Structuration et échange

d’informations sur le Web
| |

Université Lyon 1
Master CCI

L. Médini, Janvier 2009

Résumé de I’épisode précédent

o Introduction
= Définitions
= Historique
= Apercu de quelques langages
o XML : principes de base
= Hérité de SGML (beaucoup plus concis)
= Méta-langage de description des données
= Restrictions de syntaxe et non de contenu
= Documents XML valides : les DTD
o HTML et XHTML
= Langages de description des pages Web
= Syntaxe
= Langage de feuilles de style : CSS

Plan du cours 2 : Applications et
programmation XML

o Applications XML
= Notion d’espaces de noms XML
= Retour sur la validation de documents : les
schémas XML
= Le langage de feuilles de style XSL
Xpath
XSLT
o Programmation XML
= Les API existantes
= Le Document Object Model (DOM)
= Simple API for XML (SAX)

URI, URL et URN

o URI : Uniform Resource Identifier
= But : identifier de fagon unique une ressource sur le web
En disant ou elle se trouve
= Donner son URL (Uniform Resource Locator)
= Format : protocole ":" chemin "/" nom de fichier "/" requéte
= http://www/w3.0rg/2001/XMLSchema
= Permet d'accéder réellement a la ressource (tant qu’elle existe)
= Enregistrement des DNS auprés de |’entité concernée
En disant comment elle s'appelle
= Donner son URN (Uniform Resource Name)
= Format : "URN:" NID (namespace identifier) ":" NSS (namespace
specific string)
URN:ISBN:0-395-36341-1
Choix plus « libre », et correspondant mieux a la définition d'un
espace de noms
Enregistrement des NID a I'TANA (Internet Assigned Numbers
Authority)

= Syntaxe générique

URI, URL et URN

o URI : Uniform Resource Identifier
= But : identifier de fagon unique une ressource sur le web
= Syntaxe générique
« scheme » ":" autorité ":" chemin ":" requéte ":" fragment

Avec le temps, on s’est mis a penser que « urn » peut aussi
étre un URI scheme

o D’un point de vue pratique, les URL sont plus sures
afin d’éviter les conflits entre les espaces de noms

> Un URI est uniqguement un identificateur, qui n’a pas
de sens en soi

> Il ne signifie rien pour le processeur XML, qui le
transmet tel quel a I'application

Espaces de noms XML

o Position du probléme
= Liberté de choix des noms de balises et des
attributs XML
— Conflits et polysémie entre ces noms/attributs
= Besoin d’associer plusieurs applications dans un
méme document

.« Préfixage » des noms de balises par I'URI de
I'application concernée

Espaces de noms XML

o Noms qualifiés (qualified names)

= Noms de balises appartenant a des espaces de noms

= Syntaxe : PrefixeDEspaceDeNoms:PartieLocale

= Exemple : <xsl:stylesheet>

= Le préfixe fait référence a un URI

= Les noms d’attributs peuvent également étre préfixés
o Association d’un préfixe a un URI

= Attribut xmins

= Exemple : <xhtml:html|

xmins:xhtml="http:/Awww.w3.0rg/1999/xhtml">

o Remarques

= Portée : I'élément porteur de I'attribut xmins
Bien entendu, un document XML peut contenir des éléments se
référant a plusieurs espaces de noms
Le préfixe en lui-méme n’a aucune signification
En interne, le parser passe a |'application des « noms pleinement
qualifiés », ou'le préfixe est remplacé par la valeur de I'URI

Document XML valide : les schémas XML

o Comparaison DTD/Schémas

C DTD Schémas
Syntaxe Notation EBNF + psetido-XML XML 1.0
Outils Outils SGML existants (chers et Tous les outils XML existants et a venir
complexes)
Supports DOM/SAX Non Oui (comme pour les fichiers XML).

Modgles de contenu Listes : ordonnées ou de choix Listes : ordonnées et de choix (détails dp
Cardinalité : 0, 1 ou plusieurs contenus mixtes)

occurrences - cardinalité : spécification d'un nombre
Pas d'éléments nommés ou de exact d'occurrences possible

groupes dattributs. groupes de modeles nommés

Typage des données | Faible (chaines, jetons nominaux, ID.|.) _ Fort (nombres, chaineghelate, booléen,
structures...)
Héritage Non oui
Extensibilité Non (pas sans modification de la | Oui (puisque fondes sur lextensibilité de XML
XML)

Contraintes Iégales Compatibilité avec SGML Aucune (simplement des « emprunts » gu

DTD, comme pour les types de donnégs}

Nombre de vocabulaires
supportés

Une seule DTD par document ‘Autant que nécessaire (gracespaces de
noms)

Dynamicité Aucune : les DTD sont en lecture selfle Peuvent é&bdifiés

Document XML valide : les schémas XML

o Les types de données : 3 dichotomies
= Hiérarchie arborescente a partir d’'un ur-type
Types primitifs : premier niveau de décomposition
Types dérivés : tous les niveaux suivants
= La recommandation définit un ensemble de types
Types intégrés
Types dérivés par |'utilisateur

= Atomicité
Types atomiques : dont les valeurs ne peuvent pas étre
décomposées
Types listes : ensembles de valeurs atomiques
Remarques

Tous les types primitifs sont intégrés. La réciproque est fausse
string est un type atomique

Espaces de noms XML

o Espace de noms par défaut
= Pas de préfixe d’espace de noms
= Exemple : <html xmiIns="http://www.w3.0rg/1999/xhtmI">

o Annulation d’espaces de noms
= Par valeur de I'attribut xmlIns vide : xmins=

o Exemple de code <xmiversion="1.0>
<CV xmins="hitp//www.uriv-lyonL. fretds/CV/english”
xmins:xhtml="http:/fwnaw.w3.org/1998/xhtm">
<personne>
<civl_status>
<tile>Mr </itle>
</civil-status>

<Ipersonne>
<xhtml:html>
<xhtmlhead>
<xhtmtitle>CV of a student</xhtmiitle>
<fxhtml:head>
<xhtmi:body>

<Jxhtml:body>
<fxhtml:htmi>
<Icv>

Document XML valide : les schémas XML

o Principes de base des schémas XML
= Utilisation de la syntaxe et des outils XML
Extensibilité
Dynamicité
= Possibilité de définir ses propres types de
données et modéles de contenus
= Un schéma définit une classe de documents
dont chaque document est une instance
= S’appuient sur les notions de
Types de données
Structures

Duilt in Datatype Hieracchy

e
I I
| o | Bt | i

T I I I I
[Eooican | [Easetdsinary | [Revsinary | [Float | | [Eowsic] [nyurt | [Ghieme | [Fozazion

[F=geriveinteges]

[Gn=ignediony | [positiveintagar

Temouag=

NMTORENE

IoDEFS |[ENTITIES

ur types — Gerived by restriction

Luilt—in primitive types derived by list

Buile-in derived types deraved by extension or
B T
Cumplex Lypes

ooom

Document XML valide : les schémas XML

o Types de données

= Les types de données comportent 3
caractéristiques
Espace lexical : définit tous les caractéres représentant
les valeurs possibles
Espace de valeurs : ensemble des valeurs exprimé dans
|'espace lexical
Facettes : propriétés définitionnelles de I'ensemble des
valeurs
= Facettes fondamentales : propriétés abstraites (égalité,
bornes, ordre, cardinalité, numérique ou non)
= Facettes de contraintes : limitent certaines propriétés (12
facettes : length, enumeration, minExclusive...)

= Voir poly p. 60

Document XML valide : les schémas XML

o Les structures

= Permettent de définir des types de données
(contenus et attributs) selon deux méthodes
SimpleType : dérivation de types atomiques
= Par restriction (par intension)

= Par liste (par extension)

= Par union (sur-ensemble de types existants)

<xsd:simpleType nam
<xsd:restriction bast
<xsd:minInclusive value
<xsd:maxExclusive value:
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="myIntList">
<xsd:list>
<xsd:simpleType>
<xsd:restriction base="xs:integer">
<xsd:maxInclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:list>

<xsd:simpleType name="intOrUndefined">
<xsd:union>
<xsd:simpleType>
<xsd:restriction base="xs:integer"/>
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base="xs:NMTOKEN">
<xsd:enumeration value="undefined"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

</xsd:simpleType>

Document XML valide : les schémas XML

o Les structures

= Permettent de définir des types de données
(contenus et attributs) selon deux méthodes
ComplexType : autres types de dérivation
= Dérivation
= par restriction d’'un type de base complexe,

= par extension d'un type de base (simple ou
complexe),
= par restriction de I'ur-type definition
= En pratique : la définition d’un type complexe est une
composition
De séquences (ET)
- ordonnées : xsd:sequence
- non-ordonnées : xsd:all
De choix (OU) : xsd:choice

Document XML valide : les schémas

o Les structures
= Définition d’un élément
Avec la balise xsd:element
En utilisant le type choisi (simple ou complexe)
= Définition d’un attribut
Avec la balise xsd:attribute
En utilisant un type simple
= Eléments de syntaxe : poly p. 61.
= Pour aller plus loin : un cours trés instructif

<xs:element name="recette">
<xs:complexType>
<xs:sequence>
<xs:element name="titre" type="xs:string"/>
<xs:element name="commentaire" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="item" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="entete" type="xs:string" minOccurs="0"/>
<xs:choice maxOccurs="unbounded">
<xs:element name="ingredient" type="xs:string"/>
<xs:element name="preparation" type="xs:string"/>
</xs:choice>
</xs:sequence>

Document XML, valide : les schémas XML

</xs:complexType> <xs:element name="MusicDescription">
</xs:element> <xs:complexType>
</xs:sequence> <xs:all>
</xs:complexType> <xs:element name="country" type="xs:string"/>

</xs:element> <xs:element nam riginalTitle" type="xs:string"/>
<xs:element name="author" type="xs:string"/>
</xs:all>
</xs:complexType>
</xs:element>

<xs:element name="picture" minOccurs="0">
<xs:complexType>
<xs:attribute name="source" type="xs:anyURI"/>
</xs:complexType>
</xs:element>

o Préambule d’un schéma
= Avec gestion des espaces de noms
<xsd:schema xmiIns:xsd="http://www/w3.0rg/2001/XMLSchema”
xsd:targetNamespace="http://www.monsite.com/monnamespace">
= Sans gestion des espaces de noms
<xsd:schema xmiIns:xsd="http://www/w3.0rg/2001/XMLSchema"
xsd:noTargetNamespace="noTargetNamespace">

ou simplement
<xsd:schema xmins:xsd="http://www/w3.0rg/2001/XMLSchema">

Document XML valide : les schémas XML

o Association d’'un document a un schéma

= Avec gestion des espaces de noms
<ici:element

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

xsi:schemaLocation="http://monsite.com/monnamespace
http://monsite.com/monnamespace/schema/MonSchema.xsd”

xmins:ici="http://monsite.com/monnamespace”>

= Sans gestion des espaces de noms
<element

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

xsi:noNamespaceSchemalocation="http://monsite.com/monnames

pace/schema/MonSchema.xsd">

= Dans tous les cas, il faut fournir une URI vers le

schéma

Transformation d’arbres XML, : XSL.

o Caractéristiques de XSL
= Officiellement : XML Stylesheet Language

= En pratique, ga ne sert a rien d’appliquer des
éléments de style a un document XML
= Mais XSL fournit un mécanisme trés puissant
pour transformer un arbre XML
En un autre arbre XML (échange de données)
En un arbre XHTML (visualisation des données XML)

En un texte simple (fichier non destiné a une
application utilisant un parser XML)
En un document papier formatté (XSL-FO)

Transformation d’arbres XML, : XSL.

o Utilisation la plus courante de XSL

Arbre XML source

1
'

'

Niveau (données) 1
'

structuration !
DTD ouschéma XML !

(structure) Données et méta-,

données !

1

1

1

Niveau Description de larbre résultart '
composition (modéle de transformatiofsL) '
1

1

1

1

'

Mise en forme H

feuilles de styleess) 1

I

'

Niveau Document XHTML !
visualisation 1
|

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL

= XPath
Permet de pointer vers les données de I'arbre XML
= pour le parcours de documents XML
= pour le test de valeurs associées aux contenus ou aux
attributs d’éléments
Ne respecte pas la syntaxe XML
= pour ne pas « perturber » I'analyse des feuilles de style
XSLT par le parser XML

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL

= XPath

Noeud
= Tout type de données (élément, attribut, PI)
= Racine du document : '/*
= Les éléments sont identifiés par leurs noms
= Les attributs sont identifiés par '@' suivi du nom de

I'attribut

Chemin de localisation
= Absolu : a partir de la racine de I'arbre XPath
= Relatif : a partir du nceud contextuel

= Récursif : a partir du nceud contextuel, mais seulement
« vers le bas »

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL

= XPath
Axes de navigation (poly p. 75)
= Déplacements complexes dans I'arbre XPath
= Syntaxe : Nom_D_Axe::Nom_De_Noeud
= Recommandation :

self

child

descendant

descendant-or-
self

Neceud contextuel

Enfants du nceud contextuel

Tout enfant, petit enfant etc. du nceud contextuel

Comme descendant + le nceud contextuel lui-méme

self::node() ou
./node() ou .

child::Etat_civil ou
Etat_civil (défaut)
descendant: :Etat_civil

descendant-or-self: :
Etat_civil ou .//Etat_civil

Transformation d’arbres XML, : XSL.

parent Parent du nceud contextuel parent::Prenom ou
../Prenom

ancestor Tout parent, grand parent etc. du noeud contextuel —ancestor::Prenom

ancestor-or-self Comme parent + le nceud contextuel lui-méme ancestor-or-self::Prenom

following-sibling Tous les fréres suivants du noeud contextuel (vide si following-sibling: :Nom

le neeud est un attribut)

preceding-sibling Tous les fréres précédents du nceud contextuel (vide preceding-sibling::Prenom

si le nceud est un attribut)

following following-sibling + descendants de tous les nceuds following::Nom
fréres suivants
preceding preceding-sibling + descendants de tous les nceuds preceding::Prenom
fréres précédents
attribute Attributs du nceud contextuel attribute::id ou./@id
namespace Tous les noeuds appartenant au méme espace de namespace: :xhtml:div

noms que le nceud indiqué

o Les deux composants de XSL
= XPath
Opérateurs et fonctions

= Expression de caractéristiques de sélection
complexes

= Communs avec XQuery
= Recommandation a part entiére :

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL

= XPath
Opérateurs et fonctions

= Accesseurs
= Pour récupérer un élément d'un nceud
= Exemples : node-name(), string(), base-uri()

= Génération d’erreurs
= error()

= Génération de traces
- trace()

= Constructeurs
= Pour les types de données XML spécifiques
= Exemple : MonType()

= Casting entre types de données

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL

= XSLT : principes de base
Description de I'arbre résultant (programmation
déclarative)
Application XML définissant des « éléments de
transformation »

—Référence a un espace de noms spécifique « xsl: »

Balises spécifiques interprétées par un processeur XSLT
Structuration par modéles (« templates ») de contenus

= Définissant le traitement a appliquer a un élément repéré
par une expression XPath

= Imbriqués grace a des balises d’application de templates
=>paralléle avec les fonctions en programmation déclarative

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL

= XSLT : syntaxe
Elément racine
<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform”>
Eléments de premier niveau (cardinalité=0 ou 1)
= <xsl:output> : définit le type d’arbre de sortie
= Attribut method : 3 valeurs possibles (text , html , xml)
= Autres attributs : version , encoding , standalone ,
indent
= <xslinclude> et <xsl:import> : permettent d’inclure
d’autres feuilles de style
= Attribut href : URI de la ressource a inclure
- Différence entre les deux : régles de priorités

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL
= XSLT : syntaxe
Eléments de premier niveau (cardinalité=0 ou 1)
= <xsl:strip-space> et <xsl:preserve-space> : gestion
des espaces dans |'arbre résultant (resp. suppression et
conservation)
= Attribut elements : noms des éléments concernés
séparés par des espaces
= <xsltemplate> : modéle racine de l'arbre de sortie
- Attribut match : désigne le noeud XPath concerné par le
modele (au premier niveau, toujours "/")
- Contient la racine de la déclaration de I'arbre de sortie

= Autres éléments (key, variable, attribute-set, param) : voir
la recommandation

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL

= XSLT : les templates
Définition
= Modéles simples : <xsl:template match="noeud_XPath">

= L’expression XPath qui définit le nceud peut inclure un
filtre

= Ce nceud devient le noeud contextuel dans le template

= Modéles nommés : <xsl:template name="nom_tmplate">
Appel

= Modéles simples :

<xsl:apply-templates select="expr_XPath" />

= L'expression XPath est un chemin de localisation qui

désigne le noeud

= Modéles nommés :

<xsl:call-template name="nom_tmplate" />

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL
= XSLT : les éléments
Traitement de contenus de I'arbre XML source
= <xsl:value-of select="expr_XPath" />
- Permet d’obtenir la valeur d’un nceud (élément ou
attribut)
= L'expression XPath est un chemin de localisation
- Elle désigne un nceud a partir du nceud contextuel
= <xsl:copy-of select="expr_XPath" />
= Permet de recopier dans |'arbre destination toute une
partie de I'arbre source
- L’expression XPath fonctionne comme précédemment
= <xsl:copy />

- Permet de copier uniquement un élément sans ses
sous-éléments

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL

u XSLT : les éléments
Structures de controle
= <xsl:choose>

<xsl:when test="expr_XPath1">
Contenu conditionnel 1

</xsl:when>

<xsl:when test="expr_XPath2">
Contenu conditionnel 2

</xsl:when>

<xsl:otherwise>
Contenu conditionnel n
</xsl:otherwise>
</xsl:.choose>

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL

= XSLT : les éléments
Génération de contenus XML
= <xsl:elementname="p" namespace="xhtml|">Contenu de
I'élément (ici: un paragraphe XHTML)</xsl:element>
Remarque : <xsl:element> n’est nécessaire que lorsque
le nom de I'élément a générer doit étre calculé
<xsl:attribute name="href"
namespace="xhtml">Contenu de I'attribut (ici :
référence XHTML)</xsl:attribute>
Remarque : <xsl:attribute>
auquel il se rapporte
<xsl:text>Contenu textuel quelconque.</xsl:text>
Remarque : <xsl:text> ne sert qu’au formatage du
texte (gestion des espaces...)
= Tout autre élément XML bien formé est accepté

se place dans I'élément

Transformation d’arbres XML, : XSL.

o Les deux composants de XSL

= XSLT : les éléments
Structures de controle
= <xsl:if test="expr_XPath">Contenu
conditionnel</xsl:if>
- Le contenu conditionnel peut étre composé d’autres
éléments (<xsl:value-of select="expr_XPath" />
= <xsl:for-each select="expr_XPath">Contenu
répété</xsl:for-each>
- Cet élément est redondant avec <xsl:apply-
templates /> mais rend la feuille de style moins lisible

Outils de programmation avec XML

o Définitions
= Qu’est-ce qu'un parser ?
« Un module logiciel [...] utilisé pour lire les
documents XML et pour accéder a leur contenu et a
leur structure. »
= Qu’'est-ce qu’une application ?
« On suppose qu'un processeur XML effectue son

travail pour le compte d'un autre module, appelé
I'application. »

Outils de programmation avec XML

o Communications entre parsers et applications
= Rappel : Application Programming Interface
Outils
Protocole de communication
= Schéma des échanges de données

Q
<2xml version

- < gl
W Requétes
<IDOCTYPE Doc) licrosoft Windows 28
ZDowmert> R k-y‘(o Copuright 1985-2
Réponse

I _
<Element> Données ‘ 1\)Java MonpeLiKHL, java_
de

Contenu
Document données Parser APl Application

</Element>
</Document>

XML et Java

o JAXP : au départ
= Java API for XML Parsing
= Version 1.0
Package Java additionnel au JDK 1.3
= Couche intégration des parsers
Instanciation du processeur transparente

= Couche API
Implémentation des API DOM et SAX

XML et Java

o Standardisation des API
= Nombreux parsers
= API spécifiques
.Le DOM (W3C)
. SAX (xml-dev)
o Standardisation des accés aux parsers
= Données conformes aux standards XML
= Langage de programmation identique
= Applications conformes aux API standards
= Parsers implémentant ces API
26 %! Parsers différents pour faire la méme chose

XML et Java

o JAXP : aujourd’hui
= Java API for XML Processing
= Version 1.2
Package Java intégré au JDK 1.4
= Couche intégration des parsers
Instanciation du processeur transparente
= Couche API
Implémentation des API DOM et SAX
Prise en charge des schémas XML
TrAX (Transformation API for XML)

XML et Java

o JAXP : les packages java

= Couche intégration des parsers
javax.xml.parsers
= Couche API
API DOM
org.w3c.dom
API SAX
org.xml.sax
org.xml.sax.helpers
org.xml.sax.ext
TrAX (Transformation API for XML)
javax.xml.transform

= XSLT
= XSLTC
XML et Java

o JAXP : l'intégration des parsers
= Le package javax.xml.parsers
Les classes abstraites « factory »
= Destinées a étre instanciées
= Possédent une méthode newlinstance()
—=DOM : DocumentBuilderFactory
- Possede une méthode newDocumentBuilder()
—SAX : SAXParserFactory
- Possede une méthode newSAXParser()

XML et Java

o JAXP : l'intégration des parsers
= Le package javax.xml.parsers

Les classes abstraites « parser »
= Instanciées par les objets factory
= Transparentes vis-a-vis du parser utilisé
= Possédent une méthode parse()
—=DOM : DocumentBuilder
—=SAX : SAXParser

XML et Java

o JAXP : l'intégration des parsers
= Le package javax.xml.parsers

L’erreur FactoryConfigurationError
= Erreur dans la configuration du parser par la classe
factory
L'exception ParserConfigurationException

XML et Java

import javax.xml.parsers.DocumentBuilder;

import javaxxmiparsers.D :
import javaz xmi.parsers. Factory ConfigurationError: Exemple de
import javax.xml.parsers.ParserConfigurationException;

code DOM

import org.xml sax. SAXException;
import org.xml.sax. SAXParseException;

import org.wac.dom. Document;
import org.wc.dom. DOMException;
public class DomParsing{

static Document doc;

public static void main()

D dbf =D)
try {
o

builder = dbf. D
doc = builder parse(new File(*CV.xml"));

catch (ParserConfigurationException pce) { // Peut-tre généré par la méthode
I/ newDocumentBuilder()

catch (SAXException se) { // Peut étre générée par la méthode parse()

b

catch (IOException ioe) { // Peut étre générée par la méthode parse()

b
catch (lllegalArgumentException iae) { // Peut étre générée par la méthode parse()

} i main

XML et Java

import javax i parsers SAXParserFactory; Exemple de
import javax.xml.parsers.ParserConfigurationException;
importjavax xml.parsers. SAXParser; code SAX

import org.xml.sax.*;
import org.xml.sax.helpers. DefaultHander;
public class SAXParsing extends DefaultHandler {
public static void main() {
DefaultHandler dh = new SAXParsing();
y factory =

try {
SAXParser sp = factory.newSAXParser();
sp.parse(new File(*CV.xml’), dh):

} catch (Throwable 1) {.}

}

publicvoid startDocument () throws SAXException { ...}

publicvoid endDocument () throws SAXException { ... }

publicvoid startElement (String namespaceURI, String LocalName, String QualifiedName,

Attributes atts) throws SAXException { ...}

publicvoid endElement (String namespaceURI, String LocalName, String QualifiedName)
throws SAXException { ...}

publicvoid characters (char buffl, int offset, int len) throws SAXException { ...}

}

XML et Java

o JDOM : l'alternative a JAXP ?
= Représentation arborescente d’'un document XML
= Plus « facile » a utiliser que DOM et SAX
= Compatible avec DOM et SAX
Surcouche de DOM et SAX
= Pas incompatible avec JAXP

= Packages
org.jdom ; org.jdom.adapter ; org.jdom.input ;
org.jdom.output ; org.jdom.transform ;
org.jdom.xpath

= Site web

LLes API standard

o Le DOM : généralités

= Modéle objet de document

= Motivations
Rendre les applications W3 dynamiques
Accéder aux documents HTML et XML depuis un
langage de programmation

= Utilisations courantes
Intégré aux navigateurs
Utilisé en programmation comme API XML

= Origine : DOM working group (W3C)
Début : 1997 ; fin: ...
Standardiser les tentatives existantes

Les API standard

o Le DOM : principes fondamentaux

= Représentation arborescente d’un document
Tout le document est chargé en mémoire
Navigation dans la structure arborescente
Représentation des nceuds par des interfaces
= Propriétés
= Méthodes
= Recommandations sous forme de niveaux
Niveau 0 : avant...
Niveau 1 : octobre 1998
Niveau 2 : depuis novembre 2000
Niveau 3 : depuis janvier 2004

Les API standard

o Le DOM : fonctionnalités

DOM Level 3 (Working Draft))

Core
(with Namespaces, XML Base)

(e [resa || vassion || ouswe J[vews]

Events
XPath I (with Events Group) I Style Sheets
] User Interface | Cascading
Mutation Evgnlsl HTML Events I Interf eascadng, I

i
Cascading
Keyboard Ever\tsl | Text Events I ‘ Mouse Events I ‘ Style Sheets 2 I

—® Extends -~-P Depends

Les API standard

o Le DOM : modules

= DOM Core : [oovmpemenaio] [Nogetst | [Node | [Namednodewap]

1

[ooamenrragred [oommen] [gemen] [crmoeona] [v

Notation

[I I 1
= DOM XML : [Cooamentye | [ey] | I J

Text

= Détail des interfaces : poly p. 93

Les API standard

o Le DOM : hiérarchisation des interfaces (module
Core
) parentNode

)

Les API standard

o Le DOM : utilisation en Java
= Package JAXP javax.xml.parsers
= Package spécifique org.w3c.dom
= Liste des interfaces (Core + XML) : poly p. 113
= Détail des interfaces :

LLes API standard

o SAX : principes fondamentaux
= Simple API for XML
= Issue d’'une communauté de développeurs
(liste xml-dev, sur)
= Fondée sur la programmation événementielle

Pas de chargement de tout le document en mémoire
Pas de vision globale du document

= A l'origine : développée en Java
= Depuis : implémentations dans d‘autres langages
= 2 versions différentes

Les API standard

o SAX : principes fondamentaux
= Des interfaces
Pour programmer des parsers compatibles SAX
Pour programmer des applications compatibles SAX
= Des classes
Pour faciliter la programmation
Pour la gestion des erreurs
= Des exceptions

Les API standard

o SAX : utilisation en Java
= Procédure
Instanciation d’un parser
Lancement de I'analyse

Appel/implémentation de fonctions spécifiques
= Interface XMLReader : setDTDHandler()

Les API standard

o SAX : utilisation en Java
= Package JAXP javax.xml.parsers
= Packages SAX org.xml.sax , org.xml.sax.helpers B
org.xml.sax.ext
= Présentation générale : poly p. 115
= Détails

= Interface ContentHandler : startElement() , characters()
= Interface Attributes : getLength() , getType , getValue()
= Interface ErrorHandler : fatalError() ,error() , warning()
- .
Conclusion

o Dans ce cours, on a vu
= Le contexte et I'historique
= Les principes et langages de base
= Les outils de traitement
o Ce qu’il faut retenir
= La signification des acronymes
= Les principes de base
= Le schéma général d’articulation des langages
et des outils
o Ce qu'il est autorisé d’oublier
= Les détails de syntaxe des différents langages

Conclusion

o Ce qu’on n‘a pas vu
= Intégration XML / bases de données
Langage : XQuery
Connaissances nécessaires : XPath, XML Schémas, SQL
= Services web et applications réparties sur le web
Langages : SOAP, WSDL, UDDI
Connaissances nécessaires : POO, objets répartis,
protocoles web, serveurs d’applications
= Web sémantique
Langages : RDF, RDF-S, OWL
Connaissances nécessaires : logiques de description,

techniques de raisonnement, ingénierie des
connaissances, intelligence artificielle...

10

