
1

Structuration et échange

d’informations sur le Web

Université Lyon 1
Master CCI

L. Médini, Janvier 2009

Résumé de l’épisode précédent

� Introduction
� Définitions
� Historique
� Aperçu de quelques langages

� XML : principes de base
� Hérité de SGML (beaucoup plus concis)
� Méta-langage de description des données
� Restrictions de syntaxe et non de contenu
� Documents XML valides : les DTD

� HTML et XHTML
� Langages de description des pages Web
� Syntaxe
� Langage de feuilles de style : CSS

Plan du cours 2 : Applications et

programmation XML

� Applications XML
� Notion d’espaces de noms XML
� Retour sur la validation de documents : les
schémas XML

� Le langage de feuilles de style XSL
� Xpath
� XSLT

� Programmation XML
� Les API existantes
� Le Document Object Model (DOM)
� Simple API for XML (SAX)

URI, URL et URN

� URI : Uniform Resource Identifier
� But : identifier de façon unique une ressource sur le web

� En disant où elle se trouve
� Donner son URL (Uniform Resource Locator)
� Format : protocole ":" chemin "/" nom de fichier "/" requête
� http://www/w3.org/2001/XMLSchema

� Permet d’accéder réellement à la ressource (tant qu’elle existe)
� Enregistrement des DNS auprès de l’entité concernée

� En disant comment elle s’appelle
� Donner son URN (Uniform Resource Name)
� Format : "URN:" NID (namespace identifier) ":" NSS (namespace
specific string)

� URN:ISBN:0-395-36341-1

� Choix plus « libre », et correspondant mieux à la définition d’un
espace de noms

� Enregistrement des NID à l’IANA (Internet Assigned Numbers
Authority)

� Syntaxe générique

URI, URL et URN

� URI : Uniform Resource Identifier
� But : identifier de façon unique une ressource sur le web
� Syntaxe générique

� « scheme » ":" autorité ":" chemin ":" requête ":" fragment
� Avec le temps, on s’est mis à penser que « urn » peut aussi
être un URI scheme

� D’un point de vue pratique, les URL sont plus sures
afin d’éviter les conflits entre les espaces de noms

� Un URI est uniquement un identificateur, qui n’a pas
de sens en soi

� Il ne signifie rien pour le processeur XML, qui le
transmet tel quel à l’application

Espaces de noms XML

� Position du problème
� Liberté de choix des noms de balises et des
attributs XML

⇒Conflits et polysémie entre ces noms/attributs
� Besoin d’associer plusieurs applications dans un
même document

⇒« Préfixage » des noms de balises par l’URI de
l’application concernée

2

Espaces de noms XML
� Noms qualifiés (qualified names)

� Noms de balises appartenant à des espaces de noms
� Syntaxe : PrefixeDEspaceDeNoms:PartieLocale
� Exemple : <xsl:stylesheet>
� Le préfixe fait référence à un URI
� Les noms d’attributs peuvent également être préfixés

� Association d’un préfixe à un URI
� Attribut xmlns
� Exemple : <xhtml:html

xmlns:xhtml="http://www.w3.org/1999/xhtml">

� Remarques
� Portée : l’élément porteur de l’attribut xmlns
� Bien entendu, un document XML peut contenir des éléments se
référant à plusieurs espaces de noms

� Le préfixe en lui-même n’a aucune signification
� En interne, le parser passe à l’application des « noms pleinement
qualifiés », où le préfixe est remplacé par la valeur de l’URI

Espaces de noms XML

� Espace de noms par défaut
� Pas de préfixe d’espace de noms
� Exemple : <html xmlns="http://www.w3.org/1999/xhtml">

� Annulation d’espaces de noms
� Par valeur de l’attribut xmlns vide : xmlns=""

� Exemple de code <?xml version="1.0"?>
<CV xmlns="http://www.univ-lyon1.fr/etds/CV/english"

xmlns:xhtml="http://www.w3.org/1999/xhtml">
<personne>

<civil_status>
<title>Mr.</title>

</civil-status>
...

</personne>
<xhtml:html>

<xhtml:head>
<xhtml:title>CV of a student</xhtml:title>

</xhtml:head>
<xhtml:body>
...
</xhtml:body>

</xhtml:html>
</CV>

Document XML valide : les schémas XML

� Comparaison DTD/Schémas
Caractéristique DTD Schémas

Syntaxe Notation EBNF + pseudo-XML XML 1.0

Outils Outils SGML existants (chers et
complexes)

Tous les outils XML existants et à venir

Supports DOM/SAX Non Oui (comme pour les fichiers XML).

Modèles de contenu - Listes : ordonnées ou de choix
- Cardinalité : 0, 1 ou plusieurs

occurrences
- Pas d’éléments nommés ou de

groupes d’attributs.

- Listes : ordonnées et de choix (détails de
contenus mixtes)

- cardinalité : spécification d’un nombre
exact d’occurrences possible

- groupes de modèles nommés

Typage des données Faible (chaînes, jetons nominaux, ID…) Fort (nombres, chaînes, date/heure, booléen,
structures…)

Héritage Non Oui

Extensibilité Non (pas sans modification de la
recommandation XML)

Oui (puisque fondés sur l’extensibilité de XML)

Contraintes légales Compatibilité avec SGML Aucune (simplement des « emprunts » aux
DTD, comme pour les types de données)

Nombre de vocabulaires
supportés

Une seule DTD par document Autant que nécessaire (grâce aux espaces de
noms)

Dynamicité Aucune : les DTD sont en lecture seule Peuvent être modifiés dynamiquement

Document XML valide : les schémas XML

� Principes de base des schémas XML
� Utilisation de la syntaxe et des outils XML

⇒ Extensibilité
⇒ Dynamicité

� Possibilité de définir ses propres types de
données et modèles de contenus

� Un schéma définit une classe de documents
dont chaque document est une instance

� S’appuient sur les notions de
� Types de données
� Structures

Document XML valide : les schémas XML

� Les types de données : 3 dichotomies
� Hiérarchie arborescente à partir d’un ur-type

� Types primitifs : premier niveau de décomposition
� Types dérivés : tous les niveaux suivants

� La recommandation définit un ensemble de types
� Types intégrés
� Types dérivés par l’utilisateur

� Atomicité
� Types atomiques : dont les valeurs ne peuvent pas être
décomposées

� Types listes : ensembles de valeurs atomiques

Remarques
� Tous les types primitifs sont intégrés. La réciproque est fausse
� string est un type atomique

3

Document XML valide : les schémas XML

� Types de données
� Les types de données comportent 3
caractéristiques

� Espace lexical : définit tous les caractères représentant
les valeurs possibles

� Espace de valeurs : ensemble des valeurs exprimé dans
l’espace lexical

� Facettes : propriétés définitionnelles de l’ensemble des
valeurs

� Facettes fondamentales : propriétés abstraites (égalité,
bornes, ordre, cardinalité, numérique ou non)

� Facettes de contraintes : limitent certaines propriétés (12
facettes : length, enumeration, minExclusive…)

� Voir poly p. 60

Document XML valide : les schémas XML

� Les structures
� Permettent de définir des types de données
(contenus et attributs) selon deux méthodes

� SimpleType : dérivation de types atomiques
� Par restriction (par intension)
� Par liste (par extension)
� Par union (sur-ensemble de types existants)

<xsd:simpleType name =”myInteger”>
<xsd:restriction base="xs:integer">
<xsd:minInclusive value="-2"/>
<xsd:maxExclusive value="5"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”myIntList”>
<xsd:list>
<xsd:simpleType>
<xsd:restriction base=”xs:integer”>
<xsd:maxInclusive value=”100”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:list>
</xsd:simpleType>

<xsd:simpleType name=”intOrUndefined”>
<xsd:union>
<xsd:simpleType>
<xsd:restriction base=”xs:integer”/>

</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base=”xs:NMTOKEN”>
<xsd:enumeration value=”undefined”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

Document XML valide : les schémas XML

� Les structures
� Permettent de définir des types de données
(contenus et attributs) selon deux méthodes

� ComplexType : autres types de dérivation
� Dérivation

� par restriction d’un type de base complexe,
� par extension d’un type de base (simple ou
complexe),

� par restriction de l’ur-type definition
� En pratique : la définition d’un type complexe est une
composition

� De séquences (ET)
- ordonnées : xsd:sequence
- non-ordonnées : xsd:all

� De choix (OU) : xsd:choice

Document XML valide : les schémas XML

� Les structures
� Définition d’un élément

� Avec la balise xsd:element

� En utilisant le type choisi (simple ou complexe)

� Définition d’un attribut
� Avec la balise xsd:attribute

� En utilisant un type simple

� Éléments de syntaxe : poly p. 61.
� Pour aller plus loin : un cours très instructif
http://globalcomputing.epfl.ch/unifr/seance02-xml-schema-
1/xml-schema-notes.pdf

<xs:element name="recette">
<xs:complexType>
<xs:sequence>
<xs:element name="titre" type="xs:string"/>
<xs:element name="commentaire" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element name="item" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="entete" type="xs:string" minOccurs="0"/>
<xs:choice maxOccurs="unbounded">
<xs:element name="ingredient" type="xs:string"/>
<xs:element name="preparation" type="xs:string"/>

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="MusicDescription">
<xs:complexType>
<xs:all>
<xs:element name="country" type="xs:string"/>
<xs:element name="originalTitle" type="xs:string"/>
<xs:element name="author" type="xs:string"/>

</xs:all>
</xs:complexType>
</xs:element>

<xs:element name="picture" minOccurs="0">
<xs:complexType>
<xs:attribute name="source" type="xs:anyURI"/>

</xs:complexType>
</xs:element>

Document XML valide : les schémas XML

� Préambule d’un schéma
� Avec gestion des espaces de noms

<xsd:schema xmlns:xsd="http://www/w3.org/2001/XMLSchema”

xsd:targetNamespace="http://www.monsite.com/monnamespace">

� Sans gestion des espaces de noms
<xsd:schema xmlns:xsd="http://www/w3.org/2001/XMLSchema"

xsd:noTargetNamespace="noTargetNamespace">

ou simplement
<xsd:schema xmlns:xsd="http://www/w3.org/2001/XMLSchema">

4

Document XML valide : les schémas XML

� Association d’un document à un schéma
� Avec gestion des espaces de noms

<ici:element

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://monsite.com/monnamespace

http://monsite.com/monnamespace/schema/MonSchema.xsd”

xmlns:ici=”http://monsite.com/monnamespace”>

� Sans gestion des espaces de noms
<element

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”http://monsite.com/monnames
pace/schema/MonSchema.xsd”>

� Dans tous les cas, il faut fournir une URI vers le
schéma

Transformation d’arbres XML : XSL

� Caractéristiques de XSL
� Officiellement : XML Stylesheet Language
� En pratique, ça ne sert à rien d’appliquer des
éléments de style à un document XML

� Mais XSL fournit un mécanisme très puissant
pour transformer un arbre XML

� En un autre arbre XML (échange de données)
� En un arbre XHTML (visualisation des données XML)
� En un texte simple (fichier non destiné à une
application utilisant un parser XML)

� En un document papier formatté (XSL-FO)

Transformation d’arbres XML : XSL

� Utilisation la plus courante de XSL

Niveau
structuration

Niveau
composition

Niveau
visualisation

Application : navigateur…

Processeur XML

Processeur XSLT

Arbre XML source
(données)

DTD ou schéma XML
(structure)

Document XHTML

Mise en forme
(feuilles de style CSS)

Description de l’arbre résultant
(modèle de transformationXSL)

XPath Données et méta-
données

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XPath

� Permet de pointer vers les données de l’arbre XML
� pour le parcours de documents XML
� pour le test de valeurs associées aux contenus ou aux
attributs d’éléments

� Ne respecte pas la syntaxe XML
� pour ne pas « perturber » l’analyse des feuilles de style
XSLT par le parser XML

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XPath

� Nœud
� Tout type de données (élément, attribut, PI)
� Racine du document : '/‘
� Les éléments sont identifiés par leurs noms
� Les attributs sont identifiés par '@' suivi du nom de
l’attribut

� Chemin de localisation
� Absolu : à partir de la racine de l’arbre XPath
� Relatif : à partir du nœud contextuel
� Récursif : à partir du nœud contextuel, mais seulement
« vers le bas »

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XPath

� Axes de navigation (poly p. 75)
� Déplacements complexes dans l’arbre XPath
� Syntaxe : Nom_D_Axe::Nom_De_Noeud
� Recommandation : http://www.w3.org/TR/xpath20/#axes

5

Transformation d’arbres XML : XSL

Nom d’axe Description Exemple d’utilisation/
syntaxe abrégée

self Nœud contextuel self::node() ou
./node() ou .

child Enfants du nœud contextuel child::Etat_civil ou
Etat_civil (défaut)

descendant Tout enfant, petit enfant etc. du nœud contextuel descendant::Etat_civil

descendant-or-
self

Comme descendant + le nœud contextuel lui-même descendant-or-self::
Etat_civil ou .//Etat_civil

parent Parent du nœud contextuel parent::Prenom ou
../Prenom

ancestor Tout parent, grand parent etc. du nœud contextuel ancestor::Prenom

ancestor-or-self Comme parent + le nœud contextuel lui-même ancestor-or-self::Prenom

following-sibling Tous les frères suivants du nœud contextuel (vide si
le nœud est un attribut)

following-sibling::Nom

preceding-sibling Tous les frères précédents du nœud contextuel (vide
si le nœud est un attribut)

preceding-sibling::Prenom

following following–sibling + descendants de tous les nœuds
frères suivants

following::Nom

preceding preceding–sibling + descendants de tous les nœuds
frères précédents

preceding::Prenom

attribute Attributs du nœud contextuel attribute::id ou./@id

namespace Tous les nœuds appartenant au même espace de
noms que le nœud indiqué

namespace::xhtml:div

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XPath

� Opérateurs et fonctions
� Expression de caractéristiques de sélection
complexes

� Communs avec XQuery
� Recommandation à part entière :
http://www.w3.org/TR/xquery-operators/

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XPath

� Opérateurs et fonctions
� Accesseurs

� Pour récupérer un élément d’un nœud
� Exemples : node-name(), string(), base-uri()

� Génération d’erreurs
� error()

� Génération de traces
� trace()

� Constructeurs
� Pour les types de données XML spécifiques
� Exemple : MonType()

� Casting entre types de données

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : principes de base

� Description de l’arbre résultant (programmation
déclarative)

� Application XML définissant des « éléments de
transformation »
⇒Référence à un espace de noms spécifique « xsl: »

� Balises spécifiques interprétées par un processeur XSLT
� Structuration par modèles (« templates ») de contenus

� Définissant le traitement à appliquer à un élément repéré
par une expression XPath

� Imbriqués grâce à des balises d’application de templates
�parallèle avec les fonctions en programmation déclarative

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : syntaxe

� Élément racine
<xsl:stylesheet version="1.0"

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

� Éléments de premier niveau (cardinalité=0 ou 1)
� <xsl:output> : définit le type d’arbre de sortie

� Attribut method : 3 valeurs possibles (text , html , xml)
� Autres attributs : version , encoding , standalone ,

indent …
� <xsl:include> et <xsl:import> : permettent d’inclure
d’autres feuilles de style

� Attribut href : URI de la ressource à inclure

� Différence entre les deux : règles de priorités

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : syntaxe

� Éléments de premier niveau (cardinalité=0 ou 1)
� <xsl:strip-space> et <xsl:preserve-space> : gestion
des espaces dans l’arbre résultant (resp. suppression et
conservation)

� Attribut elements : noms des éléments concernés
séparés par des espaces

� <xsl:template> : modèle racine de l’arbre de sortie
� Attribut match : désigne le nœud XPath concerné par le
modèle (au premier niveau, toujours "/")

� Contient la racine de la déclaration de l’arbre de sortie
� Autres éléments (key, variable, attribute-set, param) : voir
la recommandation

6

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : les templates

� Définition
� Modèles simples : <xsl:template match="noeud_XPath">

� L’expression XPath qui définit le nœud peut inclure un
filtre

� Ce nœud devient le nœud contextuel dans le template
� Modèles nommés : <xsl:template name="nom_tmplate">

� Appel
� Modèles simples :

<xsl:apply-templates select="expr_XPath" />

� L’expression XPath est un chemin de localisation qui
désigne le nœud

� Modèles nommés :
<xsl:call-template name="nom_tmplate" />

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : les éléments

� Génération de contenus XML
� <xsl:element name="p" namespace="xhtml">Contenu de

l’élément (ici: un paragraphe XHTML)</xsl:element>

Remarque : <xsl:element> n’est nécessaire que lorsque
le nom de l’élément à générer doit être calculé

� <xsl:attribute name="href"
namespace="xhtml">Contenu de l’attribut (ici :
référence XHTML)</xsl:attribute>

Remarque : <xsl:attribute> se place dans l’élément
auquel il se rapporte

� <xsl:text>Contenu textuel quelconque.</xsl:text>

Remarque : <xsl:text> ne sert qu’au formatage du
texte (gestion des espaces…)

� Tout autre élément XML bien formé est accepté

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : les éléments

� Traitement de contenus de l’arbre XML source
� <xsl:value-of select="expr_XPath" />

� Permet d’obtenir la valeur d’un nœud (élément ou
attribut)

� L’expression XPath est un chemin de localisation
� Elle désigne un nœud à partir du nœud contextuel

� <xsl:copy-of select="expr_XPath" />

� Permet de recopier dans l’arbre destination toute une
partie de l’arbre source

� L’expression XPath fonctionne comme précédemment
� <xsl:copy />

� Permet de copier uniquement un élément sans ses
sous-éléments

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : les éléments

� Structures de contrôle
� <xsl:if test="expr_XPath">Contenu

conditionnel</xsl:if>

� Le contenu conditionnel peut être composé d’autres
éléments (<xsl:value-of select="expr_XPath" />)

� <xsl:for-each select="expr_XPath">Contenu
répété</xsl:for-each>

� Cet élément est redondant avec <xsl:apply-
templates /> mais rend la feuille de style moins lisible

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : les éléments

� Structures de contrôle
� <xsl:choose>

<xsl:when test="expr_XPath1">

Contenu conditionnel 1

</xsl:when>

<xsl:when test="expr_XPath2">

Contenu conditionnel 2

</xsl:when>

...

<xsl:otherwise>

Contenu conditionnel n

</xsl:otherwise>

</xsl:choose>

Outils de programmation avec XML

� Définitions
� Qu’est-ce qu’un parser ?

� « Un module logiciel […] utilisé pour lire les
documents XML et pour accéder à leur contenu et à
leur structure. »

� Qu’est-ce qu’une application ?
� « On suppose qu'un processeur XML effectue son
travail pour le compte d'un autre module, appelé
l'application. »

http://babel.alis.com/web_ml/xml/REC-xml.fr.html#dt-xml-proc

7

Outils de programmation avec XML

� Communications entre parsers et applications
� Rappel : Application Programming Interface

� Outils
� Protocole de communication

� Schéma des échanges de données

Document

Échange

de

données Parser API Application

<?xml version
<!DOCTYPE Doc
<Document>

<Element>
Contenu

</Element>
</Document>

Données

Requêtes

Réponse
s

Erreurs

XML et Java

� Standardisation des API
� Nombreux parsers
� API spécifiques
⇒ Le DOM (W3C)
⇒SAX (xml-dev)

� Standardisation des accès aux parsers
� Données conformes aux standards XML
� Langage de programmation identique
� Applications conformes aux API standards
� Parsers implémentant ces API
?��! Parsers différents pour faire la même chose

XML et Java

� JAXP : au départ
� Java API for XML Parsing
� Version 1.0

Package Java additionnel au JDK 1.3

� Couche intégration des parsers
Instanciation du processeur transparente

� Couche API
Implémentation des API DOM et SAX

XML et Java

� JAXP : aujourd’hui
� Java API for XML Processing
� Version 1.2

Package Java intégré au JDK 1.4

� Couche intégration des parsers
Instanciation du processeur transparente

� Couche API
� Implémentation des API DOM et SAX
� Prise en charge des schémas XML
� TrAX (Transformation API for XML)

� XSLT
� XSLTC

XML et Java

� JAXP : les packages java
� Couche intégration des parsers

javax.xml.parsers

� Couche API
� API DOM

org.w3c.dom

� API SAX
org.xml.sax

org.xml.sax.helpers

org.xml.sax.ext

� TrAX (Transformation API for XML)
javax.xml.transform

XML et Java

� JAXP : l’intégration des parsers
� Le package javax.xml.parsers

� Les classes abstraites « factory »
� Destinées à être instanciées
� Possèdent une méthode newInstance()

⇒DOM : DocumentBuilderFactory

� Possède une méthode newDocumentBuilder()

⇒SAX : SAXParserFactory

� Possède une méthode newSAXParser()

8

XML et Java

� JAXP : l’intégration des parsers
� Le package javax.xml.parsers

� Les classes abstraites « parser »
� Instanciées par les objets factory
� Transparentes vis-à-vis du parser utilisé
� Possèdent une méthode parse()

⇒DOM : DocumentBuilder

⇒SAX : SAXParser

XML et Java

� JAXP : l’intégration des parsers
� Le package javax.xml.parsers

� L’erreur FactoryConfigurationError

� Erreur dans la configuration du parser par la classe
factory

� L’exception ParserConfigurationException

� ...

XML et Java
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
public class DomParsing{

static Document doc;
public static void main()
{

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
try {

DocumentBuilder builder = dbf.newDocumentBuilder();
doc = builder.parse(new File(“CV.xml”));

...}
catch (ParserConfigurationException pce) { // Peut-être généré par la méthode
} // newDocumentBuilder()
catch (SAXException se) { // Peut être générée par la méthode parse()
...}
catch (IOException ioe) { // Peut être générée par la méthode parse()
...}
catch (IllegalArgumentException iae) { // Peut être générée par la méthode parse()
...}

} // main

Exemple de
code DOM

XML et Java

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
public class SAXParsing extends DefaultHandler {

public static void main() {
DefaultHandler dh = new SAXParsing();
SAXParserFactory factory = SAXParserFactory.newInstance();
try {

SAXParser sp = factory.newSAXParser();
sp.parse(new File(“CV.xml”), dh);

} catch (Throwable t) {...}
}
public void startDocument () throws SAXException { ... }
public void endDocument () throws SAXException { ... }
public void startElement (String namespaceURI, String LocalName, String QualifiedName,

Attributes atts) throws SAXException { ... }
public void endElement (String namespaceURI, String LocalName, String QualifiedName)

throws SAXException { ... }
public void characters (char buf[], int offset, int len) throws SAXException { ... }
...

}

Exemple de
code SAX

XML et Java

� JDOM : l’alternative à JAXP ?
� Représentation arborescente d’un document XML
� Plus « facile » à utiliser que DOM et SAX
� Compatible avec DOM et SAX

⇒ Surcouche de DOM et SAX

� Pas incompatible avec JAXP
� Packages

� org.jdom ; org.jdom.adapter ; org.jdom.input ;
org.jdom.output ; org.jdom.transform ;
org.jdom.xpath

� Site web
� http://www.jdom.org

Les API standard

� Le DOM : généralités
� Modèle objet de document
� Motivations

� Rendre les applications W3 dynamiques
� Accéder aux documents HTML et XML depuis un
langage de programmation

� Utilisations courantes
� Intégré aux navigateurs
� Utilisé en programmation comme API XML

� Origine : DOM working group (W3C)
� Début : 1997 ; fin : …
� Standardiser les tentatives existantes

9

Les API standard

� Le DOM : principes fondamentaux
� Représentation arborescente d’un document

� Tout le document est chargé en mémoire
� Navigation dans la structure arborescente
� Représentation des nœuds par des interfaces

� Propriétés
� Méthodes

� Recommandations sous forme de niveaux
� Niveau 0 : avant…
� Niveau 1 : octobre 1998
� Niveau 2 : depuis novembre 2000
� Niveau 3 : depuis janvier 2004

Les API standard

� Le DOM : fonctionnalités

Les API standard

� Le DOM : modules

� DOM Core :

� DOM XML :

� Détail des interfaces : poly p. 93

DOMImplementation NodeList Node NamedNodeMap

DocumentFragment Document Element AttrCharacterData

Text Comment

Node

DocumentType Entity EntityReference ProcessingInstructionNotation

Text

CDATASection

Les API standard

� Le DOM : hiérarchisation des interfaces (module
Core)

parentNode

previousSibling

Node

childNodes

firstChild

item(0)

lastChild

nextSibling

item(0)

item(Node.childNodes.length - 1)

Les API standard

� Le DOM : utilisation en Java
� Package JAXP javax.xml.parsers

� Package spécifique org.w3c.dom

� Liste des interfaces (Core + XML) : poly p. 113
� Détail des interfaces :
http://java.sun.com/javase/6/docs/api/

Les API standard

� SAX : principes fondamentaux
� Simple API for XML
� Issue d’une communauté de développeurs
(liste xml-dev, sur http://www.xml.org)

� Fondée sur la programmation événementielle
� Pas de chargement de tout le document en mémoire
� Pas de vision globale du document

� À l’origine : développée en Java
� Depuis : implémentations dans d’autres langages
� 2 versions différentes

10

Les API standard

� SAX : principes fondamentaux
� Des interfaces

� Pour programmer des parsers compatibles SAX
� Pour programmer des applications compatibles SAX

� Des classes
� Pour faciliter la programmation
� Pour la gestion des erreurs

� Des exceptions

Les API standard

� SAX : utilisation en Java
� Procédure

� Instanciation d’un parser
� Lancement de l’analyse
� Appel/implémentation de fonctions spécifiques

� Interface XMLReader : setDTDHandler()

� Interface ContentHandler : startElement() , characters()

� Interface Attributes : getLength() , getType , getValue()

� Interface ErrorHandler : fatalError() , error() , warning()

Les API standard

� SAX : utilisation en Java
� Package JAXP javax.xml.parsers

� Packages SAX org.xml.sax , org.xml.sax.helpers ,
org.xml.sax.ext

� Présentation générale : poly p. 115
� Détails
http://java.sun.com/javase/6/docs/api/

Conclusion

� Dans ce cours, on a vu
� Le contexte et l’historique
� Les principes et langages de base
� Les outils de traitement

� Ce qu’il faut retenir
� La signification des acronymes
� Les principes de base
� Le schéma général d’articulation des langages
et des outils

� Ce qu’il est autorisé d’oublier
� Les détails de syntaxe des différents langages

Conclusion

� Ce qu’on n’a pas vu
� Intégration XML / bases de données

� Langage : XQuery
� Connaissances nécessaires : XPath, XML Schémas, SQL

� Services web et applications réparties sur le web
� Langages : SOAP, WSDL, UDDI
� Connaissances nécessaires : POO, objets répartis,
protocoles web, serveurs d’applications

� Web sémantique
� Langages : RDF, RDF-S, OWL
� Connaissances nécessaires : logiques de description,
techniques de raisonnement, ingénierie des
connaissances, intelligence artificielle…

