - UCBL

Interpréteur

|—:'- Context

Client

AbstractExpression L:

Interpret{Context)

i

TerminalExpression NonterminalExpression

fnterpret{Context) Interpret{Context)

Source :

114

IR R N

m L. Médini - UCBL

http://en.wikipedia.org/wiki/Interpreter_pattern
http://en.wikipedia.org/wiki/Interpreter_pattern

Commande

= Obijectif
— Encapsuler la logiqgue métier d’'un objet derriere
une interface standardisée

m Fonctionnement

— Un Recelver exécute les commandes

— Des ConcreteCommand appellent chaque
meéthode meétier du Receiver

— Une Command décrit I'interface des
ConcreteCommand

— Un Invoker stocke les instances de
ConcreteCommand pour pouvoir les appeler de
maniere standardisée

115

L. Médini - UCBL

) - M€

Commande

At some time asks 10
execute the command

<<interfaces>
Invoker L e
Creates the ConcreteComman
and sets its recelver — + execute()
|
|
1
Client Receiver ConcreteCommand
+ Action() + execute()

Actionl) is a placeheolder for sormne Receiver — Action()
ConcreteC ormmand's interaction
with Receiver

— Ce pattern introduit un couplage fort entre ses éléments
Source

L. Médini - UCBL

116

http://en.wikipedia.org/wiki/Command_pattern

L. Médini - UCBL

(@) ev-re |

Memento

m Objectif
— Restaurer un état précedent d’'un objet sans violer
le principe d’encapsulation (pas d’attributs publics)

m Fonctionnement
— Sauvegarder les éetats de 'objet d’origine
(Originator) dans un autre objet : Memento
— Transmettre ce Memento a un « gardien »

(CareTaker) pour son stockage
 Memento doit étre opaque pour le CareTaker, qui ne doit
pas pouvoir le modifier

— Ajouter a I'Originator des méthodes de
sauvegarde et de restauration

117

Memento

Originator Memento
_____ H Caretaker
-siale -Slate
+satMemento]) - HgetStatel)

1
+createMementol) : +setState()
|

slate = m->geatSiate();

return new Memento|state);

Source :

118

[FERENR D

m L. Médini - UCBL

http://sourcemaking.com/design_patterns/memento
http://sourcemaking.com/design_patterns/memento

Etat (State)

m Objectif
— Changer le comportement apparent d’'un objet en
fonction de son état
» Geénéralisation des automates a états (1A)
m Fonctionnement
— Une interface (State) définit le comportement
— Des ConcreteState implémentent les comportements
— Un Context stocke I'état courant et appelle les
comportements correspondants
— Les ConcreteState peuvent changer I'état courant
dans le contexte

L. Médini - UCBL

) - M€

119

L. Médini - UCBL

Etat (State)

state.handle()

m Pattern lié
— Stratégie
Source :

Context State
H+ request() o +handle()
________ e
| |
ConcreteStateA ConcreteStateB
+handle() +handle()

120

http://fr.wikipedia.org/wiki/État_(patron_de_conception)
http://fr.wikipedia.org/wiki/État_(patron_de_conception)
http://fr.wikipedia.org/wiki/État_(patron_de_conception)

Strategie

m Objectif
— Permettre (et orchestrer) le changement
dynamique de comportement d’un objet

= Fonctionnement

— Désencapsuler les comportements de la classe
mere de I'objet

— Les déporter dans des classes liées, a 'aide d’'une
Interface commune

— Permettre au client d’utiliser une impléementation
guelcongue de cette interface

— Utiliser un contexte qui gere les changements
d'implémentation

(@) er-nc [

L. Médini - UCBL

121

Strategie

m Principe général de conception

— Ouvert-fermé (encore)

* Les modules doivent étre
— Quverts pour I'extension
— prévoir dans I’architecture des points d’extensions
— Fermés pour la modification
— Le code testé n’est pas modifié

* Privilégier la relation « a un »
a la relation « est un »

m Pattern lié
— Etat, Décorateur

L. Médini - UCBL

122

Strategie

Client

Context - Interface
- strate
- By

+algorithmy)

AN

ImplementationOne ImplementationTwo

+algorithmi) +algorithm)

Source :

123

[FERENR D

m L. Médini - UCBL

http://en.wikipedia.org/wiki/Strategy_pattern
http://en.wikipedia.org/wiki/Strategy_pattern
http://sourcemaking.com/design_patterns/strategy
http://sourcemaking.com/design_patterns/strategy

Visiteur

m Objectif
— Separer un comportement de la structure d’objets
a laquelle il s’applique
— Ajouter de nouvelles opérations sans modifier
cette structure

= Fonctionnement
— Ajout aux classes de fonctions « virtuelles »
geneériques qui redirigent les opérations vers une
classe specifigue « Visiteur » (Fabrication pure)
— Cette classe redirige les opérations vers les
bonnes implémentations « double dispatch »

L. Médini - UCBL

) - M€

124

Visiteur

m Principe général de conception
— Quvert-ferme

Element o Visitor ' =
: Vistor : f : vistor
Client P N Llient ElementA :ElementB Aisitor]
- visitElementaja)
accept|visior! A .
e visitElementBiel I : : :
[| acceptivisitor] | lvizitElementA (this]_ |

Wisitor_
visitElementA (this),

uj_ operation Al :
ElementB ElementA Visitorl

I
|
|
| |
! |
cceptivisitor] : visitElementBlthisl :
acceptivisor accept [visitor) tElementA (=]

I
la
) I
: wisi ion Bl
: fEf | tion Bl
> cperationB() operationAll visitElementBie) ' I S
T T | | ;
1 I ! !

Image : By Vanderjoe - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=63201110

Source :

125

IR 1 B

m L. Médini - UCBL

https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Visitor_pattern

Chalne de responsabilité

m Objectif
— Effectuer plusieurs traitements non liés pour une
MmEéme requéte

(separer les responsabilites)

« Selon la méme interface
* En évitant le couplage entre les objets qui réalisent les

traitements
m Fonctionnement
— Interface commune a tous les handlers
— Chainage des handlers

m Pattern lié
— Faible couplage, Décorateur

126

(@) er-nc [

L. Médini - UCBL

m L. Médini - UCBL

Chalne de responsabilité

sUCcessor
*
ChainClient Handler
¥handleRequest()
Handler Handler?
FhandleReguest]) FhandleReguest()
client ‘Handler || :Handler ‘Handler
Source :
m Variante :

— Arbre de responsabilités (dispatcher)

127

http://www-sop.inria.fr/axis/cbrtools/usermanual-eng/Patterns/Chain.html

Observateur (Observer)

m Contexte
— Plusieurs objets souscripteurs sont concernés
par les changements d’état d’'un objet diffuseur
m Obijectifs
— Comment faire pour que chacun d’eux soit informe de ces
changements ?
— Comment maintenir un faible couplage entre diffuseur et
souscripteurs ?

m Fonctionnement (théorique)
— Définir une interface « Souscripteur » ou « Observer »
— Faire implémenter cette interface a chaque souscripteur
— Le diffuseur peut enregistrer dynamiquement les
souscripteurs intéressés par un évenement et le leur
signaler

128

(@) ev-re |

L. Médini - UCBL

Observateur (Observer)

= Fonctionnement
— Un Observateur s’attache a un Sujet
— Le sujet notifie ses observateurs en cas de changement
d’état
m En pratique
— Subject : classe abstraite
— ConcreteSubiject : classe héritant de Subject
— Observer : classe (utilisée comme classe abstraite)
— ConcreteObserver : classe héritant d’'Observer

® Autres noms
— Publish-subscribe, ou « Pub/Sub » (Diffusion-souscription)
— Modele de délégation d’événements

129

(@) ev-re |

L. Médini - UCBL

L. Médini - UCBL

Observateur (Observer)

Source :

AN

Subject
Observer <>t{+observerCollection
: +registerObserver(observer)
+notify() +unregisterObserver(observer)
+notifyObservers()
notifyObservers()
for observer in observerCollection
call observer.notify()
ConcreteObserverA ConcreteObserverB
+notify() +notify()

130

http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Observer_pattern

Observateur (Observer)

m Utilisation en Java :
— Les classes java.util. Observer et java.util. Observable

sont
 Modele évenementiel pas assez précis
* Ordre des notifications non spécifié
[

* Implémentation non thread-safe

- Mais le pattern en lui-méme reste valable
« Utiliser le modele événementiel de java.beans
(PropertyChangeEvent, PropertyChangeListener)
» Utiliser les files et sémaphores (java.util.concurrent) avec
des threads
« Utiliser votre propre implémentation si besoin

L. Médini - UCBL

131

(@) ev-re |

https://docs.oracle.com/javase/9/docs/api/deprecated-list.html
https://docs.oracle.com/javase/9/docs/api/deprecated-list.html
https://docs.oracle.com/javase/9/docs/api/deprecated-list.html
https://docs.oracle.com/javase/9/docs/api/deprecated-list.html
https://docs.oracle.com/javase/9/docs/api/deprecated-list.html
https://docs.oracle.com/javase/9/docs/api/deprecated-list.html

Fonction de rappel (Callback)

= Obijectif
— Définir un comportement sans savoir a quel
moment il sera déclenché
m Exemples d’utilisation

— Synchrone : déclenchement par une bibliotheque
externe

— Asynchrone : modele événementiel
m Autre nom
— Principe d’'Hollywood
« N'appelez pas, on vous rappellera. »

L. Médini - UCBL

(@) ev-re |

132

Fonction de rappel (Callback)

m Fonctionnement
— Langages fonctionnels : passer une fonction
en parametre d’'une autre fonction
(fonctions d’ordre supérieur)
— Langages objet : passer un objet
(qui encapsule un comportement)
en parametre d’'une méthode d’un autre objet

m Patterns lies
— Inversion de Controle (IoC), Observer

L. Médini - UCBL

(@) ev-re |

133

Fonction de rappel (Callback)

Application program

Main program Callback function

calls
Library function

Software library

Source :
134

:
:

m L. Médini - UCBL

http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Callback_(computer_science)

Promesse (Promise)

= Probleme
— Certains objets ont des comportements déclenchés
par des événements extérieurs
m Objectif
— Spécifier le comportement d’'un objet

I « Sans savoir comment il sera declenché (asynchrone)
[

 Sans en connaitre le résultat
m Fonctionnement

— Créer un objet Promise qui encapsule ce

comportement et possede trois états
* Pending : la promesse n’a pas été appelée
o Fulfilled : elle a été appelée et s’est correctement déroulée
* Rejected : elle a été appelée et a échoué

L. Médini - UCBL

(@) ev-re |

135

Promesse (Promise)

async actions

settled /
pending il then(onFulfillment) ﬂ* pending

Promise Promise g then()
reject returt
T 2 then(onRejection)

.cateh()
.catch(onRejection)

\

errar handling

136

[FERENR D

m L. Médini - UCBL

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Promesse (Promise)

m Discussion

— Pattern beaucoup utilisé en JS (intégré) a ES6
— N’est gu’une simplification de I'encapsulation de
callbacks
m Variantes / extensions
— Promise.all()
— Promise.race()

m Patterns liés
— Callback

L. Médini - UCBL

137

Plan

m Introduction

m Principes GRASP

m Design patterns

m Patterns architecturaux
m Conclusion

L. Médini - UCBL

138

Patterns architecturaux

m Objectif
— Conception de systemes d’information
m Principes

— Organisation d’'une société de classes / d’objets
» Reépartition / structuration des réles

— Souvent présents dans les frameworks
m Exemples de problemes abordes

— Performance matérielle

— Disponibilité

— Reéutilisation

L. Médini - UCBL

(@) ev-re |

139

Patterns architecturaux

= Niveau de granularité

— Au-dessus des patterns precedents
» Peuvent réutiliser d’autres design patterns

m Références

— Conception de systemes d’information pour

I'entreprise (« Enterprise Architecture »)
* Modélisation de I'entreprise par les processus :

« Enterprise Architecture (en général) :

m Autre nom
— Patterns applicatifs

L. Médini - UCBL

(@) ev-re |

140

http://en.wikipedia.org/wiki/Enterprise_modelling
http://en.wikipedia.org/wiki/Enterprise_architecture

Patterns architecturaux

m Exemples
— Architecture en couches
- — Architecture multi-tiers
— MV*
— 1oC
— Contexte
— Observer ?
— DAO, DTO

m L. Médini - UCBL

141

Pattern Couches

package _| package | package |
Présentation
Vue
(Vue) —k . |
| | :
1 | .
(Application) .
Domaine [package package package |
~—— &K -~ - — - -
! |
! 1
Service
Middleware package | package |
/N
Fondation / ,
A 1
Données ey g]

142

Architecture multi-tiers

m Objectif
— Découpler les differentes fonctionnalités d’un programme (séparation

- des preoccupations)

» Gestion des donneées, algorithmes métier, présentation...
m Fonctionnement

— Concevoir séparément chacune de ces fonctionnalités
— Les isoler les unes des autres (autant que possible)

L. Médini - UCBL

143

(@) ev-re |

Architecture multi-tiers

m Exemple (M1IF03)

Client Serveur
Requétes N—
HTTP
HTML Interface @ Métier @Données
éponses
HTTP e

m Pattern lié
— Couches

[FERENR D

m L. Médini - UCBL

144

Modele-Vue-Controleur

= Probleme
— Comment rendre le modele (domaine métier) indépendant
des vues (interface utilisateur) qui en dépendent ?
— Réduire le couplage entre modele et vue
m Solution
— Insérer une couche supplémentaire (contrbleur) pour la
gestion des événements et la synchronisation entre modele
et vue

145

L. Médini - UCBL

) - M€

Modele-Vue-Controleur (suite)

= Modele (logigue métier)
— Implémente le fonctionnement du systeme
— Gere les acces aux données metier

= Vue (interface)
— Présente les données en cohérence avec I'état du
modele
— Capture et transmet les actions de ['utilisateur

m Controleur
— Gere les changements d'état du modele
— Informe le modele des actions utilisateur
— Seélectionne la vue appropriée

146

(@) er-nc [

L. Médini - UCBL

“ L. Médini - UCBL

Modele-Vue-Controleur (suite)

Model

« Encansulates application state
* Hesponds {o state gueries

* Exposes application
functionality

» Notities views of chanpges State
Change

State
Query

Change
Notification

@ @
View e ST Controller

« Renders the models « Defines application behavior
» Requests updates from models * Maps user actions 1o

» Sends usergesturesfocontroller 9" % % 1 1 1 | model updates

« Allows controller to select view User Gestures * Selects view for response
* One for each functionality

Method Invocations

(1 ¥] Events

Source originale : BluePrint Java (Sun), non maintenue par Oracle.
147

L. Médini - UCBL

(@) ev-re |

Modele-Vue-Controleur (suite)

m Difféerentes versions
— |la vue connait le modele ou non
— |le controleur connait la vue ou non
— |le vue connait le controleur ou non
— « Mélange » avec le pattern Observer
— Un ou plusieurs controleurs (« type 1 » / « type 2 »)
— Push-based vs. pull-based
m Choix d'une solution
— dépend des caractéristiques de l'application
— dépend des autres responsabilités
du controleur

148

Modele-Vue-Controleur (suite)

m Version modele passif
— la vue se construit a partir du modele
— le contrbleur notifie le modele des changements
que l'utilisateur spécifie dans la vue
— le contrbleur informe la vue que le modele a
changeé et qu’elle doit se reconstruire

L. Médini - UCBL

149

Modele-Vue-Controleur (suite)

m Version modele actif
— quand le modele peut changer indépendamment du
controleur
— le modele informe les abonnés a I'observateur qu'il
s’est modifié

— ceux-ci prennent lI'information en compte (controleur
et vues)
i «implements »

m L. Médini - UCBL

150

Autres patterns MV *

m Model-View-Adapter (MVA)

— Pas de communication directe entre modele et vue

e Un pattern Adapteur (Médiateur) prend en charge les communications
* Le modele est intentionnellement opaque a la vue

— |l peut y avoir plusieurs adapteurs entre le modele et la vue

m Model-View-Presenter (MVP)

— La vue est une interface statigue (templates)

— La vue renvoie (route) les commandes au Presenter

— Le Presenter encapsule la logique de présentation et I'appel
au modele

= Model-View-View Model (MVVM)

— Mélange des deux précédents : le composant View Model
» Sert de médiateur pour convertir les données du modéle
» Encapsule la logique de présentation

— Autre nom : Model-View-Binder (MVB)

151

(@) ev-re |

L. Médini - UCBL

Inversion de Controle (Io0C)

m Objectif
— Ne pas réimplementer le code « géenérique » d’'une
application
— Permettre I'adjonction simple

» De composants spécifigues métier
» De services annexes disponibles par ailleurs

® Fonctionnement

— Utiliser un Conteneur capable de
o Gerer le flot de controle de I'application
 |nstancier des composants
* Résoudre les dépendances entre ces composants
« Fournir des services annexes
(securité, acces aux données...)

152

(@) ev-re |

L. Médini - UCBL

m L. Médini - UCBL

|

Inversion de Controle (Io0C)

m Exemple
| |
Code de
5 I'application
= |
D
Code de <
k l . Q Code de
app ication =z I'application
s
LL |
Code de
I'application
® Autre nom

— Injection de dépendances

c
O
)

>

(&)
‘@

X
o
©
.
O
LL

153

Patrons architecturaux

m Patrons applicatifs (suite)

— Patrons d’authentification
 Directe, a I'aide d’une plateforme
 Single Sign On (CAS)
— Patrons d’autorisation
* ROles, attributs, activité, utilisateur, heure...
— Patrons de seécurite
* Checkpoint, standby, déetection/correction d’erreurs

L. Médini - UCBL

(@) ev-re |

154

Patrons architecturaux

m Patrons de données
— Architecture des donnees
e Transactions, opérations, magasins, entrepots

— Modélisation de données
e Relationnelle, dimensionnelle

— Gouvernance des données (Master Data Management)
« Réplication, services d’'acces, synchronisation

L. Médini - UCBL

(@) ev-re |

155

Patrons architecturaux

m Patrons de données

— Sauvegarde

« Data Access Object (DAO)

— Objet (fabrication pure) qui centralise le lien vers un
support de persistance

» Object-Relational Mapping (ORM)

— Objet (adapter) qui encapsule traduction de la logique
metier en opérations de persistance (requétes)

— (Dé)sérialisation
« Data Transfer Object (DTO)

— Représentation sans comportement (sérialisable) d’un
objet métier

L. Médini - UCBL

) - M€

156

Patrons architecturaux

m Types d’architectures et d’'outils
— Plateformes de composants (frameworks)
- — Architectures orientees services (SOA)
— Extract Transform Load
— Enterprise Application Infrastructure / Enterprise Service Bus

m L. Médini - UCBL

157

Plan

m Introduction

m Principes GRASP

m Design patterns

m Patterns architecturaux
m Conclusion

IR 1 B

m L. Médini - UCBL

158

Pour aller plus loin...

m Patterns of Enterprise Application Architecture
— Origine
* Livre de Martin Fowler, Dave Rice, Matthew Foemmel, Edward Hieatt,
Robert Mee, and Randy Stafford, 2002
— Contenu
* Formalisation de I'expérience de développement d'« Enterprise
Applications »
« Généralisation d’idiomes de plusieurs langages
» Une quarantaines de patterns souvent assez techniques
— Exemples
» Service Layer, Foreign Key Mapping, MVC, Front Controller, DTO,
Registry, Service Stub...

— Référence

L. Médini - UCBL

159

http://martinfowler.com/eaaCatalog/

Anti-patterns

m Erreurs courantes de conception documentees

m Caractérises par
— Lenteur du logiciel
— Codts de realisation ou de maintenance éleves
— Comportements anormaux
— Présence de bogues

m Exemples
— Action a distance
« Emploi massif de variables globales, fort couplage
— Coulée de lave

« Partie de code encore immature mise en production, forcant la
lave a se solidifier en empéchant sa modification

m Référence

160

(@) ev-re |

L. Médini - UCBL

http://en.wikipedia.org/wiki/Anti-pattern

IDE « orientés-Design Patterns »

m Fournir une aide a l'instanciation ou au reperage de patterns
— necessite une représentation graphique (au minimum collaboration
UML) et le codage de certaines contraintes
m |nstanciation
— choix d’un pattern, création automatique des classes
correspondantes
m Repérage
— assister l'utilisateur pour repérer

» des patterns utilisés (pour les documenter)
» des « presque patterns » (pour les refactorer en patterns)

m Exemples d’outils
— Eclipse + plugin UML
— Describe + Jbuilder
— IntelliJ

L. Médini - UCBL

161

—

CC

Conclusion

m On a vu assez precisement les principes les
plus généraux (GRASP)

- m On a survolé quelgues design patterns
[

— un bon programmeur doit les étudier et en
connaitre une cinguantaine
m On a évogue les patterns architecturaux
— lIs permettent de comprendre le fonctionnement
des outils (frameworks)
m On a a peine abordé les anti-patterns

— Les connaitre est le meilleur moyen de détecter que
votre projet est en train de ...

L. Médini - UCBL

(@) ev-re |

162

Remerciements

®m Yannick Prié
m Laétitia Matignon
m Olivier Aubert

163

Références

= Ouvrage du « Gang of Four »
— Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides (1994), Design
patterns, Elements of Reusable Object-Oriented Software, Addison-Wesley, 395 p.
(trad. francaise : Design patterns. Catalogue des modeles de conception
réutilisables, Vuibert 1999)
m Plus orienté architecture
— Martin Fowler (2002) Patterns of Enterprise Application Architecture, Addison
Wesley
m En Francais
— Eric Freeman, Elisabeth Freeman, Kathy Sierra, Bert Bates, Design Patterns — Téte

la premiere, O'Reilly Eds., 640 p., 2005.

164

(@) ev-re |

L. Médini - UCBL

Références

m Surle Web
— Généralites sur les Design patterns

— Historique, classification

L. Médini - UCBL

165

http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/Architectural_pattern
http://stackoverflow.com/questions/4243187/difference-between-design-pattern-and-architecture
http://stackoverflow.com/questions/4243187/difference-between-design-pattern-and-architecture
http://martinfowler.com/eaaCatalog/
http://www.hillside.net/patterns
http://java.sun.com/blueprints/corej2eepatterns/
https://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html
https://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html
https://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html
http://people.cs.umu.se/jubo/ExJobbs/MK/patterns.htm
http://people.cs.umu.se/jubo/ExJobbs/MK/patterns.htm
http://wiki.c2.com/?HistoryOfPatterns

Références

m Surle Web

— Promesse

— Design by Contract

— Enterprise Integration Patterns

— Antipatterns

L. Médini - UCBL

166

https://www.promisejs.org/
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Design_by_contract
https://hillside.net/plop/plop97/Proceedings/dechamplain.pdf
https://hillside.net/plop/plop97/Proceedings/dechamplain.pdf
https://hillside.net/plop/plop97/Proceedings/dechamplain.pdf
https://en.wikipedia.org/wiki/Enterprise_Integration_Patterns
https://en.wikipedia.org/wiki/Enterprise_Integration_Patterns
https://en.wikipedia.org/wiki/Enterprise_Integration_Patterns
https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/
https://sourcemaking.com/antipatterns/software-development-antipatterns
http://c2.com/cgi/wiki?AntiPatternsCatalog

Takeaways...

get pearls of wisdom from

Granny

In 1987, when | was a mite younger than | am today, | saw a list of "programming pearls" from the September 1985 issue of "Communications of the ACM".
It was a huge list and | had to take time off from baking cookies for the grandkids to read it. Well, | picked a few out and added some that weren't on the list
and ever since, I've always kept a printed version near where | work. Over the years I've added some and deleted some. Here is my current list:

« Any fool can write code that a computer can understand.
Good programmers write code that humans can understand. (Martin Fowler)

¢ Debug only code - comments can lie.

« |[f you have too many special cases, you are doing it wrong.

* Get your data structures correct first, and the rest of the program will write itself.

» Testing can show the presence of bugs, but not their absence.

« The fastest algorithm can frequently be replaced by one that is almost as fast and much easier to understand.
e The cheapest, fastest, and most reliable components of a computer system are those that aren't there.

¢ Good judgement comes from experience, and experience comes from bad judgement.
¢ Don't use the computer to do things that can be done efficiently by hand.

e [Thompson's Rule for first-time telescope makers] It is faster to make a four-inch mirror then a six-inch mirror
than to make a six-inch mirror.

e If you lie to the computer, it will get you.

L. Médini - UCBL

 Inside of every large program is a small program struggling to get out.

Source :
167

https://javaranch.com/granny.jsp
https://javaranch.com/granny.jsp

