L3-Synthese

Lancer de rayons et rendu

J.C. lehl

February 5, 2026

J.C. lehl

c'est quoi ?

J.C. lehl

t quoi 7

ces

J.C. lehl

c'est quoi ?

en résumé :
P construire une image,
P 3 partir d'un ensemble d’objets,
> (observés par une camera)
> (

et éclairés par une ou plusieurs lumieres)

J.C. lehl

comment ca marche 7

constuire une image :

> un ensemble de pixels,
» pour chaque pixel :

P trouver |'objet visible,

P trouver comment il est éclairé,
>

calculer sa couleur...

J.C. lehl

comment ca marche 7

comment ca marche 7

comment ca marche 7

comment ca se code ?

#include "color.h"
#include "image.h"
#include "image_io.h"

int main()

{
Image image (1024, 640);
for (int py= 0; py < image.height(); py++)
for (int px= 0; px < image.width(); px++)
{
Color pixel;
// trouver l’objet wisible pour le pizel
// trouver comment il est eclaire
// calculer sa couleur
image (px, py)= pixel;
}
write_image (image, "image.png");
return 0;
¥

J.C. lehl

droite...
rayon !
intersection rayon / objet

quelques détails a régler...

trouver |'objet visible 7
> soit on utilise une carte graphique avec openGL, par exemple,
mais c'est assez pénible, cf cours de M1 et M2,
P> soit on programme tout, c'est techniquement plus simple,

> méme s'il faut manipuler pas mal de détails pour obtenir le
résultat...

J.C. lehl

droite...
rayon !
intersection rayon / objet

quelques détails a régler...

trouver |'objet visible :
» pour un pixel...
> ?
> facile, il se trouve sur la droite qui passe par le pixel,

» s'il y a plusieurs objets, on garde le premier / le plus proche
du pixel (plutot de la camera)

J.C. lehl

droite...
rayon !
intersection rayon / objet

droite qui passe par un pixel ?

y

J.C. lehl

droite...
rayon !
intersection rayon / objet

Objet A

/

tB>0

tC>0

Objet B

Objet C

J.C. lehl

rayon !
intersection rayon / objet

droite qui passe par le pixel...

une droite ?
» comment décrire une droite ?
» avec 2 points ou 1 point et 1 direction,
> ?
» il va falloir aussi décrire une camera, comment on projette des
objets 3d sur une image 2d...

J.C. lehl

rayon !
intersection rayon / objet

camera

par convention :

la camera est placée a I'origine d'un repeére,
elle regarde dans la direction -z,

le plan image, est un carre [-1 1] placé a z= -1
7

vVvYyyvy

pour décrire la droite qui passe par un pixel,
on a besoin de 2 points :

> tous les rayons passent par (le centre de projection de) la
camera,

P reste a calculer la position d'un pixel dans le plan image...

J.C. lehl

rayon !
intersection rayon / objet

camera et plan image

J.C. lehl

rayon !
intersection rayon / objet

pixel et plan image

par convention :

P les points du plan image correspondent aux pixels de |'image,

v

une image de resolution WxH : H lignes de W pixels,

» le point (-1 -1) du plan image correspond au pixel (0, 0) en
bas a gauche de I'image,

» le point (1 1) du plan image correspond au pixel (W, H) en
haut a droite de I'image,

» quel point du plan image correspond au pixel (px, py) ?
(avec z= -1, par convention)

J.C. lehl

pixel et plan image

(W, H) (1,1 2,2 (1, 1)
(PXT Py) | T - T - T

| | | |
(0, 0) (0, 0) (0, 0) (-1-1)

(px, py) / (W, H) *x2 -1

J.C. lehl

rayon !
intersection rayon / objet

comment ca se code ?

#include "vec.h"

for (int py= 0; py < image.height(); py++)

for (int px= 0; px < image.width(); px++)

{

// trouver l’objet wisible pour le pizel (pz py)

// point (z y z) du plan image

float x= float(px) / float(image.width()) * 2 -1;
float y= float(py) / float(image.height()) * 2 -1;
float z= -1;

// droite (o e) passant par le pizel (pz py)
Point o= Point (0, 0, 0);
Point e= Point(x, y, 2z);
Vector d= Vector(o, e);

J.C. lehl

rayon !
intersection rayon / objet

comment ca marche 7

y

J.C. lehl

droite...

intersection rayon / objet

droite ou rayon ?

droite qui passe par le pixel :
» on connait 2 points, o I'origine / la camera,
» et e sur le plan image / le pixel de I'image,

P ou sont les autres points de la droite 7

le point p a la position t sur la droite peut s'écrire :
p(t)=o0+t-d (avecd =e—0) ou
p(t)=o+t-(e—0)=(1—t)-0o+t-e

J.C. lehl

droite...

intersection rayon / objet

on utilise plutot :
> p(t)=o+t-d
> si t <0, le point se trouve avant l'origine de la droite
(derriére I'origine),
> sit >0, le point est apres l'origine,

> sit =0, le point est sur l'origine...

pourquoi t 7 lorsque plusieurs objets se trouvent sur la droite, il
faut garder le plus prés de I'origine, il suffit de comparer les valeurs
de t...

J.C. lehl

droite...

intersection rayon / objet

rayon et t ?

t<0

‘ﬂ i [+1 tL>0
. tL<t
L] 2>0

tl<t2

J.C. lehl

droite...
rayon !

Intersection avec un rayon...

pourquoi t ?

P et t représente aussi un point qui se trouve sur le rayon et a la
surface de I'objet !

P c'est le point d'intersection entre le rayon et |'objet.

J.C. lehl

droite...
rayon !

intersection rayon / plan

on veut calculer le point ou le rayon traverse un plan...

>

>
>
>

vy

c'est quoi un plan ?
comment faire le calcul d'intersection 7
trés simplement :

on écrit que le point sur le rayon fait aussi parti du plan, et on
en déduit t !

comment savoir qu'un point fait parti d'un plan ?
on utilise une proprieté du produit scalaire entre 2 vecteurs :

si le produit scalaire de 2 vecteurs est nul, les vecteurs sont
perpendiculaires...

J.C. lehl

droite...
rayon !

intersection rayon / plan

J.C. lehl

droite...
rayon !

intersection rayon / plan

euh

?

si un vecteur est la normale 7 du plan...

et que I'on connait un point du plan a,

il suffit de vérifier que le vecteur ﬁ est perpendiculaire a n !

si 3p- 7 =0 le point sur le rayon est aussi dans le plan,

vVvYyyVvyy

il ne reste plus qu'a calculer la valeur de t !

rappel : quelques propriétés pratiques des produits scalaires et
vectoriels, cf doc en ligne.

J.C. lehl

https://perso.univ-lyon1.fr/jean-claude.iehl/Public/educ/L3IMAGE/2025/geometrie.html

droite...
rayon !

intersection rayon / plan

a

J.C. lehl

droite...
rayon !

intersection rayon / plan

i-ap(t)=0
i-(o4td—a)=0
i-((o—a)+td)=0
ii-(36+td)=0
i-26+7-td=0
i-td=—7-ab
t(A-d)=—n-ab
t:_ﬁ'szﬁ'o_is
i-d #-d

J.C. lehl

droite...
rayon !

comment ca se code ?

#include "vec.h"

// plan, point + normale
Point a= { ... };

Vector n= { ... };

// intersection avec le rayon o, d
float t= dot(n, Vector(o, a)) / dot(n, d);

// point d’intersection
Point p= o + t*d;

J.C. lehl

droite...
rayon !

et pour d'autres formes ?

pour d'autres formes :

» il faut décrire les points a la surface de I'objet,

P et ensuite trouver la position d'un point du rayon qui est aussi
sur la surface de I'objet...

exemple : une sphere 7

J.C. lehl

droite...
rayon !

intersection rayon / sphére

sphere de centre ¢ et de rayon r :

» les points p a la surface de la sphere vérifient :

llp—cl| = rou|lcpl| =r
» ou de maniere équivalente :
llepll> = r?

» en utilisant une autre propriété du produit scalaire :
||cpl? = ¢p - cb

> cp-cp=r?

P il ne reste plus qu'a remplacer p par le point sur le rayon et a
calculer t !

J.C. lehl

intersection rayon / sphére

(p(t) = <) - (p(t) -

(o+td—c)-(o+td—c
((0—c)+td) ((o—c)+t
(¢ + td) - (c6 + t

(d-d)t?+ (2d - cB)t + ¢6 - %—r =

J.C. lehl

droite...
rayon !

intersection rayon / sphére

et alors 7

>

v

vVvYyyvyy

la solution est sous la forme : at? + bt + k = 0,

il y a donc plusieurs cas possible : 2 intersections, 1 seule ou
aucune,

il suffit de calculer les racines du polynome,

au final, c’est plutot intuitif comme résultat :

une droite traverse la sphere et donne 2 intersections,
ou touche la sphére en un seul point,

ou passe completement a coté...

J.C. lehl

droite...
rayon !

intersection rayon / sphére

rappels :
a
b=
k

si b> —4ak < 0, il n'y a pas de solution, le rayon passe a coté de la
sphere, sinon il existe 2 solutions :

. —b+ Vb? — dak
1= 2a
—b—Vb% —4ak
th =
2a

J.C. lehl

droite...
rayon !

intersection rayon / sphére

tl ett2,
2 intersections existent

tl =12, une seule
intersection

pas d'intersection

J.C. lehl

droite...
rayon !

comment ca se code ?

#include "vec.h"

// sphere centre c, rayon T
Point c= { ... };
float r= ... ;

// intersection avec le rayon o, d
float a= ... ;

float b=
float k=

float dd= b*b - 4*axk;
if (dd < 0)
return "pas,touche";

// calculer les 2 racines / intersections
float ti= ... ;
float t2= ... ;

// renvoyer l’intersection la plus proche de la camera...
return ...;

C. lehl

droite...
rayon !

et ca marche 7

J.C. lehl

et avec plusieurs objets ?

il faut calculer toutes les intersections :

» et garder |'intersection valide la plus proche de la camera / de
I'origine du rayon !

J.C. lehl

et avec plusieurs objets ?

intersection valide 7
P> on ne s'interesse qu'aux intersections visibles,

P pas a celles qui se trouvent derriére I'origine du rayon...
(derriere la camera)

> si t <0, I'intersection n'est pas valide.

les calculs d’'intersections se font sur la droite infinie du rayon...
mais on ne garde que les intersections valides / visibles / devant...

J.C. lehl

et alors 7

Objet A

/

g

tB>0

tC>0

Objet B

Objet C

J.C. lehl

et avec plusieurs objets ?

pour chaque objet :

P si |'intersection t est valide, t > 0,
P et plus proche que celle deja trouvée, t < tmin,

» conserver |'intersection, tmj, = t.

on connait I'objet visible pour le pixel !!

J.C. lehl

et alors 7

en résumé :

camera qui observe des objets,
plan image,

1 rayon par pixel,
intersections,

garder l'intersection la plus proche de la camera,

vVvyvyVvVvyypy

colorier le pixel en fonction de I'intersection...

J.C. lehl

et alors 7

la suite :
» les ombres,
» les lumieres,

» la couleur des objets éclairés / a I'ombre...

J.C. lehl

et alors 7

simplifications :
> les rayons et les objets sont décrits dans le repere de la
camera,

» habituellement, cf principes du lancer de rayon,
on place les objets et la camera dans le repére du monde,

» et il faut transformer les coordonnées entre les différents
repéres, cf matrices de transformations,

» la camera / le plan image est également défini par des
matrices,

P plus simple pour démarrer...

J.C. lehl

https://perso.univ-lyon1.fr/jean-claude.iehl/Public/educ/M1IMAGE/html/group__intrort.html

et alors 7

simplifications :

>

vVvVvvyVvVYvVvyyvyy

on peut calculer I'intersection avec pas mal d'autres formes,
cf PBRT, un (gros) bouquin de référence,

cube (aligné sur les axes) / voxel (minecraft ?),

sphere,

cylindre,

disque,

cone, paraboloide, hyperboloide, etc,

courbe / ruban, utilisé pour les cheveux, la fourrure, I'herbe...

J.C. lehl

https://www.pbr-book.org/
https://www.pbr-book.org/3ed-2018/Shapes/Basic_Shape_Interface#RayndashBoundsIntersections
https://www.pbr-book.org/3ed-2018/Shapes/Spheres
https://www.pbr-book.org/3ed-2018/Shapes/Cylinders
https://www.pbr-book.org/3ed-2018/Shapes/Disks
https://www.pbr-book.org/3ed-2018/Shapes/Other_Quadrics
https://www.pbr-book.org/3ed-2018/Shapes/Curves

et alors 7

alternatives :
P on peut aussi définir les objets différemment,

» en utilisant une fonction de distance
(entre un point de I'espace et |'objet),

P> et en marchant le long du rayon jusqu’a trouver l'intersection,

v

voir le cours de L2 graphique, par exemple,

» et i. quillez / shadertoy.

J.C. lehl

https://perso.liris.cnrs.fr/eric.galin/L2/2-signed-distance-fields.pdf
https://iquilezles.org/articles/raymarchingdf/
https://www.shadertoy.com/

	introduction
	les détails...
	droite...
	rayon !
	intersection rayon / objet

	et avec plusieurs objets ?
	bilan

