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Donsker invariance principle. Let (Yk)k≥0 be i.i.d. random variables of mean

0 and variance 1. Once properly rescaled, the random walk Xk =
∑k
`=1 Y` behaves

like a Brownian motion. Here, D(0, 1) is the space of càdlàg functions from [0, 1]
to R endowed with the Skorohod metric that turns it into a Polish metric space.

Theorem [Donsker’s, 1950’s]: Let, for all t ∈ [0, 1], n ≥ 1, Xn
t :=

X[n2t]

n .
In D(0, 1), we have convergence in the sense of distributions towards a standard
Brownian motion with diffusion matrix Id (we write sBM(Id)) (Wt)t≥0:

(Xn
t )t∈[0,1]

d→ (Wt)t∈[0,1].

Let (e1, . . . , ed) be the canonical basis of Rd and E = {e1, . . . , ed,−e1, · · ·− ed}.
On the grid Zd, we put random conductances: at each site x ∈ Zd, the conductance
in direction e ∈ E is given by ae(x) with ae(x) in [b1, b2], 0 < b1 < b2 <∞ although
those uniform ellipticity hypotheses can be relaxed. We impose a symmetry
condition:

ae(x) = a−e(x+ e), ∀x ∈ Zd, ∀e ∈ E.
The random walk in random environment (RWRE) is a stochastic process (that

is, a collection of random vectors indexed by t ∈ R+) denoted (Xt)t≥0 that evolves
as follows: assume at time t ≥ 0, Xt = x with x ∈ Zd. We consider 2d random
clocks, τe with e ∈ E s.t. τe has exponential distribution with mean ae(x). Then

Xt+s = Xt, s ∈ [0,min
e∈E

τe], Xt+mine∈E τe = Xt +
(
argmine∈Eτe

)
i.e. the random walk moves in the direction indicated by the first ringing clock.

The increments of the RWRE are not i.i.d. because they depend on the con-
ductances. Can we still derive an invariance principle for the RWRE ? There are
two sources of randomness:

(1) the environment itself, since the ae(x), x ∈ Zd, e ∈ E are random.
(2) The random walks performed on a given environment, that is the way the

clocks described above ring (and how the RWRE thus behaves).

Quenched results describe the behavior of the random walk in a given environment
a := {ae(x), x ∈ Zd, e ∈ E} in the space of environments N (see the next report),
while annealed results, on which we focus here, consider a distribution µ on N and
provide results for the annealed measure given, for any event A, by

P(A) =

∫
N

P a(A)µ(da).

Some notions about Markov processes. The RWRE is a Markov process,
and the argument of [1] and [2] rely on an abstract result concerning those.

Let us introduce a bit of probabilistic machinery. Let (Zt)t≥0 be a stochastic
process on (Ω,F ,P), Fs = σ(Zu, 0 ≤ u ≤ s) for all s ≥ 0 so that (Fs)s≥0 is the
canonical filtration of (Zt)t≥0. We say that (Zt)t≥0 is a Markov process if we have,

∀A ∈ F , P(Zt+s ∈ A|Ft) = P(Zt+s ∈ A|Zt), t, s ≥ 0.
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In words, the information contained in Ft (i.e. everything that happened to the
process up to time t) is exactly as relevant to predict the future value Zt+s as the
value Zt itself, which is a priori a much smaller information. Markov processes ap-
pear in numerous contexts and share many key properties. We consider processes
with values in a state space (G,G) that are time-homogeneous. In particular one
can identify a transition kernel or transition semigroup (St)t≥0 such that

∀B ∈ G, St(z,B) = P(Zt ∈ B|Z0 = z).

From there we can also introduce the generator of the process, which is formally
L = ∂tS

t
|t=0 and the notion of stationary measure: if µ is a stationary measure for

(Zt)t≥0, and if Z0 ∼ µ (i.e. Z0 has distribution µ), then Zt ∼ µ for all t ≥ 0. The
precise formulation writes, for all B ∈ G,∫

G

St(z,B)µ(dx) = µ(B).

The stationary measure µ is ergodic if for all B ∈ G such that St(z,B) = 1 for
all z ∈ B, µ(B) ∈ {0, 1}. This means that any absorbing set (i.e. a set that,
if reached, captures the process forever) is either somewhere where the process
spends all the time or no time when starting from the invariant measure. We will
need the notion of reversibility: the process is as likely to go from z to y in a time
t > 0 than it is to go from y to z. Mathematically, for all time t > 0

St(z, dy)µ(dz) = St(y, dz)µ(dy).

At last, roughly, a Markov process (Zt)t≥0 is a martingale if Zt ∈ L1 and if
E[Zt|Fs] = Zs almost surely, for all t ≥ s ≥ 0.

Theorem [1]: Let (Zt)t≥0 be a reversible Markov process with generator L
and stationary measure µ, write (Ft)t≥0 for the corresponding filtration. Assume
that µ is translation invariant and ergodic. Let X be a family indexed by closed
bounded intervals of R with values in Rd, anti-symmetric, i.e. if I = [a, b],

XI((Zs)s∈I) = −XI((Zb+a−s)s∈I).

Assume that the following strong L1 limit exists,

lim
δ→0

1
δEµ

[
X[0,δ]

∣∣F0

]
=: b(Z0)

and that the martingale Mt = Xt −
∫ t
0
b(Zs)ds is square integrable. Defining

Dij = Cij + 2(bi,L−1bj), where C satisfies eTCe = Eµ[(e ·M1)2], we have

1

n
X[0,n2t] →WD,

in the sense of finite-dimensional distributions, where WD is a sBM(D).

The idea here is that one can obtain an invariance principle when considering
increments related to a reversible process having a stationary distribution that
is mixing and translation invariant. The proof is based on [2] and is subtle: in
particular showing that all quantities admitting a drift b so that M is a square-
integrable martingale are such that (bi,L−1bj) is well-defined is difficult. One
can however relate to the usual central limit theorem: to be able to describe the
behavior at the limit one needs a second moment. The condition on the drift here
are analogous to this requirement.
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An invariance principle for the RWRE. To conclude on the RWRE, it only
remains to find such a reversible process (Zt)t≥0 and the appropriate additive
functionals X. We introduce the process of the environment seen by the particle
(see [2]). Keeping the particle centered at 0 along the walk, and translating the
environment to compensate its jumps, how does the latter evolve ? We thus
consider the process (At)t≥0 with generator

Lf(a) =
∑
e∈E

ae(0)(f(S−ea)− f(a))

i.e. at rate ae(0), the environment a is replaced by the one translated by −e:
(S−ea)e′(x) = ae′(x+ e) for all x ∈ Zd, a ∈ N, e, e′ ∈ E. If now µ is a distribution
on N ergodic and translation invariant, satisfying the symmetry assumption, then
the process (At)t≥0 with A0 ∼ µ is stationary, ergodic and reversible. How to
reconstruct the random walk from A? Coming back to the discrete setting, if
(Yn)n≥0 denote the successive positions of the random walk, we can introduce a
random time n∗(t) such that n∗(t) = n ifXt = Yn, as well as a discrete environment
process (Bn)n≥0. One can easily reconstruct (Yn)n≥0 from (Bn)n≥0: we have

Y0 = 0, Yn+1 = Yn + x if Bn+1 = S−xBn.

Once the chain (Yn)n≥0 is identified, one can rebuild (Xt)t≥0 from it. The previous
theorem then applies, and we find that for all bounded continuous functions F ∈
D(0,∞) the Skorohod space, setting

(Xn
t )t≥0 := ( 1

nXn2t)t≥0, one has Eµ[F (Xn)]→ E[F (WD)],

with WD is a sBM(D), where, writing 〈c〉µ =
∫
N
c(a)µ(da) for c : N→ R,

Dij = 2
〈
aei(0)δij

〉
µ

+ 2
〈(
aei(0)− aei(−ei)

)
L−1

(
aej (0)− aej (−ej)

)〉
µ
.(1)

A comparison with the PDE viewpoint. In the PDE setting, focusing on the
diagonal terms for simplicity, the homogenized coefficient ā is given by

āei = E[a(0)ei] + E
[
a(0)∇φi(0)

]
,(2)

where φ is the corrector. With L the operator, the equation for the corrector
writes Lφi = div(aei). We can see here (see the discussion about the discrete
gradient), that considering ∇ to be the discrete gradient instead, formally, we
obtain φi(0) = L−1div(aei(0)) = −L−1(aei(0) − aei(−ei)). Coming back to (2),
we get for the second term, using the translation invariance and as expected

E[a(0)∇φi(0)] = E
[(
aei(−ei)− aei(0)

)
φi(0)

]
= E

[(
aei(0)− aei(−ei)

)
L−1

(
aei(0)− aei(−ei)

)]
.
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