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Markov processes and stability issues

Markov process: a stochastic process (Xt)t≥0 which depends on its past
only through its present.

Some questions for a number of Markov processes are focused on the
stability structure:

1. is there an invariant measure ?

2. do we have a form of convergence towards it ?

3. at which rate does this convergence occur ?



The many dimensions of the problem

I structure of the state space: countable or not,

I structure of the time (Markov chains and Markov processes),

I sub-geometric or geometric nature of the convergence.

Today: non-countable state space, continuous time, geometric and
sub-geometric convergence. We will only focus on the convergence in the
total variation distance: if µ, ν are two measures on E ,

‖µ− ν‖TV = sup
A∈B(E)

|µ(A)− ν(A)|,

but many results are available for norms of the form

‖µ‖f = sup
|g |≤f

|µ(g)|.

For f ≡ 1→ total variation norm.
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Applications in statistics: convergence rate of the MCMC
algorithms

Those norms are especially useful for statisticians. Suppose you want to
compute E[f (Y )] with Y ∼ π and find a process (Xt)t≥0 with X0 = x
such that its law Pt(x , ·) converges to π.

The techniques of today allow you to understand how fast

‖Pt(x , ·)− π‖f = |Ex [f (Xt)]− E[f (Y )]|,

converges towards 0, which may save you a lot of time.

In particular, this allows you to understand the asymptotic behavior of
Langevin tampered distribution (Fort-Roberts 2005, Douc-Fort-Guillin
2009).
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First assumptions

Consider a process (Xt)t≥0 on a locally compact, separable metric space
E , σ-field B(E ). We assume that (Xt)t≥0 is time-homogeneous, strong
Markov, càdlàg, write (Pt)t≥0 its associated semigroup, L the
corresponding generator.

Definition
A non-empty measurable set C is petite if there exist a probability
measure a on B(R+) and a non-trivial σ-finite measure µ on B(E ) such
that

∀x ∈ C ,

∫ ∞
0

Pt(x , ·)a(dt) ≥ µ(·).

For many cases, when (Xt)t≥0 is Feller (i.e.
lim limitst→0+Ex [f (Xt)] = f (x) for all f ∈ C0(E )) all compact sets are
petite. Often, when we try to identify a petite set, we consider a
compact one.



Stability structure assumptions

We will require the following properties

I Harris-recurrence (implies irreducibility): there exists a measure ν on
B(E ) such that ν(A) > 0 implies

Px

[ ∫ ∞
0

1A(Xs)ds =∞
]

= 1, for all x ∈ E .

This implies the existence of an invariant measure π̃.

I Positive Harris-recurrence: there exists an invariant probability
measure π.

I Aperiodicity: there exists a µδm petite set C , t0 > 0 such that for all
x ∈ C , t ≥ t0, P t(x ,C ) > 0.

I The process is non-explosive: let (On)n≥0 be a sequence of
precompact sets with On ↑ E , Tm be the first entrance time into
Oc

m, and let
ζ := lim

m→∞
Tm.

Then Px(ζ =∞) = 1 for all x ∈ E .
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A first tool: delayed stopping times

Define, for all set C , δ > 0,

τC (δ) = inf{t > δ,Xt ∈ C}.

Theorem (Meyn-Tweedie 1993)
Assume (Xt)t≥0 is irreducible, non-explosive and aperiodic. Let C ∈ B(E )
be a petite set, assume Px(τC <∞) ≡ 1, and that for some δ > 0,

sup
x∈C

Ex [τC (δ)] <∞.

Then (Xt)t≥0 is positive Harris recurrent. In fact, we also have ergodicity
(convergence towards the invariant probability measure at infinity).



A second tool: Lyapunov inequalities

Some inequalities for the generator applied to a norm-like function
V : E → R+ with V (x)→∞ as |x | → ∞ (i.e. {x : V (x) ≤ B}) is
precompact for all B > 0) also gives key properties. For instance, if there
exists c , d ≥ 0 constant such that for all x ∈ E ,

LV (x) ≤ cV (x) + d ,

then we have non-explosion.

Proposition (Meyn-Tweedie 1998)
Assume that (Xt)t≥0 is non-explosive, irreducible and aperiodic. Then if
there exists C a petite set and V ≥ 0 a test function with V (x0) <∞ for
some x0 ∈ E, b > 0 constant satisfying, for all x ∈ E,

LV (x) ≤ −1 + b1C (x),

the process is positive Harris-recurrent. This also implies ergodicity.



The geometric case

Theorem (Meyn-Tweedie 1998)
Assume that (Xt)t≥0 is non-explosive, irreducible and aperiodic. The two
following conditions are equivalent:

1. there exists some compact petite set C ∈ B(E ), some δ > 0 and
κ > 1 such that for all x ∈ E,

Ex [κτC (δ)] <∞ and sup
x∈C

Ex [κτC (δ)] <∞;

2. there exists a compact petite set C , constants b <∞, β > 0 and
V ≥ 1 function finite at some x0 ∈ E such that

LV (x) ≤ −βV (x) + b1C (x), x ∈ E .

Both conditions imply that for some ρ < 1, for all x ∈ E with V (x) <∞

lim
t→∞

ρ−t‖Pt(x , ·)− π(·)‖TV = 0.
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Example: the Ornstein-Uhlenbeck process

Let (Xt)t≥0 be solution to the following SDE on R:

dXt =
√

2dBt − Xtdt,

with (Bt)t≥0 the standard Brownian motion. The stochastic generator is
given, for all f ∈ C 2(R), by

Lf = ∂2
xx f − x∂x f .

We can show that this equation has an invariant distribution given by

µ∞(x) = 1√
2π
e−

x2

2 .



Example: the Ornstein-Uhlenbeck process II

Let V : R→ [1,∞) defined by V (x) = ea|x| for some a > 0. Then, for
x > 0,

LV (x) = a2eax − xaeax ≤ (a2 − xa)eax(1x∈(0,2a] + 1x∈(2a,∞))

≤ −a2V (x) + a2e2a2

1{|x|≤2a}.

A similar computation can be done for x ≤ 0. For this process
{x : |x | ≤ 2a} is petite (this is based on the Feller property). This proves
the exponential convergence.



The sub-geometric case
Theorem (Douc-Fort-Guillin, Hairer)
Assume that (Xt)t≥0 is non-explosive, irreducible, aperiodic. Let
φ : [1,∞)→ R∗+ C 1, strictly increasing, strictly concave (+ technical
properties). Define Hφ(u) =

∫ u

1
ds
s for all u ≥ 1, and let

H−1
φ : [0,∞)→ [1,∞) be its inverse function. Consider the two following

conditions:

1. there exists C compact, petite, δ > 0 such that

Ex [H−1
φ (τC (δ))] <∞ for all x ∈ E , sup

x∈C
Ex [H−1

φ (τC (δ))] <∞;

2. there exists a compact petite subset C of E , K > 0 constant and
V : E → [1,∞) continuous with precompact sublevel sets such that
for all x ∈ E,

LV (x) ≤ −φ(V (x)) + K1C (x).

In those two cases, there exists an invariant probability measure π on E
such that for all x ∈ E,

lim
t→∞

φ(H−1
φ (t))‖Pt(x , ·)− π(·)‖TV = 0.



Typical rates that one obtains are of the form

r(t) = tα ln(t)β exp(γtη), with η ∈ (0, 1) and

 γ > 0, α, β ∈ R or,
γ = 0, α > 0, β ∈ R or,
γ = α = 0, β > 0.

Example: if α ∈ (0, 1) and φ(x) = xα, then φ(H−1
φ (x)) ∼ x

α
1−α .

Remark
In constrast with the exponential case, there is no equivalence between
the two conditions in the sub-geometric theorem.
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A typical example for the sub-geometric case: the gradient
dynamic on R

We consider the process (Xt)t≥0 solution to the SDE

dXt = −∂xV (Xt)dt +
√

2dBt ,

where (Bt)t≥0 is a standard Brownian motion, and

V (x) = 2(1 + |x |2)
1
4 , x ∈ R.

The stochastic generator is given by

L = ∂2
xx − ∂xV ∂x ,

and the equilibrium distribution is µ∞(x) ∝ e−V (x).



A typical example for the sub-geometric case: the gradient
dynamic on R II

Let W (x) = eαV (x) with α ∈ (0, 1) constant. We have

LW (x) = αW (x)(1 + x2)−
7
4

(
1− 1

2
x2 + (α− 1)x2(1 + x2)

1
4

)
.

In the bracket → a negative quantity upper bounded by some constant
outside a compact set C := {x : W (x) ≤ W̄ }, W̄ > 0 constant. Hence,
for two constants β,K > 0, we have

LW ≤ −β W

ln(W )7
+ K1C .

Once again, all compact sets are petite, and for φ(x) = x
ln(x)7 , we find a

final rate

r(t) = t−
7
8 ect

1
8

for some constant c > 0.
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The few things I haven’t mentioned

1. To go from Condition 2 in the subgeometric theorem to f -ergodicity
→ Young’s functions and interpolation (you can find this in DFG
2009 or Fort-Roberts 2005).

2. A recent result (B. 2020) provides two new conditions for the
sub-geometric case, one with a randomized hitting time, one with a
Lyapunov inequalities for a function depending also on times, that
are equivalent and lie between conditions 2 and 1 of the previous
theorem.

3. The results presented here are not optimal (compactness
assumptions can be relaxed).
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Thank you

Thank you for your attention !


