La gestion
des exceptions



La gestion
des exceptions

* Principe, type d’exceptions,
oropagation, création d’exception
oersonnalisee




Anomalies potentielles

Problemes liés au matériel : par exemple la perte subite d'une
connexion a un port, un disque défectueuy, ...

Actions imprévues de I'utilisateur, entrainant par exemple une
division par zéro, un calcul impossible, un fichier inexistant, un
transtypage non valide, ...

Débordements de stockage dans les structures de données,

manque de memoire, ...

=>» Prévoir une réponse adaptée a chaque type de situation
Notion de logiciel « robuste »



Inteéret de la gestion des exceptions

« Exemple : vous écrivez une fonction quiréalise un calcul,
elle renvoie —1 si ce calcul est faux ou impossible, et la
valeur résultat si le calcul est juste.

o La méme variable de retour est donc utilisée pour un résultat
calcule et/ou une erreur.

« Le mécanisme d’'exception est un mécanisme puissant
offrant deux canaux d’'information lors de I'exécution
d'une méthode :

o la valeur de retour correspond au régime normal de
fonctionnement

o |I'exception correspond au regime d’erreur.



Role des exceptions

Une exception est chargée de signaler un comportement
exceptionnel (mais prévu) d'une partie spécifique d'un
logiciel.

Les exceptions font parfie du langage lui-méme. Dans

Java, les exceptions constituent une classe particuliere: la
classe Exception.

o Ceftte classe contient un nombre important de classes dérivees

Comment agit une exception ?

Dées qu’'une erreur se produit, un objet de la classe
adéquate dérivée de la classe Exception est instancié
o Le logiciel " déclenche une exception" et la traite ensuite



DEUX TYPES EXCEPTIONS

« Exceptions implicites, directement gérées par la MVJ

o Anomalies qui interviennent lors de I'exécution ‘RunTime Exception') ou liées au
matériel/logiciel ‘Error Exception’)

o Division par zéro, dépassement de tableau, etc.

« Exceptions explicites

o Anomalies liees a I'application
o Gestion a prévoir dans le code

> Avantage : séparation nette du traitement d’erreur du
code normal



Premier exemple d’exception

Comment déclencher une exception avec throw

une classe Point

« Supposons que |I'on ne souhaite manipuler que des points ayant des
coordonnées non négatives.

« Nous pouvons, au sein du constructeur, vérifier la validité des parametres
fournis. Lorsque |'un d’entre eux est incorrect, nous "déclenchons" une
exception a l'aide de l'instruction throw.

« Nous créons donc (un peu artificiellement) une classe que nous
nommerons ErrCoord. Java impose que cette classe dérive de la
classe standard Exception.

class ErrConst extends Exception

{}



Premier exemple d’exception

 Pourlancer une exception de ce type au sein de notre constructeur,
nous fournirons a I'instruction throw un objet de type Errconst, par
exemple de cette facon :

throw new ErrConst() ;

Le constructeur de notre classe Point peut se présenter ainsi :
class Point

{ public Point(int x, int y) throws ErrConst
{if ( (x<0) || (y<0)) throw new ErrConst() ; // lance une exception de
this.x = x ; this.y =y ; // type ErrConst

}

Notez la présence de throws ErrConst, dans I'en-téte du constructeur, qui précise que la
methode est susceptible de déclencher une exception de type ErrConst. Cette indication
est obligatoire en Java



Premier exemple d’exception

Exemple d'une classe Point dont /e constructeur déclenche une exception
ErrConst

class Point

{ public Point(int x, int y) throws ErrConst

{if ( (x<0) || (y<0)) throw new ErrConst() ;

this.x = x ; this.y =y ;

}

public void affiche()

{ System.out.println ("coordonnees : "+ x +"" +y);

}

private int X, y ;

}

class ErrConst extends Exception

s



Premier exemple de gestion d'exception

Utilisation d'un gestionnaire d’exception

e pour gérer convenablement les éventuelles exceptions de type
ErrConst que son emploi peut déclencher. Pour ce faire, il faut :

1) Inclure dans un bloc particulier dit "bloc &ry' les instructions dans lesquelles on risque

de voir déclenchée une telle exception
try

{

// instructions

¥

2) Faire suivre ce bloc de la définition des différents gestionnaires d’exception

Chaque définition de gestionnaire est précédée d’'un en-téte introduit par le mot-clé
catch

catch (ErrConst e)

{ System.out.println ("Erreur construction ") ;
System.exit (-1) ;

)



Premier exemple de gestion d’exception

class Point
{ public Point(int x, int y) throws ErrConst

{if ( (x<0) || (y<0)) throw new ErrConst() ;

this.x = x ; this.,y =y ;

}
public void affiche()

{ System.out.println ("coordonnees : " + x +

N y)
)

private int x, y ;

}

class ErrConst extends Exception

L ds

coordonnees : 1 4
Erreur construction

public class Exceptl

{ public static void main (String args[])
{ try

{ Point a = new Point (1, 4) ;
a.affiche() ;

a = new Point (-3, 5) ;

a.affiche() ;

)

catch (ErrConst e)

{ System.out.println ("Erreur construction
")

System.exit (-1) ; }}}



Gestion de plusieurs exceptions

un exemple plus complet dans lequel on peut déclencher et traiter deux
types d’exceptions

- Du constructeur précédent, déclenchant toujours une exception ErrConst,
- Méthode deplace qui s'assure que le déplacement ne conduit pas a une coordonnée
négative ; si tel est le cas, elle déclenche une exception ErrDep/
(on crée dong, ici encore, une classe ErrDepl) :

public void deplace (int dx, int dy) throws
ErrDepl

{if ( ((x+dx)<0) || ((y+dy)<0)) throw new
ErrDepl() ;

X+=dx;y+=dy;

¥

Nous pouvons détecter les deux exceptions potentielles ErrConst et ErrDepl
(ici, nous nous contentons comme précédemment d'afficher un message et
d’interrompre |'exécution) :



Gestion de plusieurs exceptions

try
{ // bloc dans lequel on souhaite detecter les exceptions ErrConst et ErrDepl

}

catch (ErrConst e) // gestionnaire de I'exception ErrConst
{ System.out.println ("Erreur construction ") ;
System.exit (-1) ;

)

catch (ErrDepl e) // gestionnaire de I'exception ErrDepl
{ System.out.println ("Erreur deplacement ") ;
System.exit (-1) ;

)



Gestion de deux exceptions

class Point
{ public Point(int x, int y) throws ErrConst public class Except2
{if ( (x<0) || (y<0)) throw new ErrConst() ; { public static void main (String
this.x = x ; this.y =y ; args[])
} { try
public void deplace (int dx, int dy) throws ErrDepl { Point a = new Point (1, 4) ;
{if ( (x+dx)<0) || ((y+dy)<0)) throw new a.affiche() ;
ErrDepl() ; a.deplace (-3, 5) ;
X+=dx;y+=dy; a = new Point (-3, 5) ;
} a.affiche() ;

¥
public void affiche() catch (ErrConst e)
{ System.out.println ("coordonnees : "+ x +""  { System.out.printin ("Erreur
+v);} construction ") ;
private int x, y ; System.exit (-1) ;
by by

catch (ErrDepl e)
class ErrConst extends Exception { System.out.println ("Erreur
{} deplacement ") ;
class ErrDepl extends Exception System.exit (-1) ;
{7 coordonnees : 1 4 133

Erreur deplacement



Transmission d’information au gestionnaire
d’exception

On peut transmettre une information au gestionnaire d’‘exception :
e par le biais de l'objet fourni dans l'instruction throw,

e par l'intermédiaire du constructeur de I'objet exception.



Par l'objet fourni a l'instruction throw

class Point
{ public Point(int x, int y) throws ErrConst
{if ( (x<0) || (y<0)) throw new ErrConst(x, y)

Exemple de transmission d'’information
a un gestionnaire d'exception 1

public class Exinfol

this.x = x ; thisy =y ; { public static void main (String args[])
¥ { try

public void affiche() { Point a = new Point (1, 4) ;

{ System.out.println ("coordonnees : " + x + " a.affiche() ;

"+vy); a = new Point (-3, 5) ;

} a.affiche() ;

private int x, y ; 1

1 catch (ErrConst e)

class ErrConst extends Exception { System.out.println ("Erreur

{ ErrConst (int abs, int ord) construction Point") ;

{ this.abs = abs ; this.ord = ord ; System.out.println (" coordonnees

} souhaitees : " + e.abs + " " + e.ord) ;
public int abs, ord ; System.exit (-1) ;

) I33;

coordonnees : 1 4
Erreur construction Point
coordonnees souhaitees : -3 5



Par le constructeur de la classe exception

class Point

{ public Point(int x, int y) throws ErrConst

{if ((x<0) || (y<0))

throw new ErrConst("Erreur construction avec

coordonnees " + x +

n ||+y);

this.x = x ; thisy =y ;

}
public void affiche()

{ System.out.println ("coordonnees : " + x +

)
b

private int X, y ;

}

class ErrConst extends Exception
{ ErrConst (String mes)

{ super(mes) ;
}
)

coordonnees : 1 4

Exemple de transmission d'’information
au gestionnaire dexception 2

public class Exinfo2

{ public static void main (String args|[])
{ try

{ Point a = new Point (1, 4) ;
a.affiche() ;

a = new Point (-3, 5) ;

a.affiche() ;

)

catch (ErrConst e)

{ System.out.println (e.getMessage())

System.exit (-1) ;
}

)
¥

Erreur construction avec coordonnees -3 5



Mecanisme de gestion des exceptions

e [a poursuite de I'exécution apres le traitement d'une exception
par le gestionnaire,

e |le choix du gestionnaire,

e |e cheminement des exceptions, c’est-a-dire la maniere dont
elles peuvent remonter d'uneméthode a une méthode appelante,

e les regles d'écriture de la clause throws,
e les possibilités de redéclencher une exception,

e |'existence d'un bloc particulier dit 7inally.



Mecanisme de gestion des exceptions

Dans les exemples précédents; le gestionnaire d’exception mettait fin
a I'exécution du programme en appelant la méthode System.exit.

Cela n’est pas une obligation ; en fait, apres I'exécution des instructions
du gestionnaire, I'exécution se poursuit simplement avec les instructions
suivant le bloc ¢y,

Exemple:



Mecanisme de gestion des exceptions

Poursuite de 'exécution
class Point

{ public Point(int x, int y) throws ErrConst

{if ( (x<0) || (y<0))

throw new ErrConst("Erreur construction avec

coordonnees " + X + " " +vy) ;
this.x = x ; this.y =y ;

}
public void affiche()

{ System.out.println ("coordonnees : " + x +

Y ;

)

private int x, y ;

)

class ErrConst extends Exception
{ ErrConst (String mes)

{ super(mes) ;

}

) avant bloc try
coordonnees : 1 4
Erreur deplacement
apres bloc try

public class Suitexecusion

{ public static void main (String args[])
{ System.out.println ("avant bloc try") ;
try

{

Point a = new Point (1, 4) ;

a.affiche() ;

a.deplace (-3, 5) ;

a.affiche() ;}

catch (ErrConst e)
{ System.out.printin ("Erreur
construction ") ;}

catch (ErrDepl e)
{ System.out.println ("Erreur
deplacement ") ;}

System.out.println ("apres bloc try") ;
I3



Mecanisme de gestion des exceptions

Cheminement des exceptions

Lorsqu’une méthode déclenche une exception, on cherche tout d'abord un gestionnaire
dans I'éventuel bloc #ry contenant l'instruction tArow correspondante.

Si I'on n’en trouve pas ou si aucun bloc try n'est prévu a ce niveau, on poursuit la
recherche dans un éventuel bloc ¢ry associé a I'instruction d'appel dans une méthode
appelante, et ainsi de suite....

Le gestionnaire est rarement trouvé dans la méthode qui a déclenché I'exception
puisque I'un des objectifs fondamentaux du traitement d’exception est préciseément
de séparer déclenchement et traitement !



Mecanisme de gestion des exceptions

Redéclenchement d"une exception

Dans un gestionnaire d’exception, il est possible de demander que, malgré son
traitement, I'exception soit retransmise a un niveau englobant, comme si elle n‘avait pas
éte traitée.

throw e ; // on relance l'exception e de type Excep

¥

Exemple:



Mecanisme de gestion des exceptions

Redeclenchement d"une exception

class Point
{ public Point(int x, int y) throws ErrConst public class Redec!
{ if ((x<=0) || (y<=0)) throw new ErrConst() { public static void main (String args[])
7 _ { try
’;hIS-X =X, thisy =y; { Point a = new Point (1, 4) ;
a.f() ;
public void f() throws ErrConst )
ity _ catch (ErrConst €)
{ Point p = new Point (-3, 2) ; { System.out.printin ("dans catch
¥ (ErrConst) de main") ;

catch (ErrConst e)

{ System.out.println ("dans catch (ErrConst)  System.out.printin ("apres bloc try
de ") ; main") ;

throw e ; // on repasse |'exception a un )

niveau superieur )

b

private int x, y ;
) dans catch (ErrConst) de f

class ErrConst extends Exception dans catch (ErrConst) de main
{} o apres bloc try main



