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Summary. Approximating illumination by point light sources, as done in many
professional applications, allows for ecient algorithms, but suers from the prob-
lem of the weak singularity: Besides avoiding numerical exceptions caused by the
division by the squared distance between the point light source and the point to be
illuminated, the estimator should be unbiased and of nite variance. We rst illus-
trate that the common practice of clipping weak singularities to a reasonable value
yields clearly visible bias. Then we present a new global illumination algorithm that
is unbiased and as simple as a path tracer, but elegantly avoids the problem of the
weak singularity. In order to demonstrate its performance, the algorithm has been
integrated in an interactive global illumination system.

1 Introduction

Simulating light transport in a physically correct way has become a main-
stream feature in movie productions and interactive rendering systems. On
the one hand many approximations are used to make the algorithms simpler,
faster, and more numerically robust. On the other hand unbiased approaches
like e.g. bidirectional path tracing or the Metropolis light transport algorithm
are too complicated for use in professional productions and not suciently
ecient.

Based on the popular approximation instant radiosity [Kel97], we present
an unbiased, robust, and very simple global illumination algorithm that is
used for production as well as interactive rendering. The new algorithm is
easily implemented in any ray tracing system and exposes many advantages
over previous techniques, as we will illustrate in the sequel.
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2 Avoiding Bias Caused by Bounding

Before we introduce our new global illumination algorithm, we need to explain
an important observation for the example problem of direct illumination by
an area light source.

The direct illumination is the radiance

Lr(x, ωr) =


A

fr(ω, x, ωr)G(x, y)V (x, y)Le(y,−ω)dy

reected in x into direction ωr, which is the integral over the surface A of the
light source. Its radiance Le from y towards x, i.e. into direction −ω, is atten-
uated by the geometry term G and the bidirectional reectance distribution
function fr, which represents the physical surface properties. The visibility is
accounted for by V (x, y), which is 1 if x and y are mutually visible and zero
otherwise.

It is common practice to use a bounded geometry term

G(x, y) := min{G(x, y), b}

for some bound b > 0 instead of the correct expression

G(x, y) :=
cos+ θx · cos+ θy

x − y2
2

,

where the positive cosine cos+ θx is the scalar product between the unit di-
rection of y−x and the surface normal in x, which is set to zero, if the cosine
is less than zero (analogous for cos+ θy).

The obvious reason for uniformly bounding G by some b > 0 is to avoid
innite variance from the weak singularity, which can be caused by an arbi-
trarily small Euclidean distance x − y2, i.e. when the point x to be lit and
the sampled point y on the light source are very close.

2.1 Consequences of Bounding the Integrand

Almost any rendering software approximates the direct illumination Lr(x, ωr)
by

L
r(x, ωr) =



A

fr(ω, x, ωr)G(x, y)V (x, y)Le(y,−ω)dy

≈ |A|
N

N−1

i=0

fr(ωi, x, ωr)G(x, yi)V (x, yi)Le(yi,−ωi) (1)

using Monte Carlo integration or a variant of it. Here yi are uniformly dis-
tributed samples on the area A of the light source and ωi is the unit vector
pointing from x to yi.
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The consequence of uniformly bounding the integrand is an exponential
decay of the error probability. In the case of pure Monte Carlo integration
Hoeding’s inequality yields the probability

Prob





[0,1)s

f(x)dx − 1
N

N−1

i=0

f(xi)

 ≥ 


≤ 2e−

1
4τ2 N2

of an integration error more than an arbitrary threshold  > 0 if it is possible
to uniformly bound |f(x) − I| < τ for almost all x ∈ [0, 1)s, where I is the
integral of f . Since most Monte Carlo rendering algorithms bound the samples
before averaging, the previous formula explains the observed fast convergence.

By the fast convergence visible artifacts rapidly disappear and the images
look nice. However, the estimator is biased, i.e. does not converge to the
desired value Lr(x, ωr), and important visible contributions of the illumination
are missing, as can be seen from the dierences between Figs. 1a) and e).
Obviously the bias is especially high in the vicinity of concave geometry such
as the curtains and the ne geometry of the chairs. In fact the bias introduced
by bounding the geometry term cannot be ignored.

a) Classic biased approximation e) Unbiased solution (see e.g. curtains)

b) Eye path length 2 c) Eye path length 3 d) Eye path length 4

Fig. 1. Looking at the curtains, the bias between the true global illumination in (e)
and the classic approximation in (a) is clearly visible as a dierence in brightness.
The images (b) to (d) show the missing contributions according to the eye path
length. For display the images (b) to (d) have been amplied by a factor of 3, 9,
and 27, repectively. The bias of the classic approximation is clearly located in regions
of concave geometry.
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2.2 Unbiased Robust Estimator

It is favorable to preserve the fast convergence of the estimator (1), since
it actually contributes most of the illumination and exposes low variance.
The so-called bias, i.e. the dierence between the desired and the computed
integral is

Lr(x, ωr) − L
r(x, ωr)

=


A

Le(y,−ω)fr(ω, x, ωr)V (x, y) max{G(x, y) − b, 0}dy

=


A

Le(y,−ω)fr(ω, x, ωr)V (x, y)
max{G(x, y) − b, 0}

G(x, y)
G(x, y)dy

=


S2
Le(h(x, ω),−ω)

max{G(x, h(x, ω)) − b, 0}
G(x, h(x, ω))

fr(ω, x, ωr) cos+ θxdω.(2)

Changing the domain of integration to the unit sphere S2 requires the ray
tracing function h(x,ω), which returns the rst surface point hit when shoot-
ing a ray from x into direction ω.

In order to obtain an unbiased estimate of the direct illumination Lr(x, ωr),
we use the estimator (1) and add an estimate of the above equation (2).
Applying importance sampling according to the density fr(ω, x, ωr) · cos+ θx,
the integrand becomes bounded [Shr66], too.

Although the method seems simple, it never before has been used to sin-
gle out the weak singularities contained in the geometry term G. There are
several advantages to this approach: Bounding the integrand in (1) does not
add new discontinuities and consequently variance is not increased. Since both
integrands are bounded, the variance remains nite and the estimate is nu-
merically robust.

In the context of parametric integration, Heinrich [Hei00] proposed an
optimal method for the Monte Carlo approximation of weakly singular op-
erators: For smooth function classes his algorithm used a stratication idea
to separate the weak singularity. This is related to our approach, however,
introduces more discontinuities to the integrand as compared to bounding.

2.3 Choice of the Bound

Obviously, the radiance Lr is estimated in an unbiased way for any choice
of 0 ≤ b < ∞. However, most renderers implicitly are using a xed bound
without compensating the bias (2). Choosing

b ≡ b(ω, x, ωr) =
c

fr(ω, x, ωr)
(3)

allows one to use the very ecient estimator (1) as long as G(x, y)fr(ω, x, ωr) ≤
c. Using importance sampling as indicated in the previous section, the trans-
port kernel in (2) then is bounded by 1.



Illumination in the Presence of Weak Singularities 249

By c we can adjust the eciency, i.e. how much of the estimate is obtained
by sampling the area of the light source and how much is contributed by
importance sampling of the solid angle. Choosing c independent of the scene
geometry, the contributions of the estimators for (1) and (2) depend on the
scale of the geometry, which is hidden in the geometry term G.

For c = 1
|A| no sample from either (1) or (2) can be larger than the source

radiance Le, i.e. the radiance is never amplied but only attenuated. Conse-
quently the contributions of the integration over the light source as well as
the solid angle can contribute about the same noise level at maximum. In
addition the bound becomes independent of the scale, since both G and A
contain the scale of the scene.

Since usually the radiance is vector valued, i.e. it comprises components
for red, green, and blue, in fact the maximum norm fr(ω, x, ωr)∞ should
be used in the denominator of b.

3 The New Global Illumination Algorithm

Using the observation from the previous section, it is simple to construct
a global illumination algorithm that is unbiased and numerically robust.
We just need to compensate for the bias of popular approaches like in-
stant radiosity [Kel97] or successor approaches to interactive global illumi-
nation [WKB+02,BWS03]. The procedure to compute a local solution from
the radiance Fredholm integral equation of the second kind

L(x, ωr) = Le(x, ωr) +


S2
L(h(x, ω),−ω)fr(ω, x, ωr) cos+ θxdω

is illustrated in Fig. 2:

1. Generation of point light sources: Identical to the preprocessing of the
instant radiosity algorithm [Kel97] or a very sparse global photon map [2],
a set (yj , Lj)M−1

j=0 of M point light sources is created. This corresponds to
tracing paths starting at the lights and storing all the points yj ∈ R3 of
incidence with their power Lj .

2. Shading: Similar to a path tracer, an eye path is started from the lens in-
cident in point x0 from direction ω0. Starting with i = 0, we sum up three
contributions for the current point xi until the eye path is terminated:
a) Light sources that are hit contribute their emission Le(xi,−ωi).
b) Illumination: The contribution of the j-th point light source is

fr(ωxi,yj
, xi, ωi)G(xi, yj)V (xi, yj)Lj , (4)

where the direction ωxi,yj
points from xi to yj and ωi is the direction

from where xi has been hit. Note that G is the bounded version of
the geometry term G.
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(yj , Lj)

xi

ωi

G(xi, yj) < b

G(xi, yj) ≥ b

1.) Generation of point light sources 2.b) Robust shadowing

xi

ωi

G(xi, xi+1) ≥ b

G(xi+1, xi+2) < b

2.c) Bias compensation 3.) Average eye path length

Fig. 2. Principal steps of the unbiased robust global illumination algorithm: In
the rst step a set (yj , Lj)

M−1
j=0 of point light sources is generated. Hitting xi from

direction ωi in the second step, the highlighted areas show the domain, where the
geometry term G(xi, ·) is below the bound b = 0.5. In step 2.b shadow rays towards
the point lights are traced. This is robust, because numerical exceptions by the
inverse squared distance in G cannot occur due to bounding. In order to be unbiased,
step 2.c continues the eye path from xi by scattering a ray. While the ray hits the
domain, we continue with step 2.a, otherwise the eye path is terminated. Image 3.)
shows the average eye path length as a gray image, where the maximum path length
considered was 5. Darker areas in the image indicate longer eye paths. The resulting
image clearly resembles images obtained by ambient occlusion, i.e. concave corners
are darker.

c) Bias compensation: Because the weak singularity was avoided by
bounding the integrand, we have to account for the bias. Therefore
we trace a ray into a random direction yielding the next vertex xi+1

along the eye path on the scene surface S. If G(xi, xi+1) < b then this
contribution has already been accounted for in the previous step and
the eye path is terminated. Otherwise i is incremented and we continue
with step 2.a, whose result has to be attenuated by the product of
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the bidirectional reectance distribution function fr and G(xi,xi+1)−b
G(xi,xi+1)

because of the derivation in equation (2).

The evolution of an image with the eye path length can be seen in Fig. 1,
where Figs. 1a) – d) show the contribution of the eye path length i = 1, . . . , 4
and Fig. 1e) the sum of the contributions computed by our algorithm. Note
that the contributions have been amplied by 3(i−1) for display, i.e. the bias
decays exponentially over the eye path length in our new algorithm.

3.1 Numerical Comparison to Bidirectional Path Tracing

Our new technique can be formulated as a heuristic for multiple importance
sampling [VG95,Vea97] and consequently belongs to the class of bidirectional
path tracing algorithms. Although this larger mathematical framework is not
required for the derivation, it is interesting to compare the eciency of our
method to the classical techniques.

The New Algorithm as a Heuristic for Bidirectional Path Tracing

Using the notions as dened in [KK02a], our algorithm computes a path in-
tegral

∞

=1



P

f(x̄)dµ(x̄) ≈
∞

=1

1
N

N−1

j=0

−1

i=0

w,i(x̄,i,j)
f(x̄,i,j)

p,i(x̄,i,j)

by multiple importance sampling. P is the path space containing all transport
paths x̄ = x0x1 · · ·x−1 of length  and f is the measurement contribution
function, which contributes the radiance of the path x̄. For a xed path length
 there are  techniques to generate it by a corresponding probability density
function p,i. The path x̄,i,j has been generated by sampling the probability
density p,i. With these denitions our new algorithm results in the weights

w,−1(x̄) = min


1,
b

G(x−2, x−1)



w,−2(x̄) = min


1,
b

G(x−3, x−2)


· (1 − w,−1(x̄))

...

w,1(x̄) = min


1,
b

G(x0, x1)


· (1 − w,2(x̄)) · . . . · (1 − w,−1(x̄))

w,0(x̄) = (1 − w,1(x̄)) · . . . · (1 − w,−1(x̄)) , (5)

which obviously fulll
−1

i=0 w,i(x̄) = 1 for any path x̄ of length  as required
for an unbiased estimator [KK02a].
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Numerical Evidence for the Increased Efficiency

Since our method is unbiased, for a sucient number of samples we obtain
images without artifacts. At too low sampling rates noise, blossoming, and
sharp shadow boundaries can be visible. One might think that this noise is
caused by step 2.a of the algorithm, which however rarely happens. It is more
likely that the point lighting after scattering in step 2.c contributes noise.
Sharp shadow boundaries become visible, if one set of point light sources
is used for the whole image in step 2.b. If furthermore point light sources
are located in concave geometry, it can happen that the close-by geometry
is brightly lit, which we call blossoming. Using a dierent set of point light
sources for adjacent pixels (uncorrelated sampling, e.g. interleaved sampling
[Kel03,KH01]) the latter two artifacts are turned into noise. All these artifacts,
however, are bounded as proved in Sect. 2.3 and thus rapidly average out
during Monte Carlo integration.

The choice of c balances the artifacts at low sampling rates and thus
controls the eciency of the algorithm: The larger c, the more artifacts are
caused by the point light sources, the smaller c the more noise from scattering
becomes noticeable.

Known heuristics from multiple importance sampling, as e.g. the power
heuristic [VG95, Vea97], are ratios of probability densities and therefore in-
dependent of the scale of a given scene. For area light sources we obtain this
property for c = 1

|A| as previously mentioned. For global illumination, which
includes indirect illumination, however, this choice no longer is obvious.

Therefore we numerically analyzed the eciency, i.e. the reciprocal of the
variance multiplied by the rendering time. In Fig. 3 the relative running time
of the balance, power, and maximum heuristic is compared to our new al-
gorithm at identical image quality. We used a bidirectional path tracer that

Oce Room Scene Conference Room Scene

bounding parameter c
0 0.05 0.1 0.15 0.2 0.25 0.3
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0.8

1

1.2

bounding parameter c
0 0.05 0.1 0.15 0.2 0.25 0.3

re
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v
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0.8

1

1.2

balance heuristic
power heuristic

maximum heuristic
new algorithm

Fig. 3. Comparison of the relative rendering time of the power heuristic with β = 2,
the balance heuristic, the maximum heuristic, and our new algorithm at identical
image quality. We used the more ecient interleaved sampling, i.e. the method of
dependent tests. For a wide choice of the bounding parameter c our new algorithm
reliably outperforms the classical techniques saving up to 20% of the rendering time.
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has been improved by dramatically reducing the number of light paths by
interleaved sampling [KH01], which decreases the realization cost by the same
constant amount of time for all heuristics. Although our algorithm may not
have optimal variance, it is more ecient than other heuristics for a broad
range of the parameter c.

Efficient Implementation

Contrary to classical bidirectional path tracing techniques [VG95,Vea97], the
algorithm from section 3 is easily implemented in the standard shader concept
of industrial ray tracing software. A complicated implementation of the bal-
ance, power, or maximum heuristic is not required, because our algorithm just
is a double for-loop over the eye path length and the number of point lights.
This has been a big advantage for the acceptance in a production environment.
The observed increased eciency has several reasons:

Cheap rays: Equating the geometry term G and the bound b allows one to
bound the maximum length

r(x) ≤


cos+ θx

b

of the eye rays, where we used cos+ θyi
≤ 1. This distance often is much

shorter than the obvious bound determined by the bounding box of the
scene. Consequently the amount of geometry loaded into the caches re-
mains much smaller and less voxels of the acceleration data structures
have to be traversed.

Short eye paths: Compared to previous bidirectional path tracing heuristics,
the eye path length of our new method is shorter on the average. Thus
less rays have to be traced and shaded as can be seen in Figs. 1 and 2.

Less shadow rays: The short average eye path length directly results in a mod-
erate number of shadow rays to be shot and consequently a higher data
locality.

One might argue that the maximum heuristic in bidirectional path trac-
ing also allows one to avoid the shooting of shadow rays. This is true, how-
ever, most of the possible path weights have to be computed in order to
determine, whether or not to omit a shadow ray. The second disadvantage
of the maximum heuristic is that it introduces discontinuities in the inte-
grands around the weak singularity, which in our approach we explicitly
avoided in order to obtain a lower noise level.

Intrinsic cache coherence: Only in the vicinity of concave corners the eye path
length slightly increases as illustrated in Fig. 2. Then the ray length is
short, which implies that most of the geometry already is in the proces-
sor cache. This corresponds to the idea of local illumination environ-
ments [FBG02], however, our method is unbiased and implicit, i.e. does
not require an extra implementation for cache locality. Working with point
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light sources, the shadow rays can be traced as bundles originating from
one point [WBWS01]. Because shadow rays only access the scene geom-
etry and do not require shader calls, less cache memory is required for
shader data.

Compared to bidirectional path tracing, the cost of the light path generation
remains the same for our new algorithm. However, since eye rays are cheaper,
eye paths are shorter, and less shadow rays have to be shot, the new algorithm
is more ecient and in addition it benets much more from speedups in tracing
rays. Because cache requirements are minimal, the ecient use of the processor
cache is intrinsic to our algorithm and does not require extra care while coding.

3.2 Extensions

Our approach is a very general mathematical concept and unies many seem-
ingly isolated techniques in a simple way: Russian roulette, ambient occlusion
and local illumination environments, and nal gathering and secondary nal
gathering are all intrinsic. In order to further increase eciency, the algorithm
can easily be complemented by the following, orthogonal techniques:

Ecient multidimensional sampling: For the sake of clarity, we based all ex-
planations on arguments using pure random sampling. It is straightfor-
ward to improve the eciency by quasi-Monte Carlo and randomized
quasi-Monte Carlo sampling methods [Kel02, KK02a, KK02b]. The big
advantage of our approach is that additional discontinuities, which could
have harmed the performance of stratied sampling patterns, are explic-
itly avoided.

Shadow computation: The techniques of Ward [War91], Keller [Kel98], and
Wald [WBS03] can be used for reducing the number of shadow rays. The
shadows also could be computed using various algorithms on graphics
hardware. Due to the rapidly decaying contribution of longer eye paths,
it is also possible to reduce the number of point light sources used.

Discontinuity buer: It is straightforward to apply the discontinuity buer
[Kel98] for faster but biased anti-aliasing.

Non-blocking parallelization: Our method is a Monte Carlo algorithm and
as such trivial to parallelize. By the high coherency our algorithm in
addition benets from realtime ray tracing architectures as introduced
in [WKB+02,BWS03] and improves their image quality.

Finally, it is known that some caustic paths cannot be captured eciently by
any path tracing algorithm [KK02a], however, these are easily complemented
by a caustic photon map [Jen01].

As shown in several papers [WKB+02,BWS03], approximations to global
illumination can be computed at interactive frame rates. In our implementa-
tion the unbiased solution requires roughly up to 30% more computing power
as compared to the biased version.
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3.3 Interpretation of the Bias Compensation Step

The bias compensation step 2.c of the algorithm could be considered as a
secondary nal gathering [Chr99] as well as Russian roulette for an unbiased
path termination. A third interpretation is available in the context of ambient
occlusion techniques [IKSZ03, Neu03]: In Fig. 2 the average path length of
our eye paths is displayed as a gray image, where pixels are darker as the eye
path becomes longer. Because paths are terminated whenever the geometry
term is below the bound b, this image in fact looks like an image computed
by the ambient occlusion technique. In Sect. 2 we thus provided the missing
mathematical facts for why ambient occlusion works so ne and is justied.

Moreover, by our technique, we do not only scan the hemisphere around
one point, but the whole vicinity that can be reached by short paths. This
completely removes the problem of blurry patterns in concave corners as it
may occur with nal gathering [Chr99].

4 Conclusion

We presented a new mathematical framework for robustly computing integrals
of integrands containing weak singularities without any numerical exceptions.
Based on this concept we derived a robust algorithm for computing local
solutions of a Fredholm integral equation of the second kind. In the context
of computer graphics our approach is more general than ambient occlusion
and secondary nal gathering. The implementation exposes the simplicity of a
path tracer and the resulting images do not show the artifacts of current state-
of-the-art rendering techniques, since the algorithm is unbiased. Compared to
other unbiased techniques like classical bidirectional path tracing, our method
is more ecient and easily implemented in professional rendering software
systems.

The method of how the integrands are bounded allows one to eciently
apply hierarchical Monte Carlo methods [Hei00,5]. In future research, we also
will investigate how to determine the constant c other than by numerical
experiments. Finally the combination of occlusion maps and shadow buering
by our new method can yield more realistic hardware rendering algorithms.
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