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The particle system: first-order, MF interaction and noise

We consider the following particle system, with particles living in Td:{
Y i,Nt = Y i,N0 +

∫ t
0 b(Y

i,N
s , µNs )ds+Bit, t ≥ 0, 1 ≤ i ≤ N,

µNs := 1
N

∑N
i=1 δY i,Ns

,

where (Y i,N )Ni=1 denotes the set of positions of the particles in the d-dimensional

torus, µNs is the empirical measure at time s, b : Td × P(Td)→ Rd is an
interaction potential and the mean-field scaling is considered.

In this talk: we live on the torus, with a smooth b. Also, (Y i,N0 )1≤i≤N ∼ µ⊗N0 ,
i.e. we have i.i.d. initial distributions.
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Assumptions on b

We place ourselves in the framework of Carrillo-Gvanali-Pavliotis-Schlichting
(2019) by considering an H-stable potential , i.e. we assume

b(x,m) = −κ
∫
Td
∇W (x− y)m(dy), x ∈ Td,m ∈ P(Td)

for κ > 0 (equal to 1 in what follows for simplicity) and W smooth,
coordinate-wise even:

W (x1, · · · ,−xi, . . . , xd) = W (x1, . . . , xi, . . . , xd), (x1, . . . , xd) ∈ Td.

Writing (Ŵn)n∈Zd for the Fourier coefficients of W , we assume that, for any

n ∈ Zd, Ŵn ≥ 0.

This implies in particular that the free energy is convex (André’s and Greg’s talks)
and the Lebesgue measure on Td, LebTd is the unique invariant measure, and is
exponentially stable, in the sense that there exists C, λ > 0 constants s.t. for all
t ≥ 0,

‖m(t, µ)− LebTd‖TV ≤ Ce
−λt,

where (m(t, µ))t≥0 is the flow of marginal law.
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Statistical description and mean-field limit

Consider the regime N � 1. Let FN be the probability density on the N torus
(Td)N and F 1

N be the first marginal

F 1
N (z) =

∫
(Td)N−1

FN (z, z2, . . . , zN )dz2 . . . dzN .

We expect, when N becomes large, and in view of Boltzmann chaos
assumption to be able to neglect the correlations and to obtain, in the limit
N →∞, that F 1

N behaves like the solution of the McKean-Vlasov SDE:

Xt = X0 +

∫ t

0
b
(
Xs,L(Xs)

)
ds+Wt, t ≥ 0

where L(Z) denotes the law of Z and L(X0) = µ0.

This is the key question of propagation of chaos. Question: what are the equations
governing the corrections to the mean-field equation ? Can we justify them ?
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A PDE for the flow of marginal laws

Consider again the McKean-Vlasov SDE

Xt = X0 +

∫ t

0
b
(
Xs,L(Xs)

)
ds+Wt, t ≥ 0

with L(X0) = µ0 for some distribution µ0 on the torus. Starting from µ ∈ P(Td),
the flow of marginal laws (m(t, µ0) := L(Xt))t≥0 satisfies a nonlinear
Fokker-Planck equation:

∂tm(t, µ) =
1

2
4m(t, µ)− div

[
m(t, µ)b(·,m(t, µ))

]
, t ≥ 0,

m(0, µ) = µ,

at least in a distributional sense.
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BBGKY, MV version: a formal expansion

The phase space marginal FN solves a forward Kolmogorov equation, where
x̄ = (x1, . . . , xN ) ∈ (Td)N

∂tF
N (x̄) =

1

2
4FN (x̄) +

N∑
i=1

divxi

(
FN (x̄)

1

N

N∑
j=1

∇W (xj − xi)
)
.

Integrating this equation with respect to x2, . . . , xN , writing FkN for the k-th
marginal, and using the coordinate-wise symmetry we get

∂tF
1
N (x) =

1

2
4F 1

N (x) + divx
(∫

Td
∇W (y − x)F 2

N (x, y)dy
)
.

Propagation of chaos says that in the decomposition
F 2
N (x, y) = F 1

N (x)F 1
N (y) +G2

N (x, y) where G2
N is the two-particles correlation

function, G2
N → 0 as N →∞. This leads to the PDE version of the

McKean-Vlasov equation on Td

∂tf(x) =
1

2
4f(x)− divx

(
b
(
x, f

)
f(x)

)
.
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Beyond mean-fields (Bogolyubov corrections?)
What happens if we know that G2

N is of order O
(

1
N

)
? Coming back to the

equation for F 1
N depending on F 2

N , we get instead

∂tF
1
N (x) =

1

2
4F 1

N (x)− divx
(
b(x, F 1

N )F 1
N (x)

)
+ divx

( 1

N

∫
Td
∇W (x− y)(NG2

N )(x, y)dy
)

and, assuming that G3
N = O

(
1
N2

)
, we have an evolution equation on F 2

N given by

∂tF
2
N (x1, x2) =

1

2
4F 2

N (x1, x2)−
∑

1≤i 6=j≤2

divxi

{
−

1

N
∇W (xi − xj)F 1

N (xi)F
1
N (xj)

+
N − 1

N
b(xi, F

1
N )F 1

N (xi)F
1
N (xj) + 3

N − 1

N
b(xi, F

1
N )F 2

N (xi, xj)

− 3
N − 1

N

∫
Td
∇W (x− xi)F 2

N (xi, x)dxF 1
N (xj)

− 3
N − 1

N

∫
Td
∇W (x− xi)F 2

N (x, xj)dxF
1
N (x1)

}
+O

( 1

N2

)
.

Using that G2
N = F 2

N − (F 1
N )⊗2 we get a closed form for the evolution of F 1

N and
G2
N . The initial data are G2

N,|t=0
= 0, F 1

N|t=0
= µ0.
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Propagation of chaos I: qualitative convergence

In general, we expect that on a finite time interval [0, T ], T > 0, and for any fixed
k ∈ {1, . . . , N},

(Y 1,N , . . . , Y k,N ) =⇒ (X1, . . . , Xk),

where the (Xi)i are i.i.d. copies of solutions to the McKean-Vlasov equation, and
where the convergence holds weakly in C([0, T ], (Td)k). This gives both the
convergence towards the limit equation and the asymptotic independence.

• For b Lipschitz (w.r.t. the topology of Td × P(Td)), this can be proved using
the famous Sznitman’s coupling, see Sznitman (1991), Lacker (2018)...

• Other approaches are based on the tightness of (L(µNt ) ∈ P(P(Td)))0≤t≤T .

One then shows that (L(µNt ))0≤t≤T converges weakly to δL(Xt)0≤t≤T .
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Propagation of chaos II: strong errors

One way to divide the results on the propagation of chaos is to distinguish
between strong and weak errors. By strong errors, I mainly mean convergence
results expressed in some Wasserstein norm.
For instance, from Sznitman, with our choice of b, one can use coupling and then

sup
t≥0

W2

(
L(Y i,Nt ),L(Xt)

)
= O

( 1

N
1
2

)
.

For the toroidal setting, more uniform in times results have (more or less recently)
been derived. See in particular

• Malrieu 2001 (convex setting)

• Durmus-Eberle-Guillin-Zimmer 2020 for the case where the interaction is
small

• Guillin-Le Bris-Monmarché 2021 for more singular interactions (allowing to
treat the Biot-Savart kernel).

Jabin-Wang (2018), gives non-uniform in time estimates when the interaction is
singular but several papers starts from their strategy (Arnaud’s talk).
The strong error can also be quantified through a central limit theorem
(Sznitman, Méléard...).
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Propagation of chaos III: weak errors

Weak errors are about the statistical behavior of the empirical distribution. Here,
the focus is on deriving rates of convergence (in t and N) for

E
[∣∣Φ(µNt )− Φ(L(Xt))

∣∣],
where Φ : P(Td)→ R is a test function. Typically Φ is linear (Bencheikh-Jourdain
2019), polynomial (Mischler-Mouhot 2013, Mischler-Mouhot-Wennberg 2015).

Those approaches give a rate O
(

1
N

)
which are not uniform in time. See also

Chaudru de Raynal-Frikha (2021).

For the torus case, recent results of Delarue-Tse (2021) give, under regularity
assumptions on b and Φ, the existence of a constant C > 0 such that for all
µ0 ∈ P(Td),

sup
t≥0

E
[∣∣Φ(µNt )− Φ(L(Xt))

∣∣] ≤ C

N
.
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Controlling the correlations

As we have seen, we expect the contribution of G2
N to be of order O

(
1
N

)
. Keeping

this contribution would allow to compute the correction to this mean-field limit,

provided that we can also prove that G3
N is of order O

(
1
N2

)
. And so on...

Today’s talk is about proving rigorously, the expected order of many-particles
correlation in our smooth setting, i.e. showing that, in some weak sense and
uniformly in time

Gm+1
N = O

( 1

Nm

)
for all m ≥ 1. Due to the complexity of those computations I will only present the
case m ∈ {1, 2} (but we have a clear road-map on how to go further).
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A brief reminder on cumulants

Our object of focus will be the cumulants (with respect to the different forms of
randomness). Recall that cumulants of (Z1, . . . , Zn) measure, very roughly, the
interactions between the variables. Typically they are useless is the random
variables Z1, . . . , Zn are independent. We write κm for the m-th global cumulant.

Recall in particular that for all X ∈ L4(Ω),

κ2(X) = Var(X), κ3(X) = E
[
(X − E[X])3

]
.

But of course it is not always that easy

κ4(X) = E
[
(X − E[X])4

]
− 3Var(X)2.
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Main result

Our main result is the following:

Theorem (B.-Duerinckx 2022+)
Assume that b is given by a smooth, H-stable potential W , and that ϕ : Td → R is
any smooth function. Set Φ : P(Td)→ R such that

Φ(µ) =

∫
Td
ϕ(x)µ(dx).

Then, for all m ≥ 1, there exists a constant C > 0 such that, for any µ◦ ∈ P(Td),

sup
t≥0

κm+1
[
Φ(µNt )

]
≤

C

Nm
.

Also, we expect an explicit dependency of C in the derivatives of Φ.
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The sources of randomness

We are talking about correlations... but where is the randomness in the system
originating from ? There are two sources, and we will tackle them separately.

â The Brownian motions.

â The initial distributions.

Let us write E for the global randomness, E◦ for the one related to the initial
data, EB for the one related to the Brownian motions. And so on, we write Var,
Var◦, VarB , κ, κ◦, κB ...

Recall that µNt = 1
N

∑N
i=1 δY i,Nt

for all t ≥ 0. Consider a test function

ϕ : Td → R, smooth, and set Φ : P(Td)→ R defined by Φ(µ) =
∫
Td ϕ(x)µ(dx). For

the second cumulant G2
N , our goal is thus to show

Var
[
Φ(µNt )

]
= O

( 1

N

)
,

uniformly in time.
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An illuminating example: the second-order cumulant

Let Φ be as before. We want to show

Var
[
Φ(µNt )

]
= O

( 1

N

)
.

We split on the two sources of noise. I.e., we have

Var
[
Φ(µNt )

]
= Var◦

[
EB [Φ(µNt )]

]
+ E◦

[
VarB(Φ(µNt ))

]
.

We will prove that EB [Φ(µNt )] = Φ(m(t, µN0 )) +O
(

1
N

)
. For the second term, we

will have to show that VarB(Φ(µNt )) = O
(

1
N

)
.

This will be our guiding example throughout the talk.
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Our tools

What we see in particular is that the global cumulant can be split into cumulants
with respect to the initial data of cumulants with respect to the Brownian
motions. This is the case at all orders (law of joint cumulants).

We use:

â Expansions in the Wasserstein space and ergodic estimates to handle the
Brownian cumulants. We were strongly inspired by recent works of
Delarue-Tse (2021), Chassagneux-Szpruch-Tse (2019)...

â Glauber calculus to handle cumulants with respect to the initial distribution.
Those were used by Duerinckx (2021) for the second-order system (with a
velocity) without noise.
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Uniform in time control of the Brownian cumulants

In this part, we focus on the Brownian cumulants κmB (Φ(µNt )). Our goal is to
prove that

Proposition
For all smooth ϕ on Td, for Φ(µ) =

∫
Td ϕ(x)µ(dx), for all m ≥ 1, there holds

κm+1
B (Φ(µNt )) = O

( 1

Nm

)
,

where the estimation is uniform in time.

Coming back to the variance this is of course the key point to prove that

VarB [Φ(µNt )] = O
(

1
N

)
. Note however that this is not enough at all !For instance,

if you consider the 4-th order global cumulant κ4, we have terms of the form

Var◦
[
VarB [Φ(µNt )]

]
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Linear functional derivatives

Let F : P(Td)→ R. We say that F is continuously differentiable if there exists a
continuous function δF

δm
: P(Td)× Td → R such that, for any µ, µ′ ∈ P(Td),

F (µ)− F (µ′) =

∫ 1

0

∫
Td

δF

δm

(
sµ+ (1− s)µ′, y

)
(µ− µ′)(dy)ds.

The definition holds up to some additive constant, so we require∫
Td

δF

δm
(µ, y)µ(dy) = 0.
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Link with the Wasserstein (Otto) derivative

If we equip P(Td) with the Wasserstein distance W1, we have

F (µ)− F (µ′) =

∫
Td

δF

δm
(µ′, y)(µ− µ′)(dy) + o

(
W1(µ, µ′)

)
.

There is a related notion of Wasserstein derivative . In short, for F : P(Td)→ R,
the Wasserstein derivative ∂µF satisfies

∂µF (ν, y) = ∂y
δF

δm
(ν, y).

When there is enough regularity, the derivatives commute. As we shall see, this
notion is best suited for our framework. A clear dictionary between the two is
established in Carmona-Delarue (2018).
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Higher-order derivatives

We can define higher-order linear derivatives: for p ≥ 2, y ∈ (Td)p−1,

δp−1F

δmp−1
(µ, y)−

δp−1F

δmp−1
(µ′, y) =

∫ 1

0

∫
Td

δpF

δmp

(
sµ+ (1− s)µ′, y, y′

)
(µ− µ′)(dy′)ds

again with a condition
∫
Td

δpF
δmp

(µ, y1, . . . , yp)µ(dyp) = 0 for

(y1, . . . , yp−1) ∈ (Td)p−1.

Note that the H-stable framework from above provides the existence and the
regularity of δb

δm
(and much more).
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The master equation

For any Φ : P(Td)→ R, write UΦ(t, µ) = Φ(m(t, µ)) for t ≥ 0, µ ∈ P(Td). Then,
from Buckdahn-Li-Peng-Rainer (2017), we have that UΦ satisfies the master
equation

∂tUΦ(t, µ) =
∫
Td
[∑d

i=1 ∂xi
δUΦ
δm

(t, µ, x)bi(x, µ)

+ 1
2

∑d
i,j=1 ∂

2
xixj

δUΦ
δm

(t, µ, x)
]
µ(dx) t ≥ 0,

UΦ(0, µ) = Φ(µ).

This result allows to expand functions of m(t, µ) along the dynamics. From
Chassagneux-Szpruch-Tse (2019), we have

EB [Φ(µNt )] = UΦ(t, µN0 ) +
1

2N

∫ t

0

∫
Td

EB
[
Tr[∂2

µUΦ(t− s, µNs , v, v)
]
µNs (dv)ds,

where we recall that ∂µUΦ(t− s, µ, y) = ∂y
δU
δm

(t− s, µ, y).
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Pushing the expansion further

Set, for 0 ≤ s ≤ t, µ ∈ P(Td),

Φ(1)
(
(t, s), µ

)
=

∫
Td

Tr
[
∂2
µUΦ

(
t− s, µ, y, y)

]
µ(dy),

and then look at the flow corresponding to Φ(1), i.e. set, for 0 ≤ u ≤ s ≤ t,

U(1)
Φ

(
(t, s, u), µ) = Φ(1)

(
(t, s),m(s− u, µ)

)
.

Then we can use U(1)
Φ to push the expansion further

EB [Φ(µNt )] = UΦ(t, µN0 ) +
1

2N

∫ t

0
U(1)

Φ

(
(t, s, 0), µN0

)
ds

+
1

4N2

∫ t

0

∫ s

0
Tr
[
∂2
µU

(1)
Φ

(
(t, s, u), µNu , y, y

)]
µNu (dy).
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Exploiting the decomposition → ergodic estimates

The key things is that we can now obtain our uniform in time controls through the
linear derivatives appearing in the expansion. In fact, we can first represent those
derivatives through linearized equations and have ergodic Sobolev estimates for
those.

For instance,

∂2
(x1)i(x2)j

δ2UΦ

δm2
(t, µ, x1, x2) = −ϕ

(
d

(1)
j (t, µ, z2)

)
+ ϕ

(
d

(2)
i,j (t, µ, z1, z2)

)
,

where d
(1)
j ∈ ∩T>0L

∞([0, T ], (W 2,∞(Td))′) solves

∂td
(1)
j −

1
2
4d(1)

j + div
(
b(·,m)d

(1)
j

)
+ div

(
m
δb

δm
(·,m, d(1)

j )
)

= 0,

and for ξ ∈W 1,∞(Td), 〈ξ, d(1)
j (0, µ, z)〉 = ∂xj ξ(z). A similar equation is solved by

d(2). Crucially, the form of our interaction allows to show that for any α > 0, for
some constant C1, C2 > 0,

sup
z∈Td

sup
µ∈P(Td)

‖d(1)
i (t, µ, z)‖(W1−α,∞)′ ≤

C1

1 ∧ t
α
2

e−C2t.
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More on ergodic estimates

It seems that we can play a similar game for all the derivatives appearing in the
expansion.
Those ergodic estimates rely very heavily on our hypothesis that the interaction is
obtained through a H-stable potential. In particular, the knowledge of the
spectrum is important.
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Back to the global variance
Using the ergodic estimates and the expansion, one can easily show that

EB [Φ(µNt )] = UΦ(t, µN0 ) +O
( 1

N

)
, (1)

as announced. For the variance, we write

VarB [Φ(µNt )] = EB
[
Φ(µNt )2

]
− EB

[
Φ(µNt )

]2
,

and we look at the expansion in Φ and in Φ2.

First,

EB
[
Φ(µNt )2

]
= UΦ2 (t, µN0 ) +O

( 1

N

)
,

while it follows from (1) that the only first-order term of EB [Φ(µNt )]2 is
UΦ(t, µN0 )2. Moreover,

UΦ2 (t, µN0 ) = Φ2(m(t, µN0 )) = UΦ(t, µN0 )2,

and there are no first-order terms, as expected.

We can play a similar (but really more involved) game for further cumulants.
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Back to the variance

Recall that

Var[Φ(µNt )] = Var◦[EB [Φ(µNt )]] + E◦[VarB(µNt )].

We already know that VarB(µNt ) = O
(

1
N

)
. Moreover, we have

EB
[
Φ(µNt )

]
= UΦ(t, µN0 ) +O

( 1

N

)
.

How can we prove that Var◦
[
EB [Φ(µNt )]

]
= O

(
1
N

)
?
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Glauber derivatives

The idea is to use Glauber calculus as introduced by Duerinckx (2021) for the
study of the second-order system without noise.

Define the Glauber derivative with respect to the k-th initial data Y k0 as

D◦kZ = Z((Y 1,N
0 , . . . , Y N,N0 ))−

∫
Td
Z(Y 1,N

0 , . . . , z, . . . , Y N,N0 )µ0(dz).

Now, let again UΦ(t, µ) = Φ(m(t, µ)). We obtain

D◦kUΦ(t, µN0 ) = UΦ(t, µN0 )−
∫
Td
UΦ

(
t,

1

N

N∑
j=1,j 6=k

δ
Y
j,N
0

+
1

N
δz
)
µ0(dz).

Now, we can use the notion of linear derivatives ! Since
∫
Td µ0(dz) = 1, we get

D◦kUΦ(t, µN0 ) =

∫ 1

0

∫
Td

∫
Td

δUΦ

δm

(
t,

1

N

N∑
j=1,j 6=k

δ
Y
j,N
0

+
s

N
δ
Y
k,N
0

+
1− s
N

δz , y
)

( 1

N
δ
Y
k,N
0
−

1

N
δz
)

(dy)µ0(dz)ds



Introduction Brownian cumulants Glauber calculus 3rd cumulant What’s next

Glauber derivatives

The idea is to use Glauber calculus as introduced by Duerinckx (2021) for the
study of the second-order system without noise.

Define the Glauber derivative with respect to the k-th initial data Y k0 as

D◦kZ = Z((Y 1,N
0 , . . . , Y N,N0 ))−

∫
Td
Z(Y 1,N

0 , . . . , z, . . . , Y N,N0 )µ0(dz).

Now, let again UΦ(t, µ) = Φ(m(t, µ)). We obtain

D◦kUΦ(t, µN0 ) = UΦ(t, µN0 )−
∫
Td
UΦ

(
t,

1

N

N∑
j=1,j 6=k

δ
Y
j,N
0

+
1

N
δz
)
µ0(dz).

Now, we can use the notion of linear derivatives ! Since
∫
Td µ0(dz) = 1, we get

D◦kUΦ(t, µN0 ) =

∫ 1

0

∫
Td

∫
Td

δUΦ

δm

(
t,

1

N

N∑
j=1,j 6=k

δ
Y
j,N
0

+
s

N
δ
Y
k,N
0

+
1− s
N

δz , y
)

( 1

N
δ
Y
k,N
0
−

1

N
δz
)

(dy)µ0(dz)ds



Introduction Brownian cumulants Glauber calculus 3rd cumulant What’s next

Glauber derivatives

The idea is to use Glauber calculus as introduced by Duerinckx (2021) for the
study of the second-order system without noise.

Define the Glauber derivative with respect to the k-th initial data Y k0 as

D◦kZ = Z((Y 1,N
0 , . . . , Y N,N0 ))−

∫
Td
Z(Y 1,N

0 , . . . , z, . . . , Y N,N0 )µ0(dz).

Now, let again UΦ(t, µ) = Φ(m(t, µ)). We obtain

D◦kUΦ(t, µN0 ) = UΦ(t, µN0 )−
∫
Td
UΦ

(
t,

1

N

N∑
j=1,j 6=k

δ
Y
j,N
0

+
1

N
δz
)
µ0(dz).

Now, we can use the notion of linear derivatives ! Since
∫
Td µ0(dz) = 1, we get

D◦kUΦ(t, µN0 ) =

∫ 1

0

∫
Td

∫
Td

δUΦ

δm

(
t,

1

N

N∑
j=1,j 6=k

δ
Y
j,N
0

+
s

N
δ
Y
k,N
0

+
1− s
N

δz , y
)

( 1

N
δ
Y
k,N
0
−

1

N
δz
)

(dy)µ0(dz)ds



Introduction Brownian cumulants Glauber calculus 3rd cumulant What’s next

More on Glauber derivatives

Our ergodic estimates then allows to conclude that

D◦kEB [Φ(µNt )] = O
( 1

N

)
.

To relate this to the variance, we use the Efron-Stein inequality

Var◦[Y ] ≤ E◦
[ N∑
j=1

|D◦j Y |2
]
.

This concludes our proof for the variance. For the higher-order terms, similar
formula always allow to come back to iteration of those Glauber derivatives.
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The third cumulant

Let ϕ smooth on Td, Φ(µ) =
∫
Td ϕ(x)µ(dx). We want to combine all of the

previous arguments to obtain

κ3
[
Φ(µNt )

]
= O

( 1

N2

)
.

Note that, by the law of total cumulants

κ3(X) = κ3
◦

(
EB [X]

)
+ E◦

(
κ3
B(X)

)
+ 3Cov

(
VarB(X),EB(X)

)
.
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The controls we will need

According to this decomposition we will need

1. A control of the third Brownian cumulant κ3
B [Φ(µNt )] = O

(
1
N2

)
.

2. A control of the second Brownian moment with the exact value of the leading

O
(

1
N

)
term.

3. The two leading terms (of order 1 and O
(

1
N

)
) of the Brownian expectation.

We will then apply Glauber calculus for the Brownian variance and the Brownian
expectation.
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Expectation and variance

By pushing to the second-order the expansion of Chassagneux-Tse and using the
ergodic estimates, we immediately get

EB
[
Φ(µNt )

]
= UΦ(t, µN0 ) +

1

2N

∫ t

0
U(1)

Φ ((t, s, 0), µN0 )ds+O
( 1

N2

)
.

For the variance, we compare this with

EB
[
Φ(µNt )2

]
= UΦ(t, µN0 )2 +

1

2N

∫ t

0
U(1)

Φ2 ((t, s, 0), µN0 )ds+O
( 1

N2

)
.

As we have seen, the two terms of order 1 cancel.

For the leading order term, we obtain

VarB

[
Φ(µNt )

]
=

1

2N

∫ t

0
U(1)

Φ2 ((t, s, 0), µN0 )ds−
UΦ(t, µN0 )

N

∫ t

0
U(1)

Φ ((t, s, 0), µN0 )ds

+O
( 1

N2

)
.
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Brownian variance II
Now, since UΦ2 = (UΦ)2, and

∂2
µ(g2)(x, x) = 2g∂2

µg(x, x) + 2(∂µg(x))2

the first term on the rhs splits thanks to the fact that for 0 ≤ u ≤ s ≤ t,
µ ∈ P(Td),

U(1)

Φ2 ((t, s, u), µ) =

∫
Td

Tr
[
∂2
µ

(
UΦ

)2
(t− s,m(s− u, µ), y, y)

]
m(s− u, µ)(dy)

= 2UΦ

(
t− s,m(s− u, µ)

) ∫
Td

Tr
[
∂2
µUΦ

(
t− s,m(s− u, µ), y, y

)]
m(s− u, µ)(dy)

+ 2

∫
Td

∣∣∣∂µUΦ

(
t− s,m(s− u, µ), y

)∣∣∣2m(s− u, µ)(dy).

Note that, by the flow property:

UΦ

(
t− s,m(s, µN0 )

)
= Φ

(
m(t− s,m(s, µN0 ))

)
= Φ(m(t, µN0 )) = UΦ(t, µN0 ),

so that the first term in the previous decomposition (with u = 0, µ = µN0 ) is
exactly the crossed term from EB [Φ(µNt )]2 !
Hence

VarB

[
Φ(µNt )

]
=

1

N

∫ t

0

∣∣∣∂µUΦ

(
t− s,m(s, µN0 ), y

)∣∣∣2m(s, µN0 )(dy).
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Third Brownian cumulant

For the third Brownian cumulant, we also need to expand Φ3.

EB
[
Φ3(µNt )

]
= UΦ(t, µN0 )3 +

1

2N

∫ t

0
U(1)

Φ3

(
(t, s), µN0

)
ds+O

( 1

N2

)
.

Recall that κ3
B(X) = EB [X3]− 3EB [X2]EB [X] + 2EB [X]3. Clearly, comparing

the 1-th order term gives 0.

For the 1
N

-order terms, we get

1

2N

∫ t

0
U(1)

Φ3

(
(t, s), µN0

)
ds−

3

2N
UΦ(t, µN0 )2

∫ t

0
U(1)

Φ

(
(t, s), µN0

)
ds

−
3

2N
UΦ(t, µN0 )

∫ t

0
U(1)

Φ2

(
(t, s), µN0

)
ds+

3

N
UΦ(t, µN0 )2

∫ t

0
U(1)

Φ

(
(t, s), µN0

)
ds.

Moreover,

∂2
µ[f3](x, x)− 3f∂2

µ[f2](x, x) = 6f(∂µf(x))2 + 3f2∂2
µf(x, x)

− 6f2∂2
µf(x, x)− 6f(∂µf(x))2

so that ultimately, those terms cancel.
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Conclusion

Having identified each term, we can now apply the Glauber calculus from the
previous section, and we recover the result thanks to the decomposition due to the
law of joint cumulants.

This gives a clear strategy to treat the cumulants at any order. The structure of
the leading order terms for any κmB is not completely clear at this point, but we
hope to be able to derive something systematic (similarly to the games on
derivatives that we have just played).
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Perspectives

What remains to be done

â Tracking precisely the required regularity of ϕ (and the one of b ? What
happens in a non-smooth case ?)

â Adding a (convex) potential ? Going to the whole space ?

â Going to the second-order system. The transition should be easy except for
the ergodic estimates, where things are not so clear. Very likely we will have
to rely on linear hypocoercivity techniques (luckily I like kinetic theory).

â Applications: What is the correction of the mean-field limit in the
second-order case, when starting with uniform in space initial data ? Is it

really O
(

1
N

)
?

Thank you for your attention !
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