
Optimizing Ray-Triangle Intersection via Automated Search

Andrew Kensler Peter Shirley

School of Computing
University of Utah

ABSTRACT

In this paper, we examine existing direct 3D ray-triangle intersec-
tion tests (i.e., those that do not first do a ray-plane test followed
by a 2D test) for ray tracing triangles and show how the majority of
them are mathematically equivalent. We then use these equivalen-
cies to attempt faster intersection tests for single rays, ray packets
with common origins, and general ray packets. We use two ap-
proaches, the first of which counts operations, and the second of
which uses benchmarking on various processors as the fitness func-
tion of an optimization procedure. Finally, the operation-counting
method is used to further optimize the code produced via the fitness
function.

Keywords: determinants, ray tracing, triangles

1 INTRODUCTION

Ray-object intersection is one of the kernel operations in any ray
tracer [10], and a different function is implemented for each type of
geometric primitive. Triangles are one of the most ubiquitous ren-
dering primitives in use. They typically find use as a “lowest com-
mon denominator” between modelers and renderers, due to their
simplicity, uniformity and the ease of tessellating more complex
primitives into triangles. Many renderers even use triangles as their
sole primitives for these reasons. Thus, high performance when
rendering triangles is a key feature in nearly every renderer.

There are two basic classes of ray-triangle tests commonly in
use (see [6] for a thorough list and empirical comparison for single
ray tests). The first intersects the ray with the plane containing
the triangle, and then does a 2D point-in-triangle test in the plane
of the triangle (e.g. [9]). The second does a direct 3D test based
on some algebraic or geometric observation such as provided in
Cramer’s rule, triple products, ratios of determinants, or Plücker
coordinates (e.g., [1]). This paper examines only the direct 3D test,
and observes that “under the hood” these methods are all taking
ratios of volumes, and differ mainly in what volumes are computed.

For these 3D methods we optimize ray-triangle intersection in
two different ways. First we do explicit operation counting for the
cases of single rays, packets of rays with common origins, and gen-
eral packets of rays. Next we do code evaluation by letting a genetic
algorithm modify the code using profiling on various computers as
a fitness function. The implementation is based on SIMD and ray
packets to improve the chances of relevance for modern implemen-
tations.

2 BACKGROUND: SIGNED VOLUMES

The signed area of the parallelogram shown in the left of Figure 1
is given by

area =
∣∣∣∣xa xb
ya yb

∣∣∣∣ .

Figure 1: The signed area/volume of these objects are given by de-
terminants with the Cartesian coordinates of the vectors as matrix
rows or columns. The sign of each of these examples is positive via
right hand rules.

If we were to switch a and b, the sign would change. The sign
is positive when the second vector is in the counterclockwise di-
rection from the first. There is a similar signed volume rule for
parallelepipeds such as the one shown in the right of Figure 1:

volume =

∣∣∣∣∣∣
xa xb xc
ya yb yc
za zb zc

∣∣∣∣∣∣ .
This volume is positive if the vectors form a right-handed basis, and
negative otherwise. The volume of the tetrahedron defined by the
three vectors is one-sixth that of the parallelepiped’s.

The volume formula can be used to compute 2D triangle area by
embedding the triangle in 3D with the three vertices on the z = 1
plane as shown in Figure 2:

triangle area =
1
2

∣∣∣∣∣∣
x0 x1 x2
y0 y1 y2
1 1 1

∣∣∣∣∣∣ . (1)

The reason for the first one-half is that the area of the triangle is
three times the volume of the tetrahedron defined by the three col-
umn vectors in the matrix, and the determinant is six times the vol-
ume of that tetrahedron. We can also use the determinant rule to
observe:

triangle area =
1
2

∣∣∣∣x1− x0 x2− x0
y1− y0 y2− y0

∣∣∣∣ .
This second (2D) determinant is the area of the parallelogram de-
fined by the two 2D edge vectors of the triangle, and has the same
value as the determinant in Equation 1, although this is not alge-
braically obvious. This is an example of why interpreting deter-
minants as area/volume computations can be better, especially for
geometric thinkers.

The volume of a tetrahedron defined by four vertices pi can be
found by taking the determinant of three of the vectors along its
edges, or by a 4D determinant on a w = 1 plane:

volume =−1
6

∣∣∣∣∣∣∣
x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3
1 1 1 1

∣∣∣∣∣∣∣ =
1
6

∣∣∣∣∣∣
x1− x0 x2− x0 x3− x0
y1− y0 y2− y0 y3− y0
z1− z0 z2− z0 z3− z0

∣∣∣∣∣∣ .

(x0, y0, 1)

(x1, y1, 1)

(x2, y2, 1)

Figure 2: The area of the triangle can be computed from the volume
of the parallelepiped determinants with the Cartesian coordinates of
the vectors as matrix rows or columns. The sign of each of these
examples is positive via right-hand rules.

p0

p2

p1

a

b

Figure 3: Geometry for a ray edge test

The minus sign before the first determinant is not a mistake. Some
care must be taken on the ordering rules for different matrix forms
in the various dimensions; the odd dimensions have a sign change
between the edge-vector based method and the w = 1 hypervolume
method.

There are two other ways by which signed volumes are often
computed in 3D. The first is the triple product (equivalent to a de-
terminant in 3D):

volume =
1
6

[(p1−p0)× (p2−p0)] · (p3−p0).

Another method for computing a signed volume uses the Plücker
inner product for the directed line segments p0p1 and p2p3. This is
algebraically the same as the determinant and triple product meth-
ods [4].

3 USING SIGNED VOLUMES FOR INTERSECTION

The basic signed volume idea has been used by several researchers
for ray-triangle intersection, and the equivalence between Plücker
inner products, triple products, and determinants for intersection
has been pointed out by O’Rourke [8]. For example, consider the
configuration in Figure 3. The signed volume of the tetrahedron
abp2p0 is given by:

V1 =
1
6

[(p2−a)× (p0−a)] · (b−a).

If this sign is negative, then the ray is to the “inside” side of the
edge. The magnitude of V1 is proportional to the area of the shaded
triangle. Similarly, areas V0 and V2 can be computed with respect
to the edges opposite p0 and p2 (see Figure 4). If all three Vi are the
same sign, then the infinite line through a and b hits the triangle.
The barycentric coordinates can also be recovered. For example:

α =
V0

V0 +V1 +V2
, β =

V1

V0 +V1 +V2
.

p0

p2

p1

a

b

p0

p1

a

b

p0

p1

a

b

V2

V0

V1

Figure 4: Geometry for a ray edge test

The segment hits the triangle if the signed volume of the tetrahedron
p0p1p2a and p0p1p2b have the opposite signs. If these volumes are
Va and Vb, and Va is positive, then the ray parameter is given by:

t =
Va

Va−Vb
.

Note that you could also compute the volume of V0 +V1 +V2 di-
rectly:

V = V0 +V1 +V2 =
1
6

[(p1−p0)× (p2−p0)] · (b−a).

Note that that is the denominator in Cramer’s Rule test, which
under-the-hood is computing volumes.

If volumes are to be used, there are several degrees of freedom
which can be exploited to yield different tests. For example, one can
compute the inside/outside test for the whole ray in several ways:

1. compute V0, V1, V2, test for same sign;

2. compute α = V0/V , β = V1/V , γ = 1−α −β , test for all in
[0,1].

3. compute α = V0/V , β = V1/V , γ = V2/V , test for all in [0,1].

In addition, each of the volumes can be computed via several dif-
ferent edge tests. For example, the volume V1 has six edges, any of
which can be followed in either direction. Any three edges that are
not all mutually coplanar will yield the same volume, though possi-
bly with the opposite sign. For a volume defined by 4 points, there
are 384 unique ways to compute the same signed volume. Given
3 points and a direction vector, there are 36 ways to compute the

same signed volume. The one above allows a ray packet to precom-
pute the cross product if the ray origin is shared. This may or may
not be useful for sharing computations (i.e. subexpressions).

For the ray parameter test, V = Va −Vb is in fact the same V as
above. Overall, a test must directly compute at least two of V0, V1,
V2, and at least one of Va and Vb. Finally one of the remaining three
volumes must be computed directly.

4 MINIMIZING TOTAL OPERATION COUNTS

In this section we try to use the equations that minimize the total
number of operations. Because of the large number of possible
equations, we use a brute force searching method to examine all
cases. In the next section we use a more sophisticated and empirical
method to optimize performance on real processors.

Volume-based triangle tests require the computation of at least
four volumes for a successful intersection. These are generally ei-
ther one of V0 or V , plus V1, V2 and Va. The exhaustive search
considered every possible set of four scalar triple products to com-
pute these volumes and for each of these sets, the total number of
floating point operations, taking into account common subexpres-
sions.

For possibilities, our program makes a list of the cost in number
of arithmetic operations associated with each subexpression. For
the example expression c = ((p1−p0)×(p0−p2)) ·(po−a), (p1−
p0), (p0 − p2), (p0 − a) count as three subtractions each. ((p1 −
p0)× (p0 − p2)) counts as 6 multiplies and 3 subtractions (since
p1−p0 and p0−p2 will already have been counted). And the whole
expression for c costs 3 multiplies and 2 additions since, again, the
subexpressions for the dot product were counted elsewhere.

With these lists in hand, the program looks at every combination
of scalar triple products for the volumes. For example, if the ray
stores d = b−a, it would examine:

V = (d× (p2−p0)) · (p1−p0)
Va = ((a−p0)× (p1−p0)) · (p2−p0)
V1 = (d× (p2−p0)) · (a−p0)
V2 = ((a−p0)× (p1−p0)) ·d (2)

while checking every combination of scalar triple products for cal-
culating each of the four volumes (i.e., 36*384*36*36 possibili-
ties).

So for each of these combinations of expressions, it counts the
number of operations, but duplicates are only counted once each.
With the example above, it would count (p2 −p0) once for 3 sub-
tractions, but only one time (not 3), and d× (p2 −p0)) only once
(not twice) for 6 multiplies and 3 subtractions, etc. Given this, it
counts up a total number of arithmetic operations under the assump-
tion that all subexpressions are computed once and then the results
are saved. The result of this is a list of sets of each set of expressions
for the volumes with the lowest cost found.

The program also had a few switches to consider different cases.
These mainly affected how the cost was computed. For example,
for packets, any subexpression that does not involve d or a is in-
dependent of the ray, and counts at 1/64th the normal cost (i.e., as
though it were amortized over an 8x8 packet.) The exact divisor
does not matter hugely since the total flops in the best expressions
sets already total well below 64. The sum of these amortized com-
putations in these best cases never totals above 1.0, which means
that it will not cause it to beat out cases where it does not choose
to amortize. But the fraction does serve as a tie-breaker to get it to
minimize the amount of per-triangle precomputation that it does.

For the general case of single rays and choosing to find V in-
stead of V0, there were six optimal formulations requiring a to-
tal of 47 operations. Three of these were symmetric cases of the

other three with triangle edges reversed and appropriate adjust-
ments made to preserve signs. One of these formulations cor-
responds to the Möller-Trumbore algorithm [7], and was already
given in Equations 2. When V0 is used instead of V , the case is
similar and there are still just six analogous best formulations, each
requiring 47 operations.

With ray packets, however, all computations involving only the
triangle vertices can be amortized over all of the rays in the packet.
Assuming that the number of rays in the packet is large enough that
all computations that can be amortized over the packet are essen-
tially “free” (though not with zero cost), and that we again choose
to use V instead of V0, there were exactly two optimal formulations,
each symmetric with the other:

V = ((p1−p0)× (p0−p2)) ·d
Va = ((p1−p0)× (p0−p2)) · (p0−a)
V1 = ((p0−a)×d) · (p0−p2)
V2 = ((p0−a)×d) · (p1−p0)

This formulation requires just over 32 operations per ray plus the
amortized per-triangle operations. Note that the per-triangle com-
putation simply involves finding two edges plus the unscaled nor-
mal of the triangle.

If all of the rays in the packet share a common origin, as is typ-
ical for primary rays and shadow rays for point light sources, it
is possible to do far better yet. For these cases, all computations
involving only the triangle vertices and a are amortized over the
packet. There are twelve optimal formulations (six being symmet-
rical with the other six), and requiring just over fifteen operations
per ray to find the volumes in the inner loop. At this point, Va may
be amortized entirely as well as all of the cross products, leaving
only the three dot products:

V = ((p1−p0)× (p0−p2)) ·d
Va = ((p1−p0)× (p0−p2)) · (p0−a)
V1 = ((p0−p2)× (p0−a)) ·d
V2 = ((p1−p0)× (p0−a)) ·d

When V0 is used instead of V , the case is similar and there are still
just twelve analogous best formulations, each requiring fifteen op-
erations. This property has been used to advantage by Benthin in his
dissertation, although he derived it through Plücker coordinates. [2]

5 A GENETIC ALGORITHM FOR IMPROVED PERFOR-
MANCE

While operation counts are correlated to performance, the increas-
ingly complex hardware and compiler technology makes optimiza-
tion largely an empirical process. Since the number of possibilities
is so large for how code can be written, exhaustive search by hand
is not a good option. In this section we use genetic algorithms to
improve our choices among coding options in a spirit similar to that
shown effective for sorting [5].

Before applying any genetic search, we first formalize the space
of choices we have. For example, we can compute V0, V1, and V2
and derive V , or we could compute V0, V1 and V derive V2. Another
option is whether to test for early exit if a given variable is outside
its allowed range. This test must of course come after that variable
is computed. On the other hand, some quantities can be computed
in any order. This suggests a dependency graph.

For the ray/triangle intersection tests, we used a dependency
graph with 1294 nodes. The allowed parameter space included all

legitimate choices for the signed-volume computations for the t-
value, V , V0, V1, and V2, the choice between computing V directly
with a single signed volume computation or by summation of the
three, how long to postpone the division, whether to use a barycen-
tric in/out test or to test in/outness by comparing the signs of the
volumes, whether and where to use early exits if all four rays in an
SSE bundle are known to miss, etc.

The genetic algorithm approach used to sort among these options
consists of three parts:

• the main genetic algorithm driver,

• the benchmark,

• the code generator.

The main genetic algorithm implementation is an evolution al-
gorithm very similar to that used by Li et al. [5]. In this, the best
individuals in each generation survive to the next generation en-
tirely unchanged. Genetic recombination applies only to creating
the new offspring to replace the least fit individuals. These are also
subject to occasional random mutations. As with their system, we
used a population of 50 individuals through 100 generations. At
each generation, the 20 most fit were kept unchanged while the 30
least fit were replaced with pairs of offspring created through re-
combination from two parents with a two-point crossovers from the
parent generation (a random middle segment from one parent is re-
placed with those values in the order that they appear in the other
parent, and vice versa, to produce a pair of offspring that are still
permutations. The reason that genomes must be permutations is due
to the way they control code emission and is explained later.) The
parents were chosen with probability proportional to their fitness.
After this, two mutations were applied to the offspring at random,
by swapping a random pair of values in their genetic sequence.

After this, the new generation is evaluated for fitness, which in
this case consists of using each genome to output code for a ray/tri-
angle intersection test combined with a benchmark for speed. The
created program consists of a fixed, handwritten template for the
benchmark with the genetically derived intersection test inserted
into the template. This is compiled and executed, and the measured
speed in millions of intersections per second becomes the fitness
value for that individual. The benchmark code measures the perfor-
mance of 20000 random triangles each intersected by 400 packets
of 64 random rays each. The positions of the rays and triangles
are chosen such that the intersection probability is approximately
25%. This probability was chosen to mimic the case for a good ac-
celeration structure where rays that reach the point of intersecting
a triangle have a high probability of success. 50% is a best case
for this due to the typical tessellation of quads into pairs of trian-
gles, where each triangle in the pair will typically have significantly
overlapping bounding boxes but only a 50% or so chance of hitting,
once a ray reaches the bounding box.

The code generation from the genomes is the most complex part
of our process and is inspired by the approach in Fang et al. [3].
Each individual’s genome encodes the algorithm as a permutation
of the first 1294 natural numbers. A DAG of dependencies, starting
with a goal node gives the list of possible code chunks to output
(generally at the level of a single scalar or vector operation) along
with any dependencies that must be satisfied before the chunk can
be output. These dependencies take two forms: ”required” and ”op-
tional” dependencies. For each chunk, all required dependencies
must be satisfied before the a statement can be output, while only
one or more of the optional dependencies needs to be. This dis-
tinction means that any generated program that satisfies this depen-
dency graph will have the freedom to choose from alternative code
paths where necessary, but will also be constrained to always gen-
erate legal programs which will compile and execute correctly. For
example, computing a barycentric coordinate may be done through

any of the numerous choices for computing the signed volume, but
an early exit test based on the coordinate always requires the coor-
dinate computation as a prerequisite.

Output from this dependency graph is guided by each individu-
als genome. The genome, as a permutation of the whole numbers,
gives the priority for each node in the dependency graph. Code
is emitted by applying a modified topological sort to the depen-
dency graph where ties for which statement to emit next are broken
according to the priority given in the genome. If an optional de-
pendency has not already been satisfied due to another node, the
optional dependency with the highest priority is chosen. An ini-
tial depth-first walk of the dependency graph from the goal node
marks live nodes, so that only these are considered for output dur-
ing the topological sort. Thus, so long as each genome remains a
proper permutation of the first n natural numbers, where n in this
case is 1294 – the number of nodes in the dependency graph – the
code generator will always emit a valid and nearly minimal code se-
quence for it. The genetic algorithm still has tremendous freedom
in choosing the relative order of the statements, and through careful
encoding in the dependency graph nearly any choices for valid code
may be given to the genetic algorithm.

We ran the GA code both for general and common origin pack-
ets. We implemented the code in C++ with SSE extensions. The
best program for both packet conditions was then hand optimized
making minor performance improvements.

The hand tuning was quite minimal. We examined the code from
the GA to determine what choices it made for how to compute the
signed volumes. Then, we examined the list of optimal operation-
count expressions from the exhaustive search in the previous sec-
tion and found the most similar set of expressions to that from the
GA. We then changed the code from the GA to use the expressions
from the optimal search, trying to change the code and especially
the basic structure as little as possible. Typically this involved re-
versing the direction of an edge here and changing the operands for
a dot or cross product there. Next we cleaned up the dead code left
over from the previous step, since taking better advantage of com-
mon subexpressions meant that some of the former computations
were now extraneous. Lastly, we cleaned up the artifacts from the
GA – for example, as the final SIMD mask is the result of ANDing
the masks from several tests, and these may be done in any order,
the mask is initially set to all true before being ANDed with the first
test. The obvious optimization, however, is to initialize the mask to
the result of the first test. There were one or two similar cases where
artifacts from the GA could be cleaned up by the compiler’s opti-
mizer. We simply applied the same transformations to streamline
source. Overall, the changes we made were quite mechanical and
not large.

The code from the GA and the hand-improved code were
tested against a direct ray packet and SIMD adaptation of Möller-
Trumbore test as indicated in Table 1. As can be seen, significant
speedups are possible. The code for the GA+, along with the testing
code, for general packets, is shown in the Appendix.

6 CONCLUSION

We have presented two methods for optimizing ray triangle inter-
section. Both of these differ from most previous approaches in that
they are targeted toward implementations with ray packets. The first
is based on simple operation counts. The second uses a more empir-
ical approach and is probably more practical given the complexities
of modern processors and compilers. In addition, the second uses
knowledge from the first to improve performance further. An in-
teresting question is whether the genetic algorithm approach can
be extended to other components of ray tracing programs. Another
question is whether the direct 3D approach examined here is not as
efficient as the hit plane and 2D approach.

Prog GCC402/Opt/Opt GCC402/P4/Opt ICC90/P4/Opt GCC335/X/X ICC90/P4/X GCC402/P4/P4 ICC90/P4/P4 GCC401/C/C Average
GA 158.665 115.509 135.386 158.838 163.386 97.072 167.825 81.561 134.780
GA+ 164.707 141.652 158.816 172.978 180.265 102.610 190.968 106.279 152.284
GA (co) 201.202 158.817 182.153 189.348 207.289 173.531 205.890 112.827 178.882
GA+ (co) 190.867 182.115 203.336 216.120 228.410 158.043 229.335 125.212 191.680
MT 82.036 71.545 104.517 89.035 124.728 66.948 115.592 53.593 88.499

Table 1: Performance numbers are millions of ray/triangle intersections per second. Top two are for general packets, with GA+ being the
hand-improved version. Fourth and fifth are for shared origin. MT is Möller-Trumbore. GCC402/Opt/Opt, etc. = Compiler / Compiler code
gen. and opt. target / Test platform. Opt = 2.4GHz Dual Core Opteron (One core used). X = 3.2GHz Dual Core Xeon (One core used). P4
= 3.0GHz Pentium 4, Canterwood. C = 1.83GHz Core Duo (One core used).

A GA+ GENERAL PACKET CODE

This annotated code shows our best performing triangle code for
general packets, and shows in detail how we tested its performance.

#include <mmintrin.h>

#include <xmmintrin.h>

#include <emmintrin.h>

#include <stdlib.h>

#include <time.h>

#include <sys/time.h>

#include <fstream>

#include <iostream>

using namespace std;

static const int packet_size = 64;

static const int number_of_packets = 400;

static const int number_of_triangles = 20000;

static const float eye_range = 3.0f;

static const float target_range = 0.6f;

static const float ray_jitter = 0.04f;

// Triangle vertex positions

float p0xf[number_of_triangles];

float p0yf[number_of_triangles];

float p0zf[number_of_triangles];

float p1xf[number_of_triangles];

float p1yf[number_of_triangles];

float p1zf[number_of_triangles];

float p2xf[number_of_triangles];

float p2yf[number_of_triangles];

float p2zf[number_of_triangles];

// Ray origins, directions and best t-value

float oxf[number_of_packets][packet_size];

float oyf[number_of_packets][packet_size];

float ozf[number_of_packets][packet_size];

float dxf[number_of_packets][packet_size];

float dyf[number_of_packets][packet_size];

float dzf[number_of_packets][packet_size];

float rtf[number_of_packets][packet_size];

int main(int argc, char **argv) {

int seed_time = time(0);

unsigned short seeds[] = {

static_cast<unsigned short>(seed_time & 0xffff),

static_cast<unsigned short>((seed_time >> 8) & 0xffff),

static_cast<unsigned short>((seed_time >> 16) & 0xffff) };

seed48(seeds);

// Setup tests with random triangles and packets

for (int ti = 0; ti < number_of_triangles; ++ti) {

p0xf[ti] = drand48() - drand48();

p0yf[ti] = drand48() - drand48();

p0zf[ti] = drand48() - drand48();

p1xf[ti] = drand48() - drand48();

p1yf[ti] = drand48() - drand48();

p1zf[ti] = drand48() - drand48();

p2xf[ti] = drand48() - drand48();

p2yf[ti] = drand48() - drand48();

p2zf[ti] = drand48() - drand48();

float mx = (p0xf[ti] + p1xf[ti] + p2xf[ti]) / 3.0f;

float my = (p0yf[ti] + p1yf[ti] + p2yf[ti]) / 3.0f;

float mz = (p0zf[ti] + p1zf[ti] + p2zf[ti]) / 3.0f;

p0xf[ti] -= mx;

p0yf[ti] -= my;

p0zf[ti] -= mz;

p1xf[ti] -= mx;

p1yf[ti] -= my;

p1zf[ti] -= mz;

p2xf[ti] -= mx;

p2yf[ti] -= my;

p2zf[ti] -= mz;

}

for (int pi = 0; pi < number_of_packets; ++pi) {

float ex = (drand48() - drand48()) * eye_range;

float ey = (drand48() - drand48()) * eye_range;

float ez = (drand48() - drand48()) * eye_range;

float tx = (drand48() - drand48()) * target_range;

float ty = (drand48() - drand48()) * target_range;

float tz = (drand48() - drand48()) * target_range;

for (int ri = 0; ri < packet_size; ++ri) {

oxf[pi][ri] = ex + (drand48() - drand48()) * ray_jitter;

oyf[pi][ri] = ey + (drand48() - drand48()) * ray_jitter;

ozf[pi][ri] = ez + (drand48() - drand48()) * ray_jitter;

dxf[pi][ri] = tx - ex +

(drand48() - drand48()) * ray_jitter;

dyf[pi][ri] = ty - ey +

(drand48() - drand48()) * ray_jitter;

dzf[pi][ri] = tz - ez +

(drand48() - drand48()) * ray_jitter;

rtf[pi][ri] = 1000000.0f;

}

}

timeval start;

gettimeofday(&start, 0);

// Intersection test begins here

for (int pi = 0; pi < number_of_packets; ++pi) {

for (int ti = 0; ti < number_of_triangles; ++ti) {

// Get triangle corners, compute two edges and normal.

// (Alternatively, can precompute and store them)

const __m128 p1x = _mm_set_ps1(p1xf[ti]);

const __m128 p1y = _mm_set_ps1(p1yf[ti]);

const __m128 p1z = _mm_set_ps1(p1zf[ti]);

const __m128 p0x = _mm_set_ps1(p0xf[ti]);

const __m128 p0y = _mm_set_ps1(p0yf[ti]);

const __m128 p0z = _mm_set_ps1(p0zf[ti]);

const __m128 edge0x = _mm_sub_ps(p1x, p0x);

const __m128 edge0y = _mm_sub_ps(p1y, p0y);

const __m128 edge0z = _mm_sub_ps(p1z, p0z);

const __m128 p2x = _mm_set_ps1(p2xf[ti]);

const __m128 p2y = _mm_set_ps1(p2yf[ti]);

const __m128 p2z = _mm_set_ps1(p2zf[ti]);

const __m128 edge1x = _mm_sub_ps(p0x, p2x);

const __m128 edge1y = _mm_sub_ps(p0y, p2y);

const __m128 edge1z = _mm_sub_ps(p0z, p2z);

const __m128 normalx = _mm_sub_ps(

_mm_mul_ps(edge0y, edge1z),

_mm_mul_ps(edge0z, edge1y));

const __m128 normaly = _mm_sub_ps(

_mm_mul_ps(edge0z, edge1x),

_mm_mul_ps(edge0x, edge1z));

const __m128 normalz = _mm_sub_ps(

_mm_mul_ps(edge0x, edge1y),

_mm_mul_ps(edge0y, edge1x));

const __m128 zeroes = _mm_setzero_ps();

// Loop over "packlets", computing four rays at a time

for (int ri = 0; ri < packet_size; ri += 4) {

// Load origin, current t-value and direction

const __m128 ox = _mm_load_ps(&oxf[pi][ri]);

const __m128 oy = _mm_load_ps(&oyf[pi][ri]);

const __m128 oz = _mm_load_ps(&ozf[pi][ri]);

const __m128 oldt = _mm_load_ps(&rtf[pi][ri]);

const __m128 dx = _mm_load_ps(&dxf[pi][ri]);

const __m128 dy = _mm_load_ps(&dyf[pi][ri]);

const __m128 dz = _mm_load_ps(&dzf[pi][ri]);

// Compute volume V, the denominator

const __m128 v = _mm_add_ps(_mm_add_ps(

_mm_mul_ps(normalx, dx),

_mm_mul_ps(normaly, dy)),

_mm_mul_ps(normalz, dz));

// Reciprocal estimate of V with one round of Newton

const __m128 rcpi = _mm_rcp_ps(v);

const __m128 rcp = _mm_sub_ps(

_mm_add_ps(rcpi, rcpi),

_mm_mul_ps(_mm_mul_ps(rcpi, rcpi),

v));

// Edge from ray origin to first triangle vertex

const __m128 edge2x = _mm_sub_ps(p0x, ox);

const __m128 edge2y = _mm_sub_ps(p0y, oy);

const __m128 edge2z = _mm_sub_ps(p0z, oz);

// Compute volume Va

const __m128 va = _mm_add_ps(_mm_add_ps(

_mm_mul_ps(normalx, edge2x),

_mm_mul_ps(normaly, edge2y)),

_mm_mul_ps(normalz, edge2z));

// Find Va/V to get t-value

const __m128 t = _mm_mul_ps(rcp, va);

const __m128 tmaskb = _mm_cmplt_ps(t, oldt);

const __m128 tmaska = _mm_cmpgt_ps(t, zeroes);

__m128 mask = _mm_and_ps(tmaska, tmaskb);

if (_mm_movemask_ps(mask) == 0x0) continue;

// Compute the single intermediate cross product

const __m128 intermx = _mm_sub_ps(

_mm_mul_ps(edge2y, dz),

_mm_mul_ps(edge2z, dy));

const __m128 intermy = _mm_sub_ps(

_mm_mul_ps(edge2z, dx),

_mm_mul_ps(edge2x, dz));

const __m128 intermz = _mm_sub_ps(

_mm_mul_ps(edge2x, dy),

_mm_mul_ps(edge2y, dx));

// Compute volume V1

const __m128 v1 = _mm_add_ps(_mm_add_ps(

_mm_mul_ps(intermx, edge1x),

_mm_mul_ps(intermy, edge1y)),

_mm_mul_ps(intermz, edge1z));

// Find V1/V to get barycentric beta

const __m128 beta = _mm_mul_ps(rcp, v1);

const __m128 bmask = _mm_cmpge_ps(beta, zeroes);

mask = _mm_and_ps(mask, bmask);

if (_mm_movemask_ps(mask) == 0x0) continue;

// Compute volume V2

const __m128 v2 = _mm_add_ps(_mm_add_ps(

_mm_mul_ps(intermx, edge0x),

_mm_mul_ps(intermy, edge0y)),

_mm_mul_ps(intermz, edge0z));

// Test if alpha > 0

const __m128 v1plusv2 = _mm_add_ps(v1, v2);

const __m128 v12mask = _mm_cmple_ps(

_mm_mul_ps(v1plusv2, v),

_mm_mul_ps(v, v));

// Find V2/V to get barycentric gamma

const __m128 gamma = _mm_mul_ps(rcp, v2);

const __m128 gmask = _mm_cmpge_ps(gamma, zeroes);

mask = _mm_and_ps(mask, v12mask);

mask = _mm_and_ps(mask, gmask);

if (_mm_movemask_ps(mask) == 0x0) continue;

// Update stored t-value for closest hits

_mm_store_ps(&rtf[pi][ri],

_mm_or_ps(_mm_and_ps(mask, t),

_mm_andnot_ps(mask, oldt)));

// Optionally store barycentric beta and gamma too

}

}

}

// Show speed in millions of intersections per second

timeval now;

gettimeofday(&now, 0);

float elapsed =

(static_cast<float>(now.tv_sec - start.tv_sec) +

static_cast<float>(now.tv_usec - start.tv_usec) /

1000000.0f);

if (argc > 1) {

ofstream out(argv[1], ios::out);

out << (number_of_packets * packet_size

* number_of_triangles

/ elapsed / 1000000);

}

else

cout << (number_of_packets * packet_size

* number_of_triangles

/ elapsed / 1000000) << endl;

return 0;

}

REFERENCES

[1] J. Amanatides and K. Choi. Ray tracing triangular meshes. In Western
Computer Graphics Symposium, pages 43–52, 1997.

[2] Carsten Benthin. Realtime Ray Tracing on Current CPU Architec-
tures. PhD thesis, University of Saarland, 2006.

[3] Hsiao-Lan Fang, Peter Ross, and Dave Corne. A promising genetic
algorithm approach to job-shop scheduling, re-scheduling, and open-
shop scheduling problems. In Proceedings of the International Con-
ference on Genetic Algorithms, pages 375–382, 1993.

[4] Ray Jones. Intersecting a ray and a triangle with Plücker coordinates.
Ray Tracing News, 13(1), 2000.

[5] Xiaoming Li, Maria Jesus Garzaran, and David Padua. Optimiz-
ing sorting with genetic algorithms. In Proceedings of the interna-
tional symposium on Code generation and optimization, pages 99–
110, 2005.

[6] Marta Löfsted and Tomas Akenine-Möller. An Evaluation Framework
for Ray-Triangle Intersection Algorithms. Journal of Graphics Tools,
10(2):13–26, 2005.

[7] Tomas Möller and Ben Trumbore. Fast, minimum storage ray triangle
intersection. JGT, 2(1):21–28, 1997.

[8] Joseph O’Rourke. Computational geometry in C. Cambridge Univer-
sity Press, New York, NY, USA, second edition, 1998.

[9] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

[10] Turner Whitted. An improved illumination model for shaded display.
CACM, 23(6):343–349, 1980.

