
Asymptotic Behavior of Markov Processes: a Dive into the
Sub-Geometric Case

Armand Bernou
LJLL, Sorbonne Université
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Markov processes and stability issues

Markov process: a stochastic process (Xt)t≥0 whose future depends on its past
only through its present.

Some questions for a number of Markov processes are focused on the stability
structure:

1 is there an invariant measure ?

2 do we have a form of convergence towards it ?

3 at which rate does this convergence occur ?
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The many dimensions of the problem

structure of the state space: countable or not,

structure of the time (Markov chains and Markov processes),

sub-geometric or geometric nature of the convergence.

Today: non-countable state space, continuous time, geometric and sub-geometric
convergence. We will only focus on the convergence in the total variation distance:
if µ, ν are two measures on E,

‖µ− ν‖TV = sup
A∈B(E)

|µ(A)− ν(A)|,

but many results are available for norms of the form

‖µ‖f = sup
|g|≤f

|µ(g)|.

For f ≡ 1→ total variation norm.
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Applications in statistics
Convergence rate of the MCMC algorithms

Those norms are especially useful for statisticians. Suppose you want to compute
E[f(Y )] with Y ∼ π and find a process (Xt)t≥0 with X0 = x such that its law
Pt(x, ·) converges to π.

The techniques of today allow you to understand how fast

‖Pt(x, ·)− π‖f = |Ex[f(Xt)]− E[f(Y )]|,

converges towards 0, which may save you a lot of time.

In particular, this allows you to understand the asymptotic behavior of Langevin
tampered distribution (Fort-Roberts 2005, Douc-Fort-Guillin 2009).
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First assumptions

Consider a process (Xt)t≥0 on a locally compact, separable metric space E, σ-field
B(E). We assume that (Xt)t≥0 is time-homogeneous, strong Markov, càdlàg,
write (Pt)t≥0 its associated semigroup, L the corresponding generator.

Definition

A non-empty measurable set C is petite if there exist a probability measure a on
B(R+) and a non-trivial σ-finite measure µ on B(E) such that

∀x ∈ C,
∫ ∞
0
Pt(x, ·)a(dt) ≥ µ(·).

For many cases, when (Xt)t≥0 is Feller (i.e. lim
t→0+

Ex[f(Xt)] = f(x) for all

f ∈ C0(E)) all compact sets are petite. Often, when we try to identify a petite
set, we consider a compact one.
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Stability structure assumptions

We will require the following properties

Harris-recurrence (implies irreducibility): there exists a measure ν on B(E)
such that ν(A) > 0 implies

Px
[ ∫ ∞

0
1A(Xs)ds =∞

]
= 1, for all x ∈ E.

This implies the existence of an invariant measure π̃.

Positive Harris-recurrence: there exists an invariant probability measure π.

Aperiodicity: there exists a petite set C, t0 > 0 such that for all x ∈ C,
t ≥ t0, Pt(x,C) > 0.

The process is non-explosive: let (On)n≥0 be a sequence of precompact sets
with On ↑ E, Tm be the first entrance time into Ocm, and let

ζ := lim
m→∞

Tm.

Then Px(ζ =∞) = 1 for all x ∈ E.
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A first tool: delayed hitting times

Define, for all set C, δ > 0,

τC(δ) = inf{t > δ,Xt ∈ C}.

Theorem (Meyn-Tweedie 1993)

Assume (Xt)t≥0 is irreducible, non-explosive and aperiodic. Let C ∈ B(E) be a
petite set, assume Px(τC <∞) ≡ 1, and that for some δ > 0,

sup
x∈C

Ex[τC(δ)] <∞.

Then (Xt)t≥0 is positive Harris recurrent. In fact, we also have ergodicity
(convergence towards the invariant probability measure at infinity).
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A second tool: Lyapunov inequalities

Some inequalities for the generator applied to a norm-like function V : E → R+

with V (x)→∞ as |x| → ∞ (i.e. {x : V (x) < B} is precompact for all B > 0) also
gives key properties. For instance, if there exists c, d ≥ 0 constant such that for all
x ∈ E,

LV (x) ≤ cV (x) + d,

then we have non-explosion.

Proposition (Meyn-Tweedie 1998)

Assume that (Xt)t≥0 is non-explosive, irreducible and aperiodic. Then if there
exists C a petite set, V a norm-like function with V (x0) <∞ for some x0 ∈ E
and b > 0 constant satisfying, for all x ∈ E,

LV (x) ≤ −1 + b1C(x),

the process is positive Harris-recurrent. This also implies ergodicity.
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The geometric case

Theorem (Meyn-Tweedie 1998)

Assume that (Xt)t≥0 is non-explosive, irreducible and aperiodic. The two
following conditions are equivalent:

1 there exist some compact petite set C ∈ B(E), some δ > 0 and κ > 1 such
that for all x ∈ E,

Ex[κτC(δ)] <∞ and sup
x∈C

Ex[κτC(δ)] <∞;

2 there exist a compact petite set C, constants b <∞, β > 0 and V a norm-like
function finite at some x0 ∈ E such that

LV (x) ≤ −βV (x) + b1C(x), x ∈ E.

Both conditions imply that for some ρ < 1, for all x ∈ E with V (x) <∞

lim
t→∞

ρ−t‖Pt(x, ·)− π(·)‖TV = 0.
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Example
The Ornstein-Uhlenbeck process

Let (Xt)t≥0 be solution to the following SDE on R:

dXt =
√

2dBt −Xtdt,

with (Bt)t≥0 the standard Brownian motion. The stochastic generator is given,
for all f ∈ C2(R), by

Lf = ∂2xxf − x∂xf.

We can show that this equation has an invariant distribution given by

µ∞(x) = 1√
2π
e−

x2

2 .
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Example
The Ornstein-Uhlenbeck process II

Let V : R→ [1,∞) defined by V (x) = ea|x| for some a > 0. Then, for x > 0,

LV (x) = a2eax − xaeax ≤ (a2 − xa)eax(1x∈(0,2a] + 1x∈(2a,∞))

≤ −a2V (x) + a2e2a
2
1{|x|≤2a}.

A similar computation can be done for x ≤ 0. For this process {x : |x| ≤ 2a} is
petite (this is based on the Feller property). This proves the exponential
convergence.
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The sub-geometric case

Theorem (Douc-Fort-Guillin, Hairer)

Assume that (Xt)t≥0 is non-explosive, irreducible, aperiodic. Let φ : [1,∞)→ R∗+
C1, strictly increasing, strictly concave (+ technical properties). Define
Hφ(u) =

∫ u
1

ds
φ(s)

for all u ≥ 1, and let H−1
φ : [0,∞)→ [1,∞) be its inverse

function. Consider the two following conditions:

1 there exist C compact, petite, δ > 0 such that

Ex[H−1
φ (τC(δ))] <∞ for all x ∈ E, sup

x∈C
Ex[H−1

φ (τC(δ))] <∞;

2 there exist a compact petite subset C of E, K > 0 constant and
V : E → [1,∞) continuous with precompact sublevel sets such that for all
x ∈ E,

LV (x) ≤ −φ(V (x)) +K1C(x).

In those two cases, there exists an invariant probability measure π on E such that
for all x ∈ E,

lim
t→∞

φ(H−1
φ (t))‖Pt(x, ·)− π(·)‖TV = 0.
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Some Remarks

Typical rates that one obtains are of the form

r(t) = tα ln(t)β exp(γtη), with η ∈ (0, 1) and

 γ > 0, α, β ∈ R or,
γ = 0, α > 0, β ∈ R or,
γ = α = 0, β > 0.

Example: if α ∈ (0, 1) and φ(x) = xα, then φ(H−1
φ (x)) ∼ x

α
1−α .

Remark

In constrast with the exponential case, there is no equivalence between the two
conditions in the sub-geometric theorem.
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An example for the sub-geometric case
The gradient dynamic on R

We consider the process (Xt)t≥0 solution to the SDE

dXt = −∂xV (Xt)dt+
√

2dBt,

where (Bt)t≥0 is a standard Brownian motion, and

V (x) = 2(1 + |x|2)
1
4 , x ∈ R.

The stochastic generator is given by Dom(L) = C2(R) and

L = ∂2xx − ∂xV ∂x,

and the equilibrium distribution is µ∞(x) ∝ e−V (x).
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An example for the sub-geometric case
The gradient dynamic on R II

Let W (x) = eαV (x) with α ∈ (0, 1) constant. We have

LW (x) = αW (x)(1 + x2)−
7
4
(
1−

1

2
x2 + (α− 1)x2(1 + x2)

1
4
)
.

In the bracket → a negative quantity upper bounded by some constant outside a
compact set C := {x : W (x) ≤ W̄}, W̄ > 0 constant. Hence, for two constants
β,K > 0, we have

LW ≤ −β
W

ln(W )7
+K1C .

Once again, all compact sets are petite, and for φ(x) = x
ln(x)7

, we find a final rate

r(t) = t−
7
8 ect

1
8

for some constant c > 0.
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The few things I haven’t mentioned

1 To go from Condition 2 in the subgeometric theorem to f -ergodicity →
Young’s functions and interpolation (you can find this in DFG 2009 or
Fort-Roberts 2005).

2 A recent result (B. 2020) provides two new conditions for the sub-geometric
case, one with a randomized hitting time, one with a Lyapunov inequalities
for a function depending also on times, that are equivalent and lie between
conditions 2 and 1 of the previous theorem.

3 The results presented here are not optimal (compactness assumptions can be
relaxed).

4 Lyapunov inequalities for the generator can be relaxed to hold only with the
extended generator. For instance, the condition

LV (x) ≤ −βV (x) + b1C(x),

can actually be relaxed into “the process (Mt)t≥0 defined for all t ≥ 0 by

Mt := V (Xt)− V (x) + β

∫ t

0
V (Xs)ds− b

∫ t

0
1C(Xs)ds,

is a Px-local supermartingale”.
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Thank you for your attention !
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