Structuration et échange

d’informations sur le Web
I e

Université Lyon 1
Master CCI

L. Médini, Janvier 2009



Résumé de I’épisode précédent

o Introduction
= Définitions
= Historique
= Apercu de quelques langages

o XML : principes de base
= Hérité de SGML (beaucoup plus concis)
= Méta-langage de description des données
= Restrictions de syntaxe et non de contenu
= Documents XML valides : les DTD

o HTML et XHTML

= Langages de description des pages Web
= Syntaxe
= Langage de feuilles de style : CSS



Plan du cours 2 : Applications et
programmation XML

o Applications XML
= Notion d’espaces de noms XML

» Retour sur la validation de documents : les
schémas XML

= Le langage de feuilles de style XSL
Xpath
XSLT
O Programmation XML
= Les API existantes
= Le Document Object Model (DOM)
= Simple API for XML (SAX)



URI, URL et URN

o URI : Uniform Resource Identifier
= But : identifier de facon unique une ressource sur le web

En disant ou elle se trouve
= Donner son URL (Uniform Resource Locator)
= Format : protocole ":" chemin "/" nom de fichier "/" requéte
= http://www/w3.0rg/2001/XMLSchema
= Permet d’accéder réellement a la ressource (tant qu’elle existe)
= Enregistrement des DNS auprées de I'entité concernée

En disant comment elle s’appelle
= Donner son URN (Uniform Resource Name)
= Format : "URN:" NID (namespace identifier) ":" NSS (namespace
specific string)
= URN:ISBN:0-395-36341-1
= Choix plus « libre », et correspondant mieux a la définition d’un
espace de noms

= Enregistrement des NID a I'TANA (Internet Assigned Numbers
Authority)

= Syntaxe geénérique



URI, URL et URN

o URI : Uniform Resource Identifier
= But : identifier de facon unique une ressource sur le web
= Syntaxe geéneérique
« scheme » ":" autorité ":" chemin ":" requéte ":" fragment

Avec le temps, on s’est mis a penser que « urn » peut aussi
étre un URI scheme

o D’'un point de vue pratique, les URL sont plus sures
afin d’éviter les conflits entre les espaces de noms

> Un URI est uniguement un identificateur, qui n‘a pas
de sens en soi

> Il ne signifie rien pour le processeur XML, qui le
transmet tel quel a I'application




FEspaces de noms XML

O Position du probleme

= Liberté de choix des noms de balises et des
attributs XML

— Conflits et polysémie entre ces noms/attributs

= Besoin d’associer plusieurs applications dans un
méme document

— « Préfixage » des noms de balises par I'URI de
I'application concernée



FEspaces de noms XML

o Noms qualifiés (qualified names)
Noms de balises appartenant a des espaces de noms
Syntaxe : PrefixeDEspaceDeNoms:PartieLocale
Exemple : <xsl:stylesheet>
Le préfixe fait référence a un URI
Les noms d’attributs peuvent également étre préfixés
o Association d’un préfixe a un URI

= Attribut xmlns

= Exemple : <xhtml:html
xmins:xhtml="http://www.w3.0rg/1999/xhtml">

o Remarques
= Portée : I'élément porteur de |'attribut xmins

= Bien entendu, un document XML peut contenir des eléments se
référant a plu5|eurs espaces de noms

= Le préfixe en lui-méme n’‘a aucune signification

= En interne, le parser passe a l'application des « noms plelnement
qualifiés », ou le préfixe est remplacé par la valeur de I'URI



Hspaces de noms XML

o Espace de noms par défaut
= Pas de préfixe d’espace de noms
= Exemple : <html xmiIns="http://www.w3.0rg/1999/xhtm|">

o Annulation d’espaces de noms
= Par valeur de l'attribut xmlIns vide : xmlns=""

o Exemple de code

<?xml version="1.0"?>
<CV xmlIns="http://www.univ-lyonl.fr/etds/CV/english"
xmins:xhtml="http://www.w3.0rg/1999/xhtml">
<personne>
<civil_status>
<title>Mr.</title>
</civil-status>

</personne>
<xhtml:html>
<xhtml:head>
<xhtml:title>CV of a student</xhtml:title>
</xhtml:head>
<xhtml:body>

</xhtml:body>
</xhtml:html|>
</CV>



Document XML valide : les schémas XML,

o Comparaison DTD/Schémas

Caractéristique DTD Schémas
Syntaxe Notation EBNF + pseudo-XML XML 1.0
Outils Outils SGML existants (chers et Tous les outils XML existants et a venir
complexes)
Supports DOM/SAX Non Oui (comme pour les fichiers XML).

Modeles de conten

Listes : ordonnées ou de che

Cardinalité : 0, 1 ou plusieurs

occurrences

Pas d’'éléments nommeés ou de

groupes d'attributs.

Listes: ordonnées et de choix (détails
contenus mixtes)

cardinalité : spécification d’'un nombre
exact d’occurrences possible
groupes de modeles nommeés

Typage des données

Faible (chaines, jetons nominaux, ID.|

)

Fort (hnombres, chaines, date/heure, bopléen,

structures...)

Héritage

Non

Oui

Extensibilité

Non (pas sans modification de la

recommandation XML)

Oui (puisque fondés sur I'extensibilité de XML)

Contraintes légales

Compatibilité avec SGML

Aucune (simplement des « emprunts » gux
DTD, comme pour les types de donnégs)

Nombre de vocabulaires
supportés

Une seule DTD par document

Autant que nécessaire (grace aux espages de

noms)

Dynamicité

Aucune : les DTD sont en lecture sed

le

Peuvent étre modifiés dynamiquement




Document XML valide : les schémas XML,

O Principes de base des schémas XML

= Utilisation de la syntaxe et des outils XML
Extensibilite
Dynamicité
= Possibilité de définir ses propres types de
données et modeles de contenus

= Un schéma définit une classe de documents
dont chaque document est une instance

= S'appuient sur les notions de
Types de données
Structures



Document XML valide : les schémas XML,

O Les types de données : 3 dichotomies

= Hiérarchie arborescente a partir d'un ur-type
Types primitifs : premier niveau de décomposition
Types dérivés : tous les niveaux suivants

= La recommandation définit un ensemble de types
Types intégrés
Types dérivés par |'utilisateur

= Atomicite

Types atomiques : dont les valeurs ne peuvent pas étre
décomposées

Types listes : ensembles de valeurs atomiques

Remarques
Tous les types primitifs sont intégrés. La réciproque est fausse
string est un type atomique



anvwlTyvpe

Euilt—in Datatype Hierarchy

[--—--———--

all complex types | anySimpleType

|duratinn||datETimE||timE||datE||gYEﬁrMDnth HgYear||gMDnthDay||gDay¢h§MDnth|

|hDDlEﬁn¢|haseEﬂBinar? HhexBinaryllleatl

|[double | [anyurT | |oName | [HoTaTIOoN |

|Str1ng| |decimal|

|nDrmalizedString | |integer|
I
|tDken |nDnPDsitivEIntEger ”ang”nDnHEgativEInteger
I
I

|language||HamE| |HMTDKEH| |negativeInteger ”intllunsignEdLDng ”pmsitivEInteger
L]

[rrcmame ||I-]I'-']TD;{EI-IS | |shore | [unsignedine |

[torREF | |[ENTITE | [bvte ||[unsignedshore |
] Ll

|IDR].EFS | |EI-I'I'I'.I'IE5 |

nmr types

|unsignEdBytE|

deriwved by restriction

built—3in primitciwe types —_———————— deri~red by list

built—Gin deriwed types —_

E
B
EE
[ ]

complex types

deriwved by extension or
restriction



Document XML valide : les schémas XML,

O Types de données

= Les types de données comportent 3
caracteristiques

Espace lexical : définit tous les caracteres représentant
les valeurs possibles

Espace de valeurs : ensemble des valeurs exprimeé dans
|'espace lexical

Facettes : proprietés définitionnelles de I'ensemble des
valeurs

= Facettes fondamentales : propriétés abstraites (égalite,
bornes, ordre, cardinalité, numérique ou non)

= Facettes de contraintes : limitent certaines propriétés (12
facettes : length, enumeration, minExclusive...)

= Voir poly p. 60



Document XML valide : les schémas XML,

O Les structures

= Permettent de définir des types de données
(contenus et attributs) selon deux méthodes

SimpleType : dérivation de types atomiques
= Par restriction (par intension)

= Par liste (par extension)

= Par union (sur-ensemble de types existants)

<xsd:simpleType name ="mylnteger”>
<xsd:restriction base="xs:integer">
<xsd:minInclusive value="-2"/>
<xsd:maxExclusive value="5"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="myIntList”>
<xsd:list>
<xsd:simpleType>
<xsd:restriction base="xs:integer”>
<xsd:maxInclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:list>
</xsd:simpleType>

<xsd:simpleType name="intOrUndefined"”>
<xsd:union>
<xsd:simpleType>
<xsd:restriction base="xs:integer”/>
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base="xs:NMTOKEN">
<xsd:enumeration value="undefined”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>



Document XML valide : les schémas XML,

O Les structures

= Permettent de définir des types de données
(contenus et attributs) selon deux méthodes

ComplexType : autres types de dérivation
= Dérivation
= par restriction d'un type de base complexe,

= par extension d‘un type de base (simple ou
complexe),

= par restriction de l'ur-type definition
= En pratique : la définition d’'un type complexe est une
composition
- De séquences (ET)
- ordonnées : xsd:sequence
- non-ordonnées : xsd:all
= De choix (OU) : xsd:choice




Document XML valide : les schémas XML,

O Les structures
= Définition d’un élément
Avec la balise xsd:element
En utilisant le type choisi (simple ou complexe)

= Définition d’un attribut
Avec la balise xsd:attribute

En utilisant un type simple
= Eléments de syntaxe : poly p. 61.
m Pour aller plus loin : un cours tres instructif



<xs:element name="recette">
<xs:complexType>
<Xs:sequence>
<xs:element name="titre" type="xs:string"/>
<xs:element name="commentaire" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="item" maxOccurs="unbounded">
<xs:complexType>
<Xs:sequence>
<xs:element name="entete" type="xs:string" minOccurs="0"/>
<xs:choice maxOccurs="unbounded">
<xs:element name="ingredient" type="xs:string"/>
<xs:element name="preparation" type="xs:string"/>
</xs:choice>
</xs:sequence>

</xs:complexType> <xs:element name="MusicDescription">
</xs:element> <xs:complexType>
</xs:sequence> <xs:all>
</xs:complexType> <xs:element name="country" type="xs:string"/>
</xs:element> <xs:element name="originalTitle" type="xs:string"/>
<xs:element name="author" type="xs:string"/>
</xs:all>

</xs:complexType>
</xs:element>

<xs:element name="picture" minOccurs="0">
<xs:complexType>
<xs:attribute name="source" type="xs:anyURI"/>
</xs:complexType>
</xs:element>




Document XML valide : les schémas XML,

o0 Préambule d’'un schéma

= Avec gestion des espaces de noms
<xsd:schema xmlns:xsd="http://www/w3.0rg/2001/XMLSchema”
xsd:targetNamespace="http://www.monsite.com/monnamespace">

= Sans gestion des espaces de noms
<xsd:schema xmlns:xsd="http://www/w3.0rg/2001/XMLSchema"
xsd:noTargetNamespace="noTargetNamespace">

ou simplement
<xsd:schema xmins:xsd="nhttp://www/w3.0rg/2001/XMLSchema">



Document XML valide : les schémas XML,

o0 Association d'un document a un schéma

m Avec gestion des espaces de noms
<ici.element
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://monsite.com/monnamespace
http://monsite.com/monnamespace/schema/MonSchema.xsd”
xmlns:ici="http://monsite.com/monnamespace”>

= Sans gestion des espaces de noms
<element

xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

xsi:noNamespaceSchemalocation="http://monsite.com/monnames
pace/schema/MonSchema.xsd”>

= Dans tous les cas, il faut fournir une URI vers le
schéma



Transformation d’arbres XML, : XSIL.

0 Caractéristiques de XSL
= Officiellement : XML Stylesheet Language

= En pratique, ca ne sert a rien d’appliquer des
elements de style a un document XML

= Mais XSL fournit un mécanisme tres puissant
pour transformer un arbre XML
En un autre arbre XML (échange de données)
En un arbre XHTML (visualisation des données XML)

En un texte simple (fichier non destiné a une
application utilisant un parser XML)

En un document papier formatte (XSL-FO)



Transformation d’arbres XML, : XSL.

o Utilisation la plus courante de XSL

| ST T .
A Arbre XML source ; Application : navigateur...
Niveau (données)
structuration <

DTD ouschéma XML
S (structure) I Données eméte-

! données
1
|
Ni '
iveau — - I
. Description de l'arbre résultant
composition (modéle de transformatiosL) ;

Mise en forme

1
1
1
1
1
1
1
(feuilles de styleess) \:\

|
Niveau : Document XHTML
visualisation :




Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL
= XPath

Permet de pointer vers les données de |'arbre XML

= pour le parcours de documents XML
= pour le test de valeurs associées aux contenus ou aux
attributs d’éléments
Ne respecte pas la syntaxe XML

= pour ne pas « perturber » |'analyse des feuilles de style
XSLT par le parser XML



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL

» XPath
Nceud
= Tout type de données (élément, attribut, PI)
= Racine du document : '/*

= Les éléments sont identifiés par leurs noms

= Les attributs sont identifiés par '@' suivi du nom de
|"attribut

Chemin de localisation

= Absolu : a partir de la racine de |'arbre XPath
= Relatif : a partir du nceud contextuel

= Récursif : a partir du nceud contextuel, mais seulement
« vers le bas »



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL

» XPath

o AXxes de navigation (poly p. 75)
= Déplacements complexes dans |'arbre XPath
= Syntaxe : Nom_D_Axe::Nom_De_Noeud
= Recommandation :



self
child

descendant

descendant-or-
self
parent

ancestor
ancestor-or-self

following-sibling
preceding-sibling
following
preceding

attribute

namespace

Nosud contextuel

Enfants du nceud contextuel

Tout enfant, petit enfant etc. du noeud contextuel

Comme descendant + le noesud contextuel lui-méme

Parent du nceud contextuel

Tout parent, grand parent etc. du nceud contextuel
Comme parent + le nceud contextuel lui-méme

Tous les freres suivants du nceud contextuel (vide si

le nceud est un attribut)

Tous les freres précédents du nceud contextuel (vide

si le nceud est un attribut)

following-sibling + descendants de tous les nceuds

freres suivants

preceding-sibling + descendants de tous les nceuds

freres précédents

Attributs du nosud contextuel

Tous les nceuds appartenant au méme espace de

noms que le nceud indiqué

self::node() ou
./node() ou .

child::Etat_civil ou
Etat_civil (défaut)

descendant::Etat_civil

descendant-or-self::
Etat_civil ou .//Etat_civil

parent::Prenom ou
../Prenom

ancestor: :Prenom
ancestor-or-self::Prenom

following-sibling::Nom
preceding-sibling::Prenom
following::Nom
preceding::Prenom

attribute::id ou./@id

namespace::xhtml:div



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL
= XPath

Opérateurs et fonctions
= Expression de caractéristiques de sélection
complexes
= Communs avec XQuery
= Recommandation a part entiere :




Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL

» XPath

Opérateurs et fonctions
= Accesseurs
- Pour récupérer un eélément d’un nceud
-« Exemples : node-name(), string(), base-uri()
Génération d’erreurs
= error()
Génération de traces
= trace()
Constructeurs
- Pour les types de données XML spécifiques
-« Exemple : MonType()
Casting entre types de données



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL

= XSLT : principes de base

Description de |'arbre résultant (programmation
déclarative)

Application XML définissant des « éléments de
transformation »
—Reéférence a un espace de noms specifique « xsl:  »

Balises spécifiques interprétées par un processeur XSLT

Structuration par modeles (« templates ») de contenus

= Définissant le traitement a appliquer a un €lément repéré
par une expression XPath

= Imbrigqués grace a des balises d’application de templates
=»parallele avec les fonctions en programmation déclarative



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL
= XSLT : syntaxe

Elément racine
<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform”>
Eléments de premier niveau (cardinalité=0 ou 1)
= <xsl:output> . définit le type d’arbre de sortie
= Attribut method : 3 valeurs possibles (text , html , xml)

= Autres attributs : version , encoding , standalone ,
indent

= <xsliinclude> et <xsl:import> : permettent d’inclure
d’autres feuilles de style
= Attribut href : URI de la ressource a inclure

- Différence entre les deux : regles de priorités



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL
= XSLT : syntaxe

Eléments de premier niveau (cardinalité=0 ou 1)
= <xsl:strip-space> et <xsl:preserve-space> : gestion

des espaces dans l'arbre résultant (resp. suppression et
conservation)

- Attribut elements : noms des éléments concernés
séparés par des espaces

= <xsl:template> : modele racine de l'arbre de sortie

= Attribut match : désigne le nceud XPath concerné par le
modele (au premier niveau, toujours "/")

= Contient la racine de la déclaration de I'arbre de sortie

= Autres éléments (key, variable, attribute-set, param) : voir
la recommandation



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL

m XSLT : les templates
Définition
= Modeles simples : <xsl:template match="noeud_XPath">

- L'expression XPath qui définit le noeud peut inclure un
filtre

= Ce noeud devient le nceud contextuel dans le template
= Modéles nommeés : <xsl:template name="nom_tmplate">

Appel
= Modeles simples :
<xsl:apply-templates select="expr_XPath" />

= L'expression XPath est un chemin de localisation qui
désigne le nceud

= Modeles nommeés :
<xsl.call-template name="nom_tmplate" />



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL

= XSLT : les éléments
Génération de contenus XML

= <xsl:element name="p" namespace="xhtm|">Contenu de
I’élément (ici: un paragraphe XHTML)</xsl:element>
Remarque : <xsl:element>  n’est nécessaire que lorsque
le nom de I'élément a générer doit étre calculé

= <xsl:attribute name="href"
namespace="xhtml">Contenu de I'attribut (ici :
référence XHTML)</xsl:attribute>
Remarque : <xsl:attribute> se place dans |I'élément
auquel il se rapporte
= <xsl:text>Contenu textuel quelconque.</xsl.text>

Remarque : <xsl:itext> ne sert qu’au formatage du
texte (gestion des espaces...)

= Tout autre élément XML bien formé est accepte



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL

= XSLT : les éléments

Traitement de contenus de I'arbre XML source
= <xsl:value-of select="expr_XPath" />

- Permet d’obtenir la valeur d’un nosud (élément ou
attribut)

= L'expression XPath est un chemin de localisation
- Elle désigne un noeud a partir du nceud contextuel

= <xsl:copy-of select="expr_XPath" />

= Permet de recopier dans |'arbre destination toute une
partie de l'arbre source

- L'expression XPath fonctionne comme précédemment
= <xsl:copy />

- Permet de copier uniqguement un élément sans ses
sous-eléments



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL

= XSLT : les éléments

Structures de controle
= <xsl:if test="expr_XPath">Contenu
conditionnel</xsl:if>

- Le contenu conditionnel peut étre composé d’autres
éléments (<xsl:value-of select="expr_XPath" /> )
= <xsl:for-each select="expr_XPath">Contenu
répété</xsl:for-each>

- Cet élément est redondant avec <xsl:apply-
templates /> mais rend la feuille de style moins lisible



Transformation d’arbres XML, : XSL.

0O Les deux composants de XSL

= XSLT : les éléments

Structures de controle
= <xsl:choose>

<xsl:when test="expr_XPath1">
Contenu conditionnel 1

</xsl:.when>

<xsl:when test="expr_XPath2">
Contenu conditionnel 2

</xsl:.when>

<xsl:otherwise>
Contenu conditionnel n
</xsl.otherwise>
</xsl.choose>



Outils de programmation avec XML

o Définitions
= Qu’est-ce qu'un parser ?
« Un module logiciel [...] utilisé pour lire les
documents XML et pour accéder a leur contenu et a
leur structure. »
= Qu’est-ce qu’une application ?
« On suppose qu'un processeur XML effectue son

travail pour le compte d'un autre module, appelé
I'application. »



Outils de programmation avec XML

o Communications entre parsers et applications
= Rappel : Application Programming Interface

Outils
Protocole de communication

= Schéma des échanges de données

(@ )
<?xml version
<IDOCTYPE Doc
<Document>
<Element> .
Contenu Données
</Element>
</Document> ,
Echange
G Y, de
Document données

.
Ve

Parser

£

DDLU Java Monfippli XML, java.

API

3 D:\ Temp' GDTCY¥. XML - Microsoft Internet Explorer - |EI|1|

Requétes

Fichier  Edition  Affichage Faworis  Outils 7 |Li eeee ﬁ

<7aml version="1.0" encoding="I50-8859-1" standalone="no" 7=
<IDOCTYPE CY (View Source for full doctvee,,. )= |

- <Cv g I
C Inyite de commandes

Microsoft Hindows Z2H
(C) Copyright 1985-2

Erreurs

Application




XML et Java

0 Standardisation des API
= Nombreux parsers
= API spécifiques
— Le DOM (W3C)
— SAX (xml-dev)

O Standardisation des acces aux parsers
= Données conformes aux standards XML
= Langage de programmation identique
= Applications conformes aux API standards
» Parsers implémentant ces API
?é 2! Parsers différents pour faire la méme chose



XML et Java

0 JAXP : au depart
= Java API for XML Parsing

= Version 1.0
Package Java additionnel au JDK 1.3

= Couche intégration des parsers
Instanciation du processeur transparente

= Couche API
Implémentation des API DOM et SAX



XML et Java

o JAXP : aujourd’hui

= Java API for XML Processing

= Version 1.2
Package Java intégre au JDK 1.4

= Couche intégration des parsers
Instanciation du processeur transparente

= Couche API
Implémentation des API DOM et SAX
Prise en charge des schémas XML

TrAX (Transformation API for XML)
= XSLT
= XSLTC



XML et Java

o JAXP : les packages java

= Couche intégration des parsers
javax.xml.parsers

= Couche API
API DOM
org.w3c.dom
API SAX
org.xml.sax
org.xml.sax.helpers
org.xml.sax.ext
TrAX (Transformation API for XML)
javax.xml.transform



XML et Java

o JAXP : l'intégration des parsers

= Le package javax.xml.parsers

Les classes abstraites « factory »
= Destinées a étre instanciées
= Possedent une méthode newlnstance()
—DOM : DocumentBuilderFactory
- Possede une méthode newDocumentBuilder()
—SAX : SAXParserFactory
- Possede une méthode newSAXParser()



XML et Java

o JAXP : l'intégration des parsers

= Le package javax.xml.parsers

Les classes abstraites « parser »
= Instanciées par les objets factory
= Transparentes vis-a-vis du parser utilisé
= Possedent une méthode parse()
—DOM : DocumentBuilder
—SAX : SAXParser



XML et Java

o JAXP : l'intégration des parsers

= Le package javax.xml.parsers

L'erreur FactoryConfigurationError

= Erreur dans la configuration du parser par la classe
factory

L’exception ParserConfigurationException



XML et Java

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError; Exe m p I e d e
import javax.xml.parsers.ParserConfigurationException;

code DOM

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
public class DomParsing{

static Document doc;

public static void main()

{

DocumentBuilderFactory dbf = DocumentBuilderFactory.newinstance();
try {

DocumentBuilder builder = dbf.newDocumentBuilder();

doc = builder.parse( new File(“CV.xml") );

o}

catch (ParserConfigurationException pce) { // Peut-étre généré par la méthode

} /l newDocumentBuilder()

catch (SAXException se) { // Peut étre générée par la méthode parse()

o}

catch (IOException ioe) { // Peut étre générée par la méthode parse()

o}

catch (lllegalArgumentException iae) { // Peut étre générée par la méthode parse()
.}

} // main



XML et Java

import javax.xml.parsers.SAXParserFactory; EXE m p I e d e

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.parsers.SAXParser; COd e SAX

import org.xml.sax.*;

import org.xml.sax.helpers.DefaultHandler;
public class SAXParsing extends DefaultHandler {
public static void main() {
DefaultHandler dh = new SAXParsing();
SAXParserFactory factory = SAXParserFactory.newlnstance();

try {

SAXParser sp = factory.newSAXParser();
sp.parse( new File("*CV.xml"), dh);

} catch (Throwable t) {...}

}

public void
public void
public void

public void

startDocument () throws SAXException { ... }

endDocument () throws SAXException { ... }

startElement  (String namespaceURI, String LocalName, String QualifiedName,
Attributes atts) throws SAXException { ... }

endElement (String namespaceURI, String LocalName, String QualifiedName)

throws SAXException { ... }

public void

characters  (char buf[], int offset, int len) throws SAXException { ... }



XML et Java

o JDOM : l'alternative a JAXP ?

= Représentation arborescente d’'un document XML
= Plus « facile » a utiliser que DOM et SAX

= Compatible avec DOM et SAX
Surcouche de DOM et SAX
= Pas incompatible avec JAXP

= Packages
org.jdom ; org.jJdom.adapter ; org.jdom.input ;
org.jJdom.output ; org.jdom.transform ;
org.jdom.xpath

m Site web



Les API standard

o Le DOM : généralités
= Modele objet de document
= Motivations

Rendre les applications W3 dynamiques

Accéder aux documents HTML et XML depuis un
langage de programmation

= Utilisations courantes
Intégré aux navigateurs
Utilis€é en programmation comme API XML

= Origine : DOM working group (W3C)
Début : 1997 ; fin : ...
Standardiser les tentatives existantes



Les API standard

o Le DOM : principes fondamentaux

= Représentation arborescente d’'un document
Tout le document est chargé en meémoire
Navigation dans la structure arborescente
Representation des noeuds par des interfaces
= Propriétés
= Méthodes
= Recommandations sous forme de niveaux
Niveau O : avant...
Niveau 1 : octobre 1998
Niveau 2 : depuis novembre 2000
Niveau 3 : depuis janvier 2004



Les API standard

o Le DOM : fonctionnalités

Core
{with Namespaces, XML Base)
XML 1.0 HTML

Events
User Interface Cascading

—® Extends ---P Depends




Les API standard

O Le DOM : modules

m DOM Core :

= DOM XML :

= Détail des interfaces : poly p. 93

DOMImpIementatior|\ NodelList Node NamedNodeMap
DocumentFragment Document Element CharacterData Attr
|
Text Comment
Node
! ! l !
DocumentType Entity EntityReference Notation Processinglnstructig
Text
CDATASection

>



Les API standard

o Le DOM : hiérarchisation des interfaces (module
Core)

parentNode

» previousSibling

» Node

firstChild

childNodes

item(0)

item(Node.childNodes.length - 1)

lastChild

» nextSibling




Les API standard

o Le DOM : utilisation en Java
= Package JAXP javax.xml.parsers
= Package spécifique org.w3c.dom
= Liste des interfaces (Core + XML) : poly p. 113
= Détail des interfaces :



Les API standard

o SAX : principes fondamentaux
= Simple API for XML
= Issue d’une communauté de developpeurs
(liste xml-dev, sur )

= Fondée sur la programmation événementielle

Pas de chargement de tout le document en mémoire
Pas de vision globale du document

= A l'origine : développée en Java
= Depuis : implémentations dans d’autres langages
= 2 versions difféerentes



Les API standard

o SAX : principes fondamentaux

= Des interfaces
Pour programmer des parsers compatibles SAX
Pour programmer des applications compatibles SAX
= Des classes
Pour faciliter la programmation
Pour la gestion des erreurs

= Des exceptions



Les API standard

o SAX : utilisation en Java

= Procédure
Instanciation d’un parser
Lancement de I'analyse

Appel/implémentation de fonctions spéecifiques
= Interface XMLReader : setDTDHandler()
= Interface ContentHandler : startElement() , Characters()
= Interface Attributes : getLength() , getType , getValue()
= Interface ErrorHandler : fatalError() , error() , warning()



Les API standard

o SAX : utilisation en Java
= Package JAXP javax.xml.parsers

m Packages SAX org.xml.sax , org.xml.sax.helpers
org.xml.sax.ext

= Présentation générale : poly p. 115
= Détails



Conclusion

O Dans ce cours, on a vu
= Le contexte et |I'historique
= Les principes et langages de base
= Les outils de traitement

o Ce gu'il faut retenir
= La signification des acronymes

= Les principes de base

= Le schéma général d’articulation des langages
et des outils

o Ce gqu'il est autorisé d’oublier
= Les deétails de syntaxe des differents langages



Conclusion

o Ce qu’on n‘a pas vu
= Intégration XML / bases de données
Langage : XQuery
Connaissances necessaires : XPath, XML Schémas, SQL
= Services web et applications reparties sur le web
Langages : SOAP, WSDL, UDDI
Connaissances necessaires : POO, objets répartis,
protocoles web, serveurs d’applications
= Web sémantique
Langages : RDF, RDF-S, OWL
Connaissances necessaires : logiques de description,

techniques de raisonnement, ingeénierie des
connaissances, intelligence artificielle...



