
Shadowbuffers

Tom Forsyth
RAD Game Tools

Terminology

● View/viewspace = current D3D target
● Light POV = light point of view

● Placing the viewer where the light is
● Camera POV = what the gamer sees

● Conventional idea of a viewer
● Shadowbuffer/shadowmap

● Both the same thing
● To me, "buffer" = dynamic, "map" = static

● Other people use other conventions!
● (so do I sometimes - oops!)

Principles

● Render scene from light point of view
● Render to shadowbuffer texture
● Store a surface identifier

● Depth, ID, whatever
● Use standard Z-buffer occlusion
● Closest thing to light is stored in buffer

● By definition, it can see the light = it is lit
● All things behind it are invisible to light

● Can't see the light = in shadow
● So surface ID in shadowbuffer is the lit one

Principles 2

● Render scene from camera POV
● Project shadowbuffer texture
● Same projection maths as previous pass

● Scale 0-512 pixels to 0-1 UV coords
● Compute the surface ID the same way
● Read the shadowbuffer
● Compare computed & read IDs
● If they match, this surface can "see" the light

● So it's drawn lit
● If not, something in the way, so draw shadowed

Major hurdles

● Which method of shadowbuffering?
● What shader algorithm do we use?
● What space/speed requirements does it have?
● How robust is it?

● How do you choose the frustum?
● Mitigating aliasing problems
● Concentrating fillrate where it counts

● Making soft shadows
● Look far better than hard shadows
● But how?

Which method?

Depth shadowbuffers

● Surface identifier = distance from light
● Can be same values as Z buffer
● Depth shadowbuffer can be the Z buffer

● Depends on hardware support
● if computed.depth > texture.depth

● Object must be further from light
● Therefore shadowed

● else
● Object visible to light
● Therefore lit

Depth shadowbuffers 2

● Simple in theory
● Lots of annoying problems in practice
● Incorrect self-shadowing

● "Surface acne"
● Shadows detaching from objects

● "Peter Pan" syndrome
● Hardware support is variable

● Often needs high-precision buffers

Surface acne

● Incorrect self-shadowing on lit surface
● Caused by sampling differences

● Value read from shadowbuffer is quantised
● Computed value is not

● Frequency quantisation: not enough bits
● 8 bits not enough
● 24 bits = same as Z buffer = enough

● Spatial quantisation: small shadowbuffer
● Gets very expensive very quickly
● In practice, hardware & speed are limits

Surface acne - cures

● Surface acne is not a bug!
● Fundamental side-effect of aliasing
● Inherent in every image-based system

● Use more bits
● 2x precision = 1 more bit
● Fairly cheap, but careful of hardware support!

● Use bigger textures
● Far more expensive
● 2x precision = 4x memory & fillrate

● In practice, resolution is the limiter

Surface acne - cures 2

● Use a bias
● Make it bigger than the quantisation errors
● But errors are slope-dependent!

● Use a slope-dependent bias
● Doesn't cope well with irregular surfaces
● Bias can get very large for edge-on surfaces
● Helps, but not very much

● Biases cause Peter Pan syndrome
● Shadows detaching from their casters

Shadows don’t meet
objects. The cyan block
actually intersects the
yellow one and the grey
ground plane, but it
doesn’t look like it here.

Peter Pan vs Acne

● Large biases cause shadows to detach
● Shadow values pushed through objects

● Small biases cause surface acne
● Some biases cause both!

● Different areas of a scene show different ones
● In practice, no bias causes neither :-(

● Could render backfaces to shadowbuffer
● Acne is invisible on unlit backfaces
● Error still large enough on thin objects
● Relies on objects being closed
● Causes even worse Peter Pan problems!

Surface acne here

Peter Pan effect here

Depth shadowbuffers 3

● Lots of interesting research
● Smarter biases: Gradient Shadow Maps

● Christian Schueler (ShaderX4, ShaderX5)
● Smarter sampling: Irregular Z buffer
● So far, nothing works for everything

● Large flat areas at glancing angles
● Curved or bumpy areas
● Thin areas
● Objects resting or interpenetrating
● Combinatorial nightmare - tune it for one

situation and it fails for another

ID shadowbuffers

● Don't need to use depth
● Shadowing asks simple question

● "Is the surface in the shadowbuffer me?"
● Just need something to identify surface
● Can just pick an integer

● Here shown as a shade of grey

ID shadowbuffers 2

● Per-triangle integer
● Needs hardware support (some ATI cards)
● DX10 will have primitive ID as standard
● Needs lots of integers - 16 bits+
● Pixel-sized triangles can get “lost”

● Causes acne
● Per-object integer

● No hardware support needed
● 8-bit ID will do fine - 256 objects in scene

● For more, check light-space bounding boxes

ID shadowbuffers 3

● "Edge acne"
● Sampling misses the edge of an object
● Hits object behind
● IDs don't match => shadowing
● (depth shadowbuffers have an implicit order)

● Can sort objects back to front
● Expensive, sometimes not possible

● Sample nearest four neighbour texels
● Only shadow if all four don't match
● Careful with user-set control-panel texel

offsets!

Edge acne – shadowbuffer
is sampling the ground
plane here

ID shadowbuffers 4

● No maths is done on the IDs
● No frequency aliasing problems
● Simple shaders
● No biases or tweaks needed
● No acne or Peter Pan problems
● Robust & predictable

● But no self-shadowing
● Whole of an object is same ID
● Can't cast shadows on itself
● Not critical in some games

Depth vs ID

● Depth
● Surface acne and Peter Panning
● Large shadowbuffer surfaces
● Bias is fiddly & scene-dependent

● IDs
● Small surfaces = fast
● Robust - write once, works everywhere
● No self-shadowing

Depth + ID

● So use both!
● ID for inter-object (non-self) shadowing

● No Peter Pan problems
● No acne by definition
● Works whatever the scene

● Depth for intra-object (self) shadowing
● 0-1 depth only covers one object at a time

● So can use smaller buffer - 8 bit usually fine
● Bias tweaked for that object
● Can have different biases for different objects

Depth + ID 2

● Shadowbuffer is small
● 8bit ID + 8bit depth
● No special hardware required

if object.ID != buffer.ID
inter-object shadow

else if object.depth - bias > buffer.depth
object self-shadows

else
lit

Using full range of depth
across each object, so 8 bit
depth is enough precision for
self-shadowing

Local depth buffer shown.
Dark = near, bright = far

16-bit depth buffer only Peter Pan on the lid
handle shadow. A
smaller bias would
cause acne

16-bit depth buffer only
– showing depth
(exaggerated scale)

8-bit ID buffer only No self-shadowing on
lid handle or spout

8-bit ID buffer only –
showing IDs

8-bit ID + 8-bit depth Self-shadowing and no
Peter Pan problems

8-bit ID + 8-bit depth –
showing depth

Demo...

Which frustums?

Shadowbuffer frustums

● Frustum = pyramid of rendered scene
● Position + direction + depth + FOV
● Shadowbuffers need frustums too

● But they can sometimes get strange
● Position = light position
● Depth = usually not a big problem
● But direction + FOV are difficult

The projection problem

● Shadowbuffer rendered from light POV
● Then projected into camera POV
● The two do not agree

● Can violently disagree - "duelling frustums"
● Too many texels in some places

● Inefficient use of memory & fillrate
● Too few texels in others

● More visible aliasing

● Overhead view

● From the light POV

● From the camera POV

Smarter projection solutions

● Use extra freedom in the projection
● Frustum doesn't have to look sensible!

● Perspective Shadow Maps
● Flaky, full of special cases - avoid

● Light-space Persp. Shadow Maps
● (LiSPSM)
● More robust than PSM, but more complex

● Trapezoidal Shadow Maps (TSM)
● Needs complex shader support
● Tuned for terrains, not arbitrary worlds

Smarter projection problems

● None of them solve duelling frustums
● All degenerate to standard projection

● They can cause worse depth aliasing
● Flexibility traded for spatial aliasing

● None of them solve omni-lights
● Omni lights have 360-degree FOV!
● Frustum cannot have >180
● Practical limit is around 120 degrees
● Also, guaranteed duelling frustum

● Some part of the light is "facing" the camera

Multi-frustum partitioning

● Splits scene into multiple frustums
● Each frustum rendered separately
● Conventional frustum for each section

● Solves the two big problems
● Duelling frustums
● Omni lights

● Helps in other ways
● Copes gracefully when smart projection fails
● ...allows "dumber" smart projection
● Can alleviate depth aliasing problem

● Omni with multiple frustums

● Omni with duelling frustums

● Same, from above

MFP + smart projection

● MFP simply partitions the scene
● Each frustum can be "smart"

● Different frustums can be differently smart
● Where one has a problem, use another

● MFP can partition to avoid problems
● Can dumb down the smart projections
● Just solve problems by more partition

● MFP can just work with naïve frustums
● Reliable fallback

MFP results

● Retrofitted to StarTopia (2001)
● RTS/"god game"
● Player-built world - no preprocessing possible

● No gameplay or artwork changed
● Already had local lights (but no shadows)
● All lights are omnis - rampant duelling!
● Truly robust

● More details at ww.eelpi.gotdns.org
● Subject far too big to cover in the time

http://www.eelpi.gotdns.org/

Soft Shadows

Soft shadows

● More realism
● Hides aliasing

● Allows use of lower-rez shadowbuffers
● Gives depth cues

● Further from lightsource = softer

Simple blurring

● Not for realism, just to reduce aliasing
● Percentage Closer Filtering

● Make multiple samples from shadowbuffer
● Test each sample for shadowed/lit
● Result is the percentage of lit

● Requires a lot of samples
● 64 samples = 6 bits of grey

● Can make it adaptive
● Only sample lots at shadow edges

Depth-dependent softness

● Simulates an area light
● Objects can occlude all or part of the light
● Penumbra formed at partial occlusion

● Penumbra wedges (Assarson)
● Fusion of shadowbuffers and volume shadows
● Needs watertight manifold meshes
● Needs lots of fillrate

Depth-dependent softness

● Smoothies (Chan, Durand)
● Not physically correct

● Shadows only blur outwards, not inwards
● Less fillrate demand than Penumbra Wedges
● Hides spatial aliasing really well
● But still needs watertight manifolds

● Uses them to find silhouette edges
● Willem de Boer's work

● Similar to Smoothies
● But generates edges in image-space
● So no geometric restrictions

Summary

● ID+depth = best of both world
● This seems like the right solution - solved!

● Frustum choice is tricky
● There are solutions, but they're all complex
● Still some engineering problems to solve

● Soft shadows are very tricky
● Lots of interesting research
● None works completely yet
● Still expensive
● But progress is swift!

Questions?

More available from
www.eelpi.gotdns.org

