
Structuration et échange

d’informations sur le Web

Université Lyon 1Université Lyon 1
Master CCI

L. Médini, Janvier 2009

Résumé de l’épisode précédent

� Introduction
� Définitions
� Historique
� Aperçu de quelques langages

� XML : principes de base� XML : principes de base
� Hérité de SGML (beaucoup plus concis)
� Méta-langage de description des données
� Restrictions de syntaxe et non de contenu
� Documents XML valides : les DTD

� HTML et XHTML
� Langages de description des pages Web
� Syntaxe
� Langage de feuilles de style : CSS

Plan du cours 2 : Applications et

programmation XML

� Applications XML
� Notion d’espaces de noms XML
� Retour sur la validation de documents : les
schémas XML

� Le langage de feuilles de style XSL� Le langage de feuilles de style XSL
� Xpath
� XSLT

� Programmation XML
� Les API existantes
� Le Document Object Model (DOM)
� Simple API for XML (SAX)

URI, URL et URN

� URI : Uniform Resource Identifier
� But : identifier de façon unique une ressource sur le web

� En disant où elle se trouve
� Donner son URL (Uniform Resource Locator)
� Format : protocole ":" chemin "/" nom de fichier "/" requête
� http://www/w3.org/2001/XMLSchema

� Permet d’accéder réellement à la ressource (tant qu’elle existe)
� Enregistrement des DNS auprès de l’entité concernée

� En disant comment elle s’appelle
� Donner son URN (Uniform Resource Name)
� Format : "URN:" NID (namespace identifier) ":" NSS (namespace
specific string)

� URN:ISBN:0-395-36341-1

� Choix plus « libre », et correspondant mieux à la définition d’un
espace de noms

� Enregistrement des NID à l’IANA (Internet Assigned Numbers
Authority)

� Syntaxe générique

URI, URL et URN

� URI : Uniform Resource Identifier
� But : identifier de façon unique une ressource sur le web
� Syntaxe générique

� « scheme » ":" autorité ":" chemin ":" requête ":" fragment
� Avec le temps, on s’est mis à penser que « urn » peut aussi
être un URI schemeêtre un URI scheme

� D’un point de vue pratique, les URL sont plus sures
afin d’éviter les conflits entre les espaces de noms

� Un URI est uniquement un identificateur, qui n’a pas
de sens en soi

� Il ne signifie rien pour le processeur XML, qui le
transmet tel quel à l’application

Espaces de noms XML

� Position du problème
� Liberté de choix des noms de balises et des
attributs XML

⇒Conflits et polysémie entre ces noms/attributs
Besoin d’associer plusieurs applications dans un � Besoin d’associer plusieurs applications dans un
même document

⇒ « Préfixage » des noms de balises par l’URI de
l’application concernée

Espaces de noms XML
� Noms qualifiés (qualified names)

� Noms de balises appartenant à des espaces de noms
� Syntaxe : PrefixeDEspaceDeNoms:PartieLocale
� Exemple : <xsl:stylesheet>
� Le préfixe fait référence à un URI
� Les noms d’attributs peuvent également être préfixés

� Association d’un préfixe à un URI� Association d’un préfixe à un URI
� Attribut xmlns
� Exemple : <xhtml:html

xmlns:xhtml="http://www.w3.org/1999/xhtml">

� Remarques
� Portée : l’élément porteur de l’attribut xmlns
� Bien entendu, un document XML peut contenir des éléments se
référant à plusieurs espaces de noms

� Le préfixe en lui-même n’a aucune signification
� En interne, le parser passe à l’application des « noms pleinement
qualifiés », où le préfixe est remplacé par la valeur de l’URI

Espaces de noms XML

� Espace de noms par défaut
� Pas de préfixe d’espace de noms
� Exemple : <html xmlns="http://www.w3.org/1999/xhtml">

� Annulation d’espaces de noms
� Par valeur de l’attribut xmlns vide : xmlns=""

� Exemple de code <?xml version="1.0"?>� Exemple de code <?xml version="1.0"?>
<CV xmlns="http://www.univ-lyon1.fr/etds/CV/english"

xmlns:xhtml="http://www.w3.org/1999/xhtml">
<personne>

<civil_status>
<title>Mr.</title>

</civil-status>
...

</personne>
<xhtml:html>

<xhtml:head>
<xhtml:title>CV of a student</xhtml:title>

</xhtml:head>
<xhtml:body>
...
</xhtml:body>

</xhtml:html>
</CV>

Document XML valide : les schémas XML

� Comparaison DTD/Schémas
Caractéristique DTD Schémas

Syntaxe Notation EBNF + pseudo-XML XML 1.0

Outils Outils SGML existants (chers et
complexes)

Tous les outils XML existants et à venir

Supports DOM/SAX Non Oui (comme pour les fichiers XML).

Modèles de contenu - Listes: ordonnées ou de choix - Listes: ordonnées et de choix (détails de Modèles de contenu - Listes: ordonnées ou de choix
- Cardinalité : 0, 1 ou plusieurs

occurrences
- Pas d’éléments nommés ou de

groupes d’attributs.

- Listes: ordonnées et de choix (détails de
contenus mixtes)

- cardinalité : spécification d’un nombre
exact d’occurrences possible

- groupes de modèles nommés

Typage des données Faible (chaînes, jetons nominaux, ID…) Fort (nombres, chaînes, date/heure, booléen,
structures…)

Héritage Non Oui

Extensibilité Non (pas sans modification de la
recommandation XML)

Oui (puisque fondés sur l’extensibilité de XML)

Contraintes légales Compatibilité avec SGML Aucune (simplement des « emprunts » aux
DTD, comme pour les types de données)

Nombre de vocabulaires
supportés

Une seule DTD par document Autant que nécessaire (grâce aux espaces de
noms)

Dynamicité Aucune : les DTD sont en lecture seule Peuvent être modifiés dynamiquement

Document XML valide : les schémas XML

� Principes de base des schémas XML
� Utilisation de la syntaxe et des outils XML

⇒ Extensibilité
⇒ Dynamicité

� Possibilité de définir ses propres types de � Possibilité de définir ses propres types de
données et modèles de contenus

� Un schéma définit une classe de documents
dont chaque document est une instance

� S’appuient sur les notions de
� Types de données
� Structures

Document XML valide : les schémas XML

� Les types de données : 3 dichotomies
� Hiérarchie arborescente à partir d’un ur-type

� Types primitifs : premier niveau de décomposition
� Types dérivés : tous les niveaux suivants

� La recommandation définit un ensemble de types
� Types intégrés
� Types dérivés par l’utilisateur

� Atomicité
� Types atomiques : dont les valeurs ne peuvent pas être
décomposées

� Types listes : ensembles de valeurs atomiques

Remarques
� Tous les types primitifs sont intégrés. La réciproque est fausse
� string est un type atomique

Document XML valide : les schémas XML

� Types de données
� Les types de données comportent 3
caractéristiques

� Espace lexical : définit tous les caractères représentant
les valeurs possiblesles valeurs possibles

� Espace de valeurs : ensemble des valeurs exprimé dans
l’espace lexical

� Facettes : propriétés définitionnelles de l’ensemble des
valeurs
� Facettes fondamentales : propriétés abstraites (égalité,
bornes, ordre, cardinalité, numérique ou non)

� Facettes de contraintes : limitent certaines propriétés (12
facettes : length, enumeration, minExclusive…)

� Voir poly p. 60

Document XML valide : les schémas XML

� Les structures
� Permettent de définir des types de données
(contenus et attributs) selon deux méthodes

� SimpleType : dérivation de types atomiques
� Par restriction (par intension)
Par liste (par extension)� Par liste (par extension)

� Par union (sur-ensemble de types existants)
<xsd:simpleType name =”myInteger”>
<xsd:restriction base="xs:integer">
<xsd:minInclusive value="-2"/>
<xsd:maxExclusive value="5"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”myIntList”>
<xsd:list>
<xsd:simpleType>
<xsd:restriction base=”xs:integer”>
<xsd:maxInclusive value=”100”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:list>
</xsd:simpleType>

<xsd:simpleType name=”intOrUndefined”>
<xsd:union>
<xsd:simpleType>
<xsd:restriction base=”xs:integer”/>

</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base=”xs:NMTOKEN”>
<xsd:enumeration value=”undefined”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

Document XML valide : les schémas XML

� Les structures
� Permettent de définir des types de données
(contenus et attributs) selon deux méthodes

� ComplexType : autres types de dérivation
� Dérivation

par restriction d’un type de base complexe,� par restriction d’un type de base complexe,
� par extension d’un type de base (simple ou
complexe),

� par restriction de l’ur-type definition
� En pratique : la définition d’un type complexe est une
composition

� De séquences (ET)
- ordonnées : xsd:sequence

- non-ordonnées : xsd:all

� De choix (OU) : xsd:choice

Document XML valide : les schémas XML

� Les structures
� Définition d’un élément

� Avec la balise xsd:element

� En utilisant le type choisi (simple ou complexe)

� Définition d’un attribut� Définition d’un attribut
� Avec la balise xsd:attribute

� En utilisant un type simple

� Éléments de syntaxe : poly p. 61.
� Pour aller plus loin : un cours très instructif
http://globalcomputing.epfl.ch/unifr/seance02-xml-schema-
1/xml-schema-notes.pdf

<xs:element name="recette">
<xs:complexType>
<xs:sequence>
<xs:element name="titre" type="xs:string"/>
<xs:element name="commentaire" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element name="item" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="entete" type="xs:string" minOccurs="0"/>
<xs:choice maxOccurs="unbounded">
<xs:element name="ingredient" type="xs:string"/>
<xs:element name="preparation" type="xs:string"/>

</xs:choice>
</xs:sequence>

</xs:complexType> <xs:element name="MusicDescription"></xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="MusicDescription">
<xs:complexType>
<xs:all>
<xs:element name="country" type="xs:string"/>
<xs:element name="originalTitle" type="xs:string"/>
<xs:element name="author" type="xs:string"/>

</xs:all>
</xs:complexType>

</xs:element>

<xs:element name="picture" minOccurs="0">
<xs:complexType>
<xs:attribute name="source" type="xs:anyURI"/>

</xs:complexType>
</xs:element>

Document XML valide : les schémas XML

� Préambule d’un schéma
� Avec gestion des espaces de noms

<xsd:schema xmlns:xsd="http://www/w3.org/2001/XMLSchema”

xsd:targetNamespace="http://www.monsite.com/monnamespace">

� Sans gestion des espaces de noms� Sans gestion des espaces de noms
<xsd:schema xmlns:xsd="http://www/w3.org/2001/XMLSchema"

xsd:noTargetNamespace="noTargetNamespace">

ou simplement
<xsd:schema xmlns:xsd="http://www/w3.org/2001/XMLSchema">

Document XML valide : les schémas XML

� Association d’un document à un schéma
� Avec gestion des espaces de noms

<ici:element

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://monsite.com/monnamespacexsi:schemaLocation=”http://monsite.com/monnamespace

http://monsite.com/monnamespace/schema/MonSchema.xsd”

xmlns:ici=”http://monsite.com/monnamespace”>

� Sans gestion des espaces de noms
<element

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”http://monsite.com/monnames
pace/schema/MonSchema.xsd”>

� Dans tous les cas, il faut fournir une URI vers le
schéma

Transformation d’arbres XML : XSL

� Caractéristiques de XSL
� Officiellement : XML Stylesheet Language
� En pratique, ça ne sert à rien d’appliquer des
éléments de style à un document XML
Mais XSL fournit un mécanisme très puissant � Mais XSL fournit un mécanisme très puissant
pour transformer un arbre XML

� En un autre arbre XML (échange de données)
� En un arbre XHTML (visualisation des données XML)
� En un texte simple (fichier non destiné à une
application utilisant un parser XML)

� En un document papier formatté (XSL-FO)

Transformation d’arbres XML : XSL

� Utilisation la plus courante de XSL

Niveau
structuration

Application : navigateur…

Processeur XML

Arbre XML source
(données)

DTD ou schéma XML
(structure) XPath Données et méta-

Niveau
composition

Niveau
visualisation

Processeur XSLT

(structure)

Document XHTML

Mise en forme
(feuilles de style CSS)

Description de l’arbre résultant
(modèle de transformationXSL)

XPath Données et méta-
données

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XPath

� Permet de pointer vers les données de l’arbre XML
� pour le parcours de documents XML
� pour le test de valeurs associées aux contenus ou aux � pour le test de valeurs associées aux contenus ou aux
attributs d’éléments

� Ne respecte pas la syntaxe XML
� pour ne pas « perturber » l’analyse des feuilles de style
XSLT par le parser XML

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XPath

� Nœud
� Tout type de données (élément, attribut, PI)
� Racine du document : '/‘� Racine du document : '/‘
� Les éléments sont identifiés par leurs noms
� Les attributs sont identifiés par '@' suivi du nom de
l’attribut

� Chemin de localisation
� Absolu : à partir de la racine de l’arbre XPath
� Relatif : à partir du nœud contextuel
� Récursif : à partir du nœud contextuel, mais seulement
« vers le bas »

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XPath

� Axes de navigation (poly p. 75)
� Déplacements complexes dans l’arbre XPath
� Syntaxe : Nom_D_Axe::Nom_De_Noeud� Syntaxe : Nom_D_Axe::Nom_De_Noeud
� Recommandation : http://www.w3.org/TR/xpath20/#axes

Transformation d’arbres XML : XSL

Nom d’axe Description Exemple d’utilisation/
syntaxe abrégée

self Nœud contextuel self::node() ou
./node() ou .

child Enfants du nœud contextuel child::Etat_civil ou
Etat_civil (défaut)

descendant Tout enfant, petit enfant etc. du nœud contextuel descendant::Etat_civil

descendant-or-
self

Comme descendant + le nœud contextuel lui-même descendant-or-self::
Etat_civil ou .//Etat_civil

parent Parent du nœud contextuel parent::Prenom ou
../Prenom

ancestor Tout parent, grand parent etc. du nœud contextuel ancestor::Prenom

ancestor-or-self Comme parent + le nœud contextuel lui-même ancestor-or-self::Prenom

following-sibling Tous les frères suivants du nœud contextuel (vide si
le nœud est un attribut)

following-sibling::Nom

preceding-sibling Tous les frères précédents du nœud contextuel (vide
si le nœud est un attribut)

preceding-sibling::Prenom

following following–sibling + descendants de tous les nœuds
frères suivants

following::Nom

preceding preceding–sibling + descendants de tous les nœuds
frères précédents

preceding::Prenom

attribute Attributs du nœud contextuel attribute::id ou./@id

namespace Tous les nœuds appartenant au même espace de
noms que le nœud indiqué

namespace::xhtml:div

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XPath

� Opérateurs et fonctions
� Expression de caractéristiques de sélection
complexescomplexes

� Communs avec XQuery
� Recommandation à part entière :
http://www.w3.org/TR/xquery-operators/

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XPath

� Opérateurs et fonctions
� Accesseurs

� Pour récupérer un élément d’un nœud
Exemples : node-name(), string(), base-uri()� Exemples : node-name(), string(), base-uri()

� Génération d’erreurs
� error()

� Génération de traces
� trace()

� Constructeurs
� Pour les types de données XML spécifiques
� Exemple : MonType()

� Casting entre types de données

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : principes de base

� Description de l’arbre résultant (programmation
déclarative)

� Application XML définissant des « éléments de � Application XML définissant des « éléments de
transformation »
⇒Référence à un espace de noms spécifique « xsl: »

� Balises spécifiques interprétées par un processeur XSLT
� Structuration par modèles (« templates ») de contenus

� Définissant le traitement à appliquer à un élément repéré
par une expression XPath

� Imbriqués grâce à des balises d’application de templates
�parallèle avec les fonctions en programmation déclarative

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : syntaxe

� Élément racine
<xsl:stylesheet version="1.0"

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

� Éléments de premier niveau (cardinalité=0 ou 1)
� <xsl:output> : définit le type d’arbre de sortie

� Attribut method : 3 valeurs possibles (text , html , xml)
� Autres attributs : version , encoding , standalone ,

indent …
� <xsl:include> et <xsl:import> : permettent d’inclure
d’autres feuilles de style

� Attribut href : URI de la ressource à inclure

� Différence entre les deux : règles de priorités

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : syntaxe

� Éléments de premier niveau (cardinalité=0 ou 1)
� <xsl:strip-space> et <xsl:preserve-space> : gestion
des espaces dans l’arbre résultant (resp. suppression et des espaces dans l’arbre résultant (resp. suppression et
conservation)

� Attribut elements : noms des éléments concernés
séparés par des espaces

� <xsl:template> : modèle racine de l’arbre de sortie
� Attribut match : désigne le nœud XPath concerné par le
modèle (au premier niveau, toujours "/")

� Contient la racine de la déclaration de l’arbre de sortie
� Autres éléments (key, variable, attribute-set, param) : voir
la recommandation

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : les templates

� Définition
� Modèles simples : <xsl:template match="noeud_XPath">

� L’expression XPath qui définit le nœud peut inclure un � L’expression XPath qui définit le nœud peut inclure un
filtre

� Ce nœud devient le nœud contextuel dans le template
� Modèles nommés : <xsl:template name="nom_tmplate">

� Appel
� Modèles simples :

<xsl:apply-templates select="expr_XPath" />

� L’expression XPath est un chemin de localisation qui
désigne le nœud

� Modèles nommés :
<xsl:call-template name="nom_tmplate" />

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : les éléments

� Génération de contenus XML
� <xsl:element name="p" namespace="xhtml">Contenu de

l’élément (ici: un paragraphe XHTML)</xsl:element>l’élément (ici: un paragraphe XHTML)</xsl:element>

Remarque : <xsl:element> n’est nécessaire que lorsque
le nom de l’élément à générer doit être calculé

� <xsl:attribute name="href"
namespace="xhtml">Contenu de l’attribut (ici :
référence XHTML)</xsl:attribute>

Remarque : <xsl:attribute> se place dans l’élément
auquel il se rapporte

� <xsl:text>Contenu textuel quelconque.</xsl:text>

Remarque : <xsl:text> ne sert qu’au formatage du
texte (gestion des espaces…)

� Tout autre élément XML bien formé est accepté

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : les éléments

� Traitement de contenus de l’arbre XML source
� <xsl:value-of select="expr_XPath" />

� Permet d’obtenir la valeur d’un nœud (élément ou � Permet d’obtenir la valeur d’un nœud (élément ou
attribut)

� L’expression XPath est un chemin de localisation
� Elle désigne un nœud à partir du nœud contextuel

� <xsl:copy-of select="expr_XPath" />

� Permet de recopier dans l’arbre destination toute une
partie de l’arbre source

� L’expression XPath fonctionne comme précédemment
� <xsl:copy />

� Permet de copier uniquement un élément sans ses
sous-éléments

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : les éléments

� Structures de contrôle
� <xsl:if test="expr_XPath">Contenu

conditionnel</xsl:if>conditionnel</xsl:if>

� Le contenu conditionnel peut être composé d’autres
éléments (<xsl:value-of select="expr_XPath" />)

� <xsl:for-each select="expr_XPath">Contenu
répété</xsl:for-each>

� Cet élément est redondant avec <xsl:apply-
templates /> mais rend la feuille de style moins lisible

Transformation d’arbres XML : XSL

� Les deux composants de XSL
� XSLT : les éléments

� Structures de contrôle
� <xsl:choose>

<xsl:when test="expr_XPath1"><xsl:when test="expr_XPath1">

Contenu conditionnel 1

</xsl:when>

<xsl:when test="expr_XPath2">

Contenu conditionnel 2

</xsl:when>

...

<xsl:otherwise>

Contenu conditionnel n

</xsl:otherwise>

</xsl:choose>

Outils de programmation avec XML

� Définitions
� Qu’est-ce qu’un parser ?

� « Un module logiciel […] utilisé pour lire les
documents XML et pour accéder à leur contenu et à
leur structure. »leur structure. »

� Qu’est-ce qu’une application ?
� « On suppose qu'un processeur XML effectue son
travail pour le compte d'un autre module, appelé
l'application. »

http://babel.alis.com/web_ml/xml/REC-xml.fr.html#dt-xml-proc

Outils de programmation avec XML

� Communications entre parsers et applications
� Rappel : Application Programming Interface

� Outils
� Protocole de communication

� Schéma des échanges de données

Document

Échange

de

données Parser API Application

<?xml version
<!DOCTYPE Doc
<Document>

<Element>
Contenu

</Element>
</Document>

Données

Requêtes

Réponse
s

Erreurs

XML et Java

� Standardisation des API
� Nombreux parsers
� API spécifiques
⇒ Le DOM (W3C)
⇒SAX (xml-dev)

� Standardisation des accès aux parsers
� Données conformes aux standards XML
� Langage de programmation identique
� Applications conformes aux API standards
� Parsers implémentant ces API
?��! Parsers différents pour faire la même chose

XML et Java

� JAXP : au départ
� Java API for XML Parsing
� Version 1.0

Package Java additionnel au JDK 1.3

Couche intégration des parsers� Couche intégration des parsers
Instanciation du processeur transparente

� Couche API
Implémentation des API DOM et SAX

XML et Java

� JAXP : aujourd’hui
� Java API for XML Processing
� Version 1.2

Package Java intégré au JDK 1.4

Couche intégration des parsers� Couche intégration des parsers
Instanciation du processeur transparente

� Couche API
� Implémentation des API DOM et SAX
� Prise en charge des schémas XML
� TrAX (Transformation API for XML)

� XSLT
� XSLTC

XML et Java

� JAXP : les packages java
� Couche intégration des parsers

javax.xml.parsers

� Couche API
API DOM� API DOM
org.w3c.dom

� API SAX
org.xml.sax

org.xml.sax.helpers

org.xml.sax.ext

� TrAX (Transformation API for XML)
javax.xml.transform

XML et Java

� JAXP : l’intégration des parsers
� Le package javax.xml.parsers

� Les classes abstraites « factory »
� Destinées à être instanciées
� Possèdent une méthode newInstance()� Possèdent une méthode newInstance()

⇒DOM : DocumentBuilderFactory

� Possède une méthode newDocumentBuilder()

⇒SAX : SAXParserFactory

� Possède une méthode newSAXParser()

XML et Java

� JAXP : l’intégration des parsers
� Le package javax.xml.parsers

� Les classes abstraites « parser »
� Instanciées par les objets factory
� Transparentes vis-à-vis du parser utilisé� Transparentes vis-à-vis du parser utilisé
� Possèdent une méthode parse()

⇒DOM : DocumentBuilder

⇒SAX : SAXParser

XML et Java

� JAXP : l’intégration des parsers
� Le package javax.xml.parsers

� L’erreur FactoryConfigurationError

� Erreur dans la configuration du parser par la classe
factoryfactory

� L’exception ParserConfigurationException

� ...

XML et Java
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

Exemple de
code DOM

import org.w3c.dom.DOMException;
public class DomParsing{

static Document doc;
public static void main()
{

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
try {

DocumentBuilder builder = dbf.newDocumentBuilder();
doc = builder.parse(new File(“CV.xml”));

...}
catch (ParserConfigurationException pce) { // Peut-être généré par la méthode
} // newDocumentBuilder()
catch (SAXException se) { // Peut être générée par la méthode parse()
...}
catch (IOException ioe) { // Peut être générée par la méthode parse()
...}
catch (IllegalArgumentException iae) { // Peut être générée par la méthode parse()
...}

} // main

XML et Java

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
public class SAXParsing extends DefaultHandler {

public static void main() {

Exemple de
code SAX

public static void main() {
DefaultHandler dh = new SAXParsing();
SAXParserFactory factory = SAXParserFactory.newInstance();
try {

SAXParser sp = factory.newSAXParser();
sp.parse(new File(“CV.xml”), dh);

} catch (Throwable t) {...}
}
public void startDocument () throws SAXException { ... }
public void endDocument () throws SAXException { ... }
public void startElement (String namespaceURI, String LocalName, String QualifiedName,

Attributes atts) throws SAXException { ... }
public void endElement (String namespaceURI, String LocalName, String QualifiedName)

throws SAXException { ... }
public void characters (char buf[], int offset, int len) throws SAXException { ... }
...

}

XML et Java

� JDOM : l’alternative à JAXP ?
� Représentation arborescente d’un document XML
� Plus « facile » à utiliser que DOM et SAX
� Compatible avec DOM et SAX

⇒ Surcouche de DOM et SAX

� Pas incompatible avec JAXP
� Packages

� org.jdom ; org.jdom.adapter ; org.jdom.input ;
org.jdom.output ; org.jdom.transform ;
org.jdom.xpath

� Site web
� http://www.jdom.org

Les API standard

� Le DOM : généralités
� Modèle objet de document
� Motivations

� Rendre les applications W3 dynamiques
Accéder aux documents HTML et XML depuis un � Accéder aux documents HTML et XML depuis un
langage de programmation

� Utilisations courantes
� Intégré aux navigateurs
� Utilisé en programmation comme API XML

� Origine : DOM working group (W3C)
� Début : 1997 ; fin : …
� Standardiser les tentatives existantes

Les API standard

� Le DOM : principes fondamentaux
� Représentation arborescente d’un document

� Tout le document est chargé en mémoire
� Navigation dans la structure arborescente
� Représentation des nœuds par des interfaces� Représentation des nœuds par des interfaces

� Propriétés
� Méthodes

� Recommandations sous forme de niveaux
� Niveau 0 : avant…
� Niveau 1 : octobre 1998
� Niveau 2 : depuis novembre 2000
� Niveau 3 : depuis janvier 2004

Les API standard

� Le DOM : fonctionnalités

Les API standard

� Le DOM : modules

� DOM Core : DOMImplementation NodeList Node NamedNodeMap

DocumentFragment Document Element AttrCharacterData

� DOM XML :

� Détail des interfaces : poly p. 93

Text Comment

Node

DocumentType Entity EntityReference ProcessingInstructionNotation

Text

CDATASection

Les API standard

� Le DOM : hiérarchisation des interfaces (module
Core)

parentNode

previousSibling

Node

childNodes

firstChild

item(0)

lastChild

nextSibling

item(0)

item(Node.childNodes.length - 1)

Les API standard

� Le DOM : utilisation en Java
� Package JAXP javax.xml.parsers

� Package spécifique org.w3c.dom

� Liste des interfaces (Core + XML) : poly p. 113
� Détail des interfaces : � Détail des interfaces :
http://java.sun.com/javase/6/docs/api/

Les API standard

� SAX : principes fondamentaux
� Simple API for XML
� Issue d’une communauté de développeurs
(liste xml-dev, sur http://www.xml.org)

� Fondée sur la programmation événementielle� Fondée sur la programmation événementielle
� Pas de chargement de tout le document en mémoire
� Pas de vision globale du document

� À l’origine : développée en Java
� Depuis : implémentations dans d’autres langages
� 2 versions différentes

Les API standard

� SAX : principes fondamentaux
� Des interfaces

� Pour programmer des parsers compatibles SAX
� Pour programmer des applications compatibles SAX

� Des classes
� Pour faciliter la programmation
� Pour la gestion des erreurs

� Des exceptions

Les API standard

� SAX : utilisation en Java
� Procédure

� Instanciation d’un parser
� Lancement de l’analyse
� Appel/implémentation de fonctions spécifiques

� Interface : � Interface XMLReader : setDTDHandler()

� Interface ContentHandler : startElement() , characters()

� Interface Attributes : getLength() , getType , getValue()

� Interface ErrorHandler : fatalError() , error() , warning()

Les API standard

� SAX : utilisation en Java
� Package JAXP javax.xml.parsers

� Packages SAX org.xml.sax , org.xml.sax.helpers ,
org.xml.sax.ext

� Présentation générale : poly p. 115
� Détails
http://java.sun.com/javase/6/docs/api/

Conclusion

� Dans ce cours, on a vu
� Le contexte et l’historique
� Les principes et langages de base
� Les outils de traitement

� Ce qu’il faut retenir
� La signification des acronymes
� Les principes de base
� Le schéma général d’articulation des langages
et des outils

� Ce qu’il est autorisé d’oublier
� Les détails de syntaxe des différents langages

Conclusion

� Ce qu’on n’a pas vu
� Intégration XML / bases de données

� Langage : XQuery
� Connaissances nécessaires : XPath, XML Schémas, SQL

� Services web et applications réparties sur le web� Services web et applications réparties sur le web
� Langages : SOAP, WSDL, UDDI
� Connaissances nécessaires : POO, objets répartis,
protocoles web, serveurs d’applications

� Web sémantique
� Langages : RDF, RDF-S, OWL
� Connaissances nécessaires : logiques de description,
techniques de raisonnement, ingénierie des
connaissances, intelligence artificielle…

