
La gestion
des exceptions

La gestion
des exceptions

• Principe, type d’exceptions,

propagation, création d’exception

personnalisée

Anomalies potentielles

Problèmes liés au matériel : par exemple la perte subite d'une
connexion à un port, un disque défectueux, ...

Actions imprévues de l'utilisateur, entrainant par exemple une
division par zéro, un calcul impossible, un fichier inexistant, un
transtypage non valide, ...

Débordements de stockage dans les structures de données,
manque de mémoire, ...

➔ Prévoir une réponse adaptée à chaque type de situation
Notion de logiciel « robuste »

Intérêt de la gestion des exceptions

• Exemple : vous écrivez une fonction qui réalise un calcul,
elle renvoie –1 si ce calcul est faux ou impossible, et la
valeur résultat si le calcul est juste.

o La même variable de retour est donc utilisée pour un résultat
calculé et/ou une erreur.

• Le mécanisme d’exception est un mécanisme puissant
offrant deux canaux d’information lors de l’exécution
d’une méthode :

o la valeur de retour correspond au régime normal de
fonctionnement

o l’exception correspond au régime d’erreur.

Rôle des exceptions

• Une exception est chargée de signaler un comportement

exceptionnel (mais prévu) d’une partie spécifique d’un

logiciel.

• Les exceptions font partie du langage lui-même. Dans

Java, les exceptions constituent une classe particulière: la

classe Exception.

o Cette classe contient un nombre important de classes dérivées

• Comment agit une exception ?

• Dès qu’une erreur se produit, un objet de la classe

adéquate dérivée de la classe Exception est instancié

o Le logiciel " déclenche une exception" et la traite ensuite

DEUX TYPES EXCEPTIONS

• Exceptions implicites, directement gérées par la MVJ

o Anomalies qui interviennent lors de l’exécution ‘RunTime Exception’) ou liées au

matériel/logiciel ‘Error Exception’)

o Division par zéro, dépassement de tableau, etc.

• Exceptions explicites
o Anomalies liées à l’application

o Gestion à prévoir dans le code

→ Avantage : séparation nette du traitement d’erreur du

code normal

Premier exemple d’exception

une classe Point
• Supposons que l’on ne souhaite manipuler que des points ayant des

coordonnées non négatives.

• Nous pouvons, au sein du constructeur, vérifier la validité des paramètres
fournis. Lorsque l’un d’entre eux est incorrect, nous "déclenchons" une
exception à l’aide de l’instruction throw.

• Nous créons donc (un peu artificiellement) une classe que nous

nommerons ErrCoord. Java impose que cette classe dérive de la
classe standard Exception.

class ErrConst extends Exception

{ }

Comment déclencher une exception avec throw

Premier exemple d’exception

• Pour lancer une exception de ce type au sein de notre constructeur,

nous fournirons à l’instruction throw un objet de type Errconst, par

exemple de cette façon :

Le constructeur de notre classe Point peut se présenter ainsi :

class Point

{ public Point(int x, int y) throws ErrConst
{ if ((x<0) || (y<0)) throw new ErrConst() ; // lance une exception de
this.x = x ; this.y = y ; // type ErrConst
}

throw new ErrConst() ;

Notez la présence de throws ErrConst, dans l’en-tête du constructeur, qui précise que la
méthode est susceptible de déclencher une exception de type ErrConst. Cette indication
est obligatoire en Java

Premier exemple d’exception

Exemple d’une classe Point dont le constructeur déclenche une exception
ErrConst

class Point
{ public Point(int x, int y) throws ErrConst
{ if ((x<0) || (y<0)) throw new ErrConst() ;
this.x = x ; this.y = y ;
}
public void affiche()
{ System.out.println ("coordonnees : " + x + " " + y) ;
}
private int x, y ;
}
class ErrConst extends Exception
{ }

Premier exemple de gestion d’exception

• pour gérer convenablement les éventuelles exceptions de type

ErrConst que son emploi peut déclencher. Pour ce faire, il faut :

try
{
// instructions
}

Utilisation d’un gestionnaire d’exception

1) Inclure dans un bloc particulier dit "bloc try" les instructions dans lesquelles on risque
de voir déclenchée une telle exception

2) Faire suivre ce bloc de la définition des différents gestionnaires d’exception

catch (ErrConst e)
{ System.out.println ("Erreur construction ") ;
System.exit (-1) ;
}

Chaque définition de gestionnaire est précédée d’un en-tête introduit par le mot-clé
catch

Premier exemple de gestion d’exception

class Point
{ public Point(int x, int y) throws ErrConst
{ if ((x<0) || (y<0)) throw new ErrConst() ;
this.x = x ; this.y = y ;
}
public void affiche()
{ System.out.println ("coordonnees : " + x +
" " + y) ;
}
private int x, y ;
}
class ErrConst extends Exception
{ }

public class Except1
{ public static void main (String args[])
{ try
{ Point a = new Point (1, 4) ;
a.affiche() ;
a = new Point (-3, 5) ;
a.affiche() ;
}
catch (ErrConst e)
{ System.out.println ("Erreur construction
") ;
System.exit (-1) ; }}}

coordonnees : 1 4
Erreur construction

Gestion de plusieurs exceptions

public void deplace (int dx, int dy) throws
ErrDepl
{ if (((x+dx)<0) || ((y+dy)<0)) throw new
ErrDepl() ;
x += dx ; y += dy ;
}

un exemple plus complet dans lequel on peut déclencher et traiter deux
types d’exceptions

- Du constructeur précédent, déclenchant toujours une exception ErrConst,
- Méthode deplace qui s’assure que le déplacement ne conduit pas à une coordonnée

négative ; si tel est le cas, elle déclenche une exception ErrDepl
(on crée donc, ici encore, une classe ErrDepl) :

Nous pouvons détecter les deux exceptions potentielles ErrConst et ErrDepl
(ici, nous nous contentons comme précédemment d’afficher un message et
d’interrompre l’exécution) :

Gestion de plusieurs exceptions

try
{ // bloc dans lequel on souhaite detecter les exceptions ErrConst et ErrDepl
}

catch (ErrConst e) // gestionnaire de l’exception ErrConst
{ System.out.println ("Erreur construction ") ;
System.exit (-1) ;
}

catch (ErrDepl e) // gestionnaire de l’exception ErrDepl
{ System.out.println ("Erreur deplacement ") ;
System.exit (-1) ;
}

Gestion de deux exceptions
class Point
{ public Point(int x, int y) throws ErrConst
{ if ((x<0) || (y<0)) throw new ErrConst() ;
this.x = x ; this.y = y ;
}
public void deplace (int dx, int dy) throws ErrDepl
{ if (((x+dx)<0) || ((y+dy)<0)) throw new
ErrDepl() ;
x += dx ; y += dy ;
}

public void affiche()
{ System.out.println ("coordonnees : " + x + " "
+ y) ;}
private int x, y ;
}

class ErrConst extends Exception
{ }
class ErrDepl extends Exception
{ }

public class Except2
{ public static void main (String
args[])
{ try
{ Point a = new Point (1, 4) ;
a.affiche() ;
a.deplace (-3, 5) ;
a = new Point (-3, 5) ;
a.affiche() ;
}
catch (ErrConst e)
{ System.out.println ("Erreur
construction ") ;
System.exit (-1) ;
}
catch (ErrDepl e)
{ System.out.println ("Erreur
deplacement ") ;
System.exit (-1) ;
}}}coordonnees : 1 4

Erreur deplacement

Transmission d’information au gestionnaire
d’exception

On peut transmettre une information au gestionnaire d’exception :

• par le biais de l’objet fourni dans l’instruction throw,

• par l’intermédiaire du constructeur de l’objet exception.

Par l’objet fourni à l’instruction throw
class Point
{ public Point(int x, int y) throws ErrConst
{ if ((x<0) || (y<0)) throw new ErrConst(x, y)
;
this.x = x ; this.y = y ;
}
public void affiche()
{ System.out.println ("coordonnees : " + x + "
" + y) ;
}
private int x, y ;
}
class ErrConst extends Exception
{ ErrConst (int abs, int ord)
{ this.abs = abs ; this.ord = ord ;
}
public int abs, ord ;
}

public class Exinfo1
{ public static void main (String args[])
{ try
{ Point a = new Point (1, 4) ;
a.affiche() ;
a = new Point (-3, 5) ;
a.affiche() ;
}
catch (ErrConst e)
{ System.out.println ("Erreur
construction Point") ;
System.out.println (" coordonnees
souhaitees : " + e.abs + " " + e.ord) ;
System.exit (-1) ;
}}}

coordonnees : 1 4
Erreur construction Point
coordonnees souhaitees : -3 5

Exemple de transmission d’information
à un gestionnaire d’exception 1

Par le constructeur de la classe exception
class Point
{ public Point(int x, int y) throws ErrConst
{ if ((x<0) || (y<0))
throw new ErrConst("Erreur construction avec
coordonnees " + x + " " + y) ;
this.x = x ; this.y = y ;
}
public void affiche()
{ System.out.println ("coordonnees : " + x + "
" + y) ;
}
private int x, y ;
}
class ErrConst extends Exception
{ ErrConst (String mes)
{ super(mes) ;
}
}

public class Exinfo2
{ public static void main (String args[])
{ try
{ Point a = new Point (1, 4) ;
a.affiche() ;
a = new Point (-3, 5) ;
a.affiche() ;
}
catch (ErrConst e)
{ System.out.println (e.getMessage())
;
System.exit (-1) ;
}
}
}

coordonnees : 1 4
Erreur construction avec coordonnees -3 5

Exemple de transmission d’information
au gestionnaire d’exception 2

Mécanisme de gestion des exceptions

• la poursuite de l’exécution après le traitement d’une exception
par le gestionnaire,

• le choix du gestionnaire,

• le cheminement des exceptions, c’est-à-dire la manière dont
elles peuvent remonter d’uneméthode à une méthode appelante,

• les règles d’écriture de la clause throws,

• les possibilités de redéclencher une exception,

• l’existence d’un bloc particulier dit finally.

Mécanisme de gestion des exceptions

Dans les exemples précédents; le gestionnaire d’exception mettait fin
à l’exécution du programme en appelant la méthode System.exit.

Cela n’est pas une obligation ; en fait, après l’exécution des instructions
du gestionnaire, l’exécution se poursuit simplement avec les instructions
suivant le bloc try,

Exemple:

Mécanisme de gestion des exceptions

Poursuite de l’exécution

class Point
{ public Point(int x, int y) throws ErrConst
{ if ((x<0) || (y<0))
throw new ErrConst("Erreur construction avec
coordonnees " + x + " " + y) ;
this.x = x ; this.y = y ;
}
public void affiche()
{ System.out.println ("coordonnees : " + x + "
" + y) ;
}
private int x, y ;
}
class ErrConst extends Exception
{ ErrConst (String mes)
{ super(mes) ;
}
}

public class Suitexecusion
{ public static void main (String args[])
{ System.out.println ("avant bloc try") ;
try
{
Point a = new Point (1, 4) ;
a.affiche() ;
a.deplace (-3, 5) ;
a.affiche() ;}

catch (ErrConst e)
{ System.out.println ("Erreur
construction ") ;}

catch (ErrDepl e)
{ System.out.println ("Erreur
deplacement ") ;}

System.out.println ("apres bloc try") ;
}}

avant bloc try
coordonnees : 1 4
Erreur deplacement
apres bloc try

Mécanisme de gestion des exceptions

Cheminement des exceptions

Lorsqu’une méthode déclenche une exception, on cherche tout d’abord un gestionnaire
dans l’éventuel bloc try contenant l’instruction throw correspondante.

Si l’on n’en trouve pas ou si aucun bloc try n’est prévu à ce niveau, on poursuit la
recherche dans un éventuel bloc try associé à l’instruction d’appel dans une méthode
appelante, et ainsi de suite….

Le gestionnaire est rarement trouvé dans la méthode qui a déclenché l’exception
puisque l’un des objectifs fondamentaux du traitement d’exception est précisément
de séparer déclenchement et traitement !

Mécanisme de gestion des exceptions

Redéclenchement d’une exception

Dans un gestionnaire d’exception, il est possible de demander que, malgré son
traitement, l’exception soit retransmise à un niveau englobant, comme si elle n’avait pas
été traitée.

try
{
}
catch (Excep e) // gestionnaire des exceptions de type
Excep
{
throw e ; // on relance l’exception e de type Excep
}

Exemple:

Mécanisme de gestion des exceptions
Redéclenchement d’une exception

class Point
{ public Point(int x, int y) throws ErrConst
{ if ((x<=0) || (y<=0)) throw new ErrConst()
;
this.x = x ; this.y = y ;
}
public void f() throws ErrConst
{ try
{ Point p = new Point (-3, 2) ;
}
catch (ErrConst e)
{ System.out.println ("dans catch (ErrConst)
de f") ;
throw e ; // on repasse l’exception a un
niveau superieur
}}
private int x, y ;
}
class ErrConst extends Exception
{ }

public class Redecl
{ public static void main (String args[])
{ try
{ Point a = new Point (1, 4) ;
a.f() ;
}
catch (ErrConst e)
{ System.out.println ("dans catch
(ErrConst) de main") ;
}
System.out.println ("apres bloc try
main") ;
}
}

dans catch (ErrConst) de f
dans catch (ErrConst) de main
apres bloc try main

