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Kinetic theory I

Consider a volume full of a gas made of molecules. Microscopically, the
dynamics of each gas particle is well-described by Newton's laws. If we
only had two molecules and an ideal wall, the problem would be quite
easy to study.

One possible model: a system of hard-spheres with no outside force and a
simple boundary condition.
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Kinetic theory II
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Limits of the microscopic view

If we want to study a realistic system of this kind, the problem becomes
very complicated.

1. With 23 particles, the situation is basically intractable. In real life,
we rather have 1023 particles...

2. Studying microscopically the system makes it di�cult to understand
the behavior of macroscopic quantities, e.g. the temperature.

In kinetic theory, we adopt a statistical view of the system. The idea is to
analyze the behavior of a �typical� particle, rather than trying to follow
all of them. This is also the good point of view for the study of the
convergence towards some equilibrium.
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A basic example: free molecular �ow

Consider the case where the density of particles is very low (Knudsen
gas). In this case, we can neglect the inter-particles interactions.

The corresponding PDE for the probability density function f (t, x , v) of
�nding a particle in position x ∈ Ω, at time t ≥ 0, with velocity v ∈ Rd is

∂t f (t, x , v) + v · ∇x f (t, x , v) = 0, (t, x , v) ∈ R+ × Ω× Rd .

This is the (kinetic) free-transport equation inside the bounded domain
Ω ⊂ Rd . It must be completed with

• an initial condition f0(·, ·) on Ω× Rd ;

• some conditions at the boundary ∂Ω of the spatial domain.
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A view of the free-molecular �ow
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Boundary conditions
This is a key question! A �rst possible choice is the specular re�ection
(billiard).

Specular re�ection

Let x ∈ ∂Ω the boundary of Ω, nx the unit outward normal vector
at x , v ∈ Rd such that v · nx > 0, then

ηx(v) = v − 2(v · nx)nx ,

is the outcoming velocity of the particle (i.e. after the re�ection).

−nx

x
•

v ηx(v)
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Limits of this boundary condition

This model is too simple. In particular, some physical facts are not
correctly rendered by this boundary condition.

For instance, with such condition, the gas exerts no stress on the
boundary in the tangential directions. In practice, a surface tension is
observed.
To understand why this model is not accurate, one needs to remember
that the wall is itself made of molecules ! And possibly, of several layers
of spaced ones...
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Di�use re�ection

One answer, given by Maxwell himself, is to replace (at least a part of)
the specular re�ection by the di�use re�ection.

Di�use re�ection

Let Σ := ∂Ω × Rd . At the boundary, the density f satis�es, for
(t, x , v) ∈ R+ × Σ, with v · nx < 0,

f (t, x , v) = cM(v)γ̃+f (t, x),

where c is a normalizing constant and γ̃+f is the �ux, given by

γ̃+f (t, x) =

∫
{v ′·nx>0}

f (t, x , v ′)|v ′ · nx |dv ′.
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The kernel M
The most interesting case is the wall Maxwellian:

M(v) =
e−
|v|2
2

(2π)
d
2

.

Extensions/other choices are possible:

1. a dependency of the temperature in x . Then

c(x)M(x , v) = c(x)e−
|v|2
2θ(x) with θ(x) the temperature at x ∈ ∂Ω,

c(x) a normalizing constant.
2. Stochastic billards: M conserves energy, but no radial symmetry.

Hereafter we assume radial symmetry and continuity around 0.

−nx

x
•

v

11 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

The Maxwell boundary condition
Combining both conditions gives a more accurate description.

Maxwell boundary condition

For (t, x , v) ∈ R+ × Σ with v · nx < 0,

f (t, x , v) = (1− α(x))f (t, x , ηx(v)) + α(x)cM(v)γ̃+f (t, x),

with α(x) the accommodation coe�cient at x ∈ ∂Ω.

−nx

x
•

v

ηx(v)
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Long-Time Behavior of Kinetic Equations with Boundary
E�ects

Kinetic Theory

Probabilistic approach for the asymptotic behavior of the FTE
Context
Application of the coupling method [Chapter 2]
Numerical study through the simulation of a particle system [Chapter 3]

Analytic method, Harris' theorems

Linearized equations from collisional kinetic theory

Outlook
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Model and hypotheses

We consider the free-transport equation with Maxwell boundary
condition, constant temperature, d ≥ 2. We assume that Ω has volume 1
in what follows. We set G := Ω× Rd and let f0 ∈ L1(G ).

It is known (Arkeryd-Cercignani) that the equation admits a unique
solution f such that f (t, ·, ·) ∈ L1(G ) for all t ≥ 0. Alternatively we may
work with measures, but there is then no uniqueness. We want to
understand the behavior, when t →∞, of this solution.

A �rst key hypothesis: for all x ∈ ∂Ω, α(x) ≥ α0 for some α0 > 0. If
α ≡ 0, no equilibrium.
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The purely specular case
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Qualitative convergence towards equilibrium

The system has a natural entropy: setting W (t) =
∫
G
f ln( f

M ) dvdx ≥ 0,

d

dt
W (t) ≤ 0.

This is a form of H-Theorem for the free-transport.

Also, if f (t, x , v) = M(v) for all (t, x , v) ∈ R+ × G , W (t) = 0 for all
t ≥ 0.
One can in fact show (Arkeryd-Nouri) that, starting with f0 having mass
1, regular enough, f converges towards

f∞(x , v) = M(v).

Key question: what is the rate at which this convergence occurs in the L1

norm? Slow velocities persist a long time → no exponential convergence.
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Known results for this problem (wall Maxwellian)

Results in L1 norm, in a radially symmetric domain Ω = Sd−1:

1. Tsuji-Aoki-Golse (2010): rate of convergence towards equilibrium of
1

td
obtained numerically from the entropy.

2. Aoki-Golse (2011): upper bound in 1

t for all d .

3. Kuo-Liu-Tsai and Kuo (2013-2014-2015): rate of 1

td
.

Di�erent methods are used, but all of them use heavily this symmetry.
Recently, Lods and Mokhtar-Kharroubi (2020) obtained a rate of 1

t
d
2

without symmetry assumption.

17 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

Known results for this problem (wall Maxwellian)

Results in L1 norm, in a radially symmetric domain Ω = Sd−1:
1. Tsuji-Aoki-Golse (2010): rate of convergence towards equilibrium of

1

td
obtained numerically from the entropy.

2. Aoki-Golse (2011): upper bound in 1

t for all d .

3. Kuo-Liu-Tsai and Kuo (2013-2014-2015): rate of 1

td
.

Di�erent methods are used, but all of them use heavily this symmetry.
Recently, Lods and Mokhtar-Kharroubi (2020) obtained a rate of 1

t
d
2

without symmetry assumption.

17 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

Known results for this problem (wall Maxwellian)

Results in L1 norm, in a radially symmetric domain Ω = Sd−1:
1. Tsuji-Aoki-Golse (2010): rate of convergence towards equilibrium of

1

td
obtained numerically from the entropy.

2. Aoki-Golse (2011): upper bound in 1

t for all d .

3. Kuo-Liu-Tsai and Kuo (2013-2014-2015): rate of 1

td
.

Di�erent methods are used, but all of them use heavily this symmetry.
Recently, Lods and Mokhtar-Kharroubi (2020) obtained a rate of 1

t
d
2

without symmetry assumption.

17 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

Known results for this problem (wall Maxwellian)

Results in L1 norm, in a radially symmetric domain Ω = Sd−1:
1. Tsuji-Aoki-Golse (2010): rate of convergence towards equilibrium of

1

td
obtained numerically from the entropy.

2. Aoki-Golse (2011): upper bound in 1

t for all d .

3. Kuo-Liu-Tsai and Kuo (2013-2014-2015): rate of 1

td
.

Di�erent methods are used, but all of them use heavily this symmetry.
Recently, Lods and Mokhtar-Kharroubi (2020) obtained a rate of 1

t
d
2

without symmetry assumption.

17 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

Known results for this problem (wall Maxwellian)

Results in L1 norm, in a radially symmetric domain Ω = Sd−1:
1. Tsuji-Aoki-Golse (2010): rate of convergence towards equilibrium of

1

td
obtained numerically from the entropy.

2. Aoki-Golse (2011): upper bound in 1

t for all d .

3. Kuo-Liu-Tsai and Kuo (2013-2014-2015): rate of 1

td
.

Di�erent methods are used, but all of them use heavily this symmetry.

Recently, Lods and Mokhtar-Kharroubi (2020) obtained a rate of 1

t
d
2

without symmetry assumption.

17 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

Known results for this problem (wall Maxwellian)

Results in L1 norm, in a radially symmetric domain Ω = Sd−1:
1. Tsuji-Aoki-Golse (2010): rate of convergence towards equilibrium of

1

td
obtained numerically from the entropy.

2. Aoki-Golse (2011): upper bound in 1

t for all d .

3. Kuo-Liu-Tsai and Kuo (2013-2014-2015): rate of 1

td
.

Di�erent methods are used, but all of them use heavily this symmetry.
Recently, Lods and Mokhtar-Kharroubi (2020) obtained a rate of 1

t
d
2

without symmetry assumption.

17 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

A convergence in a non-symmetric domain
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First strategy: the coupling method [Chapter 2]

Key idea 1: it is possible to build a process (Xt ,Vt)t≥0 whose law is a
solution to the free-transport equation with Maxwell boundary condition.
Some randomness appears in this construction.

Key idea 2 (technically harder): we can �nd a coupling (i.e. two
constructions with correlated randomnesses) (Xt ,Vt , X̃t , Ṽt)t≥0 s.t.

(X0,V0) ∼ f0, (X̃0, Ṽ0) ∼ f∞ and, for

τ = inf{t > 0, (Xt+s ,Vt+s)s≥0 = (X̃t+s , Ṽt+s)s≥0},

we can show (when M is the Maxwellian wall) the inequality
E[τd−] <∞.
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τ = inf{t > 0, (Xt+s ,Vt+s)s≥0 = (X̃t+s , Ṽt+s)s≥0},
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Conclusion from the coupling

Once the control on τ is established, we conclude using properties of the
total variation distance: if (Xt ,Vt) ∼ ft the solution at time t and
(X̃t , Ṽt) ∼ f∞, then

‖ft − f∞‖TV = inf
(X ,V )∼ft ,(X̃,Ṽ)∼f∞

P((X ,V ) 6= (X̃, Ṽ))

≤ P(τ > t) ≤ E[(τ + 1)d−]

(t + 1)d−
,

by Markov's inequality.

This strategy also allows one to work in the framework of measures,
although the solution ft is not unique in this case.
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Results

Theorem (B., Fournier)

Let Ω be a C 2 bounded domain, G := Ω × Rd . Let f0 ∈ L1(G )
and write ft for the unique solution at time t ≥ 0. If r : R+ → R+

is increasing with r(x + y) . r(x) + r(y), and∫
G

r
( 1

|v |

)
f0(x , v) dvdx +

∫
G

r
( 1

|v |

)
M(v) dvdx <∞,

then, for all t ≥ 0, for some constant C > 0,

‖ft − f∞‖L1 ≤
C

r(t)
.
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Numerical study of the asymptotic behavior [Chapter 3]
The process built in Chapter 2 provides a natural way to study
numerically the convergence through a system of particles.

We will focus on the following star-shaped domain (2D).

(1, 1)
•

(−1, 1)
•

(5, 0)•
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Qualitative behavior

Initial distribution hereafter: uniform distribution in space, law
N (0, 0.01I2) for the velocity
Parameters: 106 particles, α ≡ 1 (pure di�use re�ection), M the
Maxwellian wall.
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Main problem: numerical estimates of the total variation
distance

In practice it is di�cult to estimate precisely the total variation distance
between two measures.

We will rather use the following property: if µ, ν are two measures on a
measurable space (E , E),

‖µ− ν‖TV =
1

2
sup

φ:E→[−1,1]

∣∣∣ ∫ φdµ−
∫
φdν

∣∣∣.
Hence we can approximate the total variation by testing the distribution
against a function φ. In what follows we present estimates corresponding
to the choice φ2(x , v) =

√
|x |+

√
|v |.
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Case of the wall Maxwellian

This is a log-log curve -> we have a polynomial rate, as expected.
However, its value is far from the theoretical prediction.
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Changing the distribution at the boundary

Instead of using the wall Maxwellian

M(v) =
e−
|v|2
2

2π
, v ∈ R2,

we can modify slightly the distribution to obtain more or less
concentration around 0:

Ma(v) ∝ e−
|v|

2
a

2 |v | 3a−3, v ∈ R2, a ∈ (0, 3).

This changes the rate of convergence if the initial data is also adapted.
In particular, with the previous initial data, we expect an exponent of the
rate equal to 3

a − 1 for a ∈]1, 3[ (the problem is slightly more complicated
for a < 1).
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An example: the case a = 2.5.

We clearly see the di�erence with respect to the case a = 1 ! Once
again, the empirical rate di�ers slightly from the theoretical one.
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Long-Time Behavior of Kinetic Equations with Boundary
E�ects

Kinetic Theory

Probabilistic approach for the asymptotic behavior of the FTE

Analytic method, Harris' theorems
Two sub-geometric Harris' theorems
Back to the free-transport equation [Chapter 4]
Linking coupling and Lyapunov criteria [Chapter 5]

Linearized equations from collisional kinetic theory

Outlook
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Same problem, di�erent strategy: Harris' sub-geometric
theorem

Another way to study the convergence of the free-transport equation is to
apply Harris' theorem, more precisely the deterministic sub-geometric
version of Cañizo and Mischler (following the probabilistic results of
Douc-Fort-Guillin and Hairer-Mattingly).

In what follows, M is the wall Maxwellian, but the temperature is allowed
to vary at the boundary. We assume again, for all x ∈ ∂Ω, α(x) ≥ α0 for
some α0 > 0.
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Sub-geometric Harris' theorem from the probabilistic side
Let (Xt)t≥0 be a Borel right process with values in (E , E), with
associated Markov semigroup (Pt)t≥0, generator L, non-explosive,
irreducible, aperiodic. Then if

1. ∃C ∈ E compact and petite, i.e. there ∃a ∈ P(R+) and a σ-�nite
measure ν 6≡ 0 on E such that

∀x ∈ C ,

∫ ∞
0

Pt(x , ·)a(dt) ≥ ν(·);

2. LV ≤ −φ(V ) + K1C , for some K ≥ 0, for φ ↑ ∞, strictly concave
(+ technical requirements)

letting Hφ(u) =
∫ u

1

du
φ(u) , ∃π invariant measure for (Pt)t≥0 on E and

C > 0 s.t. for all x ∈ E ,

lim
t→∞

φ(H−1φ (t))‖Pt(x , ·)− π(·)‖TV = 0.

30 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

Sub-geometric Harris' theorem from the probabilistic side
Let (Xt)t≥0 be a Borel right process with values in (E , E), with
associated Markov semigroup (Pt)t≥0, generator L, non-explosive,
irreducible, aperiodic. Then if

1. ∃C ∈ E compact and petite, i.e. there ∃a ∈ P(R+) and a σ-�nite
measure ν 6≡ 0 on E such that

∀x ∈ C ,

∫ ∞
0

Pt(x , ·)a(dt) ≥ ν(·);

2. LV ≤ −φ(V ) + K1C , for some K ≥ 0, for φ ↑ ∞, strictly concave
(+ technical requirements)

letting Hφ(u) =
∫ u

1

du
φ(u) , ∃π invariant measure for (Pt)t≥0 on E and

C > 0 s.t. for all x ∈ E ,

lim
t→∞

φ(H−1φ (t))‖Pt(x , ·)− π(·)‖TV = 0.

30 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

Sub-geometric Harris' theorem from the probabilistic side
Let (Xt)t≥0 be a Borel right process with values in (E , E), with
associated Markov semigroup (Pt)t≥0, generator L, non-explosive,
irreducible, aperiodic. Then if

1. ∃C ∈ E compact and petite, i.e. there ∃a ∈ P(R+) and a σ-�nite
measure ν 6≡ 0 on E such that

∀x ∈ C ,

∫ ∞
0

Pt(x , ·)a(dt) ≥ ν(·);

2. LV ≤ −φ(V ) + K1C , for some K ≥ 0, for φ ↑ ∞, strictly concave
(+ technical requirements)

letting Hφ(u) =
∫ u

1

du
φ(u) , ∃π invariant measure for (Pt)t≥0 on E and

C > 0 s.t. for all x ∈ E ,

lim
t→∞

φ(H−1φ (t))‖Pt(x , ·)− π(·)‖TV = 0.

30 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

A deterministic result

Deterministic sub-geometric Harris Theorem (Cañizo-Mischler)

With the same notations, if, 1 ≤ m0 . m1 . m2 . m3 are four
weights with

L∗m1 ≤ −m0 + K0, L∗m3 ≤ −m2 + K2, K0,K2 > 0,

and if, for any R > R0 > 0, there exist T ≥ T0 and a measure
ν 6≡ 0 such that

eL
∗T f ≥ ν

∫
{|x|≤R}

f dx , ∀f ∈ L1(E )+ = {f ∈ L1(E ), f ≥ 0},

then a quantitative rate of convergence, based on an interpolation
condition holding between the weights (mi )i≥1 can be obtained.
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Application to the free-transport problem

E.g., if we let 〈x〉 := (1 + |x |2)
1
2 and if 0 < δ ≤ k with m0 ' 1,

m1 ' 〈x〉δ, m2 ' 〈x〉k−δ and m3 ' 〈x〉k we can show that the �nal rate

is t−
k
δ .

For the free-transport equation, the key quantity to look at is

σ(x , v) = inf{t > 0, x + tv ∈ ∂Ω},

which is the time it takes, for a particle starting at 0 in position x with
velocity v , to hit the boundary.

An important fact is that v · ∇xσ(x , v) = −1. This will be the main
ingredient of the Lyapunov inequalities. Let 〈x , v〉 = (1 + σ(x , v)) on Ḡ
in what follows.
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in what follows.

32 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

Application to the free-transport problem II
Idea: let m3(x , v) = 〈x , v〉k in Ḡ , m2(x , v) = k〈x , v〉k−1. Let ‖ · ‖m be
the weighted L1 norm with weight m ≥ 1. Then, for T > 0,

∫
G
f0 = 0,

d

dt
‖fT‖m3 dvdx ≤ −

∫
G

(v · ∇x)|fT |m3 dvdx

=

∫
G

|fT |(v · ∇x)m3 dvdx −
∫

Σ

(v · nx)|fT |m3 dvdζ(x)

≤ −‖fT‖m2 +

∫
∂Ω

γ̃+f

∫
{v ′·nx<0}

M(v ′)|v ′ · nx |
(
1 +

diam(Ω)

|v ′|
)k
dv ′︸ ︷︷ ︸

=Ck

dζ(x).

We see that δ = 1 with the previous notations. Two issues:

1. Controlling the �ux part → integrated inequalities.
2. The right quantity to look at is not a norm but rather 1 + σ(x , v)

which behaves as 1

|v | for small velocities.

Note that f∞ ≡ M ∈ L1〈x,v〉d−(G ) \ L1〈x,v〉(d+1)−(G ) so take k = d−
→ again, rate in t−

k
δ = t−(d−).
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A theorem in the exponential case (Meyn-Tweedie, ...)

Theorem

With (Xt)t≥0 as in Slide 30, the following conditions are equivalent:
1. there exist a compact petite set C ∈ E and δ > 0, κ > 1 such that, for
τC (δ) = inf{t > δ : Xt ∈ C},

∀x ∈ E ,Ex [κτC (δ)] <∞, and sup
x∈C

Ex [κτC (δ)] <∞;

2. there exist a compact petite set C ∈ E , b, β > 0 and V : E → [1,∞],
�nite at some x0 ∈ E such that

LV (x) ≤ −βV (x) + b1C (x), ∀x ∈ E .

Each condition implies that there exist ρ < 1, d > 0 and an invariant
measure π on E such that, for all x ∈ E ,

‖Pt(x , ·)− π(·)‖TV ≤ dV (x)ρt .

34 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

A theorem in the exponential case (Meyn-Tweedie, ...)

Theorem

With (Xt)t≥0 as in Slide 30, the following conditions are equivalent:
1. there exist a compact petite set C ∈ E and δ > 0, κ > 1 such that, for
τC (δ) = inf{t > δ : Xt ∈ C},

∀x ∈ E ,Ex [κτC (δ)] <∞, and sup
x∈C

Ex [κτC (δ)] <∞;

2. there exist a compact petite set C ∈ E , b, β > 0 and V : E → [1,∞],
�nite at some x0 ∈ E such that

LV (x) ≤ −βV (x) + b1C (x), ∀x ∈ E .

Each condition implies that there exist ρ < 1, d > 0 and an invariant
measure π on E such that, for all x ∈ E ,

‖Pt(x , ·)− π(·)‖TV ≤ dV (x)ρt .

34 / 45



Kinetic Theory Probabilistic approach Analytic method, Harris' theorems Collisional equations Outlook

The sub-geometric version (Douc-Fort-Guillin, ...)

Theorem

With (Xt)t≥0 as in Slide 30, let φ : [1,∞)→ (0,∞) increasing,
di�erentiable, concave. Let Hφ de�ned as before. Consider the two
conditions
1. ∃δ > 0 and a compact petite set C such that for all x ∈ E ,

Ex [
∫ τC (δ)

0
H−1φ (s)ds] <∞, with a uniform bound on C ;

2. there exist a compact petite set C , a constant b <∞ and
V : X → [1,∞) unif. bounded on C such that

LV ≤ −φ(V ) + b1C .

Both conditions imply that there exists an invariant measure π on E s.t.
for all x ∈ E ,

lim
t→∞

φ(H−1φ (t))‖Pt(x , ·)− π(·)‖TV = 0.
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No equivalence

• As opposed to the geometric case, there is no equivalence between
conditions in the sub-geometric setting.

• Such equivalence is unlikely to hold in this form (the Jensen
inequality is in the wrong direction).

• Can we change the conditions to obtain some form of equivalence ?

In the geometric framework, the proof of equivalence uses the following
stopping times: for some r > 0, a set C and T ∼ E(1),

τ̃ rC := inf
{
t > 0,

∫ t

0

1C (Xs)ds ≥ T

r

}
.
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Some new conditions

Theorem

Consider (Xt)t≥0 and φ,Hφ as before. We have equivalence between:
1. there exist a compact petite set C , r > 0 s.t., for T ∼ E(1),

Ex [H−1φ (τ̃ rC )] <∞ for all x ∈ E ,

and this quantity is uniformly bounded on C .
2. ∃C compact, petite on E , κ, η > 0 and ψ : R+ × E → [1,∞)
continuous, ↑ in its �rst argument, such that (roughly)

(∂t + L)ψ(t, x) ≤ κH−1φ (t)1C (x)− φ(H−1φ (t)).

Both conditions are implied by Condition 2 of the DFG's theorem. They
imply the existence of an invariant π ∈ P(E ) with

∀x ∈ E , lim
t→∞

φ(H−1φ (t))‖Pt(x , ·)− π(·)‖TV = 0.
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Long-Time Behavior of Kinetic Equations with Boundary
E�ects

Kinetic Theory

Probabilistic approach for the asymptotic behavior of the FTE

Analytic method, Harris' theorems

Linearized equations from collisional kinetic theory
Context and previous results
Adapting hypocoercivity methods to the Maxwell boundary condition

Outlook
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Context
In Chapter 6, we add a linear collision operator C. We consider the same
boundary condition as before (with the accommodation coe�cient
α ∈ [0, 1]), where M is the wall Maxwellian.

∂t f + v · ∇x f = Cf , in (0,∞)× G .

With the hypothesis that we will introduce on C, this models for instance
the Boltzmann equation with or without cut-o� or the Landau equation,
in the linearized (close to equilibrium) regime. E.g., for Boltzmann

Cf (v) =

∫
Rd×Sd−1

B(|v − v∗|, ω)
(
f ′M ′∗ + M ′f ′∗ − fM∗ −Mf∗

)
dv∗dω,

with v ′ = v+v∗
2

+ |v−v∗|
2

ω, v ′∗ = v+v∗
2
− |v−v∗|

2
ω the post-collisional

velocities, B the collision kernel.
→ We know that the solution ft → M as t →∞. What is the
corresponding rate ?
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Assumptions on C
Let us introduce L2v (M−1) :=

{
f : Rd → R

∣∣∣ ∫Rd f
2M−1dv < +∞

}
endowed with (f , g) :=

∫
Rd f g M−1 dv and the associated norm ‖ · ‖.

1. We have ker(C) = Span{M, v1M, . . . , vdM, |v |2M} on L2v (M−1)
(conservation laws) and we write πf for the projection of f on
ker(C) and f ⊥ := f − πf .

2. The operator C is self-adjoint, with (Cf , f ) ≤ 0 and ∃λ > 0 s.t.

(−Cf , f ) ≥ λ‖f ⊥‖, ∀f ∈ Dom(C).

3. + some good interactions with low-order polynomials in v .

Let L = −v · ∇x + C. We want something of the form

〈−Lf , f 〉 ≥ λ′|f |,

for some scalar product 〈·, ·〉 and some λ′ > 0.
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Many results in the literature
Short-range interactions (Boltzmann with angular cuto�):

• Guo (2010): exponential convergence in weighted L∞ space with
specular re�ection and di�use re�ection when Ω is strictly convex
and analytic, see also Briant (2017) → L2 − L∞ techniques
(non-constructive).

• Briant-Guo (2016): constructive results in L2 if α > 0 leading to
exponential convergence in weighted L∞ norm.

• Kim and Lee (2017-2018): non-constructive L2 estimates in the
convex setting for the pure specular re�ection and some extensions
to periodic cylindrical domains.

Long-range interactions:

• Guo-Hwang-Jang-Ouyang (2020-2020): Landau equation with
specular re�ection, exponential convergence in L2 norm.

• Duan-Liu-Sakamoto-Strain (2020): estimates in L2 for non cut-o�
Boltzmann and Landau with specular re�ection.
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Many results in the literature
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Hypocoercivity for linear equations
• Assume for simplicity that Ω has no rotational symmetries. Let
H := {f : G → R,

∫
G
f 2M−1 dvdx <∞}.

• L2 hypocoercivity method (DMS): 1. the properties of C gives some
partial coercivity estimate for the scalar product
〈f , g〉 =

∫
G
fgM−1dvdx on H, allowing one to control the

microscopic part f ⊥.
• 2. To control the macroscopic part πf , we add new terms to this
scalar product, and consider instead

〈〈f , g〉〉 = 〈f , g〉 − ε〈π̄f ,∇∆−1πg〉L2x (Ω) − ε〈∇∆−1πf , π̄g〉L2x (Ω),

for ε > 0 small enough and well-chosen operators π̄. We want to
obtain an equivalent scalar product (i.e. equivalent corresponding
norms).

• One of the main di�culties: the Poisson equations associated with
the ∆−1 have to be completed with adapted boundary conditions, to
control the macroscopic quantities. This is especially di�cult for the
momentum component.
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Results

Our results are constructive and treat the Maxwell boundary condition
in full generality, i.e. α ∈ [0, 1]. Both Boltzmann (with and without
cuto�) and Landau are handled.

Theorem (B., Carrapatoso, Mischler, Tristani)

Let f0 ∈ H such that

• in the case α ≡ 0:
∫
G
f0dvdx =

∫
G
|v |2f0dvdx = 0,

• otherwise:
∫
G
f0dvdx = 0.

There exist κ,C > 0 such that for all f solution with initial data
f0, for all t ≥ 0,

‖f (t)‖H ≤ Ce−κt‖f0‖H.
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Long-Time Behavior of Kinetic Equations with Boundary
E�ects

Kinetic Theory

Probabilistic approach for the asymptotic behavior of the FTE

Analytic method, Harris' theorems

Linearized equations from collisional kinetic theory

Outlook
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Outlook

• What about the Cercignani-Lampis boundary condition for the
free-transport equation ? (in progress)

• Following the �rst point, what happens in collisional kinetic theory
with this new boundary condition ?

• The stochastic process de�ned in Chapter 2 has recently been
adapted in order to obtain simple NESS (non-equilibrium steady
states). Can coupling methods (or sticky couplings, see EGZ), give
results in this case ?

• Interactions of the new equivalent conditions with weak
Poincaré/Cheeger's inequalities and sticky coupling. (in progress)

• Going beyond the L2 case for the Maxwell boundary condition in
collisional kinetic theory ?
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