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Motivations

Consider a process satisfying the strong Markov property (Xt)t∈T
with T = N (Markov chain) or T = R+ (Markov process)

Assume (Xt)t∈T takes value in a complete metric space E ,
endowed with a σ-algebra E .

Denote µ0 for the distribution of X0, and assume that L(Xt)→ π,
π invariant distribution.

Question for today: how can we compute the rate of this
convergence ?



Motivations

Consider a process satisfying the strong Markov property (Xt)t∈T
with T = N (Markov chain) or T = R+ (Markov process)

Assume (Xt)t∈T takes value in a complete metric space E ,
endowed with a σ-algebra E .

Denote µ0 for the distribution of X0, and assume that L(Xt)→ π,
π invariant distribution.

Question for today: how can we compute the rate of this
convergence ?



Motivations II

Typical example: you buy a new deck of cards, hence cards are
ordered. How long do you need to shuffle them before the
distribution is really uniform ?

This question is strongly related to the study of cutoff
phenomenon for Markov chains (Diaconis, Shahshahani, Aldous)

For the general question, lots of techniques for Markov chains:
Geometric methods (Dirichlet energy), spectral methods,
Meyn-Tweedie theory, Wilson’s notions of mixing...

Today: focus on one method which translates in continuous time,
the coupling method.
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Total variation distance

Consider S the state space, countable for simplicity (but this is
absolutely not a restriction). Let M(S) the set of probability
measures on S .

Definition
Let µ, ν ∈M(S). We define the total variation distance as

‖µ− ν‖TV = sup
A⊂S
|µ(A)− ν(A)|.

Idea: you try to approximate µ with ν, and you evaluate your
approximation with the worst possible case.



Coupling: basic definition

Definition
Given µ, ν ∈M(S), a coupling of µ and ν is a couple (X ,Y ) of
random variables such that X ∼ µ, Y ∼ ν.

Example (Dummy examples)

I If X ∼ µ, Y ∼ ν with X independent from Y , (X ,Y ) is a
coupling of µ and ν.

I If µ = ν, letting X ∼ µ and taking Y = X gives a coupling.



Coupling: A more interesting example

Example

Consider a sequence (Bi )i≥1 of independent events with
P(Bi ) ≥ c > 0 for all i . Set N = inf{i ≥ 1,Bi is realized}. Then,
coupling gives us a way of saying that there exists G ∼ G(c) such
that “N ≤ G”.

Indeed, consider a sequence (Ui )i≥1 of i.i.d. uniform random
variables on [0, 1] and set

αi = 1{Ui≤P(Bi )}, βi = 1{Ui≤c}.

Clearly N
L
= inf{i ≥ 1, αi = 1} and setting G = inf{i ≥ 1, βi = 1},

G ∼ G(c). Moreover, αi ≥ βi for all i so “N ≤ G”.



Coupling and total variation distance

We have the following

Theorem (Relation between coupling and total variation)

Let µ, ν ∈M(S). For all coupling (X ,Y ) of µ and ν,

‖µ− ν‖TV ≤ P(X 6= Y ).

Moreover, there exists a coupling (X∗,Y∗) such that we have
equality.



An application: Random-to-top shuffling

Assume we have a deck of cards of size n. We label the cards from
1 to n. Hence the state space is

Sn = {permutations of {1, . . . , n}}.

We perform a random-to-top shuffling, i.e. at each step we pick a
card in the deck at random and put it on top.

By symmetry, assume that X0 = Id . Take another chain (Yn)n≥0

such that Y0 ∼ U(Sn) = π. Since π is invariant, Yn ∼ π for all
n ≥ 0.



Random-to-top shuffling II

At each step, pick i ∈ {1, . . . , n} at random, find the card i and
put in on top in both decks .

This is indeed a random-to-top dynamic. Advantage: when card
number i is picked, it remains in the same position in both decks
for ever .

To have Xn = Yn, we thus just need to have selected all cards at
time n. This is the “coupon-collector” problem: the time to collect
all elements of a collection of size n when picking uniformly
converges in probability towards n ln(n). Set

τn = inf{t > 0, all cards have been selected }.



Random-to-top shuffling III

We conclude that if t = (1 + ε)n ln(n) for some ε > 0, writing µk
the distribution of Xk ,

‖µt − π‖TV ≤ P(Xt 6= Yt) ≤ P(τn > t)→ 0,

as n→∞.

Key ideas to keep in mind: to analyse the convergence towards
equilibrium,

I We considered two instances of the process, one of which was
distributed according to π.

I We have exhibited a realisation of the dynamic leading to
equality (here, selecting all cards).

I We have estimated the time necessary for this realisation to
occur.
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Application to collisionless kinetic theory

Consider a gas enclosed in a vessel (bounded domain) D ⊂ Rn

with n ∈ 2, 3. We study the phase space, hence the density of the
gas depends on t ≥ 0, x ∈ D, v ∈ Rn.

We focus on Knudsen (rarefied) gas: no collisions between
particles. Particle in position (x , v) in the phase space just evolves
along v until it collides with the boundary.

The randomness comes from the boundary, where particles are
reflected stochastically (diffuse reflection).



Free-transport equation with boundary condition

The corresponding PDE is given, for f0 ∈ L1(D × Rn), with nx the
unit inward normal vector at x ∈ ∂D,

∂t f (t, x , v) + v · ∇x f (t, x , v) = 0, (t, x , v) ∈ (0,∞)× D × Rn,
f (0, x , v) = f0(x , v), x ∈ D, v ∈ Rn,
f (t, x , v) = cM(v)Kf (t, x), t > 0, x ∈ ∂D, v · nx > 0,

where c is a renormalization constant and the flux Kf (t, x) at the
point x ∈ ∂D at time t is given by

Kf (t, x) =

∫
v ′·nx<0

f (t, x , v ′)|v ′ · nx |dv ′.

Typically M(v) = exp(−|v |2) 1
(2π)n/2 . In all cases, M has radial

symmetry.



Main result
We write L1(D × Rn) for L1(D × Rn, Leb). We know that there
exists f∞ ∝ M(v).

Theorem (B., Fournier)

Let f0 ∈ L1(D × Rn), writing ft for the unique solution of the
problem at time t ≥ 0, if r : R+ → R+ is increasing with
r(x + y) ≤ C1(r(x) + r(y)) for some C1 > 0 and such that∫

D×Rn

r
( 1

|v |

)
f0(x , v)dvdx +

∫
D×Rn

r
( 1

|v |

)
M(v)dvdx <∞,

then for all t ≥ 0, for some constant C > 0,

‖ft − f∞‖L1 ≤
C

r(t)
.

Remark
The solution is a solution in the weak sense of measures.
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Proof strategy

One can show that if f0 ∈ L1(D × Rn), for all t > 0,
ft ∈ L1(D × Rn). Then the L1 distance and the total variation
distance are equivalent

‖ft − f∞‖L1 ∝ ‖ft − f∞‖TV ,

where we recall that, for µ, ν two probability measures from (E , E)
to (F ,F), by the previous theorem,

‖µ− ν‖TV = inf
X∼µ,Y∼ν

P(X 6= Y ).



Proof strategy II

Idea: Construct (Xt ,Vt , X̃t , Ṽt)t≥0 such that for all t ≥ 0,
(Xt ,Vt) ∼ ft and (X̃t , Ṽt) ∼ f∞. Then set

τ = inf{t > 0 : (Xt+s ,Vt+s)s≥0 = (X̃t+s , Ṽt+s)s≥0}.

Using Markov’s inequality we then get

‖ft − f∞‖L1 . P
(

(Xt ,Vt) 6= (X̃t , Ṽt)
)
. P(τ > t) .

E[r(τ)]

r(t)
.
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Stochastic formulation
To build (Xt ,Vt)t≥0, we introduce two functions:

ζ(x , v) =

{
inf{t > 0, x + tv ∈ ∂D}, x ∈ D or x ∈ ∂D, v · nx > 0,
0 x ∈ ∂D, v · nx ≤ 0,

q(x , v) = x + ζ(x , v)v .

I Pick (X0,V0) ∼ f0, set T0 = 0, T1 = T0 + ζ(X0,V0).

I For t ∈ (T0,T1), set Xt = X0 + tV0, Vt = V0.

I Set XT1 = q(X0,V0), VT1 = R1ϑ(XT1 ,Θ1). Set
T2 = T1 + ζ(XT1 ,VT1).

I . . .

R1 random variable in R+ (new norm), Θ1 random variable in
(−π

2 ,
π
2 )× [0, π]n−2 such that, for x ∈ ∂D,

R1ϑ(x ,Θ1) ∼ M(v)|v · nx |1{v ·nx>0}.
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A key remark

1. If V ∼ M(v),

2. or if V ∼
∫
D f0(x , v)dx ,

3. or if V ∼ M(v)|v · nx |1{v ·nx>0} for some x ∈ ∂D,

with the hypothesis of Theorem 1,

E
[
r
(d(D)

‖V ‖

)]
<∞,

where d(D) denotes the diameter of D.



Coupling from the stochastic formulation

With the previous construction, we get two i.i.d. sequences (Ri )i≥1

and (Θi )i≥1. At all time t > 0, the couple (Xt ,Vt) has law ft .

The same construction with f∞ instead of f0 gives a process
(X̃t , Ṽt)t≥0 such that, at all t > 0, (X̃t , Ṽt) ∼ f∞. We also have
two i.i.d. sequences (R̃i )i≥1, (Θ̃i )i≥1.

We want to correlate the sequences (Ri )i≥1, (R̃i )i≥1, (Θi )i≥1 and
(Θ̃i )i≥1 to obtain that E[r(τ)] <∞.
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Coupling from the stochastic formulation
We assume D to be strictly convex. We claim that τ ≤ TN with
N ∼ G(c) for some c > 0. Indeed, at some time Ti , i ≥ 1, we
have two possible situations:

if ‖ṼTi
‖ < 1, we choose the corresponding R, R̃, Θ, Θ̃

independently until the data are independent of those at time Ti .
Then we test again.

if ‖ṼTi
‖ > 1 (which happens after a geometric number of

iterations of the previous step), we can couple (Ri ,Θi ) with
(R̃i , Θ̃i ) such that, for some c1 > 0,

P
(

(XTi+1
,VTi+1

) = (X̃Ti+1
, ṼTi+1

)
)
≥ c1.

We do so using the maximal coupling from Theorem 1: if
Z ∼ µ, Z̃ ∼ ν, we can correlate Z and Z̃ such that

P(Z = Z̃ ) =

∫
µ ∧ ν.



Coupling from the stochastic formulation
We assume D to be strictly convex. We claim that τ ≤ TN with
N ∼ G(c) for some c > 0. Indeed, at some time Ti , i ≥ 1, we
have two possible situations:

if ‖ṼTi
‖ < 1, we choose the corresponding R, R̃, Θ, Θ̃

independently until the data are independent of those at time Ti .
Then we test again.

if ‖ṼTi
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Coupling from the stochastic formulation II

The second step is “successful” after a geometric number of
iterations, and we come back to the second step after a geometric
number of iterations of the first step (remember the example
above !).

A geometric sum of geometric random variables is geometric. The
claim follows.



Conclusion

Once the claim is established we use the previous remark. Upon
modifying slightly the rate r , we might use Hölder’s inequality: for
some ε > 0,

E[r(TN)] .
∞∑
i=1

i−1∑
j=1

E[r(Tj+1 − Tj)1{N=i}]

.
∞∑
i=1

i−1∑
j=1

E
[
r
( d(D)

‖VTj
‖

)1+ε] 1
1+εP(N = i)

ε
1+ε

.
∞∑
i=1

i(1− c)
iε

1+ε <∞.

For the physically relevant case M(v) = e−‖v‖
2

(2π)n/2 , we find the

optimal rate 1
tn− .



Extensions

To treat the case where D is not strictly convex, we use a result
from Evans (2001): for every C 1 domain there exists N ∈ N∗ so
that two points at the boundary can be joined in at most N
collisions with the boundary.

One possible extension is to add specular (deterministic) reflection
at the boundary for a fraction of the particles. This changes the
construction of the stochastic process, but the proof strategy
remains the same.



Thank you

Thank you for your attention !
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