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Abstract : In the field of geometric design, the generic term “soft object” embeds several implicit models (blobs,
metaballs, distance surfaces, convolution surfaces) proposed over the years for modelling and animating free-form
8D objects. All these models share the property that curved surfaces are defined by computing isosurfaces of a set
of potential fields. The topic of this paper is to presents some innovative ways for defining these potential fields.
First, it proposes a set of ready-to-use functions and second describes an environment which allows the user to
design interactively his own functions.
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1 Introduction

Mathematical representations that are used in the field of geometric design can be divided in two main
families : parametric surfaces and implicit surfaces. The most famous members of the first family are
spline surfaces which include two desirable features. First, they enable the modelling of free-form objects,
and second, they offer an intuitive relationship between the parameters that exist in their mathematical
formulation (control points, knots, weights) and the shape of the resulting surfaces. The family of implicit
surfaces also contains a member which includes these two desirable features. In this model, a 3D object
is created by computing the equipotential surface of a set of potential fields defined by the user. Several
terms have been proposed in the literature for such a model ; perhaps the most generic one is “soft
objects” [11] which can be used to qualify various models (blobs [2], metaballs [8, 10], distance surfaces
[3], convolution surfaces [4]).

This paper focuses on the mathematical expression of the potential fields used in the definition of soft
objects. Previous work conducted by Wyvill [11, 12, 7] has shown that, for a given set of potential sources,
a great variety of shapes can be obtained by using well-chosen field functions. The work presented here
follows the same direction. Its purpose is first, to propose some generic or specific field functions that can
be directly implemented in any existing implicit modelling/rendering software, and second, to describe
some techniques which allow to design and combine new field functions during an interactive process.

2 Soft Objects

2.1 Definition

In the basic formulation proposed by Blinn [2], soft objects are defined by a set of points P;(z;,y;, i)
where each point is the source of a potential field. Each source is defined by a field function Fi(z,y,z)
that maps R? to IR (or a subset of R). At a given point P(z,y, z) of the Euclidian space, the fields of all
the sources are computed and added together, leading to a global field function F(z,y, z) :

F(Iayaz)zz Fi(;r,y,z) (1)

i=1

A curved surface can then be defined from this global field function F(z,y, z) by giving a threshold value
T and rendering the equipotential surface S (Equation 2) for this threshold. Several solutions have been
proposed to visualize such a surface on a raster device. They can be mainly divided into tessellation
techniques [11, 5] and ray-tracing techniques [2, 10, 13, 9].

S={(r.4,2) ER | Flr,y.2)=T} (2)
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Instead of manipulating the field functions F;(z,y, z) as a whole, it is usually easier to consider F; as the
composition of two functions, d; (let call it the distance function) which maps R? to R* and f; (let call
it the potential function) which maps R to R :

Fi(maynz):fiodi(maynz) (3)

The function d;(z, y, z) characterizes the distance between a given point P(z,y, z) and the source point
Pi(x;,yi,2z). A usual convention [8, 11, 10] is to define d; as a function of a user-provided parameter
r; € Rt (called radius) which expresses the growing speed of the distance function. The most obvious
solution for d;(z,y, z) is the Euclidian distance (see Equation 4) but several other functions have been
proposed in the literature, especially when the potential source is not reduced to a single point (this will
be discussed in Section 4).

hiey,2) = o V=) + (= wP =) (4)

The function f;(d) characterizes the potential of the source point P;(z;, yi, z;) according to the distance.
A nice feature [2, 7, 6] is to introduce a user-provided parameter p; € R (called hardness or stiffness)
which expresses the amount of blending? between the individual soft objects. Many formulation for the
potential function f;(d) have been proposed in the literature (this will be discussed in Section 3). Some of
these functions are infinite (Yd € RT, fi(d) > 0) and other are finite (Vd > 1, f;(d) = 0). Wyvill [11, 12, 7]
proposed to use only “normalized” functions (for which, f;(1/2) = 1/2) combined with a threshold value
T = 1/2. This restriction enables to get predictible results because the extend of the object around the
source is always r; /2.

Figure 1 shows a soft object defined by four point sources and illustrates the role of the radius and
hardness factors by providing different combinations of these parameters.

© G Cans

Figure 1: (a) Initial configuration (b) The radius of the source at the bottom has been increased
(¢) The hardness of the two sources at the top has been increased

2.2 Soft Objects in Flatland

A nice characteristic of soft objects is that their blending properties are preserved when they are restricted
to a 2D space. The main advantage of these “soft objects in flatland” is that there exists a very inexpensive
visualization algorithm which simply loops over the image, computes the field function for each pixel and
displays a black or white information according to the threshold value. Rather than a pure boolean
information, we propose the following four-state display process :

clear (white);
foreach pixel (z,y) {
t =0;
foreach source i {
d=di(z,y);
if (d > 1) next-source; /* only for finite potential functions */
if (d < ¢) next-pixel; /* close to the source = white */
} t += fi(d);

2In fact, the hardness p; is usually the slope of the potential function f; in the neighbourhood of the threshold value.
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if (¢ > 1/2) pixel (darkgray); /* soft object = darkgray */
elseif (¢ >0) pixel (lightgray); /* blending zone = lightgray */

}

For instance, Figure 2 shows the flatland picture corresponding to Figure 1. By its simplicity and its speed
(an implementation including bounding boxes and other optimization tricks provides real-time rates for
moderately complex objects) such a flatland tool represents a framework of choice for many theoretical
and experimental studies on soft objects. In the remainder of this paper, every model of field function
will be illustrated by such greyscale thresholded pictures.

Figure 2: Flatland soft object corresponding to Figure 1

3 Potential Functions

In this section, we assume that a given distance function d;(z,y, z) has been chosen (Equation 4, for
instance) and focus on the possible formulation of the potential function f;(d). After having recalled
the expressions proposed by several authors, we propose some original low-cost alternatives. Note that
every existing formulation will be rewritten in Wyvill’s normalized form (f(1/2) = 1/2) which allows to
compare the functions in a unified framework.

3.1 Infinite Potential Functions

The first potential function has been proposed by Blinn [2] and was based on a Gaussian function :
1
f(d) =5 exp (p— 4pd”) (5)

As said earlier, the parameter p controls the slope of the function at the threshold value d = 1/2 (see
Figure 3a). Notice the use of d? in Equation 5 which avoids the expensive calculation of the square root
in Equation 4. The main problem with Blinn’s function (in its normalized form) is that extremely high
values are reached when p increases ; this way lead to numerical instabilities. An alternative formulation
based on the arctangent function has been proposed by Kacic-Alesic and Wyvill [7] :

f(d) = % + %arctan (p — 2pd) (6)
This time the values taken by the function are bounded by [0, 1] (see Figure 3b). As a counterpart, the
function involves the computation of a square root and an arctangent which makes it more expensive
as the previous one. For that reason, we propose the following function that behaves as Equation 6
(see Figure 3c¢) but is even less expensive as Equation 5. The function is a piecewise rational quadratic
polynomial (for compactness, we use notation from the C programming language) :

1 1
24 p—4pd? T 2—p+4pd?

fldy=(d*<1/4) 7 1 (7
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Figure 3: Infinile potential functions (a) Blinn (b) Kacic-Wyuvill (¢) New model

Figure 4 shows a simple object made of five sources, using Equation 7 with three different hardness values.

Figure 4: Soft object with infinite fields (a) p=1 (b) p=4 (c) p=50

3.2 Finite Potential Functions

A serious drawback of the previous potential functions is that they have an infinite support, which means
that a point situated very far from a source point is still influenced by it. Therefore several authors
have proposed finite support formulations which enable a better control of the resulting shapes. In these
models, the potential of a source P; drops to zero when the distance is larger that the radius of influence
r; (in other words, Vd > 1, fi(d) = 0). To avoid discontinuities in the resulting soft object, another
important property required by a finite potential function is to have f/(1) = 0 and eventually f/'(1) = 0.

The idea of finite potential functions was first developped by Nishimura et al. [8] who proposed a piecewise
quadratic polynomial (as usual, we present here the function in its normalized form) :

f(d):(d<1)?(d<%)?§—4d2: 2(1—-d)? : 0 (8)

Alternative formulations which do not need the calculation of the square root involved in Equation 4
have been proposed by Wyvill et al. [11] :

17 4
§d4 — §d6 0 (9)

22
fld)y=(d*<1) ? 1—§d2+
and by Murakama et al. [10] :

fdy=(*<1) 72 —(1-d)* : 0 (10)

Nel o]

The plots of these three functions (see Figure ba) are relatively close (especially on the right part where
the blending actually occurs) and therefore the resulting objects are really similar. Nevertheless, none
of the function includes a hardness factor and therefore the user cannot control the shape of the object
with the same precision as previously. M-P. Gascuel [6] has proposed a piecewise polynomial which offers
such a control of the blending :

fd)y=@d<1)? (d<1/2) ? %(2+p—2pd) (=24 p+8d—2pd) (1—d)> : 0 (11)

Unfortunately, for large values of the hardness parameter p, the function reaches negative values (see
Figure 5b). Other polynomial or piecewise polynomial functions have been proposed (for instance, using
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functional Bézier or B-splines [7]) but all formulationsinclude the same limitation : there exists a maximal
value for the hardness factor. It means that one cannot create hard blending objects like the one presented
on Figure 4c. To our knowledge, the only potential function with finite support and unlimited hardness
factor has been proposed by Kacic-Alesic and Wyvill [7] and is based on the arctangent function (see
Figure 5¢) :

1 arctan (p — 2pd)

fldy=(d<1) ? = + 0 (12)

1
2 2 arctan p

Nevertheless this function is not completely satisfying, first because of its cost (it involves the computation
of a square root and an arctangent) but mainly because its derivative at d = 1 is not zero. Thus the
resulting objects may have unwanted discontinuities, especially for small values of p.
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Figure 5: Finite potential functions

(a) Nishimura, Wyvill and Murakami (b) Gascuel (¢) Kacic and Wyvill (d) New model

We propose here a new potential function based on a piecewise rational polynomial which includes all
the desirable features that we have exhibit : it has a finite support and a finite image (more precisely, it
maps [0, 1] to [0, 1]), it is normalized and (almost) symmetric according to 1/2 (see Figure 5d), it enables
an unbounded hardness factor (p € |R+) and it is really inexpensive (an optimized implementation needs
only 1 division, 2 multiplications and 2 additions) :

(3d2)2 . (1 _ d2)2
p+(45—4p)d®  0.75—p+ (1.5+ 4p)d?

Figure 6 shows the same object as Figure 4 but using finite potentials provided by Equation 13 instead
of infinite ones. Note that the same amount of control of the blending is enabled by the hardness factor.

fldy=(d*<1) ? (&*< i) ? 0 (13)

Figure 6: Soft object with finite fields (a) p=0 (b) p=1 (¢) p =50

4 Distance Functions

In this section, we assume that a given potential function f;(d) has been chosen (Equation 13, for instance)
and focus on the possible formulation of the distance function d;(z,y, z). As in Section 3, after having
recalled the expressions proposed by several authors, we propose some original low-cost alternatives.

4.1 Non-Euclidian Distance Functions

All the examples presented in the previous section have been created by using the Euclidian distance,
also known as the spherical distance. An unsatisfying consequence of such a distance is a “bubble-
shape” appearance of the resulting soft objects. This point has already been noticed by Blinn in his
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original paper [2]. To weaken this drawback, Blinn proposed to replace the spherical distance either by
ellipsoidal or by superellipsoidal [1] ones. The ellipsoidal distance involves only a small overhead (i.e.
affine transformation) compared to the spherical one, but it does not greatly extend the variety of shapes
for the resulting objects. The superellipsoidal distance provides a much greater variety of shapes but
unfortunately, as noted by Wyvill [12], multiple superellipsoidal sources do not blend well.

In fact, many metric spaces have been developped over the centuries in the field of affine algebra but, to
our knowledge, they have never been used as alternatives to the spherical distance for soft object. Perhaps
the most popular non-Euclidian distance is the D" distance (which is a straightforward generalization of
the Euclidian distance) :

1
dife,y,2) = — (|l =2l + |y — w]" + [z = 2") /" (14)

(2

At the limit case (n — o0), ones obtains the D* distance :

1
2

Figure 7 shows the same object as Figure 6b created by using the D™ distance with n = 1.5,n = 3 and

n = oo respectively. In fact for isolated sources, the resulting shapes are very similar to the one obtained

with a superellipsoidal distance, but this time, multiple sources blend well as illustrated by the figure.

Figure 7: Soft object with D™ distance (a) n=15(b) n=3 (¢) n = o0

4.2 Skeleton Distance Functions

A major extension of Blinn’s basic formulation has been presented by Bloomenthal et al. [3, 4]. The
idea of this extension is to allow more complex sources than simple points (e.g. lines, curves, polygons,
polyhedras). These sources can be then considered as the skeleton (let us note it §) of the soft object,
and therefore the model provides a very intuitive way to create complex shapes.

A skeleton S contains in fact an infinite number of point sources P;. Therefore, at a given point P, the
individual field functions F; cannot be simply added up according to Equation 1 because F' would take
infinite values. To avoid this problem, a clever scheme has to be used for the computation of the distance
function before the application of the potential function. Three different solutions have been proposed
for that, in the literature.

In the first one (let us call it the skeleton distance model) [3], d(z, y, z) is defined as the minimal distance
between P(z,y,z) and the individual points Q(u, v, w) of the whole skeleton :

d(z,y,z) = % QmEinS \/(:13 —u)?2+(y—v)?+(z —w)? (16)

In the second one (let us call it the convolution distance model) [4], d(z,y, z) is defined as the convolution,

over the whole skeleton, of all the individual distances? :
1
d(z,y,z) = - / \/(;E—u)z—}—(y—v)z—}—(z—w)? du dv dw (17)
r Q cS

3The convolution can also be done on the potentials rather that the distances; similar results are obtained.
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In the third one (let us call it the bone distance model) [3], the skeleton is divided into bones rather than
being considered as a whole. For each bone, the minimal distance (and thus the maximal potential) is
computed and all these bone potentials are then added up.

The three models have their own advantages and drawbacks. Skeleton distances create unwanted discon-
tinuities (see Figure 8a). Convolution distances provide always smooth shapes but, as a counterpart, the
skeleton may not stay inside of the object when the threshold is set to high (see Figure 8b) which is not
very intuitive. A solution may be to lower dramatically the threshold (see Figure 8c¢) but this implies to
loose all the properties offered by normalized potential functions (see Section 3). Bone distances usually
create unwanted bulges in the zone where the bones touch each other (see Figure 9a and its corresponding
side view on Figure 9b) but, as shown in [7], this effect can be reduced by increasing the hardness factor

(see Figure 9¢ and Figure 9d).

Figure 8: Soft object with skeletons
(a) Skeleton distance (b) Convolution distance for T = 0.5 (¢) Convolution distance for T = 0.05

Figure 9: Soft object with skeletons
(a) Bone distance with soft blending (b) Side view (¢) Bone distance with hard blending (d) Side view

But the major drawback of all the skeleton approaches is that the computation is really expensive :
except for the case of very simple skeletons (e.g. line, circle, rectangle, disc, box) the rendering time for
an object with a given number of bones is at least one order of magnitude higher than for an object with
the same number of point sources. In the remainder of the paper, our purpose is to show that the use of
anisotropic source points can be an interesting alternative to skeletons.

4.3 Anisotropic Distance Functions

Replacing the spherical distance by the D" distance one, as we have done in Section 4.1, creates an
anisotropic field when it is considered in the Euclidian space*. Nevertheless, one obtains a relatively poor
variety of anisotropic because there is only one degree of freedom (parameter n) that can be modified by
the user. For that reason, we introduce a new model of point sources which allows the user to control
precisely the shape of the resulting soft objects. In this new model, each source is basically defined by 7
parameters : a position P;(z;, ¥, z;), a radius of influence r;, and a primary direction V;(a;, b;, ¢;). At a
given point P(z,y, z), these parameters are used to define 5 different variables :

r-n p= Y Y w=2"2% 1?2 = u? + 0 + w? s=ua;+vb+wc (18)

T T T

u =

When the vector V; is normalized (a? +b7 +¢? = 1) it is clearly insured that ¢? € [0,1] and s € [-1,1]. All
the anisotropic distance functions that we propose hereafter will be defined using this couple of bounded

40Of course, it is still isotropic in the metric space associated with the D™ distance.



