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Abstract

We study the asymptotic behavior of the kinetic free-transport equation enclosed in a
regular domain, on which no symmetry assumption is made, with Cercignani-Lampis bound-
ary condition. We give the �rst proof of existence of a steady state in the case where the
temperature at the wall varies, and derive the optimal rate of convergence towards it, in the
L1 norm. The strategy is an application of a deterministic version of Harris' subgeometric
theorem, in the spirit of [10] and [4]. We also investigate rigorously the velocity �ow of a
model mixing pure di�use and Cercignani-Lampis boundary conditions with variable tem-
perature, for which we derive an explicit form for the steady state, providing new insights
on the role of the Cercignani-Lampis boundary condition in this problem.
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1 Introduction

1.1 Model and boundary condition

In this paper, we consider the kinetic free-transport equation with Cercignani-Lampis bound-
ary condition, inside a bounded domain (open, connected, see Remark 9 for an extension)
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Ω ⊂ Rd, d ∈ {2, 3}. The corresponding initial boundary value problem writes ∂tf(t, x, v) + v · ∇xf(t, x, v) = 0, (t, x, v) ∈ (0,∞)×G,
γ−f(t, x, v) = Kγ+f(t, x, v), (t, x, v) ∈ R+ × Σ−,
f(0, x, v) = f0(x, v), (x, v) ∈ G,

(1)

with the notations G := Ω × Rd, and, denoting nx the unit outward normal vector at
x ∈ ∂Ω,

Σ := ∂Ω× Rd, Σ± :=
{

(x, v) ∈ Σ,±(v · nx) > 0
}
.

Let us introduce the boundary operatorK corresponding to the Cercignani-Lampis boundary
condition. Let Ḡ denote the closure of G. For a function φ on (0,∞) × Ḡ, we denote γ±φ
its trace on (0,∞) × Σ±, under the assumption that this object is well-de�ned. Set, for all
x ∈ ∂Ω,

Σx± :=
{
v ∈ Rd, (x, v) ∈ Σ±

}
.

The boundary operator K is de�ned, for φ supported on (0,∞)×Σ+, for (t, x, v) belonging
to (0,∞)× Σ− and assuming that φ(t, x, ·) ∈ L1(Σx+, R(v′ → v;x)|v′ · nx|dv′), by

Kφ(t, x, v) =

∫
Σx+

φ(t, x, u)R(u→ v;x) |u · nx|du, (2)

where the kernel R(u→ v;x) is given, for x ∈ ∂Ω, u ∈ Σx+, v ∈ Σx−, by the following formula

R(u→ v;x) :=
1

θ(x)r⊥

1

(2πθ(x)r‖(2− r‖))
d−1

2

exp
(
− |v⊥|2

2θ(x)r⊥
− (1− r⊥)|u⊥|2

2θ(x)r⊥

)
(3)

× exp
(
−
|v‖ − (1− r‖)u‖|2

2θ(x)r‖(2− r‖)

)
I0

( (1− r⊥)
1
2u⊥ · v⊥

θ(x)r⊥

)
,

with the following notations:

v⊥ := (v · nx)nx, v‖ := v − v⊥, u⊥ := (u · nx)nx, u‖ = u− u⊥,

where I0 is the modi�ed Bessel function given, for all y ∈ R, by

I0(y) :=
1

π

∫ π

0

exp
(
y cosφ

)
dφ, (4)

and where θ(x) > 0 is the wall temperature at x ∈ ∂Ω. The coe�cients r⊥ ∈ (0, 1) and
r‖ ∈ (0, 2) are the two accommodation coe�cients (normal and tangential) at the wall. The
value v⊥ is the normal component of the velocity v at the boundary, while v‖ is the tangential
component. The same interpretation is of course valid for u.

We will heavily use the normalization property, see [13, Lemma 10], which, with our
notation for R, writes, for all (x, u) ∈ Σ+,∫

Σx−

R(u→ v;x) |v · nx|dv = 1. (5)

This condition ensures the conservation of mass, and the L1 contraction of the semigroup
associated to (1), see Section 2.

1.2 Physical motivations

In kinetic theory, the free-transport equation with boundary condition models the evolution
of a Knudsen (collisionless) gas enclosed in the vessel Ω, and was �rst examined in the
seminal work of Bardos [3]. In this setting, the ratio between the mean free path, which
is the length that a molecule can travel before encountering a collision event with a second
molecule, and some characteristic length scale linked to the size of the vessel, is very large,
so that intermolecular collisions can be neglected. Gas molecules in Ω move according to the
free-transport dynamics until they meet with the boundary.
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Several models for the description of the re�ection at the boundary ∂Ω exist: the simplest
choices are the bounce-back boundary condition

f(t, x, v) = f(t, x,−v), (t, x, v) ∈ (0,∞)× Σ−,

and the pure specular boundary condition

f(t, x, v) = f(t, x, v − 2(v · nx)nx), (t, x, v) ∈ (0,∞)× Σ−,

which are deterministic. Those conditions are unable to render the stress exerted by the
gas on the wall, and for this reason, Maxwell [37, Appendix] introduced the pure di�use
re�ection, in which the particle is adsorbed by the boundary before being re-emitted inside
the domain according to a new velocity distribution, de�ned through some kernel M :

f(t, x, v) = M(x, v)
(∫

Σx+

f(t, x, u) |u · nx|du
)
, (t, x, v) ∈ (0,∞)× Σ−.

The paradigmatic example of such M is the wall Maxwellian

M(x, v) = c(x) exp
(
− |v|2

2θ(x)

)
,

with c(x) a normalizing constant. In the case of the pure di�use re�ection, there is no
correlation between the incoming velocity and the emerging one, for both the normal and
the tangential components. A �rst answer to this issue was the introduction of the so-
called Maxwell boundary condition, based on a convex combination between the pure di�use
re�ection and the pure specular re�ection.

A more delicate way to address this question, while still modeling the stress exerted
by the gas on the boundary, is to consider that the probability distribution appearing in
the di�use re�ection retains some information from the impinging velocity. Based on this
idea, Cercignani and Lampis [12] introduced what is now known as the Cercignani-Lampis
boundary condition, corresponding to the kernel R given by (3), see also the monograph
of Cercignani, Illner and Pulvirenti [11]. In this kernel, two accommodation coe�cients are
given: one for the normal component, r⊥, and one for the tangential component r‖. This
description generalizes that of the di�use re�ection: for r‖ = r⊥ = 1, we recover the case of
the Maxwellian distribution at the wall mentioned above. As for the specular re�ection, it
can be considered as a limiting case in which r‖ = r⊥ = 0, while the bounce-back boundary
condition corresponds to a limiting case with r‖ = 2 and r⊥ = 0. Some graphs of the
distribution induced by the Cercignani-Lampis boundary condition with di�erent sets of
accommodation coe�cients are provided in Chen [13, Figures 1-4].

Already in the 1980's, physical computations showed that, for some models, the Cercignani-
Lampis boundary condition provides a more accurate description of the system in comparison
with the pre-existing boundary conditions. A particularly interesting case is the computation
of the Poiseuille �ow and the thermal creep through a tube in the free-molecular regime, see
Sharipov [40] and the references within, in particular [1, 36]. The Cercignani-Lampis bound-
ary condition also describes more accurately the behavior, observed experimentally, of a gas
nitrogen �ow, mainly because of the introduction of the tangential accommodation coe�cient
which is found slightly di�erent from one, see Pantazis et al. [39, Sections 3 and 4].

1.3 Qualitative convergence towards the steady state

For the free-transport equation considered in this paper, a �rst key question regarding the
asymptotic behavior is whether a steady state exists. While the answer is trivial in the case of
the Maxwell boundary condition with constant temperature, it is signi�cantly more involved
in the case where the temperature varies, although an explicit form was derived by Sone [41,
Chapter 2, Section 2.5, Equation (2.48)]. It is unclear whether such an explicit expression
exists for the Cercignani-Lampis boundary condition with varying temperature (one should
expect a quite complicated form if that is the case), although some stability properties for
Maxwell distributions interacting with this kernel exist, see Lord [35]. On the other hand,
it can be easily deduced from [12, Equation (6)] that an explicit steady state exists in the
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form of a Maxwellian distribution in the case where the temperature and the accommodation
coe�cients are constant. Let us mention that for the particular case where the rare�ed gas
is con�ned between two parallel plates with varying temperature, a numerical derivation has
been obtained by means of an integral equation by Kosuge et al. [29]. We present in Section
6 a similar toy model, in which we impose that r⊥ = r‖ = 1 and θ ≡ 1 on one of the plate.
For this case, we provide an explicit steady state even when the temperature (on the second
plate) is allowed to vary.

Recently, a striking work of Lods, Mokhtar-Kharroubi and Rudnicki [34] focusing on
the free-transport equation enclosed in a domain with general boundary conditions gives a
proof of existence of a steady state for a large class of di�use, regular (in their terminology)
boundary operators. This work was completed by Lods and Mokhtar-Kharroubi in [33] by
a derivation of some rate of convergence towards this steady state by means of a Tauberian
approach. However, the Cercignani-Lampis boundary condition fails to satisfy the �regular�
property required in those two papers, see Proposition 14. In this paper, we obtain the
existence and uniqueness of the steady state from our results on the convergence, providing
the �rst proof of existence of this steady state when the temperature at the boundary is
allowed to vary.

1.4 Convergence rate towards the steady state for linear kinetic

equations with boundary conditions

In the present investigation, we are mainly interested in the quantitative study of the conver-
gence towards the steady state. Those questions of quantitative convergence of linear kinetic
equations have drawn major interest in the mathematical community during the last decade.

Let us also mention brie�y the numerous studies focusing on equations from collisional
kinetic theory linearized around an equilibrium, in the L2 setting, with general Maxwell
boundary conditions (note that, in this case, we expect convergence towards equilibrium
even with the pure specular boundary condition). In particular, we quote here the various
applications of the L2 − L∞ theory of Guo, �rst applied to the Boltzmann equation [21],
see also Briant-Guo [9], and to the Landau equation with the specular re�ection boundary
condition, see [22, 23]. On this matter, we mention also [26, 27, 18]. A more recent result of
Bernou, Carrapatoso, Mischler and Tristani [6] handles the whole general Maxwell boundary
condition for the linearized Boltzmann equation with and without cut-o� and the linearized
Landau equation based on an adaptation of the (constructive) hypocoercivity method for
linear equations developed by Dolbeault-Mouhot-Schmeiser [15, 16]. Those L2 methods can
not be adapted in a straightforward manner to the Cercignani-Lampis boundary condition,
because, as noticed by Chen [13, Remark 3], it is not possible to view the boundary condition
as a projection to obtain the L2 inequality heavily required in the case of the Maxwell
boundary condition. New ideas are needed to adapt the hypocoercivity framework to this
model. Very recent results of well-posedness have been obtained by Chen [13] and, in the
convex setting, by Chen, Kim and Li [14].

For the free-transport equation considered here, with pure di�use boundary condition, a
numerical investigation was �rst performed by Tsuji, Aoki and Golse [42]. In their paper, the
rate of convergence, in the L1 norm, was identi�ed as a polynomial rate of order 1

td
. A �rst

analytic study of the model followed, in which Aoki and Golse [2] derived an upper bound
of 1

t for the convergence in L
1 norm, with strong symmetry hypotheses (radial symmetry of

the initial data and of the space domain). In a series of articles, Kuo, Liu and Tsai [31, 32]
and Kuo [30] found the optimal rate 1

td
with the same assumption of radial symmetry of

the domain, by using probabilistic arguments, in particular deriving a law of large numbers
for the interval of times between two collisions of a particle with the boundary. Ultimately
their results allow one to handle the Maxwell boundary condition with various temperatures
at the boundary. Another probabilistic approach was taken by Bernou and Fournier [7]
through the use of a probabilistic coupling, based on a description of the problem with a
stochastic process. This allowed the authors to conclude to the optimal rate 1

td
in the general

case of a C2 regular domain, with constant temperature. The paper also extends slightly
beyond the Maxwellian case by considering other possibilities forM and modifying the rate of
convergence accordingly. Some related numerical results are provided in Bernou [5, Chapter
3]. Still for the free-transport equation with Maxwell boundary condition, Bernou [4] used
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a recent adaptation of Harris' theorem in the sub-geometric, deterministic setting, due to
Cañizo and Mischler [10], to obtain the optimal rate even in the case where the temperature
varies, without symmetry hypothesis, with M a wall Maxwellian. For the free-transport
equation with di�use re�ection, we �nally mention the quantitative results on the decay of
the exponential moments obtained recently in the L∞x −L1

v framework by Jin and Kim [25].
Regarding the case of the pure specular boundary condition, there is no mixing (the system
is entirely deterministic), and we refer the interested reader to the thorough study of Briant
[8, Appendix A] focusing on the characteristics of the corresponding system.

To the best of our knowledge, this paper is the �rst analystic study of the asymptotics of
the free-transport equation in a general domain with Cercignani-Lampis boundary condition.
By adapting the method from [4], we obtain the optimal rate of convergence towards equilib-
rium of 1

td−
in the L1-norm. We hope that this understanding will help to tackle the di�cult

extension of the results regarding asymptotic behaviors of collisional kinetic equations to this
more general boundary condition.

1.5 Velocity �ow

In the pure di�use case, that is when (r⊥, r‖) = (1, 1), and for the Maxwell boundary
condition, the steady �ow of velocity (perhaps surprisingly) vanishes, even in the case where
the temperature is allowed to vary. This is not the case in general when one considers other
parameters (r⊥, r‖) 6= (1, 1). In particular, in the case of a gas con�ned between two plates
with sinusoidal temperature distribution, while the steady �ow vanishes for the Maxwell
boundary condition, cf. [41], four di�erent behaviors of this �ow are observed when r⊥ and
r‖ vary. On this subject, the main reference is the work of Kosuge et al. [29]. In Section 6, we
consider a model in which a gas is con�ned between two plates, one with pure di�use re�ection
boundary condition r‖ = r⊥ = 1, the second one with a general Cercignani-Lampis condition
with variable temperature. We derive the steady state for the corresponding problem, giving
the �rst example of an explicit steady state in the case (r⊥, r‖) 6≡ (1, 1), and we prove
that this steady state implies no steady �ow. A possible interpretation of this result is the
following: the pure di�use boundary condition destroys the previous correlations, and the
�ow originated from it has no preferred orientation. This hints that the crucial mechanism
behind the steady �ow observed numerically by Kosuge et al. [29] might be the absence of
a decorrelation mechanism - in our toy model, the pure di�use boundary condition, which
plays a role for all trajectories.

1.6 Hypotheses and main results

We assume that Ω ⊂ Rd, with d ∈ {2, 3}, and we endow Rd with the Lebesgue measure. The
symbols dx, dv denote this measure. We assume that Ω is bounded and C2 with closure Ω̄,
and that the map x 7→ nx can be extended to the whole set Ω̄ as a W 1,∞(Ω) map, where
W 1,∞(Ω) denotes the corresponding Sobolev space. For any k ∈ N∗, we use the Euclidean
norm on Rk and denote |x| the norm of x. We denote x · y the scalar product between x and
y in Rk. We write d(Ω) for the diameter of Ω, given by

d(Ω) := sup
(x,y)∈Ω2

|x− y|.

On Ḡ = Ω̄× Rd, setting

Σ0 :=
{

(x, v) ∈ ∂Ω× Rd, v · nx = 0
}
,

we de�ne the map σ by:

σ(x, v) =

{
inf{t > 0, x+ tv ∈ ∂Ω}, (x, v) ∈ Σ− ∪G,
0, (x, v) ∈ Σ+ ∪ Σ0,

(6)

which corresponds to the time of the �rst collision with the boundary for a particle in position
x with velocity v at time t = 0. The L1 space on G, denoted L1(G), is the space of measurable
R-valued functions f such that

‖f‖L1 :=

∫
G

|f(x, v)|dvdx <∞.
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For any non-negative measurable function w de�ned on G, we introduce the weighted L1

space L1
w(G) = {f ∈ L1(G), ‖fw‖L1 <∞} endowed with the norm de�ned by

‖f‖w := ‖fw‖L1 .

For any function f ∈ L1(G), we de�ne the mean of f by

〈f〉 =

∫
G

f(x, v) dvdx. (7)

We assume that both accommodation coe�cients are non-singular, i.e. r⊥ ∈ (0, 1) and
r‖ ∈ (0, 2). Note that this includes the case of the pure di�use boundary condition. Finally,
we assume that the wall temperature θ : ∂Ω→ R∗+ is a continuous function, positive on ∂Ω
compact, and thus admitting two extreme values θ0, θ1 > 0 such that

∀x ∈ ∂Ω, 0 < θ0 ≤ θ(x) ≤ θ1 <∞.

The Harris' theorem used in this paper gives a convergence result in the L1 norm de-
pending on some weighted L1 norm of the initial data. The weights will take the form of
polynomials of the following quantity

〈x, v〉 :=
(
1 + σ(x, v) +

√
|v|
)
, (x, v) ∈ Ḡ. (8)

We set, for all α > 0, for all (x, v) ∈ Ḡ,

mα(x, v) := 〈x, v〉α.

After proving that the problem (1) is well-posed, we introduce the semigroup (St)t≥0 such
that, for all f ∈ L1(G), for all t > 0, Stf is the unique solution of (1) at time t > 0 belonging
to L1(G). Our main result is the following:

Theorem 1. For all n ∈ (0, d+ 1), there exists a constant C > 0 such that for all t ≥ 0, for
all f, g ∈ L1

mn(G) with 〈f〉 = 〈g〉, there holds

‖St(f − g)‖L1 ≤ C

(1 + t)n
‖f − g‖mn .

In particular, for all ε ∈ (0, 1
2 ), there exists a constant C > 0 such that for all t ≥ 0, for all

f, g ∈ L1
md+1−ε

(G) with 〈f〉 = 〈g〉, there holds

‖St(f − g)‖L1 ≤ C

(1 + t)d+1−ε ‖f − g‖md+1−ε .

From this result, we deduce the existence of a unique steady state even in the case where
the temperature varies.

Theorem 2. There exists a unique f∞ such that, for all ε ∈ (0, 1
2 ), we have f∞ ∈ L1

md−ε
(G),

0 ≤ f∞, 〈f∞〉 = 1, and

v · ∇xf∞(x, v) = 0, (x, v) ∈ G,
γ−f∞(x, v) = Kγ+f∞(x, v), (x, v) ∈ Σ−.

Regarding the convergence towards the steady state, we can deduce the following corollary
from theorems 1 and 2.

Corollary 3. For all n ∈ (0, d), there exists a constant C ′ > 0 such that for all t ≥ 0, for
all f ∈ L1

mn(G) with 〈f〉 = 1, for f∞ given by Theorem 2,

‖St(f − f∞)‖L1 ≤ C ′

(1 + t)n
‖f − f∞‖mn .
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Remark 4. As usual when using the subgeometric Harris' theorem, we can not apply the
optimal result of Theorem 1 to study the convergence towards the steady state, because we
do not have in general f∞ ∈ L1

d+1−ε(G) for ε ∈ (0, 1
2 ). In particular, it is known that the

explicit form in the case r‖ = r⊥ = 1, θ ≡ 1 is given by a Maxwellian which belongs to
L1
md−ε

(G) \L1
md+1−ε

(G) for all ε ∈ (0, 1). This limiting role of the steady state is well-known
in the probabilistic counterpart of the theory used in this paper, see for instance Douc-Fort-
Guillin [17] and Hairer [24].

Remark 5. If f is bounded and has enough moments in v, f ∈ L1
md−ε

(G) for some ε ∈ (0, 1
2 ).

For instance, the usual Maxwellian steady state of the pure di�ure re�ection satis�es this
hypothesis. The moment requirements can be strongly reduced, see Remark 8.

Remark 6. The conclusion from Corollary 3 is that the rate of convergence towards the
steady state of the free-transport equation with Cercignani-Lampis boundary condition is
better than 1

td
(up to a log factor) when starting from an initial datum with enough regularity.

As this is also the rate obtained for the pure di�use boundary condition (see for instance [31]
for the spherically symmetric case, and [4], [7] for the general case), which corresponds to
the particular case r⊥ = r‖ = 1, and since it is known that this rate is optimal in this context,
we can conclude to the optimality for the general Cercignani-Lampis boundary condition.

Remark 7. Our proof of Theorem 1 (and thus of Corollary 3) is constructive, i.e. the
constant C appearing in Theorem 1 can be computed explicitely, although it might depend in
a very complicated manner of the geometry of Ω. An interesting fact is that the proof requires
some control of the �ux of the solution at the boundary, provided by Lemma 16. The constant
appearing in this �ux takes the form M

1−m , with m a positive power of max((1−r⊥), (1−r‖)2),
and M a constant independent of r⊥ and r‖. Unsurprisingly as (r⊥, r‖) → (0, 0) (i.e., as
we retain more and more information from the incoming velocities, converging towards the
pure specular boundary condition), this constant grows and at the limit we lose the control of
the �ux. The same occurs as (r⊥, r‖) → (0, 2), i.e. as we converge towards the bounce-back
boundary condition.

Remark 8. Rather than weights in the form of power of

〈x, v〉 =
(
1 + σ(x, v) +

√
|v|
)
, (x, v) ∈ Ḡ

we can extend all three results to weights in the form of power of

δ〈x, v〉 :=
(
1 + σ(x, v) + |v|2δ

)
, (x, v) ∈ Ḡ

for any δ ∈ (0, 1
2 ). The rates of convergence are then unmodi�ed, although the constants ap-

pearing in front of them change. This allows to weaken signi�cantly the v-moment hypothesis
required for f .

Remark 9. In the whole paper, we assume that Ω is connected for simplicity. However, the
case where Ω has �nitely many connected components can also be dealt with, by splitting the
densities and the corresponding equilibrium on each of those components. Further extensions
seem really involved: we crucially use, in the proof of the Doeblin-Harris condition, that
any two boundary points in a domain su�ciently regular can be joined by successive random
rebounds at the boundary (see Proposition 20 for a more precise statement). This result does
not hold without the connectedness assumption.

1.7 A toy model for the study of the velocity �ow

In Section 6, we study the free-transport equation in the box [0, 1]2 ⊂ R2 with periodic
boundary conditions at x1 = 0 and x1 = 1 and two Cercignani-Lampis boundary conditions
at x2 = 0 and x2 = 1. Hence the model is close, in spirit, to the one presented by Kosuge et al
[29] on their work on the velocity �ow. We allow r‖ and r⊥ to vary with the boundary, taking
r‖ = r⊥ = 1 at x2 = 1 and r⊥ = r‖(2− r‖) with r⊥ ∈ (0, 1) at x2 = 0. Therefore we have a
pure di�use re�ection at x2 = 1 and a more general Cercignani-Lampis boundary condition
at x2 = 0. We set the temperature to be 1 at x2 = 1 and we take θ2 : (x1, 0)→ (1,∞) to be
the function giving the temperature at x2 = 0.
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With this at hand, we provide an explicit steady state for this problem, giving a �rst
instance of an explicit steady state for a problem in which the Cercignani-Lampis boundary
condition with (r‖, r⊥) 6≡ (1, 1) is considered. We also prove that this steady state exhibits
no velocity �ow, hinting that the presence of a piece of the boundary in which a decorre-
lation mechanism takes place (the pure di�use boundary condition) might su�ce to cancel
all such �ows. We plan to pursue in the near future, with probabilistic methods, the rig-
orous investigation of the velocity �ow for models involving a Cercignani-Lampis boundary
condition.

1.8 Proof strategy

The key result of this paper is Theorem 1. Its proof is purely deterministic: although we
use some known facts from probability theory to shorten some computations, those could be
adapted to be written entirely without this framework. We adapt the method of [4], more
precisely we prove a subgeometric Harris' theorem for the particular choice of weights involved
here. The idea of this deterministic adaptation to the previously known probabilistic results
of Douc-Fort-Guillin [17] and Hairer [24] is due to Cañizo and Mischler [10]. We provide a
self-contained proof, except for the interpolation arguments which are taken directly from [4].
Let us detail the approach, and the main adaptations required to handle the more involved
Cercignani-Lampis boundary condition compared to the Maxwell boundary condition treated
in [4]. We present the strategy to derive the (almost) optimal result, i.e. for the weight
md+1−ε with ε ∈ (0, 1/2). The extension to more general weights is then obtained by
interpolation.

We introduce the operator L such that (1) rewrites as a Cauchy problem:{
∂tf = Lf in R+ × Ω̄× Rd,
f(0, ·) = f0(·) in G.

There are two main tools to prove a subgeometric Harris' theorem for such a problem. The
�rst one is to derive an inequality of the form

L∗w1 ≤ −w0 + κ,

for some κ > 0, for L∗ the adjoint operator of L, for some weights (w0, w1) with 1 ≤ w0 ≤ w1.
Typically one wants to obtain several inequalities of this kind, with various choices of weights
instead of (w0, w1). In our case, such inequality is very hard, perhaps impossible, to derive.
On the other hand, we can obtain an integrated version of the inequality, i.e. the existence
of two constants b1, C1 > 0 such that for all T > 0, f ∈ L1

md+1−ε
(G),

‖ST f‖md+1−ε + C1

∫ T

0

‖Ssf‖md−εds ≤ ‖f‖md+1−ε + b1(1 + T )‖f‖L1 . (9)

The existence of such weights relies heavily on the properties of σ, see for instance the study
of Voigt [43], and in particular on the fact that

v · ∇xσ(x, v) = −1.

This approach was also taken in [4], however, there is, in the case of the Cercignani-Lampis
boundary condition, a key di�culty in the control of the �ux compared to the case of the
di�use boundary condition. While, in the latter, we had the inequality∫ T

0

∫
∂Ω

∫
Σx+

|v · nx|γ+|Stf |(x, v) dvdζ(x)ds ≤ C(1 + T )‖f‖L1 , (10)

for some C > 0, where dζ(x) is the surface measure at x ∈ ∂Ω, such an inequality does not
hold in our context. Instead, we derive a partial control of the �ux in Lemma 16, given, for
all Λ > 0, by the existence of a constant CΛ > 0 such that∫ T

0

∫
∂Ω

∫
{v∈Σx+,|v|≤Λ}

|v · nx|γ+|Stf |(x, v) dvdζ(x)ds ≤ CΛ(1 + T )‖f‖L1 . (11)
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Let us expand a little on this important point. For the di�use boundary condition, the norm
of the incoming velocity plays no role : the boundary operator generates the new velocity
independently from the incoming one. This is re�ected in the uniform control of the �ux
(10). On the other hand, for the Cercignani-Lampis boundary condition the way in which
the new velocity is created depends heavily on the one of the particle before collision. This
is re�ected in the fact that a uniform control of the �ux integrated along the velocity is only
possible with an integration over a part of Σx+, see equation (11). In addition, the norm of the
velocity decreases on average at each collision with the boundary, because of the hypotheses
made on r⊥ and r‖, eventually allowing the partial control (11) to be su�cient to derive the
subgeometric Lyapunov condition. More precisely, since r⊥ ∈ (0, 1) and |1 − r‖| ∈ (0, 1),
the outcoming velocity has, on average, a smaller norm than the incoming one: for instance,
if v‖ is the incoming tangential velocity, one can see from the de�nition of R (3) that the
outgoing tangential velocity u‖ is taken as a gaussian random variable of mean (1 − r‖)v‖,
whose norm is obviously strictly smaller than |v‖| since |1− r‖| < 1.

The second ingredient to adapt the subgeometric Harris' theory to our context is a pos-
itivity result, the Doeblin-Harris condition, for the semigroup (St)t≥0. This is given by
Theorem 21 in the form of the following inequality: for any Γ ≥ 2, there exist T (Γ) > 0 and
a non-negative, non-trivial measure ν on G, depending on Γ with ν 6≡ 0 such that for all
(x, v) ∈ G, for all f0 ∈ L1(G), f0 ≥ 0,

ST (Γ)f0(x, v) ≥ ν(x, v)

∫
{(y,w)∈G,〈y,w〉≤Γ}

f0(y, w) dydw. (12)

To prove Theorem 1, we combine the two results (9) and (12) as in [10, 4]. We assume that
g = 0 so that f ∈ L1

md+1−ε
(G) with 〈f〉 = 0, and for T > 0 large enough we introduce the

modi�ed norm
|||.|||md+1−ε

= ‖.‖L1 + β‖.‖md+1−ε + α‖.‖md−ε
for two constants α, β > 0 well-chosen, depending on T . We prove �rst a contraction result
for this new norm

|||ST f |||md+1−ε
≤ |||f |||md+1−ε

. (13)

Then, we introduce two auxiliary weights so that 1 ≤ w0 ≤ w1 ≤ md+1−ε for which, with a
similar argument, for some modi�ed norm |||.|||w1

, for T > 0 as above and for α̃ > 0 constant,
we can derive the following inequality

|||ST f |||w1
+ 2α̃‖f‖w0 ≤ |||f |||w1

. (14)

We combine (13) and (14) repeatedly and use the inequalities between the weights to con-
clude. As mentioned above, an interpolation argument is �nally used to treat all weights mn

with n ∈ (0, d+ 1).
Once Theorem 1 is established, the proof of Theorem 2 follows from a re�ned version of

(13), and Corollary 3 is obtained as a direct consequence of those two results.
The proof of the results mentioned in Subsection 1.7 are obtained directly by studying

the candidate steady state which is itself obtained by the method of characteristics. While
the computations are easy in the case where the temperature is constant, a few tricks are
necessary when it is allowed to vary. They rely heavily on earlier computations performed
by Chen [13].

1.9 Plan of the paper

In Section 2, we recall that the problem (1) is well-posed, that the associated semigroup
is a contraction in L1(G), we prove that the Cercignani-Lampis boundary condition is not
regular in the sense of [34] and we introduce some probabilistic tools. With the help of those,
we prove in Section 3 the inequality (9) for a variety of weights of the form mγ , γ ∈ (1, d+1),
deriving along the way the partial control of the �ux mentioned above. The inequality (12)
is derived in Section 4. The proofs of Theorems 1, 2 and Corollary 3 are given in Section
6, starting from the one of Theorem 1, from which Theorem 2 and then Corollary 3 are
obtained. Finally, Section 6 is devoted to the study of our toy model.
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2 Setting, elementary properties, preliminary notions

2.1 Notations and associated semigroup

We �rst set some notations. We write B̄ for the closure of any set B. We denote by
D(E) := C1

c (E) the space of test functions, C1 with compact support, on E. We write dζ(x)
for the surface measure at x ∈ ∂Ω. We denote by H the d−1 dimensional Hausdor� measure.

For a function f ∈ L∞([0,∞);L1(Ω × Rd)), admitting a trace γf at the boundary, we
write γ±f for its restriction to (0,∞)×Σ±. This corresponds to the trace obtained in Green's
formula, see Mischler [38]. Note �rst that the boundary operator K given by (2) has norm
1. This follows easily from the normalization property (5):

Lemma 10 (K is non-negative and stochastic). The boundary operator K de�ned by (2)
is non-negative, and satis�es, for all t ≥ 0, x ∈ ∂Ω, for all f regular enough so that both
integrals are well-de�ned,∫

Σx−

Kγ+f(t, x, v) |v · nx|dv =

∫
Σx+

γ+f(t, x, v) |v · nx|dv. (15)

Proof. The non-negativity of K is straightforward in view of (2) and (3). Recall from (5)
that, for all x ∈ ∂Ω, u ∈ Σx+, ∫

Σx−

R(u→ v;x) |v · nx|dv = 1. (16)

Hence,∫
Σx−

Kγ+f(t, x, v) |v · nx|dv =

∫
Σx−

|v · nx|
(∫

Σx+

γ+f(t, x, u) |u · nx|R(u→ v;x) du
)

dv

=

∫
Σx+

|u · nx| γ+f(t, x, u)
(∫

Σx−

R(u→ v;x) |v · nx|dv
)

du

where we used Fubini's theorem, and the conclusion follows.

Since the boundary operator is conservative and stochastic, the problem (1) is governed
by a C0-stochastic semigroup (St)t≥0, i.e. a non-negative, mass-conservative semigroup such
that, for f0 ∈ L1(G), for all t ≥ 0, Stf0 = f(t, ·) is the unique solution in L∞([0,∞);L1(G))
to (1) taken at time t. Those results, and the fact that (St)t≥0 is a contraction semigroup,
were obtained by Cercignani and Lampis [12]. We gather them in the following theorem.

Theorem 11 (Positivity and mass conservation [12]). Let f ∈ L1(G). For all t ≥ 0,
〈Stf〉 = 〈f〉. Moreover, we have

‖Stf‖L1 ≤ ‖f‖L1 ,

and, if f is non-negative, so is Stf .

In the remaining part of this paper, we will investigate the decay properties of the problem
at the level of this semigroup (St)t≥0.

2.2 Probabilistic facts and regularity

We brie�y present the Rice distribution and a connection to Gaussian random variables. For
a deeper exposition of this probabilistic material, we refer to Kobayashi, Mark and Turin
[28, Section 7.5.1 and 7.5.2]. We write Y ∼ N (m,∆) when Y is a Gaussian random vector
on Rn, n ≥ 1 with mean m ∈ Rn and co-variance matrix ∆ ∈ Mn

s the space of symmetric
matrices of size n× n, and we write In for the identity matrix of size n× n. If X and Y are

two random variables, we write X
L
= Y if X and Y have the same distribution.

De�nition 12. Let µ ∈ R, σ2 > 0. We say that X follows a Rice distribution of parameter
(µ, σ2) and write X ∼ Ri(µ, σ2) if X has the following density with respect to the Lebesgue
measure on R+:

fRi(µ,σ2)(x) =
x

σ2
exp

(
− x2

2σ2
− µ2

2σ2

)
I0

(µx
σ2

)
, x ∈ R+.
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Proposition 13 ([28]). Let µ ∈ R, σ2 > 0 and ϑ ∈ [0, 2π). Let X1 ∼ N (µ cos(ϑ), σ2),
X2 ∼ N (µ sin(ϑ), σ2) be two independent random variables. Let Y ∼ Ri(µ, σ2). Then√

X2
1 +X2

2
L
= Y.

Let us conclude this section by a proof that the Cercignani-Lampis boundary condition
does not fall into the framework of [34]:

Proposition 14. We have, for all x ∈ ∂Ω,

lim
m→∞

sup
v′∈Σx+

∫
{v∈Σx−,|v|≥m}

R(v′ → v;x)|v · nx|dv ≥
(1

2

)d
> 0.

In particular, [34, Equation (3.4)] is not satis�ed, and the boundary operator K is not a
regular di�use operator in the sense of [34].

Proof. We note �rst that

{v ∈ Σx−, |v| ≥ m} ⊃
{
v ∈ Σx−, |v⊥| ≥

√
2m

2
, |v‖| ≥

√
2m

2

}
,

so that we have, for all m > 0, u ∈ Σx+,∫
{v∈Σx−,|v|≥m}

R(u→ v;x)|v · nx|dv ≥
∫
{v∈Σx−,|v⊥|≥

√
2m
2 ,|v‖|≥

√
2m
2 }

R(u→ v;x)|v · nx|dv.

We note that, with the previous de�nitions, for all v ∈ Σx−

|v⊥|R(u→ v;x) = f
Ri((1−r⊥)

1
2 |u⊥|,θ(x)r⊥)

(−v⊥)fN ((1−r‖)u‖,θ(x)r‖(2−r‖)Id−1)(v‖).

We assume from now on, without loss of generality, that nx = e1. We can thus write, with
the change of variable sending v1 to −v1 and splitting the integral∫

{v∈Σx−,|v|≥m}
R(u→ v;x)|v · nx|dv (17)

≥
(∫ ∞

√
2m
2

f
Ri((1−r⊥)

1
2 |u⊥|,θ(x)r⊥)

(v1)dv1

)
×
(∫
{v‖∈Rd−1,|v‖|≥

√
2m
2 }

fN ((1−r‖)u‖,θ(x)r‖(2−r‖)Id−1)(v‖)dv‖

)
.

where we abusively identi�ed v⊥ with v1 and v‖ with (v2, . . . , vd) since nx = e1. Choosing

u‖ = (
√

2m
2(1−r‖)

, . . . ,
√

2m
2(1−r‖)

) in Rd−1, we clearly have∫
{v‖∈Rd−1,|v‖|≥

√
2m
2 }

fN ((1−r‖)u‖,θ(x)r‖(2−r‖)Id−1)(v‖)dv‖ ≥
(1

2

)d−1

,

by properties of Gaussian random variables: this follows by splitting the integral into d− 1
integrals over R of the form

∫
{|v|≥

√
2m
2 }

exp
(
−
(
v−
√

2m
2

)2

2θ(x)r‖(2−r‖)

)
√

2πθ(x)r‖(2− r‖)
dv ≥

∫ ∞
0

exp
(
− v2

2θ(x)r‖(2−r‖)

)
√

2πθ(x)r‖(2− r‖)
dv =

1

2
,

where we only kept the integral over a subset of R+ and performed the change of variable
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v′ = v −
√

2m
2 . As for the �rst integral on the right-hand side of (17), we have∫ ∞

√
2m
2

f
Ri((1−r⊥)

1
2 |u⊥|,θ(x)r⊥)

(v1)dv1

= 1−
∫ √

2m
2

0

|v1|
exp

(
− |v1|2

2θ(x)r⊥
− (1−r⊥)|u⊥|2

2θ(x)r⊥

)
θ(x)r⊥

× 1

π

∫ π

0

exp
(
− cos(φ)

(1− r⊥)
1
2 |u⊥|v1

θ(x)r⊥

)
dφdv1

= 1− 1

π

∫ √
2m
2

0

|v1|
exp

(
− |v1|2

2θ(x)r⊥

)
θ(x)r⊥

×
(∫ π

0

exp
(
−
|u⊥|2

(
(1− r⊥) + 2 cos(φ)(1− r⊥)

1
2
|u⊥|
|u⊥|2 v1

)
2θ(x)r⊥

)
dφ
)

dv1,

and an application of the dominated convergence theorem clearly shows that the last term
on the right-hand-side converges to 0 as |u⊥| → ∞. Hence there exists u⊥ with |u⊥| large
enough so that ∫ ∞

√
2m
2

f
Ri((1−r⊥)

1
2 |u⊥|,θ(x)r⊥)

(v1)dv1 ≥
1

2
.

Since we can �nd such a couple (u⊥, u‖) for all m > 0, the conclusion follows.

3 Subgeometric Lyapunov condition

Recall the de�nition of the map σ from (6). On Ḡ, we de�ne the function q by

q(x, v) = x+ σ(x, v)v. (18)

In terms of characteristics of the free-transport equation, for (x, v) ∈ Ḡ, q(x, v) corre-
sponds to the right limit in Ω̄ of the characteristic with origin x directed by v. The real
number σ(x, v) corresponds to the time at which this characteristic reaches the boundary,
if it started from x at time 0 with velocity v with x ∈ Ω or x ∈ ∂Ω, v · nx < 0. If x ∈ ∂Ω
and v is not pointing towards the gas region (that is, (x, v) is already the right limit of the
corresponding characteristic), q(x, v) simply denotes x.

We recall from Voigt [43] that

v · ∇xσ(x, v) = −1,

for all (x, v) ∈ G, see also Esposito, Guo, Kim and Marra [19, Lemma 2.3] for a proof. This
minus sign can be understood in the following way: since σ(x, v) is the time needed for a
particle in position x ∈ Ω̄ with velocity v ∈ Rd to hit the boundary starting from the time
t = 0, moving the particle from x along the direction v reduces this time.

Recall the de�nition of the bracket 〈x, v〉 for (x, v) ∈ Ḡ from (8) and that for all k > 0,
mk(x, v) = 〈x, v〉k. This section is devoted to the proof of the following proposition.

Proposition 15. For any α ∈ (1, d + 1), there exists b > 0 explicit, depending on α, such
that for all T > 0, f ∈ L1

mα(G),

‖ST f‖mα + α

∫ T

0

‖Ssf‖mα−1
ds ≤ ‖f‖mα + b(1 + T )‖f‖L1 . (19)

To derive this result, we �rst need to obtain some control of the �ux. This is the main
source of additional di�culty compared to the pure di�use case of [4]. We tackle this issue
in Lemmas 16 and 18.

Lemma 16 (Control of the �ux). For all Λ > 0, there exists an explicit constant CΛ > 0
such that for all f ∈ L1(G), T > 0,∫ T

0

∫
∂Ω

∫
{v·nx>0,|v|≤Λ}

|v⊥| γ+|Ssf |(x, v) dvdζ(x)ds ≤ CΛ(1 + T )‖f‖L1 .
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Proof. We have, by de�nition of (St)t≥0, that

∂t|Stf |+ v · ∇x|Stf | = 0, a.e. in [0, T ]×G.

Recall that x 7→ nx is a W 1,∞(Ω) map by hypothesis. Multiplying this equation by (v · nx)
and integrating on [0, T ]× Ω× {v ∈ Rd, |v| ≤ 1}, we �nd

0 =

∫ T

0

∫
Ω

∫
{|v|≤1}

(v · nx)
(
∂t + v · ∇x

)
|f |(t, x, v) dvdxdt.

Integrating by parts in both time and space on the right-hand side, we �nd

0 =
[ ∫

Ω

∫
{|v|≤1}

(v · nx) |f |(t, x, v) dvdx
]T

0

−
∫ T

0

∫
Ω

∫
{|v|≤1}

|f |(t, x, v) v · ∇x(v · nx) dvdxdt

+

∫ T

0

∫
∂Ω

∫
{|v|≤1}

|v · nx|2 γ|f |(t, x, v) dvdζ(x)dt,

where we used that

|γStf(x, v)| = γ|Stf |(x, v) a.e. in ((0,∞)× Σ+) ∪ ((0,∞)× Σ−), (20)

see Mischler [38, Corollary 1]. Isolating the integral on the boundary ∂Ω and throwing away
the part corresponding to Σ+, using that x 7→ nx belongs to W 1,∞(Ω) and the triangle
inequality, this leads to∫ T

0

∫
{(x,v)∈Σ−,|v|≤1}

|v⊥|2 γ−|f |(t, x, v) dvdζ(x)dt ≤ 2‖f‖L1 + ‖n·‖W 1,∞

∫ T

0

‖Ssf‖L1 ds

≤ C(1 + T )‖f‖L1 ,

for some C > 0 independent of T , where we used that for all s ≥ 0, ‖Ssf‖L1 ≤ ‖f‖L1 . Using
the boundary condition we further have∫ T

0

∫
{(x,v)∈Σ−,|v|≤1}

|v⊥|2 γ−|f |(t, x, v) dvdζ(x)dt

=

∫ T

0

∫
Σ+

|u⊥|γ+|f |(t, x, u)

∫
{v∈Σx−,|v|≤1}

|v⊥|2‘R(u→ v;x) dvdudζ(x)dt

and �nally we obtain∫ T

0

∫
{(x,u)∈Σ+,|u|≤Λ}

|u⊥| γ+|f |(t, x, u)

∫
{v∈Σx−,|v|≤1}

|v⊥|2R(u→ v;x) dvdudζ(x)dt

≤
∫ T

0

∫
Σ+

|u⊥| γ+|f |(t, x, u)

∫
{v∈Σx−,|v|≤1}

|v⊥|2R(u→ v;x) dvdudζ(x)dt

≤ C(1 + T )‖f‖L1 , (21)

where we used that {(x, u) ∈ Σ+, |u| ≤ Λ} ⊂ Σ+ and the positivity of the integrand. We
claim that there exists cΛ > 0 such that for all (x, u) ∈ Σ+ with |u| ≤ Λ,

Ju,x :=

∫
{v∈Σx−,|v|≤1}

|v⊥|2R(u→ v;x) dv ≥ cΛ.

Indeed,

Ju,x =

∫
{v∈Σx−,|v|≤1}

|v⊥|2

θ(x)r⊥(2πθ(x)r‖(2− r‖))
d−1

2

exp
(
− |v⊥|2

2θ(x)r⊥
− (1− r⊥)|u⊥|2

2θ(x)r⊥

)
× I0

( (1− r⊥)
1
2u⊥ · v⊥

θ(x)r⊥

)
exp

(
−
|v‖ − (1− r‖)u‖|2

2θ(x)r‖(2− r‖)

)
dv,

13



and, since x 7→ nx and x 7→ θ(x) are continuous, (x, u) 7→ Ju,x is clearly continuous with
Ju,x > 0 on the compact set {(x, u) ∈ Σ+, |u| ≤ Λ}. Therefore, there exists cΛ > 0 such that
for all (x, u) ∈ {(x, u) ∈ Σ+, |u| ≤ Λ},

Ju,x ≥ cΛ.

Note that, for any given Λ, the value of cΛ can be computed explicitly. Inserting this into
(21), we �nd

cΛ

∫ T

0

∫
{(x,v)∈Σ+,|v|≤Λ}

|v⊥| γ+|f |(t, x, v) dvdζ(x)dt ≤ C(1 + T )‖f‖L1 ,

and the conclusion follows by setting CΛ = C
cλ
> 0.

Remark 17. The fact that we only obtained a partial control on the �ux, instead of a control
of the whole quantity ∫ T

0

∫
Σ+

|v · nx|γ+|Ssf |(x, v) dvdζ(x)ds

is closely related to the lack of weak compactness of the operator K obtained in Proposition 14.
In both cases, incoming velocities with large norms prevent us from obtaining uniform control:
this can be seen in the restriction {|v| ≤ Λ} required to get a uniform control in Lemma 16,
and by noting that, in Proposition 14, if the space of velocity is taken as {v′ ∈ Σx+, |v′| ≤ Λ}
rather than Σx+, then [34, Equation (3.4)] is satis�ed.

Lemma 18. Let α ∈ (1, d+ 1). For all C > 0, there exists Λ > 0 such that for all x ∈ ∂Ω,
u ∈ Σx+ with |u| ≥ Λ,

Iu,x :=

∫
Σx−

|v⊥|
{

(1 + d(Ω) +
√
|v|)α − (1 +

√
|u|)α

}
R(u→ v;x) dv ≤ −C. (22)

Proof. Although the result can be derived by purely deterministic arguments with the same
ideas, we will use insights from probability theory for the sake of conciseness. Recall that
if k ≥ 2, µ ∈ Rk, Σ ∈ Mk

s and N ∼ N (µ,Σ), N̄ := N − µ ∼ N (0,Σ). Second, we recall
that we write X ∼ Ri(µ, σ2) if X follows the Rice distribution of parameters µ ∈ R, σ2 > 0,
see De�nition 12, and that we denote fRi(µ,σ2) the corresponding density on R+. Finally,
we recall the result from Proposition 13 which links Gaussian random variables and Rice
distributions.

Note that

Iu,x =

∫
Σx−

|v⊥|
{(

1 + d(Ω) + (|v⊥|2 + |v‖|2)
1
4

)α − (1 +
√
|u|)α

}
R(u→ v;x) dv,

by de�nition of v⊥ and v‖. Since the determinant of the (orthogonal) matrix sending the

canonical basis of Rd to (nx, τ
1
x , . . . , τ

d−1
x ), where (τ1

x , . . . , τ
d−1
x ) is an orthonormal basis of

n⊥x , has absolute value 1, we may rewrite Iu,x as

Iu,x =

∫ 0

−∞

∫
Rd−1

{(
1 + d(Ω) + (|v⊥|2 + |v‖|2)

1
4

)α − (1 +
√
|u|)α

}
× fN ((1−r‖)u‖,θ(x)r‖(2−r‖)Id−1)(v‖)

× |v⊥|
exp

(
− |v⊥|2

2θ(x)r⊥

)
θ(x)r⊥

exp
(
− (1− r⊥)|u⊥|2

2θ(x)r⊥

)
I0

( (1− r⊥)
1
2 |u⊥|v⊥

θ(x)r⊥

)
dv‖dv⊥,

where we (abusively) write v⊥ for v · nx to simplify notations. We apply the change of
variable v⊥ → −v⊥, and, by parity of I0 and de�nition of the Rice distribution, we �nd

Iu,x =

∫ ∞
0

∫
Rd−1

{(
1 + d(Ω) + (|v⊥|2 + |v‖|2)

1
4

)α − (1 +
√
|u|)α

}
× fN ((1−r‖)u‖,θ(x)r‖(2−r‖)Id−1)(v‖) fRi((1−r⊥)

1
2 |u⊥|,θ(x)r⊥)

(v⊥) dv⊥dv‖.

14



We now rewrite Iu,x as an expectation:

Iu,x = E
[(

1 + d(Ω) + (|X|2 + |Y |2)
1
4

)α]− (1 +
√
|u|)α,

with Y ∼ Ri((1− r⊥)
1
2 |u⊥|, θ(x)r⊥), X ∼ N ((1− r‖)u‖, θ(x)r‖(2− r‖)Id−1). Using Proposi-

tion 13, we let ϑ ∈ [0, 2π), and consider two random variables independent from everything
else (and mutually independent):

Y1 ∼ N ((1− r⊥)
1
2 |u⊥| cos(ϑ), θ(x)r⊥), Y2 ∼ N ((1− r⊥)

1
2 |u⊥| sin(ϑ), θ(x)r⊥).

We have Y
L
=
√
Y 2

1 + Y 2
2 , so that

Iu,x = E
[(

1 + d(Ω) + (Y 2
1 + Y 2

2 + |X|2)
1
4

)α]− (1 +
√
|u|)α.

This leads to

Iu,x = E
[(

1 + d(Ω) +
{
Ȳ 2

1 + 2(1− r⊥)
1
2 Ȳ1|u⊥| cos(ϑ)

+ Ȳ 2
2 + 2(1− r⊥)

1
2 Ȳ2|u⊥| sin(ϑ) + (1− r⊥)|u⊥|2

+ |X̄|2 + 2(1− r‖)X̄ · u‖ + (1− r‖)2|u‖|2
} 1

4
)α]

− (1 +
√
|u|)α,

where

Ȳ1 = Y1 − (1− r⊥)
1
2 |u⊥| cos(ϑ) ∼ N (0, θ(x)r⊥),

Ȳ2 = Y2 − (1− r⊥)
1
2 |u⊥| sin(ϑ) ∼ N (0, θ(x)r⊥),

X̄ = X − (1− r‖)u‖ ∼ N (0, θ(x)r‖(2− r‖)Id−1).

Therefore, using (1− r‖)2|u‖|2 + (1− r⊥)|u⊥|2 ≤ max((1− r‖)2, (1− r⊥))|u|2,

Iu,x ≤|u|
α
2

(
E
[(1 + d(Ω)√

|u|
+
{ Ȳ 2

1 + Ȳ 2
2 + |X̄|2

|u|2
+ max((1− r⊥), (1− r‖)2) (23)

+ 2
(1− r⊥)

1
2 |u⊥|

(
Ȳ1 cos(ϑ) + Ȳ2 sin(ϑ)

)
+ (1− r‖)X̄ · u‖

|u|2
} 1

4
)α]

−
( 1√
|u|

+ 1
)α)

.

One can immediately notice that the quantity inside the expectation in (23) is bounded
uniformly for all |u| ≥ Λ0 for some Λ0 > 0 large enough, using properties of Gaussian random
variables. This converges towards m := max((1 − r⊥), (1 − r‖)2)

α
4 < 1 by hypothesis. By

dominated convergence theorem, we thus have

lim
|u|→∞

E
[(1 + d(Ω)√

|u|
+
{ Ȳ 2

1 + Ȳ 2
2 + |X̄|2

|u|2
+ max((1− r⊥), (1− r‖)2)

+ 2
(1− r⊥)

1
2 |u⊥|

(
Ȳ1 cos(ϑ) + Ȳ2 sin(ϑ)

)
+ (1− r‖)X̄ · u‖

|u|2
} 1

4
)α]

= m.

Using this in (23), since 1√
|u|

+ 1 → 1 as |u| → ∞, we obtain the existence of Λ0 > 1 such

that for all |u| ≥ Λ0, using also α < d+ 1,

Iu,x ≤ |u|
d+1

2

(m− 1

2

)
< 0.

Choosing Λ = Λ0 +( 2C
1−m )

2
d+1 > Λ0, we have, for all u such that |u| ≥ Λ, recalling m−1 < 0,

Iu,x ≤ |u|
d+1

2

(m− 1

2

)
≤ 2

C

1−m

(m− 1

2

)
= −C,

and the conclusion follows.
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Proof of Proposition 15. Note �rst that, since, for all (x, v) ∈ G, mα(x, v) = 〈x, v〉α,

v · ∇xmα(x, v) = (v · ∇xσ(x, v))α〈x, v〉α−1 = −αmα−1. (24)

Step 1. Let f ∈ L1
mα(G). We di�erentiate the mα-norm of f and use (24). First, since

nx is the unit outward normal at x ∈ ∂Ω, for T > 0, we apply Green's formula to �nd

d

dT

∫
G

|ST f |mα dvdx =

∫
G

|ST f | (v · ∇xmα) dvdx−
∫

Σ

(v · nx)mα (γ|ST f |) dvdζ(x),

where we recall that dζ denotes the induced volume form on ∂Ω. We have again, according
to Mischler [38, Corollary 1],

|γSt|f(x, v) = γ|Stf |(x, v), a.e. in (R∗+ × Σ+) ∪ (R∗+ × Σ−),

hence, we will not distinguish between both values in what follows. We apply (24) to �nd

d

dT

∫
G

|ST f |mα dvdx = −α
∫
G

|ST f |mα−1dvdx (25)

−
∫

Σ

(v · nx) γ|ST f |mα dvdζ(x).

In the sequel, we let

B := −
∫

Σ

(v · nx) γ|ST f |mα dvdζ(x).

Step 2. We prove, using Lemma 18, that there exists M > 0 constant such that

B .
∫
{(x,v)∈Σ+,|v|≤M}

γ+|ST f | |v⊥|dvdζ(x). (26)

By de�nition of B,

B = −
∫

Σ+

γ+|ST f | |v⊥|mα(x, v) dvdζ(x) +

∫
Σ−

γ−|ST f | |v⊥|mα(x, v) dvdζ(x)

=: −B1 +B2,

the last equality standing for a de�nition of B1 and B2. Using the boundary condition and
Tonelli's theorem, it is straightforward to see that

B2 =

∫
Σ+

γ+|ST f |(u) |u⊥|
(∫

Σx−

mα(x, v) |v⊥|R(u→ v;x) dv
)

dudζ(x).

Set, for all x ∈ ∂Ω, u ∈ Σx+,

Pu,x :=

∫
Σx−

mα(x, v) |v⊥|R(u→ v;x) dv.

Note �rst that, for all v ∈ Σx−, u⊥ · v⊥ ≤ 0 so that, using the de�nition of I0 (4),

I0

( (1− r⊥)
1
2u⊥ · v⊥

θ(x)r⊥

)
≤ exp

(
− 2(1− r⊥)

1
2u⊥ · v⊥

2θ(x)r⊥

)
,

hence, using θ(x) ≥ θ0 > 0 for all x ∈ ∂Ω,

R(u→ v;x) =
exp

(
− |v‖−(1−r‖)u‖|2

2θ(x)r‖(2−r‖)

)
(2πθ(x)r‖(2− r‖))

d−1
2

exp
(
− |v⊥|2

2θ(x)r⊥
− (1−r⊥)|u⊥|2

2θ(x)r⊥

)
θ(x)r⊥

× I0
( (1− r⊥)

1
2u⊥ · v⊥

θ(x)r⊥

)

≤ 1

(2πθ(x)r‖(2− r‖))
d−1

2

exp
(
− |v⊥+(1−r⊥)

1
2 u⊥|2

2θ(x)r⊥
− |v‖−(1−r‖)u‖|2

2θ(x)r‖(2−r‖)

)
θ(x)r⊥

≤ 1

θ0r⊥(2πθ0r‖(2− r‖))
d−1

2

=: C
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with C > 0 constant, where we used the upper bound 1 for both exponentials. Recall that
for all (x, v) ∈ Ḡ, mα(x, v) = (1 + σ(x, v) +

√
|v|)α and that d(Ω) denotes the diameter of

Ω. We �rst have, using that σ(x, v) ≤ d(Ω)
|v| and that |v⊥| ≤ |v|,∫

{v∈Σx−,|v|≤1}
mα(x, v) |v⊥|R(u→ v;x) dv ≤

∫
{v∈Σx−,|v|≤1}

(
2 +

d(Ω)

|v|

)α
|v⊥|R(u→ v;x)dv

≤ C
∫
{v∈Σx−,|v|≤1}

(
2 +

d(Ω)

|v|

)α
|v|dv

≤ Cα

for some constant Cα > 0 independent of u and x. Note that we crucially used that α < d+1
to obtain the existence of such �nite Cα (as can be checked by using an hyperspherical change
of variable). On the other hand,∫

{v∈Σx−,|v|≥1}
mα(x, v) |v⊥|R(u→ v;x) dv

≤
∫
{v∈Σx−,|v|≥1}

(1 + d(Ω) +
√
|v|)α |v⊥|R(u→ v;x) dv

≤
∫

Σx−

(1 + d(Ω) +
√
|v|)α |v⊥|R(u→ v;x) dv.

Overall, we proved that

Pu,x ≤ Cα +

∫
Σx−

(1 + d(Ω) +
√
|v|)α |v⊥|R(u→ v;x) dv. (27)

Using that, for all (x, u) ∈ Σ+,
∫

Σx−
|v⊥|R(u→ v;x) dv = 1, and, since

mα(x, u) ≥ (1 +
√
|u|)α,

we have

−B1 ≤ −
∫

Σ+

|u⊥| |γ+ST f |(x, u) (1 +
√
|u|)α

∫
Σx−

|v⊥|R(u→ v;x) dv dudζ(x). (28)

Gathering (28), (27) and the de�nition of B, we �nd

B ≤
∫

Σ+

|u⊥| |γ+ST f |(x, u)

×
{
Cα +

∫
Σx−

[
(1 + d(Ω) +

√
|v|)α − (1 +

√
|u|)α

]
|v⊥|R(u→ v;x) dv

}
dudζ(x)

≤
∫

Σ+

|u⊥| |γ+ST f |(x, u)
(
Cα + Iu,x

)
dudζ(x),

where Iu,x is de�ned as in Lemma 18. Splitting Σx+ as

Σx+ = {u ∈ Σx+ : |u| < Λ} ∪ {u ∈ Σx+ : |u| ≥ Λ}

with Λ > 0 given by Lemma 18 applied with C = Cα, we �nd that∫
{(x,u)∈Σ+,|u|≥Λ}

|u⊥| |γ+ST f |(x, u)
(
Cα + Iu,x

)
dudζ(x) ≤ 0,

leading to

B ≤
∫
∂Ω

∫
{u∈Σx+,|u|≤Λ}

|u⊥| |γ+ST f |(x, u)
(
Cα + Iu,x

)
dudζ(x)

≤
∫
∂Ω

∫
{u∈Σx+,|u|≤Λ}

|u⊥| |γ+ST f |(x, u)

×
(
Cα +

∫
Σx−

(1 + d(Ω) +
√
|v|)α |v⊥|R(u→ v;x) dv

)
dudζ(x). (29)
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We claim that, for all x ∈ ∂Ω, u ∈ Σx+ with |u| ≤ Λ,∫
Σx−

(1 + d(Ω) +
√
|v|)α |v⊥|R(u→ v;x)dv ∈ (0,∞).

This can be seen again by using probability theory. We write this integral as

E
[(

1 + d(Ω) +
(
|X|2 + |Y |2

) 1
4

)α]
,

for Y ∼ Ri((1−r⊥)
1
2 |u⊥|, θ(x)r⊥) andX ∼ N ((1−r‖)u‖, θ(x)r‖(2−r‖)Id−1) two independent

random variables. Using Proposition 13, we have, for any β̂ ∈ [0, 2π),

Y
L
=
√
Y 2

1 + Y 2
2 with

Y1 ∼ N ((1− r⊥)
1
2 |u⊥| cos(β̂), θ(x)r⊥), Y2 ∼ N ((1− r⊥)

1
2 |u⊥| sin(β̂), θ(x)r⊥)

two random variables independent from everything else. By standard properties of the
moments of Gaussian random variables, the claim follows.

Using that x 7→ nx and x 7→ θ(x) are continuous, we have (x, u) 7→ R(u→ v;x) continu-
ous, hence, by compactness of {(x, u) ∈ Σ+, |u| ≤ Λ} and continuity under the integral sign,
there exists C ′α,Λ > 0 such that for all (x, u) ∈ Σ+ with |u| ≤ Λ,∫

Σx−

(1 + d(Ω) +
√
|v|)α |v⊥|R(u→ v;x)dv ≤ C ′α,Λ.

Using this in (29), we have

B ≤
(
Cα + C ′α,Λ

) ∫
∂Ω

∫
{v∈Σx+,|v|≤Λ}

γ+|ST f |(x, v) |v⊥|dvdζ(x).

We plug this inequality into (25) and conclude that, for Cα,Λ = Cα + C ′α,Λ > 0,

d

dT

∫
G

|ST f |mα(x, v) dvdx (30)

≤ −α
∫
G

|ST f |mα−1(x, v) dvdx+ Cα,Λ

∫
{(x,v)∈Σ+,|v|≤Λ}

γ+|ST f |(x, v) |v⊥|dvdζ(x).

Step 3. We use the conclusion of Step 2, (30), and Lemma 16 to conclude the proof of
Proposition 15.

We integrate (30) between 0 and T > 0 to �nd

‖ST f‖mα + α

∫ T

0

‖Ssf‖mα−1
ds

≤ ‖f‖mα + Cα,Λ

∫ T

0

∫
{(x,v)∈Σ+,|v|≤Λ}

γ+|ST f |(x, v)|v⊥|dvdζ(x)ds.

Applying Lemma 16 and setting b := Cα,ΛCΛ > 0 where CΛ > 0 is given by the lemma, we
�nd,

‖ST f‖mα + α

∫ T

0

‖Ssf‖mα−1
ds ≤ ‖f‖mα + b(1 + T )‖f‖L1 ,

as claimed.

4 Doeblin-Harris condition

Recall that Ω is a C2 bounded domain. In this section, we prove the Doeblin-Harris condition,
Theorem 21, by adapting the argument of [4] to the present case. We also simplify slightly
some steps at the end of the demonstration. For any two points x, y ∈ ∂Ω, we write

]x, y[:= {tx+ (1− t)y, t ∈]0, 1[}.

18



De�nition 19. For (x, y) ∈ (∂Ω)2, we write x ↔ y and say that x and y see each other if
]x, y[⊂ Ω, nx · (y − x) > 0 and ny · (x− y) > 0.

We will crucially use the following result on C1 bounded domain given by Evans.

Proposition 20 (Proposition 1.7 in [20]). For all C1 bounded domain C, there exist an
integer P and a �nite set ∆′ ⊂ ∂C for which the following holds: for all z′, z′′ ∈ ∂C, there
exist z0, . . . , zP with z′ = z0, z′′ = zP , {z1, . . . , zP−1} ⊂ ∆′ and zk ↔ zk+1 for 0 ≤ k ≤ P−1.

We now state the main result of this section. Recall that for all (x, v) ∈ Ḡ, we have
〈x, v〉 = (1 + σ(x, v) +

√
|v|) and that (St)t≥0 denotes the semigroup associated to (1) as

introduced in Section 2.

Theorem 21. For any Λ ≥ 2, there exist T (Λ) > 0 and a non-negative measure ν on G,
depending on Λ with ν 6≡ 0, such that for all (x, v) ∈ G, for all f0 ∈ L1(G), f0 ≥ 0,

ST (Λ)f0(x, v) ≥ ν(x, v)

∫
{(y,w)∈G,〈y,w〉≤Λ}

f0(y, w) dydw. (31)

Moreover, ν satis�es 〈ν〉 ≤ 1 and there exists κ > 0 such that for all Λ ≥ 2, T (Λ) = κΛ.

Proof. We only treat the case d = 3, as the case d = 2 follows from similar (easier) compu-
tations. For all t > 0, (x, v) ∈ Ḡ, we write f(t, x, v) = Stf0(x, v). For the sake of simplicity
we simply write f(t, x, v) for γf(t, x, v) for (t, x, v) ∈ R+ × Σ.

Step 1. We let (t, x, v) ∈ (0,∞) × G and compute a �rst lower-bound for f(t, x, v).
Recall the de�nitions of σ from (6) and q from (18). From the characteristics method, we
have

f(t, x, v) = f0(x− tv, v)1{t<σ(x,−v)} + f(t− σ(x,−v), q(x,−v), v)1{t≥σ(x,−v)}.

Set y0 = q(x,−v), τ0 = σ(x,−v). We have, using the boundary condition and the charac-
teristics of the free-transport equation, along with the positivity of f0,

f(t, x, v) ≥ 1{τ0≤t}f(t− τ0, y0, v)

≥ 1{τ0≤t}

∫
Σ
y0
+

f(t− τ0, y0, v0) |v0 · ny0 |R(v0 → v; y0) dv0

≥ 1{τ0≤t}

∫
Σ
y0
+

f(t− τ0 − σ(y0,−v0), q(y0,−v0), v0)1{τ0+σ(y0,−v0)≤t}

× |v0 · ny0
|R(v0 → v; y0) dv0

≥ 1{τ0≤t}

∫
Σ
y0
+

1{τ0+σ(y0,−v0)≤t} |v0 · ny0
|R(v0 → v; y0)

×
∫

Σ
q(y0,−v0)
+

|v1 · nq(y0,−v0)|R(v1 → v0; q(y0,−v0))

× f(t− τ0 − σ(y0,−v0), q(y0,−v0), v1) dv1dv0.

We write v0 in spherical coordinates (r, φ, ϑ) ∈ R+× [−π, π]× [0, π] in the space directed
by the vector ny0

. We let u = u(φ, ϑ) be the unit vector corresponding to the direction of
v0. The condition v0 ·ny0

> 0 is equivalent to φ ∈ (−π2 ,
π
2 ), and we obtain from the previous

inequality, using also that q(y0,−v0) = q(y0,−u) as this point is independent of |v0| = r,

f(t, x, v) ≥ 1{τ0≤t}

∫ ∞
0

∫ π
2

−π2

∫ π

0

1{τ0+
σ(y0,−u)

r ≤t} |u · ny0
| sin(ϑ) r3R(ru→ v; y0)

×
∫

Σ
q(y0,−u)
+

|v1 · nq(y0,−u)|R(v1 → ru; q(y0,−u))

× f(t− τ0 −
σ(y0,−u)

r
, q(y0,−u), v1) dv1dϑdφdr.
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We follow [4] and use the change of variable (y1, τ1) = (q(y0,−u), σ(y0,−ru)). The inverse
of the determinant of the Jacobian matrix was derived by Esposito, Guo, Kim and Marra
[19, Lemma 2.3] and is given, in the case where y1 ↔ y0, by

τ3
1 r sin(ϑ)|∂3ξ(y1)|
|u · ny1

||∇xξ(y1)|
,

where ξ is the C1 function that locally parametrizes Ω, hence

Ω = {y ∈ Rd : ξ(y) < 0},

with the further assumption, which can be made without loss of generality, that ∂3ξ(y1) 6= 0.
Finally, u is the unit vector giving the direction going from y1 to y0, hence

u =
y0 − y1

|y0 − y1|
, r =

|y0 − y1|
τ1

.

Setting, for a ∈ ∂Ω,
Ua = {y ∈ ∂Ω, y ↔ a},

we obtain from the previous inequality, by applying this change of variable,

f(t, x, v) ≥ 1{τ0≤t}

∫ t−τ0

0

∫
Uy0

|u · ny0 | |u · ny1 |
|y1 − y0|2

τ5
1

×R
(y0 − y1

τ1
→ v; y0

) |∇xξ(y1)|
|∂3ξ(y1)|

×
∫

Σ
y1
+

f(t− τ0 − τ1, y1, v1) |v1 · ny1
|R
(
v1 →

y0 − y1

τ1
; y1) dv1dy1dτ1

≥ 1{τ0≤t}

∫ t−τ0

0

∫
Uy0

|(y0 − y1) · ny0
||(y0 − y1) · ny1

|
τ5
1

R
(y0 − y1

τ1
→ v; y0

)
×
∫

Σ
y1
+

|v1 · ny1
|R
(
v1 →

y0 − y1

τ1
; y1

)
1{τ0+τ1+σ(y1,−v1)≤t}

× f(t− τ0 − τ1 − σ(y1,−v1), q(y1,−v1), v1) dv1dζ(y1)dτ1,

where we used again the characteristics of the free-transport equation, and with dζ the

surface measure of ∂Ω, which is given by dζ(y) = |∇xξ(y)|
|∂3ξ(y)| dy for any y ∈ ∂Ω. We use one

last time the boundary condition to obtain

f(t, x, v) ≥ 1{τ0≤t}

∫ t−τ0

0

∫
Uy0

|(y0 − y1) · ny0 ||(y0 − y1) · ny1 |
τ5
1

R
(y0 − y1

τ1
→ v; y0

)
×
∫

Σ
y1
+

|v1 · ny1 |R
(
v1 →

y0 − y1

τ1
; y1

)
1{τ0+τ1+σ(y1,−v1)≤t}

×
(∫

Σ
q(y1,−v1)
+

|v2 · nq(y1,−v1)|R(v2 → v1; q(y1,−v1))

× f(t− τ0 − τ1 − σ(y1,−v1), q(y1,−v1), v2) dv2

)
dv1dζ(y1)dτ1.

Step 2. We iterate the method of Step 1 P − 1 times and make a change of variable to
recover an integral over a subset of G.

Let P ∈ Z+ be given by Proposition 20. We repeat the previous computation P −1 times
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to �nd

f(t, x, v) ≥ 1{τ0≤t}

∫ t−τ0

0

∫
Uy0

|(y1 − y0) · ny0
||(y1 − y0) · ny1

|
τ5
1

R
(y0 − y1

τ1
→ v; y0

)
×
∫ t−τ0−τ1

0

∫
Uy1

|(y2 − y1) · ny1 ||(y2 − y1) · ny2 |
τ5
2

R
(y1 − y2

τ2
→ y0 − y1

τ1
; y1

)
× . . .

×
∫ t−

∑P−1
i=0 τi

0

∫
UyP−1

|(yP − yP−1) · nyP−1
||(yP − yP−1) · nyP |

τ5
P

×R
(yP−1 − yP

τP
→ yP−2 − yP−1

τP−1
; yP−1

)
×
∫

Σ
yP
+

|vP · nyP |R
(
vP →

yP−1 − yP
τP

; yP

)
× f

(
t−

P∑
i=0

τi, yP , vP

)
dvPdζ(yP )dτP . . . dζ(y1)dτ1.

On the set {t ≥
∑P
i=0 τi}, by positivity and using the method of characteristics, we have

f
(
t−

P∑
i=0

τi, yP , vP

)
≥ f0

(
yP −

(
t−

P∑
i=0

τi

)
vP , vP

)
1{t−

∑P
i=0 τi−σ(yP ,−vP )≤0},

hence, we can lower-bound the previous inequality in the following way:

f(t, x, v) ≥ 1{τ0≤t}

∫ t−τ0

0

∫
Uy0

|(y1 − y0) · ny0
||(y1 − y0) · ny1

|
τ5
1

R
(y0 − y1

τ1
→ v; y0

)
×
∫ t−τ0−τ1

0

∫
Uy1

|(y2 − y1) · ny1 ||(y2 − y1) · ny2 |
τ5
2

R
(y1 − y2

τ2
→ y0 − y1

τ1
; y1

)
× . . .

×
∫ t−

∑P−1
i=0 τi

0

∫
UyP−1

|(yP − yP−1) · nyP−1
||(yP − yP−1) · nyP |

τ5
P

×R
(yP−1 − yP

τP
→ yP−2 − yP−1

τP−1
; yP−1

)
×
∫

Σ
yP
+

|vP · nyP |R
(
vP →

yP−1 − yP
τP

; yP

)
f0

(
yP −

(
t−

P∑
i=0

τi

)
vP , vP

)
× 1{t−

∑P
i=0 τi−σ(yP ,−vP )≤0} dvPdζ(yP )dτP . . . dζ(y1)dτ1.

We now set z = ψ(yP , τP ) = yP − vP (t−
∑P
i=0 τi), and compute the result of this change of

variable from (yP , τP ) to z. The map ψ is a C1 di�eomorphism with

ψ :
{

(yP , τP ) ∈ ∂Ω× R+ : σ(yP ,−vP ) > t−
P∑
i=0

τi > 0, yP ↔ yP−1

}
→
{
z ∈ Ω : q(z, vP )↔ yP−1, σ(z, vP ) +

P−1∑
i=0

τi ≤ t
}
.

With this change of variable, yP = q(z, vP ). Moreover, t−
∑P
i=0 τi = σ(z, vP ) by de�nition

of z, so that

τP = t−
P−1∑
i=0

τi − σ(z, vP ).

The inverse of the Jacobian of ψ is |vP · nyP |, see again Esposito et al. [19, Lemma 2.3].
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Therefore,

f(t, x, v) ≥ 1{τ0≤t}

∫ t−τ0

0

∫
Uy0

|(y1 − y0) · ny0
||(y1 − y0) · ny1

|
τ5
1

R
(y0 − y1

τ1
→ v; y0

)
×
∫ t−τ0−τ1

0

∫
Uy1

|(y2 − y1) · ny1
||(y2 − y1) · ny2

|
τ5
2

R
(y1 − y2

τ2
→ y0 − y1

τ1
; y1

)
× . . .

×
∫ t−

∑P−2
i=0 τi

0

∫
UyP−2

|(yP−2 − yP−1) · nyP−1
||(yP−2 − yP−1) · nyP−2

|
τ5
P−1

×R
(yP−2 − yP−1

τP−1
→ yP−3 − yP−2

τP−2
; yP−2

)
×
{∫

G

|(yP−1 − q(z, vP )) · nq(z,vP )||(yP−1 − q(z, vP )) · nyP−1
|(

t−
∑P−1
i=0 τi − σ(z, vP )

)5
×R

( yP−1 − q(z, vP )

t−
∑P−1
i=0 τi − σ(z, vP )

→ yP−2 − yP−1

τP−1
; yP−1

)
×R

(
vP →

yP−1 − q(z, vP )

t−
∑P−1
i=0 τi − σ(z, vP )

; q(z, vP )
)
1{q(z,vP )↔yP−1}

× 1{σ(z,vP )+
∑P−1
i=0 τi≤t}f0(z, vP )dvPdz

}
dζ(yP−1) dτP−1 . . . dζ(y1)dτ1.

Using Tonelli's theorem, we then have

f(t,x, v) ≥ 1{τ0≤t}

∫
G

f0(z, vP ) (32)

×
∫ t−τ0

0

∫
Uy0

|(y1 − y0) · ny0 ||(y1 − y0) · ny1 |
τ5
1

R
(y0 − y1

τ1
→ v; y0

)
×
∫ t−τ0−τ1

0

∫
Uy1

|(y2 − y1) · ny1
||(y2 − y1) · ny2

|
τ5
2

R
(y1 − y2

τ2
→ y0 − y1

τ1
; y1

)
× . . .

×
∫ t−

∑P−2
i=0 τi

0

∫
UyP−2

|(yP−2 − yP−1) · nyP−1
||(yP−2 − yP−1) · nyP−2

|
τ5
P−1

×R
(yP−2 − yP−1

τP−1
→ yP−3 − yP−2

τP−2
; yP−2

)
×
|(yP−1 − q(z, vP )) · nq(z,vP )||(yP−1 − q(z, vP )) · nyP−1

|(
t−
∑P−1
i=0 τi − σ(z, vP )

)5
×R

( yP−1 − q(z, vP )

t−
∑P−1
i=0 τi − σ(z, vP )

→ yP−2 − yP−1

τP−1
; yP−1

)
×R

(
vP →

yP−1 − q(z, vP )

t−
∑P−1
i=0 τi − σ(z, vP )

; q(z, vP )
)
1{q(z,vP )↔yP−1}

× 1{σ(z,vP )+
∑P−1
i=0 τi<t} dζ(yP−1) dτP−1 . . . dζ(y1)dτ1dvPdz.

Step 3. We choose the value of t and control the time integrals in (32). Let Λ > 2
and set t = (2P + 2)Λ, τ0 ∈ (Λ, 2Λ), i.e for all (x, v) ∈ G such that σ(x,−v) 6∈ (Λ, 2Λ), we
simply set ν(x, v) = 0. Note that, for any Λ > 0, one can �nd a couple (x, v) ∈ G such that

σ(x,−v) ∈ (Λ, 2Λ), which also implies |v| ≤ d(Ω)
Λ .

For all i ∈ {1, . . . , P − 1}, we lower bound the integral with respect to τi by an integral
over (Λ, 2Λ). We also lower bound the integral with respect to (z, vP ) by an integral over
DΛ = {(z, vP ) ∈ G : 〈z, vP 〉 ≤ Λ}, which is not empty since Λ > 2. Note that, on DΛ,

σ(z, vP ) ≤ Λ, |vP | ≤ Λ2. (33)
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With τ0, . . . , τP−1 ∈ (Λ, 2Λ), σ(z, vP ) ≤ Λ and t = (2P + 2)Λ, we have �rst

(2P + 2)Λ− 2PΛ− Λ = Λ ≤ t−
P−1∑
i=0

τi − σ(z, vP ) (34a)

t−
P−1∑
i=0

τi − σ(z, vP ) ≤ (2P + 2)Λ− PΛ = (P + 2)Λ, (34b)

thus, with those choices,
1{

∑P−1
i=0 τi+σ(z,vP )≤t} = 1.

Moreover, recalling that for all i ∈ {1, . . . , P − 1} the integration interval for τi in (32) is

[0, t−
∑i−1
j=0 τj ], and since

t−
i−1∑
j=0

τj ≥ (2P + 2)Λ− 2iΛ = 2Λ + 2(P − i)Λ ≥ 2Λ,

the lower bound detailed above using an integral over [Λ, 2Λ] for τi is legitimate.
Applying those lower bounds, we �nd

f(t, x, v) ≥1{τ0∈[Λ,2Λ]}

∫
DΛ

f0(z, vP ) (35)

×
∫ 2Λ

Λ

∫
Uy0

|(y1 − y0) · ny0 ||(y1 − y0) · ny1 |
τ5
1

R
(y0 − y1

τ1
→ v; y0

)
×
∫ 2Λ

Λ

∫
Uy1

|(y2 − y1) · ny1
||(y2 − y1) · ny2

|
τ5
2

R
(y1 − y2

τ2
→ y0 − y1

τ1
; y1

)
× . . .

×
∫ 2Λ

Λ

∫
UyP−2

|(yP−2 − yP−1) · nyP−1
||(yP−2 − yP−1) · nyP−2

|
τ5
P−1

×R
(yP−2 − yP−1

τP−1
→ yP−3 − yP−2

τP−2
; yP−2

)
×
|(yP−1 − q(z, vP )) · nq(z,vP )||(yP−1 − q(z, vP )) · nyP−1

|(
t−
∑P−1
i=0 τi − σ(z, vP )

)5
×R

( yP−1 − q(z, vP )

t−
∑P−1
i=0 τi − σ(z, vP )

→ yP−2 − yP−1

τP−1
; yP−1

)
×R

(
vP →

yP−1 − q(z, vP )

t−
∑P−1
i=0 τi − σ(z, vP )

; q(z, vP )
)
1{q(z,vP )↔yP−1}

× dζ(yP−1) dτP−1 . . . dζ(y1)dτ1dvPdz.

Note that, for all u, v ∈ Rd, x ∈ ∂Ω, with u · nx > 0, v · nx < 0,

R(u→ v;x) ≥
exp

(
− |v‖−(1−r‖)u‖|2

2θ(x)r‖(2−r‖)
− ||v⊥|−(1−r⊥)

1
2 |u⊥||2

2θ(x)r⊥

)
θ(x)r⊥(2πθ(x)r‖(2− r‖))

d−1
2

, (36)

where we used that I0( (1−r⊥)
1
2 u⊥·v⊥

θ(x)r⊥
) ≥ exp(− (1−r⊥)

1
2 |u⊥||v⊥|

θ(x)r⊥
), and by continuity of the

right-hand side of (36), using that x 7→ θ(x) and x 7→ nx are continuous, we obtain, by a
compactness argument, that for all M1,M2 > 0,

inf
x∈∂Ω,|u|≤M1,|v|≤M2

R(u→ v;x) ≥ cM1,M2 > 0

with cM1,M2
depending only on M1,M2. We now study the arguments of R inside the

integrals of (35). We have

1. |vP | ≤ Λ2, by (33),
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2. for all i ∈ {0, . . . , P − 2}, |yi−yi+1

τi+1
| ≤ d(Ω)

Λ ,

3. | yP−1−q(z,vP )

t−
∑P−1
i=0 τi−σ(z,vP )

| ≤ d(Ω)
Λ ,

where the last inequality uses (34a). Finally we introduce a measure R on Σ− such that for
all (y, v) ∈ Σ−,

R(y, v) = inf
|u|≤ d(Ω)

Λ ,u·ny>0

R(u→ v; y).

Note that for all (y, v) ∈ Σ−, R(y, v) > 0. A straightforward application of those bounds,
along with the de�nition of c·,· leads to

f(t, x, v) ≥ 1{τ0∈[Λ,2Λ]}R(y0, v)cP−1
d(Ω)

Λ ,
d(Ω)

Λ

c
Λ2,

d(Ω)
Λ

∫
DΛ

f0(z, vP )

×
∫ 2Λ

Λ

∫
Uy0

|(y1 − y0) · ny0
||(y1 − y0) · ny1

|
τ5
1

×
∫ 2Λ

Λ

∫
Uy1

|(y2 − y1) · ny1
||(y2 − y1) · ny2

|
τ5
2

× . . .

×
∫ 2Λ

Λ

∫
UyP−2

|(yP−2 − yP−1) · nyP−1
||(yP−2 − yP−1) · nyP−2

|
τ5
P−1

×
|(yP−1 − q(z, vP )) · nq(z,vP )||(yP−1 − q(z, vP )) · nyP−1

|(
t−
∑P−1
i=0 τi − σ(z, vP )

)5
× 1{q(z,vP )↔yP−1} dζ(yP−1) dτP−1 . . . dζ(y1)dτ1dvPdz.

Since
∫ 2Λ

Λ
dτ
τ5 < ∞, we deduce immediatly that for some constant c0 independent of (y0, v),

whose value may vary from line to line

f(t, x, v) ≥ c01{τ0∈[Λ,2Λ]}R(y0, v)

∫
DΛ

f0(z, vP ) (37)

×
∫
Uy0

|(y1 − y0) · ny0
||(y1 − y0) · ny1

|

×
∫
Uy1

|(y2 − y1) · ny1
||(y2 − y1) · ny2

|

× . . .

×
∫
UyP−2

|(yP−2 − yP−1) · nyP−1
||(yP−2 − yP−1) · nyP−2

|

× |(yP−1 − q(z, vP )) · nq(z,vP )||(yP−1 − q(z, vP )) · nyP−1
|

× 1{q(z,vP )↔yP−1} dζ(yP−1) . . . dζ(y1)dvPdz.

Step 4. For a couple of points (a, b) ∈ (∂Ω)2, we set

hP (a, b) =

∫
Ua

|(y1 − a) · na||(y1 − a) · ny1
|

×
∫
Uy1

|(y2 − y1) · ny1
||(y2 − y1) · ny2

| × . . .

×
∫
UyP−2

|(yP−1 − yP−2) · nyP−1
||(yP−1 − yP−2) · nyP−2

|

× |(yP−1 − b) · nb||(yP−1 − b) · nyP−1
|1{b↔yP−1} dζ(yP−1) . . . dζ(y1).

In this step, we want to show that, for all y0 ∈ ∂Ω, b 7→ hP (y0, b) is lower semicontinuous
and positive. To this aim, we present a simpli�ed proof of the argument given in [4]. We
can rewrite hP as

hP (a, b) =

∫
{(y1,...,yP−1)∈D(a,b)}

N(a, y1, . . . , yP−1, b)dζ(yP−1) . . . dζ(y1),

24



with

D(a, b) :=
{

(y1, . . . , yP−1) ∈ (∂Ω)P−1 :

y1 ↔ a, y2 ↔ y1, . . . , yP−1 ↔ yP−2, b↔ yP−1

}
,

and

N(a, y1, . . . , yP−1, b) := |(y1 − a) · na||(y1 − a) · ny1
||(yP−1 − b) · nb||(yP−1 − b) · nyP−1

|
×ΠP−2

i=1 |(yi+1 − yi) · nyi ||(yi+1 − yi) · nyi+1
|.

By regularity assumption, if (z1, z2) ∈ (∂Ω)2 with z1 ↔ z2, there exists ε > 0 such that
B(z1, ε)∩∂Ω↔ B(z2, ε)∩∂Ω, i.e. for all p ∈ B(z1, ε)∩∂Ω, q ∈ B(z2, ε)∩∂Ω, we have p↔ q,
see [7, Lemma 38]. Combining this with the statement of Proposition 20, we �nd that

H(D(a, b)) > 0, (38)

where we recall that H denotes the d − 1 dimensional Hausdor� measure. We set, for all
a ∈ ∂Ω,

D(a) :=
{

(y1, . . . , yP−1) ∈ (∂Ω)P−1 : y1 ↔ a, y2 ↔ y1, . . . , yP−1 ↔ yP−2

}
.

For a ∈ ∂Ω and (y1, . . . , yP−1) ∈ D(a), for all b ∈ ∂Ω such that b ↔ yP−1, we have
N(a, y1, . . . , yP−1, b) > 0 according to De�nition 19. Using (38), one concludes that for all
(a, b) ∈ (∂Ω)2, hP (a, b) > 0. Moreover, the map b 7→ N(a, y1, . . . , yP−1, b) is continuous
since z 7→ nz is continuous. According to [20, Lemma 2.3], for all z ∈ ∂Ω, Uz is open and
non-empty. Hence for all yP−1 ∈ ∂Ω, b 7→ 1UyP−1

(b) is lower semicontinuous. We conclude

that, for all a ∈ ∂Ω, (y1, . . . , yP−1) ∈ D(a),

b 7→ N(a, y1, . . . , yP−1, b)1{yP−1↔b}

is lower semicontinuous. For a ∈ ∂Ω, (bn)n≥1 a sequence of ∂Ω converging towards b ∈ ∂Ω,
we obtain

0 < hP (a, b) ≤
∫
D(a)

lim inf
n→∞

N(a, y1, . . . , yP−1, bn)1{yP−1↔bn} dζ(y1) . . . dζ(yP−1)

≤ lim inf
n→∞

hP (a, bn),

using Fatou's lemma. Thus ∂Ω 3 b 7→ hP (a, b) is also lower semicontinuous and positive for
all a ∈ ∂Ω.

Step 5. We use Step 4 to conclude the proof. Since ∂Ω is compact, we deduce from the
previous step that for all a ∈ ∂Ω,

µ(a) := inf
b∈∂Ω

hP (a, b) > 0.

With this at hand, we have from (37)

f(t, x, v) ≥ c01{τ0∈[Λ,2Λ]}R(y0, v)

∫
DΛ

f0(z, vP )hP (y0, q(z, vP )) dvPdz

≥ c01{τ0∈[Λ,2Λ]}R(y0, v)µ(y0)

∫
DΛ

f0(z, vP ) dvPdz

and, recalling that τ0 = σ(x,−v), y0 = q(x,−v), we set

ν(x, v) = c01{σ(x,−v)∈[Λ,2Λ]}R(q(x,−v), v)µ(q(x,−v))

and T (Λ) := t = (2P + 2)Λ, which is indeed of the form κΛ for κ = (2P + 2) > 0.
Finally, note that if f ∈ L1(G) with f ≥ 0, supp(f) ⊂ DΛ and 〈f〉 = 1, we have

ST f(x, v) ≥ ν(x, v)〈f〉,

and integrating this equality over G and using the mass conservation leads to

〈ν〉 ≤ 1.
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Remark 22 (Regarding the constructive property of ν). One might wonder whether the
measure ν is explicit, leading to a constructive rate of convergence. There are two compact-
ness arguments in the previous proof: one gives the value of the constant c0 in Step 3, and
is quite arti�cial. Indeed, for a given Λ and �xed parameters of the boundary condition, one
could easily �nd a constructive lower bound for the c·,· involved in the proof. The situation
is a bit less clear for the compactness argument of Step 4, which is the same as the one used
in the proof of the Doeblin-Harris condition for the Maxwell boundary condition. On this
matter, we refer to [4, Remark 8], where it is proven that a constructive lower bound can be
found at least when Ω is the unit disk. More generally, we expect to be able to �nd a lower
bound for every given Ω.

5 Proof of the main results

As mentioned above, starting from the Lyapunov inequalities of Proposition 15 and the
Doeblin-Harris condition, Theorem 21, the proof of Theorem 1 follows from the same strategy
as the one applied in [4] and introduced in [10]. We provide a full proof for the sake of
completeness and to clarify all the required adaptations. Let us emphasize the fact that
the inclusion of |v| in the quantity 〈x, v〉, required to obtain the Lyapunov inequalities of
Proposition 15, prevents us from using the logarithm to derive the optimal rate of convergence
as was done in [4]. Instead, we can only use polynomial weights depending on some arbitrary
small exponent ε. We write |||T |||A→B for the operator norm of the linear operator T acting
from A to B.

5.1 Contraction property in well-chosen norm

The following lemma introduces new norms based on the weights for which Lyapunov in-
equalities were established in Section 3. We obtain a norm in which the semigroup (St)t≥0

is more than a contraction in the large sense. Recall the de�nition of 〈·, ·〉 from (8).

Lemma 23 (Contraction in well-chosen norm). Fix ε ∈ (0, 1) and, for p ∈ (1 + ε, d + 1],
set mε

p(x, v) = 〈x, v〉p−ε on G. There exists T0 > 0 such that for all T ≥ T0, there exist
β(T ) > 0, α(T ) = C3β(T )T with C3 > 0 constant such that, for all f ∈ L1

mεd+1
(G) with

〈f〉 = 0, we have

‖ST f‖L1 + β‖ST f‖mεd+1
+ α‖ST f‖mεd ≤ ‖f‖L1 + β‖f‖mεd+1

+
α

3
‖f‖mεd , (39)

so that, setting
|||·|||mεd+1

:= ‖ · ‖L1 + β‖ · ‖mεd+1
+ α‖ · ‖mεd ,

there holds |||ST f |||mεd+1
≤ |||f |||mεd+1

. Moreover, there exists M ε
d+1 > 1 such that for all

f ∈ L1
mεd+1

(G) with 〈f〉 = 0,

‖ST f‖mεd+1
≤M ε

d+1‖f‖mεd+1
.

Proof. Step 1. We use Proposition 15 to obtain a new integral inequality. For all T > 0,
according to the lemma, there exists C1, C2, b1, b2 > 0 such that for all f ∈ L1

mεd+1
(G),

‖ST f‖mεd+1
+ C1

∫ T

0

‖Stf‖mεd dt ≤ ‖f‖mεd+1
+ b1(1 + T )‖f‖L1 , (40a)

and ‖ST f‖mεd + C2

∫ T

0

‖Stf‖mεd−1
dt ≤ ‖f‖mεd + b2(1 + T )‖f‖L1 . (40b)

Let t ∈ (0, T ). We deduce �rst from (40b),

‖ST−tStf‖mεd ≤ ‖Stf‖mεd + b2(1 + T − t)‖Stf‖L1 ,

which we rewrite as

‖ST f‖mεd − b2(1 + T − t)‖Stf‖L1 ≤ ‖Stf‖mεd .
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We plug this inside (40a) to obtain:

‖ST f‖mεd+1
+ C1

∫ T

0

(
‖ST f‖mεd − b2(1 + T − t)‖Stf‖L1

)
dt

≤ ‖f‖mεd+1
+ b1(1 + T )‖f‖L1 .

Finally, we can use the L1 contraction from Theorem 11 to get

‖ST f‖mεd+1
+ C1T‖ST f‖mεd ≤ ‖f‖mεd+1

+ b′1(1 + T + T 2)‖f‖L1 , (41)

with b′1 > 0 constant, independent of T .

Step 2. According to Theorem 21, for all ρ > 2, there exists T (ρ) = ξρ for some constant
ξ > 0 and a measure ν on G with ν 6≡ 0 such that

ST (ρ)h ≥ ν
∫
{(x,v)∈G,〈x,v〉≤ρ}

hdvdx,

for all h ∈ L1(G) with h ≥ 0. By assumption, f ∈ L1
mεd+1

(G) and 〈f〉 = 0. We set, for any

ρ > 0, m̄ε
d(ρ) = ρd−ε, and κ(ρ) =

b′1(1+T+T 2)
T (ρ). Since T (ρ) = ξρ for some constant ξ > 0,

κ(ρ) ∼
ρ→∞

Cρ for some C > 0. Since d ∈ {2, 3} and ε ∈ (0, 1), one can �nd ρ0 such that, for

all ρ > ρ0, m̄
ε
d(ρ) ≥ 12κ(ρ)

C1
. We �x ρ > ρ0, T = T (ρ) > T (ρ0) =: T0 for the remaining part

of the proof. Note that, since T (ρ) = ξρ for some constant ξ, any choice of T > T (ρ0) is

possible. We set A :=
m̄εd(ρ)

4 and de�ne, for all β > 0, the β-norm by

‖f‖β := ‖f‖L1 + β‖f‖mεd+1
.

We distinguish two cases. Indeed, we have the alternative:

‖f‖mεd ≤ A‖f‖L1 , (42a)

or ‖f‖mεd > A‖f‖L1 . (42b)

Step 3. We prove a convergence result in the β-norm in the case of the �rst alternative,
(42a). Recall that for all Λ > 0, DΛ = {(x, v) ∈ G, 〈x, v〉 ≤ Λ}. Using 〈f〉 = 0 and Theorem
21, we have, for all (x, v) ∈ G,

ST f±(x, v) ≥ ν(x, v)

∫
G

f±(x′, v′) dv′dx′ − ν(x, v)

∫
Dcρ

f±(x′, v′) dv′dx′

≥ ν(x, v)

2

∫
G

|f(x′, v′)|dv′dx′ − ν(x, v)

∫
Dcρ

|f(x′, v′)|dv′dx′

≥ ν(x, v)

2

∫
G

|f(x′, v′)|dv′dx′ − ν(x, v)

m̄ε
d(ρ)

∫
G

|f(x′, v′)|mε
d(x
′, v′) dv′dx′

≥ ν(x, v)

2

∫
G

|f(x′, v′)|dv′dx′ − ν(x, v)

4

∫
G

|f(x′, v′)|dv′dx′

=
ν(x, v)

4

∫
G

|f(x′, v′)|dv′dx′ =: η(x, v),

where the third inequality is given by the fact that Dρ = {(x, v) ∈ G,mε
d(x, v) ≤ m̄ε

d(ρ)}
and that mε

d(x, v) ≥ 1 for all (x, v) ∈ G. The last inequality is obtained by condition (42a).
The �nal equality stands for a de�nition of η(x, v) for all (x, v) ∈ G. Note that η ≥ 0 on G.
We deduce,

|ST f | = |ST f+ − η − (ST f− − η)|
≤ |ST f+ − η|+ |ST f− − η|
= ST f+ + ST f− − 2η = ST |f | − 2η,

and, integrating over G, we have, using the contraction property, that η = ν
4‖f‖L1 , and that

ν is non-negative with 〈ν〉 ≤ 1,

‖ST f‖L1 ≤ ‖f‖L1 − 2‖η‖L1 =
(

1− 〈ν〉
2

)
‖f‖L1 = η̃‖f‖L1 , (43)
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with η̃ ∈ (0, 1). Hence, ST is a strict contraction in L1 in the case where f satis�es (42a).
We use this result along with (41) and the de�nition of κ(ρ) to derive an inequality on the
β-norm of ST f

‖ST f‖β = ‖ST f‖L1 + β‖ST f‖mεd+1

≤ η̃‖f‖L1 + β
(
− C1T‖ST f‖mεd + ‖f‖mεd+1

+ κ(ρ)T‖f‖L1

)
≤ β‖f‖mεd+1

+ (η̃ + κ(ρ)Tβ)‖f‖L1 − βC1T‖ST f‖mεd .

Finally, we choose 0 < β ≤ 1−η̃
κ(ρ)T and deduce

‖ST f‖β + C1βT‖ST f‖mεd ≤ ‖f‖β . (44)

Step 4. We prove that a slightly di�erent version of (44) also holds in the case (42b).
From (41), using (42b), we have, for T , κ(ρ) �xed as above

‖ST f‖mεd+1
+ C1T‖ST f‖mεd ≤ ‖f‖mεd+1

+
κ(ρ)T

A
‖f‖mεd .

Since A ≥ 3κ(ρ)
C1

, see Step 2, it follows that

‖ST f‖mεd+1
+ C1T‖ST f‖mεd ≤ ‖f‖mεd+1

+
C1T

3
‖f‖mεd .

Using this inequality and the L1 contraction, we deduce

‖ST f‖β + C1βT‖ST f‖mεd = ‖ST f‖L1 + β‖ST f‖mεd+1
+ C1βT‖ST f‖mεd

≤ ‖f‖L1 + β‖f‖mεd+1
+ β

C1T

3
‖f‖mεd

= ‖f‖β + βC1
T

3
‖f‖mεd . (45)

Step 5. For β as above and α = C1βT , we have |||.|||mεd+1
= ‖.‖β + α‖.‖mεd by de�nition.

Gathering (44) and (45), we conclude that (39) holds and we deduce

|||ST f |||mεd+1
≤ |||f |||mεd+1

.

Since mε
d+1 ≥ mε

d ≥ 1 on G, we conclude that for all f ∈ L1
mεd+1

(G) with 〈f〉 = 0,

‖ST f‖mεd+1
≤M ε

d+1‖f‖mεd+1
, (46)

for some constant M ε
d+1 ≥ 1.

To derive interpolation results between spaces of the form {f ∈ L1
w(G), 〈f〉 = 0} with

w ≥ 1 some weight on G, we will rely on [4, Corollary 3], that we recall now.

Corollary 24. Let φ1, φ2, φ̃1, φ̃2 be four measurable functions on G positive almost every-
where. Let also A1 = L1

φ1
(G), A2 = L1

φ2
(G), Ã1 = L1

φ̃1
(G), Ã2 = L1

φ̃2
(G). Let, for all

γ ∈ (0, 1), φγ and φ̃γ be de�ned by

φγ := φγ1φ
1−γ
2 , φ̃γ := φ̃γ1 φ̃

1−γ
2 ,

respectively, and Aγ = L1
φγ

(G), Ãγ = L1
φ̃γ

(G). Assume that there exists a bounded projection

Π : (Ai, Ãi)→ (A′i, Ã
′
i) for i ∈ {1, 2} with A′i ⊂ Ai, Ã′i ⊂ Ãi. Let also A′γ = (A′1 +A′2)∩Aγ ,

Ã′γ = (Ã′1 + Ã′2)∩ Ãγ . Assume that S is a linear operator from A′1 to Ã′1 and from A′2 to Ã′2
with

|||S|||A′1→Ã′1 ≤ N1, |||S|||A′2→Ã′2 ≤ N2,

for N1, N2 > 0. Then S is a linear operator from A′γ to Ã′γ and there exists C > 0 depending
only on Π such that

|||S|||A′γ→Ã′γ ≤ CN
γ
1 N

1−γ
2 .
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5.2 Proof of Theorem 1

In this subsection, we proceed to the proof of Theorem 1.
For ε ∈ (0, 1

2 ) �xed, we consider the weights w1(x, v) = 〈x, v〉1+ε and w0(x, v) = 〈x, v〉ε
for all (x, v) ∈ Ḡ. We want to prove a decay rate for St(f − g) with f, g ∈ L1

mεd+1
, 〈f〉 = 〈g〉.

We assume without loss of generality that g ≡ 0 so that f ∈ L1
mεd+1

(G) with 〈f〉 = 0.

Step 1. Set L1
0(G) = {g ∈ L1(G), 〈g〉 = 0} and L1

w,0(G) = {g ∈ L1
w(G), 〈g〉 = 0} for any

weight w on Ḡ. We introduce the notation

M1(v) :=
exp

(
− |v|

2

2

)
(2π)

d
2

.

Note that
∫
Rd |v|

2M1(v) dv = 1. We consider Π : L1(G) → L1
0(G) the bounded projection

such that, for all h ∈ L1(G), (x, v) ∈ G,

Πh(x, v) = h(x, v)− M1(v)|v|2

|Ω|

∫
G

h(y, w) dydw,

where |Ω| denotes the volume of Ω. By use of hyperspherical coordinates, it is straightforward
to check that Πh ∈ L1

mεd+1
(G) for all h ∈ L1

mεd+1
(G). Also, there exists a constant CΠ > 0

such that ‖Πh‖mεd+1
≤ CΠ‖h‖mεd+1

for all h ∈ L1
mεd+1

(G) and ‖Πh‖L1 ≤ CΠ‖h‖L1 . Since

〈h〉 = 0 implies Πh = h, and 〈Πh〉 = 0 for all h ∈ L1(G), Π is a bounded projection as
claimed. Let T > T0 with T0 given by Lemma 23. From Theorem 11, we have

|||ST |||L1
0(G)→L1

0(G) ≤ 1,

and from Lemma 23,
|||ST |||L1

mε
d+1

,0
(G)→L1

mε
d+1

,0
(G) ≤M

ε
d+1.

We apply Corollary 24 with the projection Π and the values:

1. A1 = Ã1 = L1(G), and, using the de�nition of Π, A′1 = Ã′1 = L1
0(G),

2. A2 = Ã2 = L1
mεd+1

(G), and, using the de�nition of Π, A′2 = Ã′2 = L1
mεd+1,0

(G),

3. γ = 1 − ε
d+1−ε ∈ (0, 1), so that Aγ = Ãγ = L1

w0
(G), and, using the de�nition of Π,

Ã′γ = A′γ = (A′1 +A′2) ∩Aγ = L1
w0,0(G).

We conclude that there exists C0 > 0 such that

‖ST f‖w0 ≤ C0‖f‖w0 .

Since (St)t≥0 is a strongly continuous semigroup of operators on L1
w0

(G), this implies, using
the growth bound of the semigroup, that there exists W0 ≥ 1 such that for all t ∈ (0, T ), for
all f ∈ L1

w0,0(G),

‖ST f‖w0
= ‖ST−tStf‖w0

≤W0‖Stf‖w0
. (47)

Step 2. Using Proposition 15 and (47), for some constants C,W1 > 0, we have

‖ST f‖w1
+

T

W1
‖ST f‖w0

≤ ‖f‖w1
+ C(1 + T )‖f‖L1 ,

which rewrites

‖ST f‖w1
+

T

W1
‖ST f‖w0

≤ ‖f‖w1
+ κ(ρ)T‖f‖L1 ,

with, for all ρ > 0, κ(ρ) = C(1+T (ρ))
T (ρ) , so that κ ≤ C1,1 for some constant C1,1 > 0 independent

of ρ. Set w0(r) = rε for r ≥ 1. Since w0(ρ)
κ(ρ) → ∞ when ρ → ∞, one can replicate the
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arguments of Steps 2 to 4 of the proof of Lemma 23. We obtain, for some T̃0 > T0, for all
T ≥ T̃0,

‖ST f‖β + 3α‖ST f‖w0 ≤ ‖f‖β + α‖f‖w0 , (48)

just as (44) and (45), with β > 0 constant, α = βT
3W1

, and

‖f‖β := ‖f‖L1 + β‖f‖w1 . (49)

Step 3. We have, from our de�nition of w0, w1 and of mε
d+1, for (x, v) ∈ G,

w1(x, v) = 〈x, v〉1+ε

= 〈x, v〉1+ε1{〈x,v〉<λ} + 〈x, v〉1+ε1{〈x,v〉≥λ}

≤ w0(x, v)λ+
〈x, v〉d+1−ε

〈x, v〉d−2ε
1{〈x,v〉≥λ}

≤ w0(x, v)λ+ ηλm
ε
d+1,

for λ > 0 large enough, with ηλ = 1
λd−2ε → 0 as λ → ∞. We deduce, since w1(x, v) ≥ 1 for

all (x, v) ∈ G,

1

λ(1 + β)
‖ST f‖β =

1

λ(1 + β)

(
‖ST f‖L1 + β‖ST f‖w1

)
≤ 1

λ
‖ST f‖w1

(50)

≤ ‖ST f‖w0
+
ηλ
λ
‖ST f‖mεd+1

.

Moreover, consider the norm |||.|||mεd+1
from Lemma 23, and denote β̃, α̃ the two positive

constants used to de�ne this norm. Setting B := α
β̃
, we have

αηλ
λ
‖ST f‖mεd+1

=
α

β̃

ηλ
λ
β̃‖ST f‖mεd+1

≤ Bηλ
λ
|||ST f |||mεd+1

, (51)

with the de�nition given in Lemma 23 for |||·|||mεd+1
. Let γ := α

1+β , Z := 1 + γ
λ , with

λ ≥ λ0 ≥ 1 and λ0 large enough so that Z ≤ 2. We have

Z
(
‖ST f‖β + α‖ST f‖w0

)
≤ ‖ST f‖β +

α

λ(1 + β)
‖ST f‖β + Zα‖ST f‖w0

≤ ‖ST f‖β + α‖ST f‖w0
+
αηλ
λ
‖ST f‖mεd+1

+ Zα‖ST f‖w0

≤ ‖ST f‖β + 3α‖ST f‖w0
+
Bηλ
λ
|||ST f |||mεd+1

≤ ‖f‖β + α‖f‖w0
+
Bηλ
λ
|||ST f |||mεd+1

,

where we used (50), (51) and (48), in that order. We now introduce the norm |||·|||w1
de�ned,

for all h ∈ L1
w1

(G), by
|||h|||w1

:= ‖h‖β + α‖h‖w0
,

so that the previous inequality rewrites

Z|||ST f |||w1
≤ |||f |||w1

+
Bηλ
λ
|||ST f |||mεd+1

. (52)

Step 4. We set u0 = |||f |||w1
, and, for k ≥ 1, uk = |||SkT f |||w1

. Let v0 = |||f |||mεd+1
,

and, for k ≥ 1, vk = |||SkT f |||mεd+1
. According to Lemma 23, vk ≤ v0 for all k ≥ 1. We set

Y = Bηλ
λ . The �nal inequality (52) of Step 3 rewrites

Zu1 ≤ u0 + Y v1.
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We iterate this inequality to obtain

Zkuk ≤ u0 + Y

k∑
i=1

Zi−1vi,

and we conclude that

uk ≤ Z−ku0 + Y
Z

Z − 1
sup
i≥1

vi ≤ Z−ku0 +
Y Z

Z − 1
v0.

From this we deduce, recalling the de�nition of the β-norm (49), that 1 < Z ≤ 2 and that
w1 ≤ mε

d+1,

|||SkT f |||w1
≤ 1

(1 + γ/λ)k
(1 + β + α)‖f‖w1

+ ηλ
2B

γ
|||f |||mεd+1

≤ C1,2

(
exp

(
− kT

λ

γ

2T

)
+ ηλ

)
‖f‖mεd+1

,

with C1,2 > 0 explicit, where we used that |||·|||mεd+1
. ‖ · ‖mεd+1

. We set T1 = kT and choose

λ =
( T1

γ
2T

ln(T d1 )

)
,

with k ≥ k0 ≥ 1, k0 large enough so that λ > λ0 and T1 > exp(1) to obtain

|||ST f |||w1
≤ C1,3(d)

( 1

T d1
+

ln(T1)d−2ε

T d−2ε
1

)
‖f‖mεd+1

≤ C1,3(d)

T d−3ε
1

‖f‖mεd+1

where C1,3(d) > 0 is a constant depending only on d, and where we used that ln(T1)d−2ε ≤ T ε1
for k0 large enough. Upon modifying the value of C1,3(d) so that the previous inequality also
holds for k ∈ {0, . . . , k0 − 1}, we can rewrite this as

|||SkT f |||w1
≤ C1,3(d)Θ(k)‖f‖mεd+1

, (53)

with Θ(k) = 1
(kT )d−3ε for all k ≥ 1.

Step 5. With the norm |||·|||w1
, (48) rewrites

|||ST f |||w1
+ 2α‖ST f‖w0

≤ |||f |||w1
.

By iterating this inequality and summing, we obtain, for l ≥ 1, writing [x] for the �oor of
x ∈ R,

0 ≤ |||SlT f |||w1
+ 2α

l∑
k=[ l2 ]+1

‖SkT f‖w0
≤
∣∣∣∣∣∣∣∣∣S[ l2 ]T f

∣∣∣∣∣∣∣∣∣
w1

. (54)

Note that, for any 1 ≤ k ≤ l,

‖SlT f‖L1 ≤ ‖SkT f‖L1 ≤ ‖SkT f‖w0
.

Hence, using (53) and (54),

min(1, 2α)
(
l − [

l

2
] + 1

)
‖SlT f‖L1 ≤ C1,3(d)Θ

(
[
l

2
]
)
‖f‖mεd+1

,

so that, allowing the value of C1,3(d) to change slightly,

‖SlT f‖L1 ≤ C1,3(d)
1

(lT )d+1−3ε
‖f‖mεd+1

.

We conclude to the desired rate by choosing ε′ = 3ε > 0 and using standard semigroup
properties.

Step 6. Extension to any weight n ∈ (0, d+ 1).
The result is formulated as the following lemma, obtained by interpolation from the result

of Step 5.
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Lemma 25. For all n ∈ (0, d + 1), there exists an explicit constant Cn such that for all
t ≥ 0, for all f, g ∈ L1

mn(G) with 〈f〉 = 〈g〉, there holds

‖St(f − g)‖L1 ≤ Cn
1

(1 + t)n
‖f − g‖mn .

Proof. If n ∈ (d + 1
2 , d + 1), the result is given by Step 5 of the proof. Otherwise, we set

f̃ := f − g so that 〈f̃〉 = 0 and f̃ ∈ L1
mn,0(G). From Theorem 11, we have, for all t ≥ 0,

|||St|||L1
0(G)→L1

0(G) ≤ 1,

and for all ε0 ∈ (0, 1
4 ), n < d+ 1− ε0 and, from Step 5,

|||St|||L1

m
ε0
d+1

,0
(G)→L1

0(G) ≤ C
1

td+1−ε0
= CΘ̃(t),

the last equality standing for a de�nition of Θ̃(t), with C > 0 independent of t. We introduce,
as before, the projection Π : L1(G)→ L1

0(G), given, for h ∈ L1(G), by

Πh(x, v) = h(x, v)− M1(v)|v|2

|Ω|

∫
G

h(y, w) dwdy, (x, v) ∈ G.

We recall that, if h ∈ L1
m
ε0
d+1

(G), Πh ∈ L1
m
ε0
d+1,0

(G) as one can check using hyperspherical

coordinates, and that 〈Πh〉 = 0. Moreover, for any weight 1 ≤ r ≤ mε0
d+1, Π sends L1

r(G) to
L1
r,0(G) and is bounded. We apply Corollary 24 with the projection Π and

1. A1 = Ã1 = Ã2 = L1(G),

2. A2 = L1
m
ε0
d+1

(G),

3. A′1 = Ã′1 = Ã′2 = L1
0(G), A′2 = L1

m
ε0
d+1,0

(G),

4. γ = 1− n
d+1−ε0 so that Aγ = L1

mn(G), Ãγ = L1(G),

5. A′γ = (A′1 +A′2) ∩Aγ = L1
mn,0(G) and Ã′γ = (Ã′1 + Ã′2) ∩ Ãγ = L1

0(G).

We deduce that for some explicit constant Cε0 > 0, for all t > 0,

|||St|||L1
mn,0

(G)→L1
0(G) = Cε0Θ̃(t)

n
d+1−ε0 ≤ Cε0

1

(1 + t)n
.

5.3 Proof of Theorem 2

We use the previous Theorem 1 as well as Lemma 25 to prove Theorem 2.

Proof of Theorem 2. Step 1: Uniqueness. Assume that there exists two functions f∞, g∞
in L1

mεd
(G) with the desired properties. Applying Lemma 25, we have, for some C > 0 and

all t ≥ 0,

‖St(f∞ − g∞)‖L1 ≤ C 1

(t+ 1)d−ε
‖f∞ − g∞‖mεd .

For all t ≥ 0, we have Stf∞ = f∞ and Stg∞ = g∞. Set Θ(t) = C
(1+t)d−ε

. We deduce that,

for all t ≥ 0,
‖f∞ − g∞‖L1 ≤ Θ(t)‖f∞ − g∞‖mεd .

We conclude that f∞ = g∞ a.e. on G since Θ(t)→ 0 as t→∞.

Step 2: Existence. Let g ∈ L1
mεd+1

(G) with g ≥ 0 and 〈g〉 = 1. We apply Lemma 23

and �x T > T0 with T0 given by the lemma. We set, for all k ≥ 1,

gk := STkg, and fk := gk+1 − gk.
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By mass conservation, for all k ≥ 1, 〈gk〉 = 1 so that 〈fk〉 = 0 and fk ∈ L1
mεd+1,0

(G). Applying

(39), for two constants β, α > 0, setting ‖ · ‖β = ‖ · ‖L1 + β‖ · ‖mεd+1
, for all k ≥ 1, we have

‖ST fk‖β + α‖ST fk‖mεd ≤ ‖fk‖β +
α

3
‖fk‖mεd .

We introduce the modi�ed norm |||·|||α̃ de�ned by |||·|||α̃ = ‖·‖β+ α
3 ‖·‖mεd , so that the previous

inequality reads

|||ST fk|||α̃ +
2α

3
‖ST fk‖mεd ≤ |||fk|||α̃. (55)

This implies that, for all k ≥ 1,
|||fk+1|||α̃ ≤ |||fk|||α̃,

hence, (|||fk|||α̃)k≥1 is non-negative, non-increasing, and is therefore a converging sequence.
We �x δ > 0. The previous observation implies that for N ≥ 0 large enough and p > l ≥ N ,

0 ≤ |||fl|||α̃ − |||fp|||α̃ ≤
2α

3
δ.

For such N, l and p, we thus have, using (55)

2α

3

∥∥gp+1 − gl+1

∥∥
mεd

=
2α

3

∥∥∥ p∑
k=l+1

fk

∥∥∥
mεd

≤
p−1∑
k=l

2α

3

∥∥ST fk‖mεd
≤

p−1∑
k=l

(2α

3
‖ST fk‖mεd + |||ST fk|||α̃

)
−
p−1∑
k=l

|||ST fk|||α̃

≤
p−1∑
k=l

|||fk|||α̃ −
p−1∑
k=l

|||ST fk|||α̃

= |||fl|||α̃ − |||fp|||α̃ ≤
2α

3
δ,

by choice of l, p. We deduce that the sequence (gk)k≥1 is a Cauchy sequence in the Banach
space L1

mεd
(G), and thus converges towards a limit f∞ ∈ L1

mεd
(G) with 〈f∞〉 = 〈g〉 by mass

conservation. A similar argument to the one in Step 1 can be used to prove that this limit
is independent of the choice g ∈ L1

mεd+1
(G) with 〈g〉 = 1.

Proof of Corollary 3. The result follows simply by applying Lemma 25 with g = f∞ given
by Theorem 2.

6 Steady state and velocity �ow in a mixed Cercignani-

Lampis model

In this section, we use a simpli�ed, two-dimensional model to provide two new observations
associated with two key questions regarding the free-transport problem with Cercignani-
Lampis boundary condition:

1. the form of the associated steady state,

2. the velocity �ow induced by this steady state.

It is worth drawing a comparison here with the di�use case, that is when r⊥ ≡ 1 and
r‖ ≡ 1. In the latter situation, there exists an explicit form for the steady state, and, quite
surprisingly, it induces no velocity �ow. We refer to Sone [41, Chapter 2] for the derivation of
the explicit form, from which the absence of a velocity �ow follows immediatly. On the other
hand, the numerical study of Kosuge et al. [29] shows that when one considers the general
Cercignani-Lampis boundary condition, there is a non-zero velocity �ow. In this section we
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y

y′

Periodic boundary conditionPeriodic boundary condition

Di�use boundary condition: r⊥ = r‖ = 1

Cercignani-Lampis boundary condition

Figure 1: A view of the toy model. In blue, the trajectory of the point starting at time 0 from

y = (0.2, 0.8) with velocity v = (−0.2,−0.2). In red, the trajectory of the point starting at time

0 from y′ = (0.8, 0.2) with velocity v′ = (−0.2, 0.4). Dotted vectors denote possible outcoming

velocities after the collisions with the boundary.

consider a mixed model, that we describe now. Let Ω = [0, 1]× [0, 1], we consider the kinetic
free-transport equation in Ω:

∂tf(t, x, v) + v · ∇xf(t, x, v) = 0 (t, x, v) ∈ R+ × Ω× R2,

along with a mixed boundary condition, of periodic type in the �rst spatial coordinate, which,
for t ≥ 0, x2 ∈ [0, 1], v2 ∈ R, takes the form

f(t, (0, x2), (v1, v2)) = f(t, (1, x2), (v1, v2)), if v1 < 0,

f(t, (1, x2), (v1, v2)) = f(t, (0, x2), (v1, v2)), if v1 > 0

and of di�use-Cercignani-Lampis type in the second spatial coordinate, by which we mean
a di�use re�ection condition with temperature T1(x) > 0 at x2 = 1: for all t ≥ 0, x1 ∈ [0, 1],
v ∈ R2 with v = (v1, v2) and v2 < 0,

f(t, (x1, 1), v) =
exp

(
− |v|2

2T1(x)

)
T1(x)

√
2πT1(x)

∫
{w∈R2:w2>0}

w2 f(t, (x1, 1), w) dw, (56)

and, at x2 = 0, for x1 ∈ [0, 1], a Cercignani-Lampis boundary condition with temperature
T2(x) > 0 and accommodation parameters (r⊥, r‖) ∈ (0, 1)× (0, 2): for v with v2 > 0,

f(t, x, v) =

∫
{w∈R2:w2<0}

(−w2)R(w → v;x)f(t, x, w) dw

=

∫
{w∈R2:w2<0}

(−w2)
f(t, x, w) exp

(
− |v2|2+(1−r⊥)|w2|2

2T2(x)r⊥

)
T2(x)r⊥

√
2πT2(x)r‖(2− r‖)

× I0
( (1− r⊥)

1
2 v2w2

T2(x)r⊥

)
exp

(
−
|v1 − (1− r‖)w1|2

2T2(x)r‖(2− r‖)

)
dw. (57)

We write K2 for the boundary operator associated to those conditions, and rewrite the
problem in the following form ∂tf(t, x, v) + v · ∇xf(t, x, v) = 0, (t, x, v) ∈ R+ × Ω× R2,

f(t, x, v) = K2f(t, x, v), (t, x, v) ∈ R+ × Σ−,
f(0, x, v) = f0(x, v), (x, v) ∈ G.

(58)

In addition, we make the following hypothesis.
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Hypothesis 1. We set T1 ≡ 1, r⊥ ∈ (0, 1), r‖ ∈ (0, 2) and assume that r‖(2 − r‖) = r⊥.
We also assume that for all x ∈ [0, 1]× {0}, T2(x) < 1.

Hence, we �x the temperature corresponding to the di�use boundary condition and allow
the one associated with the Cercignani-Lampis boundary condition to vary.

As for problem (1), the boundary operator K2 is conservative and stochastic, and thus
problem (58) is governed by a C0-stochastic semigroup (St)t≥0, non-negative, preserving
mass, and such that for all f0 ∈ L1(G), for all t ≥ 0, Stf0 = f(t, ·) is the unique solution in
L∞([0,∞);L1(G)) to (58) taken at time t.

In this context, using the periodicity in the x1 variable, we de�ne the function σ̃ as

σ̃(x, v) =

 inf{t > 0, x2 + tv2 = 0}, if x2 ∈ (0, 1], v2 < 0,
inf{t > 0, x2 + tv2 = 1}, if x2 ∈ [0, 1), v2 > 0,
0 otherwise.

Moreover, we let q̃(x, v) be de�ne for all x ∈ Ω̄, v ∈ R2, by

q̃(x, v) = (x1 + σ̃(x, v)v1 − [x1 + σ̃(x, v)v1], x2 + σ̃(x, v)v2),

where [y] denotes the integer part of y ∈ R, so that q̃(x, v) ∈ [0, 1]2 for all (x, v). In
this section, for the sake of clarity, we sometimes (abusively) write R(u → v;T ) where
T > 0 is the temperature, rather than the corresponding point. Hence, for all x ∈ ∂Ω,
R(u → v;x) = R(u → v;T (x)). Since x ∈ R2 while T (x) > 0, any possible ambiguity can
always be solved by checking the ambiant space for this variable.

In the following theorem, we give an explicit formula for the steady state associated to
the problem (58), and prove that the corresponding velocity �ow is zero.

Theorem 26. Assume Hypothesis 1 holds. Let, for all (x, v) ∈ Ω × R2 with x = (x1, x2),
v = (v1, v2),

f∞((x1, x2),(v1, v2))

= β
{
1{v2<0}

exp
(
− |v|

2

2

)
√

2π
(59)

+ 1{v2>0}

∫
{u∈R2:u2<0}

(−u2)R
(
u→ v;T2(q̃(x,−v))

)exp
(
− |u|

2

2

)
√

2π
du
}

where β > 0 is chosen so that ∫
Ω×R2

f∞(x, v) dxdv = 1.

Then f∞ is a steady state for the problem (58). Moreover, for all x ∈ Ω,∫
R2

vf∞(x, v)dv = 0. (60)

Before getting to the proof, we prove the following lemma, adapted from Chen [13].

Lemma 27. For any a > 0, b > 0 with a < b, w ∈ R,√
b

π

∫
R

exp
(
av2 − b(v − w)2

)
dv =

√
b

b− a
exp

( ab

b− a
w2
)
, (61)

and

2b

∫ ∞
0

v exp
(
av2 − bv2 − bw2

)
I0(2bvw) dv =

b

b− a
exp

( ab

b− a
w2
)
. (62)

Therefore, for all v = (v1, v2) ∈ R2 with v2 > 0, for all T2 ∈ (0, 1) (possibly depending on v),
under Hypothesis 1,

∫
{u∈R2,u2<0}

(−u2)R(u→ v, T2)
exp

(
− |u|

2

2

)
√

2π
du =

exp
(
− |v|2

2(1−r⊥+T2r⊥)

)
(1− r⊥ + T2r⊥)

3
2

√
2π

. (63)

35



Proof. Equation (61) is a straightforward adaptation in dimension one of the computation
done in [13, Lemma 11]. Equation (62) is given in [13, Lemma 12].

We now turn to the proof of (63). We recall from Chen [13] that we have the reciprocity
property: for all a = (a1, a2) ∈ R2 with a2 > 0, b = (b1, b2) ∈ R2 with b2 < 0, for all T > 0,
we have

R(b→ a;T ) = R(−a→ −b;T ) exp
(
− |a|

2

2T
+
|b|2

2T

)
.

Applying this inside the integral, and performing the change of variable u→ −u, we �nd

∫
{u∈R2,u2<0}

(−u2)R(u→ v, T2)
exp

(
− |u|

2

2

)
√

2π
du

=
exp

(
− |v|

2

2T2

)
√

2π

∫
{u∈R2,u2>0}

u2R(−v → u;T2) exp
(
− |u|

2

2
+
|u|2

2T2

)
du.

The integral on the right-hand side writes (recall that r⊥ = r‖(2 − r‖) by hypothesis and
that I0 is even)∫
{u∈R2,u2>0}

u2R(−v → u;T2) exp
(
− |u|

2

2
+
|u|2

2T2

)
du

=
( 1

T2r⊥

∫ ∞
0

u2 exp
(
− u2

2

2
+

u2
2

2T2
− u2

2

2T2r⊥
− v2

2(1− r⊥)

2T2r⊥

)
I0

( (1− r⊥)
1
2u2v2

T2r⊥

)
du2

)
×
( 1√

2πr⊥T2

∫
R

exp
(
− u2

1

2
+

u2
1

2T2
−

(u1 + (1− r‖)v1)2

2T2r⊥

)
du1

)
.

We apply �rst (62) with b = 1
2T2r⊥

, w =
√

1− r⊥v2, a = ( 1
2T2
− 1

2 ) ∈ (0, b) since r⊥ ∈ (0, 1)
and T2 < 1, and we �nd( 1

T2r⊥

∫ ∞
0

u2 exp
(
− u2

2

2
+

u2
2

2T2
− u2

2

2T2r⊥
− v2

2(1− r⊥)

2T2r⊥

)
I0

( (1− r⊥)
1
2u2v2

T2r⊥

)
du2

)
=

1

1− r⊥ + T2r⊥
exp

(
v2

2

( 1

2T2
− 1

2(1− r⊥ + T2r⊥)

))
.

We now apply (61) with b = 1
2T2r⊥

, a = 1
2T2
− 1

2 ∈ (0, b) and w = −(1− r‖)v1:

1√
2πr⊥T2

∫
R

exp
(
− u2

1

2
+

u2
1

2T2
−

(u1 + (1− r‖)v1)2

2T2r⊥

)
du1

=

√
1− r⊥ + T2r⊥

1− r⊥ + T2r⊥
exp

(
v2

1

( 1

2T2
− 1

2(1− r⊥ + T2r⊥)

))
,

where we used that (1− r‖)2 = 1− r‖(2− r‖) = 1− r⊥. The conclusion follows by bringing
together both terms. Note that the derivation can be performed in the same manner if T2

depends on v.

Proof of Theorem 26. Step 1 : steady state of the free-transport equation without

boundary condition.

Note that for all x ∈ Ω, v ∈ R2, for all h > 0 small enough, q̃(x + hv,−v) = q̃(x,−v).
Hence, v · ∇xf∞(x, v) = 0 and since it does not depend on t, this shows that the candidate
is a solution to the free-transport equation without boundary conditions.

We only need to check that the boundary conditions are satis�ed. We clearly have that
the boundary conditions at x1 = 0 and x1 = 1 are satis�ed using the de�nition of f∞ and q̃.
We now turn to the to the boundary conditions at x2 = 0 and x2 = 1.

Step 2: boundary condition at x2 = 1. Let us compute the left-hand side of (56) and
show that f∞ indeed satis�es the boundary condition. The former writes, for v = (v1, v2) in
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R2 with v2 < 0 and for all x = (x1, 1) with x1 ∈ [0, 1],

exp
(
− |v|

2

2

)
√

2π

∫
{w∈R2:w2>0}

w2 f∞(x,w) dw

and we only need to prove that∫
{w∈R2:w2>0}

w2 f∞(x,w) dw = β

to conclude this step. For this, we will use Lemma 27. Indeed

∫
{w∈R2:w2>0}

w2 f∞(x,w) dw

= β

∫
{w∈R2:w2<0}

(−w2)

∫
{u∈R2:u2<0}

(−u2)R(u→ −w;T2(q̃(x,w)))
exp

(
− |u|

2

2

)
√

2π
dudw

where we performed the change of variable w → −w. Applying (63), we �nd

∫
{w∈R2:w2>0}

w2 f∞(x,w) dw = β

∫
{w∈R2:w2<0}

(−w2)
exp

(
− |w|2

2(1−r⊥+T2(q̃(x,w))r⊥

)
(1− r⊥ + T2(q̃(x,w))r⊥)

3
2
√

2π
dw.

We now write w in polar coordinates, with s = |w| and θ the corresponding angle with
the vector e1 = (0, 1), with the condition θ ∈ (−π, 0) to ensure that w2 < 0. Note that
q̃(x,w) = q̃(x, u(θ)), where u(θ) is the unit vector associated to the angle θ, thus this quantity
is independent of s. Recall that the Jacobian of this polar change of coordinates is simply
given by s. Hence the integral rewrites

∫
{w∈R2:w2>0}

w2 f∞(x,w) dw = β

∫ 0

−π

∫ ∞
0

(−s2 sin(θ))
exp

(
− s2

2(1−r⊥+T2(q̃(x,u(θ)))r⊥

)
(1− r⊥ + T2(q̃(x, u(θ))r⊥)

3
2
√

2π
dsdθ.

We now perform the change of variable s→ s√
1−r⊥+T2(q(x,u(θ)))r⊥

(note that the denominator

is independent of s) in the integral on s, to �nd

∫
{w∈R2:w2>0}

w2 f∞(x,w) dw = β

∫ 0

−π

∫ ∞
0

(−s2 sin(θ))
exp

(
− s2

2

)
√

2π
dsdθ

and applying the reverse change of coordinates (s, θ) → w from R+ × (−π, 0) to the set
{w ∈ R2, w2 < 0}, we obtain

∫
{w∈R2:w2>0}

w2 f∞(x,w) dw = β

∫
{w∈R2:w2<0}

(−w2)
exp

(
− |w|

2

2

)
√

2π
dw

= β
(∫ 0

−∞
(−w2) exp

(
− w2

2

2

)
dw2

)(∫
R

exp
(
− w2

1

2

)
√

2π

)
= β.

Step 3: boundary condition at x2 = 0. We have, for all x = (x1, 0) with x1 ∈ [0, 1],
for all v = (v1, v2) ∈ R2 with v2 > 0, computing the right-hand-side of (57),∫

{u∈R2:u2<0}
(−u2)R(u→ v;T2(x))f∞(x, u) du

= β

∫
{u∈R2:u2<0}

(−u2)R(u→ v;T2(x))
exp

(
− |u|

2

2

)
√

2π
du = f∞(x, v),
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using that, since x2 = 0 and v2 > 0, q̃(x,−v) = x and the formula (59).

The next two steps are devoted to the proof of (60).

Step 4: �ow for v1. Let x ∈ Ω. Clearly,∫
{v∈R2:v2<0}

v1f∞(x, v)dv = β

∫
{v∈R2:v2<0}

v1

exp
(
− |v|

2

2

)
√

2π
dv = 0,

by oddity. On the other hand, by applying (63),∫
{v∈R2:v2>0}

v1f∞(x, v)dv

= β

∫
{v∈R2:v2>0}

v1

∫
{u∈R2:u2<0}

(−u2)R
(
u→ v;T2(q̃(x,−v))

)exp
(
− |u|

2

2

)
√

2π
dudv

= β

∫
{v∈R2:v2>0}

v1

exp
(
− |v|2

2(1−r⊥+T2(q̃(x,−v))r⊥)

)
(1− r⊥ + T2(q̃(x,−v))r⊥)

3
2
√

2π
dv

and by applying again the change in polar coordinates and the change of variables from Step
2, we �nd∫
{v∈R2:v2>0}

v1

exp
(
− |v|2

2(1−r⊥+T2(q(x,−v))r⊥)

)
(1− r⊥ + T2(q(x,−v))r⊥)

3
2
√

2π
dv =

∫
{v∈R2,v2>0}

v1

exp
(
− |v|

2

2

)
√

2π
dv = 0

by oddity.

Step 5: �ow for v2. Let again x ∈ Ω. On the one hand,∫
{v∈R2:v2<0}

v2f∞(x, v)dv = β

∫
{v∈R2:v2<0}

v2

exp
(
− |v|

2

2

)
√

2π
dv

= β
(∫

R

exp
(
− v2

1

2

)
√

2π
dv1

)(∫ 0

−∞
v2 exp

(
− |v2|2

2

)
dv2

)
= −β,

by a simple decomposition. On the other hand∫
{v∈R2:v2>0}

v2f∞(x, v)dv

= β

∫
{v∈R2,v2>0}

v2

∫
{u∈R2:u2<0}

(−u2)R
(
u→ v;T2(q̃(x,−v))

)exp
(
− |u|

2

2

)
√

2π
dudv.

The double integral on the right-hand side is exactly the one computed in Step 2 (note that
here, x ∈ Ω rather than x ∈ ∂Ω, but the same computations apply), and is thus worth 1.
Therefore ∫

{v∈R2:v2>0}
v2f∞(x, v)dv = β,

which concludes the proof.

Remark 28. The result of Theorem 26 is not surprising in the case where r⊥ = r‖ = 1 even
at x2 = 0, since this corresponds to the di�use boundary conditions at both boundaries for
v2. Thus, we expect the absence of steady �ow from the result of Sone [41] in this case.

Remark 29. More interestingly, for (r⊥, r‖) 6= (1, 1), Theorem 26 shows that the interac-
tion between a di�use boundary condition and a �real� (i.e. not di�use) Cercignani-Lampis
condition is not enough to generate a velocity �ow. The idea is that the di�use boundary
condition kills all correlations with the past. This can be seen in the second computation
for the �ow for v1: the fact that the last integral in u1 is 0 is the key point. We plan to
investigate this model with two �real� Cercignani-Lampis boundary conditions by means of a
probabilistic approach in the near future.
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