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Markov processes and stability issues

Markov process: a stochastic process (X¢)¢>0 which depends on its past
only through its present.

Some questions for a number of Markov processes are focused on the
stability structure:

1. is there an invariant measure 7

2. do we have a form of convergence towards it ?

3. at which rate does this convergence occur ?



The many dimensions of the problem

» structure of the state space: countable or not,
» structure of the time (Markov chains and Markov processes),

» sub-geometric or geometric nature of the convergence.
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Today: non-countable state space, continuous time, geometric and
sub-geometric convergence. We will only focus on the convergence in the
total variation distance: if u, v are two measures on E,

ln—virv = sup |u(A)—v(A),
AEB(E)

but many results are available for norms of the form

lulle = sup |p(g)l-

lg|<f

For f = 1 — total variation norm.



Applications in statistics: convergence rate of the MCMC
algorithms

Those norms are especially useful for statisticians. Suppose you want to
compute E[f(Y)] with Y ~ 7 and find a process (X;):>0 with Xp = x
such that its law P;(x, -) converges to 7.



Applications in statistics: convergence rate of the MCMC
algorithms

Those norms are especially useful for statisticians. Suppose you want to
compute E[f(Y)] with Y ~ 7 and find a process (X;):>0 with Xp = x
such that its law P;(x, -) converges to 7.

The techniques of today allow you to understand how fast
[Pe(x, ) = mllr = [Ex[F(Xe)] = E[F(Y)]],

converges towards 0, which may save you a lot of time.



Applications in statistics: convergence rate of the MCMC
algorithms

Those norms are especially useful for statisticians. Suppose you want to
compute E[f(Y)] with Y ~ 7 and find a process (X;):>0 with Xp = x
such that its law P;(x, -) converges to 7.

The techniques of today allow you to understand how fast
[Pe(x, ) = mllr = [Ex[F(Xe)] = E[F(Y)]],
converges towards 0, which may save you a lot of time.
In particular, this allows you to understand the asymptotic behavior of

Langevin tampered distribution (Fort-Roberts 2005, Douc-Fort-Guillin
2009).



First assumptions

Consider a process (X:)>0 on a locally compact, separable metric space
E, o-field B(E). We assume that (X;);>o is time-homogeneous, strong
Markov, cadlag, write (P;)s>¢ its associated semigroup, L the
corresponding generator.

Definition

A non-empty measurable set C is petite if there exist a probability
measure a on B(Ry) and a non-trivial o-finite measure p on B(E) such
that

wec, | TP, alde) > p().

For many cases, when (X:):>¢ is Feller (i.e.
lim limits;_o+ Ex[f(X;)] = f(x) for all f € Go(E)) all compact sets are
petite. Often, when we try to identify a petite set, we consider a

compact one.
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Stability structure assumptions

We will require the following properties

> Harris-recurrence (implies irreducibility): there exists a measure v on
B(E) such that v(A) > 0 implies

IP’X[/ 14(Xs)ds =oo| =1, forall x € E.
0

This implies the existence of an invariant measure 7.

» Positive Harris-recurrence: there exists an invariant probability
measure .

» Aperiodicity: there exists a ps,, petite set C, ty > 0 such that for all
xe€C, t>ty, P{(x,C)>0.

» The process is non-explosive: let (O,),>0 be a sequence of
precompact sets with O, 1 E, T™ be the first entrance time into
O¢,, and let

¢:= lim T™
m—0o0

Then P, (¢ = o0) =1 for all x € E.



A first tool: delayed stopping times

Define, for all set C, § > 0,
Tc(9) = inf{t > 6, X; € C}.

Theorem (Meyn-Tweedie 1993)

Assume (X;)¢>o is irreducible, non-explosive and aperiodic. Let C € B(E)
be a petite set, assume P,(7¢ < 00) =1, and that for some § > 0,

sup Ex[rc(9)] < oo.
xeC

Then (Xt)e>o is positive Harris recurrent. In fact, we also have ergodicity
(convergence towards the invariant probability measure at infinity).



A second tool: Lyapunov inequalities

Some inequalities for the generator applied to a norm-like function

V:E — Ry with V(x) = 0o as |[x] = oo (i.e. {x:V(x)<B})is
precompact for all B > 0) also gives key properties. For instance, if there
exists ¢, d > 0 constant such that for all x € E,

LV(x) < cV(x)+d,

then we have non-explosion.

Proposition (Meyn-Tweedie 1998)

Assume that (X:)r>0 is non-explosive, irreducible and aperiodic. Then if
there exists C a petite set and V > 0 a test function with V(xo) < oo for
some xg € E, b > 0 constant satisfying, for all x € E,

LV(x) < =1+ blc(x),

the process is positive Harris-recurrent. This also implies ergodicity.



The geometric case

Theorem (Meyn-Tweedie 1998)

Assume that (X¢)t>0 is non-explosive, irreducible and aperiodic. The two
following conditions are equivalent:

1. there exists some compact petite set C € B(E), some § > 0 and
x > 1 such that for all x € E,

Ex[67®] < 00 and sup Ex[x™?] < oo;
xeC
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The geometric case

Theorem (Meyn-Tweedie 1998)

Assume that (X¢)t>0 is non-explosive, irreducible and aperiodic. The two
following conditions are equivalent:

1. there exists some compact petite set C € B(E), some § > 0 and
x > 1 such that for all x € E,

Ex[67®] < 00 and sup Ex[x™?] < oo;
xeC

2. there exists a compact petite set C, constants b < oo, 8 > 0 and
V > 1 function finite at some xg € E such that

LV (x) < —=BV(x)+ blc(x), x € E.
Both conditions imply that for some p < 1, for all x € E with V(x) < o0

lim p~[[Pi(x,) = ()| rv = 0.



Example: the Ornstein-Uhlenbeck process

Let (X;)t>0 be solution to the following SDE on R:
dX; = V2dB; — X.dt,

with (Bt)¢>0 the standard Brownian motion. The stochastic generator is
given, for all f € C?(R), by

Lf = 02 f — xOxf.

We can show that this equation has an invariant distribution given by

_2
2.

Moo (X) = \/%e



Example: the Ornstein-Uhlenbeck process Il

Let V : R — [1,00) defined by V(x) = el for some a > 0. Then, for
x>0,
LV(x) = a®e™ — xae™ < (a* — xa)e®™ (Lie(0,25) + xe(2a,00))
< —a?V(x) + aze2321{|x‘§23}.
A similar computation can be done for x < 0. For this process

{x : |x| < 2a} is petite (this is based on the Feller property). This proves
the exponential convergence.



The sub-geometric case
Theorem (Douc-Fort-Guillin, Hairer)

Assume that (X:)¢>o is non-explosive, irreducible, aperiodic. Let
¢:[1,00) > R} C, strict/y increasing, strictly concave (+ technical

properties). Def/ne Hg(u fl (f for all u> 1, and let
Hy 1:10,00) = [1,0) be its inverse function. Consider the two following
condltlons

1. there exists C compact, petite, § > 0 such that

E.[H, *(7c(6))] < oo for all x € E, SlGJEEX[H Y(7¢(8))] < oo;

2. there exists a compact petite subset C of E, K > 0 constant and
V : E — [1,00) continuous with precompact sublevel sets such that
for all x € E,

LV(x) < ~6(V(x) + K1c(x).

In those two cases, there exists an invariant probability measure m on E
such that for all x € E,

lim ¢(Hy  (O)[Pe(x,) = 7()l7v = 0.

t—o0



Typical rates that one obtains are of the form

v>0,a,8 €Ror,
r(t) = t*In(t)” exp(yt"), with n € (0,1) and ¢ v=0,a>0,8€Ror,
y=a=0,5>0.
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Typical rates that one obtains are of the form

v>0,a,8 €Ror,
r(t) = t*In(t)” exp(yt"), with n € (0,1) and ¢ v=0,a>0,8€Ror,
y=a=0,5>0.

Example: if « € (0,1) and ¢(x) = x*, then d)(H;l(x)) ~XxToa
Remark

In constrast with the exponential case, there is no equivalence between
the two conditions in the sub-geometric theorem.



A typical example for the sub-geometric case: the gradient
dynamic on R

We consider the process (X;):>o solution to the SDE
dX; = —0, V(X )dt + V2dB,
where (B;)¢>0 is a standard Brownian motion, and
V(x)=2(1+[x?)*,  xeR
The stochastic generator is given by
L=0% —0,Vo,

and the equilibrium distribution is uo(x) oc e~V (%),



A typical example for the sub-geometric case: the gradient
dynamic on R Il

Let W(x) = e*V(™) with a € (0,1) constant. We have

LW(x) = aW(x)(1+x%) "% (1 - %XZ + (o = 1)X3(1 + x3)%).

In the bracket — a negative quantity upper bounded by some constant

outside a compact set C := {x: W(x) < W}, W > 0 constant. Hence,
for two constants 3, K > 0, we have
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dynamic on R Il

Let W(x) = e*V(™) with a € (0,1) constant. We have

LW(x) = aW(x)(1+x%) "% (1 - %XZ + (o = 1)X3(1 + x3)%).

In the bracket — a negative quantity upper bounded by some constant

outside a compact set C := {x : W(x) < W}, W > 0 constant. Hence
for two constants 3, K > 0, we have

w
LW < —ﬁm + Klc.

Once again, all compact sets are petite, and for ¢(x) = g7 we find a
final rate

ool

7
r(t) =t se
for some constant ¢ > 0.



The few things | haven't mentioned

1. To go from Condition 2 in the subgeometric theorem to f-ergodicity
— Young's functions and interpolation (you can find this in DFG
2009 or Fort-Roberts 2005).



The few things | haven't mentioned

1. To go from Condition 2 in the subgeometric theorem to f-ergodicity
— Young's functions and interpolation (you can find this in DFG
2009 or Fort-Roberts 2005).

2. A recent result (B. 2020) provides two new conditions for the
sub-geometric case, one with a randomized hitting time, one with a
Lyapunov inequalities for a function depending also on times, that
are equivalent and lie between conditions 2 and 1 of the previous
theorem.
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1. To go from Condition 2 in the subgeometric theorem to f-ergodicity
— Young's functions and interpolation (you can find this in DFG
2009 or Fort-Roberts 2005).

2. A recent result (B. 2020) provides two new conditions for the
sub-geometric case, one with a randomized hitting time, one with a
Lyapunov inequalities for a function depending also on times, that
are equivalent and lie between conditions 2 and 1 of the previous
theorem.

3. The results presented here are not optimal (compactness
assumptions can be relaxed).



Thank you

Thank you for your attention !



