Beyond propagation of chaos : correlations control in
mean-field systems
Armand Bernou (LSAF, ISFA, Université Lyon 1)
Joint work with Mitia Duerinckx (ULB-FNRS)

4th ltalian Meeting in Probability and Statistics

13th June, 2024



Correlations control in mean-field systems

9 Introduction: models and questions
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Brownian particle system

Brownian particles: on the torus T¢, for t > 0,1 < i < N,
YN = Y9N + ) Jra b5 = 2)ul¥ (d2)ds + B,
N
B = in Oy,
o (Y®N)N positions in T, (Vi )1<icn e, Ja |21P° 1o < 00 for some
po > 0;

o 1V is the empirical measure at time s;
e b:T¢ — R%is an interaction potential;
@ mean-field scaling.

— We'll take b(x — z) = —kVW (x — z) for a smooth W with W (z) = W(—x)
and k& > 0 small.
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Langevin particle system
Phase space T4 x R?, fort > 0,1 <i < N,

XN — fg ViNds,
VN = Vg — B [PVENds + [, b(XPN — 2)(ud)s(d2)ds + B,

N N
py = % 2imt 5)(;\”’\/_31\’7 (ng)s = % > i OxiN.

(XHNYN | positions in T4, (VEN)N | velocities in RY;
uN is the empirical measure at time s, (u2), empirical measure of positions
at time s;

b: T — R? is an interaction potential (only uses positions);
tio define on T¢ x R¢ with some moment.

the mean-field scaling is considered.

— talk will be given for Brownian particles, but only one major difference between
both.
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Brownian particles with mean-field interaction
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Natural questions

@ Law of large numbers ? Called here, propagation of chaos, typical behavior
of one particle as N — oo.

@ Central Limit Theorem 7 Scaling and description of the fluctuations around
this limit equation.

© Concentration estimates ?

©Q Refined propagation of chaos ? Corrections to the mean-field limit.

In what sense ?

A complete answer to all of those would include a time-uniform statement: the
associated errors do not deteriorate with time.
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Density, marginal distributions
FN probability density of the system in (T?)". Solves a forward Kolmogorov

equation, where 7 = (z1,...,2y) € (TH)N
N N
8,FN(z) = AFN @)+ divs, (FN (%)= Z )
i=1 j=1

Marginal distribution of & > 1 particles:

F]]@(t,ml,...,xk) :/ FN(t,{f)d{EkJrl...dJJN.
(Td)N—k

Correlations:

Q 2 particles: G%/(z1,72) = Fz (21, 22) — Fi(z1)F(22),
@ 3 particles:

G (21,22, 25) = Sym(FY — 3Fy @ Fiy + 2(Fy)®°).

© and so on...
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Observables, correlations
Note, if ¢ : T — R bounded,

E| / o)l (dn)] = / (@) Fh(t,)do.

This talk — at the level of observables: the behavior of the random variable
Jra o(@)pd (dz) for ¢ smooth.

Correlations studied through cumulants of the observable: e.g.

L[] =el( [ o) ] -2 [ [ o]

= S Varfp(vh)

N-1

T @(z1)p(z2) G (21, T2)dz1 daa,
N (T4)2

and in general

nm[/w wﬂ = /(Td)m COMGTdey ... dy, +o(%).
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Correlations control in mean-field systems

9 Propagation of chaos

Armand Bernou (Université Lyon 1) Correlations control in mean-field systems



Propagation of chaos
Integrating the Kolmogorov equation and using symmetries

1

0. Fy () = iAF]{,(x) + Hdivx(/w VW (y — :E)Fﬁ(:l:,y)dy)

Propagation of chaos: since [} = Fi @ Fy, + G3 and if G3, — 0 as N — oo,
we get the limit equation

0.f(t,3) = S AF@) + rdive (F(w) [ YW(z —y) fw) dy).

Td
Also true as an evolution in the space of measures:
Oumt, 1) = 3 5m(t, p) + v (m(t ) | VW (o = y)m 1) )
m(0, 1) = p.
Hence, we expect
B [ et @) = [ @ Fhtae [ pamit. o)),
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Quantitative propagation of chaos: weak form

See Chaintron-Diesz (2023) for more ref. and other notions of propagation of
chaos. Recall E[®(u})] = [14 o(x)Fy(dz).
From Mischler-Mouhot, Delarue-Tse, Jourdain...
E[@(/_Liv)] - (b(m(t)/J'O) < é(N7 t))
with (N, t) — 0 as N — oo, typically of order N~
Key questions: sup,- O(N,t) < O(N) ?

Delarue-Tse (2021): under regularity assumptions on b and @, there exists C' > 0
such that

jlzlglE[\q’(MiV) - ‘P(m(tvuo))ﬂ < %

So in our setting, for this weak notion, Question 1 solved “completely”.
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Natural questions, v2
For ¢ : T4 — R smooth, ® () := [r. p(x)p(dz),
Q Law of large numbers (Delarue-Tse)

2l Q

E[0(4)] — D(m(t, po)) <
@ Central Limit Theorem: existence of some ()0 s. t.
A(VF [ o) = mi.m)da). [ ) <0270
@ Concentration: for some C' > 0, for r > 0 (conditions on r 7)

dl /T (@) (1 = m(t, po)) (d)| = 7] < e=ON"?

@ Refined propagation of chaos ? Corrections to the mean-field limit
GPN <ON'™, wmB(u)] < ONVT
for all m > 2 7 In what sense for the first inequality ?

And can we get uniform-in-time results for 2-4 7
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Corrections the limit equation

What if we know that G3; is of order O(%) ?
For F&, we can also get
q _Llam i 1 _ 1
O Fy(x) = 2AFN(:E) + kdivy | Fy(x) ) VW (z —y) Fy(y)dy
T

+ kdiv, (% VW (z —y)(NG%)(=, y)dy)

Td
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Corrections to the limit equation |l

Assuming that G, = O(#) — evolution equation on F%

1 . 1
O Fx (21, 22) = aAFJ%r(xl,xz) —K Z dlvxi{ = NVW(%-L — ;) Fx () FN (5)

1<iZj<2
+ 2 Db, FR)F (@) i (a5) + 37— b, F&)F (02, 5)
3N = lFﬁz(:vj)/ VW (z — ) Fx (i, ¢)dz
N Td
o 1F§z(w1) VW (z — i) Fx (=, “’J‘)dm} + O<%)

Td

Using that G% = F% — (F,)®? we get a closed form for the evolution of F}; and
G?;. The initial data are G?\Ht:o =0, F&,lt:o =/
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Correlations control in mean-field systems

e Main results
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Uniform-in-time control of correlations

Theorem (B.-Duerinckx, 2024)

There exists ko > 0 such that for any k € [0, ko), for all 2 < m < N, there exists
Ly, >0, Cp, >0 (only depending on d, 3, W, pio, m) such that, for all t > 0,

IGNE) lw—em .1 (Tay < C,, N'—™.

— uniform-in-time answer to Question 4. Combined with Herbst's argument:
concentration estimates, uniform-in-time answer to Question 3.

Hess-Childs, Rowan 2023: similar result for Brownian systems, non-uniform in
time but with stronger norms, through hierarchical methods.
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Further results: uniform-in-time CLT

Theorem (B.-Duerinckx, 2024)

There exists ko, A9 > 0 such that for any k € [0, kq), for ps = m(t, o), for all
¢ € C°(T?), there exists Cy, > 0 such that for all N,t > 0,

dz(\/ﬁ(/dwuiv—/qrdwut),/qrd Wt) < C¢(N‘% +e"’°A°tN‘%),

T
where dy is the Zolotarev distance, and where (v;)¢>o solves the Gaussian
linearized Dean-Kawasaki SPDE

O +v-Vovr = divy (/&) + dive (Vo + Bo)11)

+r(VW xvy) - Ve + (VW x ) - Vo,
(Vt)jt=0 = Vo,

where ¢ is a space-time white noise in R, x T? and for all ¢ € C°(T?)

L
VN w(uév—uo)%/ PV
T2 T
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Correlations control in mean-field systems

o Some elements of proof
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Two sources of randomness

Brownian
randomness

Initial
randomness

P(p) = [rap(z)p(dz), ¢ : T* — R smooth. We want x2[®(u))] = O(%)

Law of total
cumulance

Estimation of Brownian cumulants

Varl@(u)] = Varo [Es[2(u")] + & [Vars[#(4)]] = 0(;)

Same type of decomposition for all cumulants.
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Lions expansion along the flow (CST 22, DT 21)
Let Us ((t, ), 1) = @(m(t — s, p1)). Then,
Es[0(i)] = En [Us((t,1), )]
= d(m(t, uy'))
bone [ Bl [, Tl02Ue (050 ) 0] 0] 0

=k S oa Te[02Ua ((8,9),m(s,1))) ) (v,0) | ms,ud ) (dv)ds
+Terms in-L

This can be used to expand Eg[®2(ul¥)] as well | Then

Varp[®(pq' )] = Ep[®?(uy)] — Ep[®(up )]

The terms of order 1 cancel out !

Key point: we have representation formula for 8314@ using linearized evolutions.
We can truncate expansions uniformly in time.
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Brownian

Estimation of Brownian cumulants
system

Lions
expansions Uniform in time

\ representations

Parabolic
estimates

Ergodic estimates
of linearized MF
equations

Representation
through linearized
MF equations

Cancellations

Hypocoercivity
Enlargment
theory

Kinetic
system

Exact descriptions at any order
of Brownlan cumulants

\

Wasserstein and
linear derivatives

Glauber calculus

Higher-order
Poincaré inequalities

Control of general cumulants




Thanks for listening !

B.-Duerinckx, Uniform-in-time estimates on the size of chaos for interacting
Brownian particles, arXiv 2405.19306.
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