

# Asymptotic Behavior of Markov Processes: a Dive into the Sub-Geometric Case

Armand Bernou LJLL, Sorbonne Université

February 1, 2021 Groupe de travail de thésards du LPSM

# Sub-geometric convergence of Markov processes

#### 1 Introduction

- 2 Stability concepts for general state space
- 3 Geometric and sub-geometric convergence

### Markov processes and stability issues

Markov process: a stochastic process  $(X_t)_{t\geq 0}$  whose future depends on its past only through its present.

Some questions for a number of Markov processes are focused on the stability structure:

- **I** is there an invariant measure ?
- **2** do we have a form of convergence towards it ?
- **3** at which rate does this convergence occur ?

# The many dimensions of the problem

- structure of the state space: countable or not,
- structure of the time (Markov chains and Markov processes),
- sub-geometric or geometric nature of the convergence.

### The many dimensions of the problem

- structure of the state space: countable or not,
- structure of the time (Markov chains and Markov processes),
- sub-geometric or geometric nature of the convergence.

Today: non-countable state space, continuous time, geometric and sub-geometric convergence. We will only focus on the convergence in the total variation distance: if  $\mu, \nu$  are two measures on E,

$$\|\mu - \nu\|_{TV} = \sup_{A \in \mathcal{B}(E)} |\mu(A) - \nu(A)|,$$

but many results are available for norms of the form

$$\|\mu\|_f = \sup_{|g| \le f} |\mu(g)|.$$

For  $f \equiv 1 \rightarrow$  total variation norm.

## Applications in statistics Convergence rate of the MCMC algorithms

Those norms are especially useful for statisticians. Suppose you want to compute  $\mathbb{E}[f(Y)]$  with  $Y \sim \pi$  and find a process  $(X_t)_{t\geq 0}$  with  $X_0 = x$  such that its law  $\mathcal{P}_t(x, \cdot)$  converges to  $\pi$ .

## Applications in statistics Convergence rate of the MCMC algorithms

Those norms are especially useful for statisticians. Suppose you want to compute  $\mathbb{E}[f(Y)]$  with  $Y \sim \pi$  and find a process  $(X_t)_{t\geq 0}$  with  $X_0 = x$  such that its law  $\mathcal{P}_t(x, \cdot)$  converges to  $\pi$ .

The techniques of today allow you to understand how fast

$$\|\mathcal{P}_t(x,\cdot) - \pi\|_f = |\mathbb{E}_x[f(X_t)] - \mathbb{E}[f(Y)]|,$$

converges towards 0, which may save you a lot of time.

## Applications in statistics Convergence rate of the MCMC algorithms

Those norms are especially useful for statisticians. Suppose you want to compute  $\mathbb{E}[f(Y)]$  with  $Y \sim \pi$  and find a process  $(X_t)_{t\geq 0}$  with  $X_0 = x$  such that its law  $\mathcal{P}_t(x, \cdot)$  converges to  $\pi$ .

The techniques of today allow you to understand how fast

$$\|\mathcal{P}_t(x,\cdot) - \pi\|_f = |\mathbb{E}_x[f(X_t)] - \mathbb{E}[f(Y)]|,$$

converges towards 0, which may save you a lot of time.

In particular, this allows you to understand the asymptotic behavior of Langevin tampered distribution (Fort-Roberts 2005, Douc-Fort-Guillin 2009).

# Sub-geometric convergence of Markov processes

#### 1 Introduction

- 2 Stability concepts for general state space
- 3 Geometric and sub-geometric convergence

Consider a process  $(X_t)_{t\geq 0}$  on a locally compact, separable metric space E,  $\sigma$ -field  $\mathcal{B}(E)$ . We assume that  $(\overline{X}_t)_{t\geq 0}$  is time-homogeneous, strong Markov, càdlàg, write  $(\mathcal{P}_t)_{t\geq 0}$  its associated semigroup,  $\mathcal{L}$  the corresponding generator.

# Definition

A non-empty measurable set C is petite if there exist a probability measure a on  $\mathcal{B}(\mathbb{R}_+)$  and a non-trivial  $\sigma$ -finite measure  $\mu$  on  $\mathcal{B}(E)$  such that

$$\forall x \in C, \int_0^\infty \mathcal{P}_t(x, \cdot) a(dt) \geq \mu(\cdot).$$

For many cases, when  $(X_t)_{t\geq 0}$  is Feller (i.e.  $\lim_{t\to 0^+} \mathbb{E}_x[f(X_t)] = f(x)$  for all  $f \in C_0(E)$ ) all compact sets are petite. Often, when we try to identify a petite set, we consider a compact one.

We will require the following properties

We will require the following properties

• Harris-recurrence (implies irreducibility): there exists a measure  $\nu$  on  $\mathcal{B}(E)$  such that  $\nu(A) > 0$  implies

$$\mathbb{P}_x\left[\int_0^\infty \mathbf{1}_A(X_s)ds = \infty\right] = 1, \quad \text{for all } x \in E.$$

This implies the existence of an invariant measure  $\tilde{\pi}$ .

We will require the following properties

• Harris-recurrence (implies irreducibility): there exists a measure  $\nu$  on  $\mathcal{B}(E)$  such that  $\nu(A) > 0$  implies

$$\mathbb{P}_x\Big[\int_0^\infty \mathbf{1}_A(X_s)ds = \infty\Big] = 1, \quad \text{for all } x \in E.$$

This implies the existence of an invariant measure  $\tilde{\pi}$ .

• Positive Harris-recurrence: there exists an invariant probability measure  $\pi$ .

We will require the following properties

• Harris-recurrence (implies irreducibility): there exists a measure  $\nu$  on  $\mathcal{B}(E)$  such that  $\nu(A) > 0$  implies

$$\mathbb{P}_x\left[\int_0^\infty \mathbf{1}_A(X_s)ds = \infty\right] = 1, \quad \text{for all } x \in E.$$

This implies the existence of an invariant measure  $\tilde{\pi}$ .

- Positive Harris-recurrence: there exists an invariant probability measure  $\pi$ .
- Aperiodicity: there exists a petite set C,  $t_0 > 0$  such that for all  $x \in C$ ,  $t \ge t_0$ ,  $\mathcal{P}_t(x, C) > 0$ .

We will require the following properties

• Harris-recurrence (implies irreducibility): there exists a measure  $\nu$  on  $\mathcal{B}(E)$  such that  $\nu(A) > 0$  implies

$$\mathbb{P}_x\left[\int_0^\infty \mathbf{1}_A(X_s)ds = \infty\right] = 1, \quad \text{for all } x \in E.$$

This implies the existence of an invariant measure  $\tilde{\pi}$ .

- Positive Harris-recurrence: there exists an invariant probability measure  $\pi$ .
- Aperiodicity: there exists a petite set C,  $t_0 > 0$  such that for all  $x \in C$ ,  $t \ge t_0$ ,  $\mathcal{P}_t(x, C) > 0$ .
- The process is non-explosive: let  $(O_n)_{n\geq 0}$  be a sequence of precompact sets with  $O_n \uparrow E$ ,  $T^m$  be the first entrance time into  $O_m^c$ , and let

$$\zeta := \lim_{m \to \infty} T^m.$$

Then  $\mathbb{P}_x(\zeta = \infty) = 1$  for all  $x \in E$ .

#### A first tool: delayed hitting times

Define, for all set  $C, \delta > 0$ ,

$$\tau_C(\delta) = \inf\{t > \delta, X_t \in C\}.$$

#### Theorem (Meyn-Tweedie 1993)

Assume  $(X_t)_{t\geq 0}$  is irreducible, non-explosive and aperiodic. Let  $C \in \mathcal{B}(E)$  be a petite set, assume  $\mathbb{P}_x(\tau_C < \infty) \equiv 1$ , and that for some  $\delta > 0$ ,

$$\sup_{x \in C} \mathbb{E}_x[\tau_C(\delta)] < \infty.$$

Then  $(X_t)_{t\geq 0}$  is positive Harris recurrent. In fact, we also have ergodicity (convergence towards the invariant probability measure at infinity).

### A second tool: Lyapunov inequalities

Some inequalities for the generator applied to a norm-like function  $V: E \to \mathbb{R}_+$ with  $V(x) \to \infty$  as  $|x| \to \infty$  (i.e.  $\{x: V(x) < B\}$  is precompact for all B > 0) also gives key properties. For instance, if there exists  $c, d \ge 0$  constant such that for all  $x \in E$ ,

$$\mathcal{L}V(x) \le cV(x) + d,$$

then we have non-explosion.

#### Proposition (Meyn-Tweedie 1998)

Assume that  $(X_t)_{t\geq 0}$  is non-explosive, irreducible and aperiodic. Then if there exists C a petite set, V a norm-like function with  $V(x_0) < \infty$  for some  $x_0 \in E$  and b > 0 constant satisfying, for all  $x \in E$ ,

$$\mathcal{L}V(x) \le -1 + b\mathbf{1}_C(x),$$

the process is positive Harris-recurrent. This also implies ergodicity.

# Sub-geometric convergence of Markov processes

#### 1 Introduction

- 2 Stability concepts for general state space
- 3 Geometric and sub-geometric convergence

# The geometric case

# Theorem (Meyn-Tweedie 1998)

Assume that  $(X_t)_{t\geq 0}$  is non-explosive, irreducible and aperiodic. The two following conditions are equivalent:

# Theorem (Meyn-Tweedie 1998)

Assume that  $(X_t)_{t\geq 0}$  is non-explosive, irreducible and aperiodic. The two following conditions are equivalent:

**1** there exist some compact petite set  $C \in \mathcal{B}(E)$ , some  $\delta > 0$  and  $\kappa > 1$  such that for all  $x \in E$ ,

$$\mathbb{E}_{x}[\kappa^{\tau_{C}(\delta)}] < \infty \text{ and } \sup_{x \in C} \mathbb{E}_{x}[\kappa^{\tau_{C}(\delta)}] < \infty;$$

## Theorem (Meyn-Tweedie 1998)

Assume that  $(X_t)_{t\geq 0}$  is non-explosive, irreducible and aperiodic. The two following conditions are equivalent:

If there exist some compact petite set  $C \in \mathcal{B}(E)$ , some  $\delta > 0$  and  $\kappa > 1$  such that for all  $x \in E$ ,

$$\mathbb{E}_{x}[\kappa^{\tau_{C}(\delta)}] < \infty \text{ and } \sup_{x \in C} \mathbb{E}_{x}[\kappa^{\tau_{C}(\delta)}] < \infty;$$

**2** there exist a compact petite set C, constants  $b < \infty, \beta > 0$  and V a norm-like function finite at some  $x_0 \in E$  such that

$$\mathcal{L}V(x) \le -\beta V(x) + b\mathbf{1}_C(x), \qquad x \in E.$$

# Theorem (Meyn-Tweedie 1998)

Assume that  $(X_t)_{t\geq 0}$  is non-explosive, irreducible and aperiodic. The two following conditions are equivalent:

If there exist some compact petite set  $C \in \mathcal{B}(E)$ , some  $\delta > 0$  and  $\kappa > 1$  such that for all  $x \in E$ ,

$$\mathbb{E}_{x}[\kappa^{\tau_{C}(\delta)}] < \infty \text{ and } \sup_{x \in C} \mathbb{E}_{x}[\kappa^{\tau_{C}(\delta)}] < \infty;$$

**2** there exist a compact petite set C, constants  $b < \infty, \beta > 0$  and V a norm-like function finite at some  $x_0 \in E$  such that

$$\mathcal{L}V(x) \le -\beta V(x) + b\mathbf{1}_C(x), \qquad x \in E.$$

Both conditions imply that for some  $\rho < 1$ , for all  $x \in E$  with  $V(x) < \infty$ 

$$\lim_{t \to \infty} \rho^{-t} \| \mathcal{P}_t(x, \cdot) - \pi(\cdot) \|_{TV} = 0.$$

# Example The Ornstein-Uhlenbeck process

Let  $(X_t)_{t\geq 0}$  be solution to the following SDE on  $\mathbb{R}$ :

$$dX_t = \sqrt{2}dB_t - X_t dt,$$

with  $(B_t)_{t\geq 0}$  the standard Brownian motion. The stochastic generator is given, for all  $f \in C^2(\mathbb{R})$ , by

$$\mathcal{L}f = \partial_{xx}^2 f - x \partial_x f.$$

We can show that this equation has an invariant distribution given by  $\mu_\infty(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$ 

# Example The Ornstein-Uhlenbeck process II

Let  $V : \mathbb{R} \to [1, \infty)$  defined by  $V(x) = e^{a|x|}$  for some a > 0. Then, for x > 0,

$$\begin{aligned} \mathcal{L}V(x) &= a^2 e^{ax} - xae^{ax} \leq (a^2 - xa)e^{ax}(\mathbf{1}_{x \in (0,2a]} + \mathbf{1}_{x \in (2a,\infty)}) \\ &\leq -a^2 V(x) + a^2 e^{2a^2} \mathbf{1}_{\{|x| \leq 2a\}}. \end{aligned}$$

A similar computation can be done for  $x \leq 0$ . For this process  $\{x : |x| \leq 2a\}$  is petite (this is based on the Feller property). This proves the exponential convergence.

Assume that  $(X_t)_{t\geq 0}$  is non-explosive, irreducible, aperiodic. Let  $\phi : [1,\infty) \to \mathbb{R}^*_+$  $C^1$ , strictly increasing, strictly concave (+ technical properties). Define  $H_{\phi}(u) = \int_1^u \frac{ds}{\phi(s)}$  for all  $u \geq 1$ , and let  $H_{\phi}^{-1} : [0,\infty) \to [1,\infty)$  be its inverse function. Consider the two following conditions:

Assume that  $(X_t)_{t\geq 0}$  is non-explosive, irreducible, aperiodic. Let  $\phi : [1,\infty) \to \mathbb{R}^*_+$  $C^1$ , strictly increasing, strictly concave (+ technical properties). Define  $H_{\phi}(u) = \int_1^u \frac{ds}{\phi(s)}$  for all  $u \geq 1$ , and let  $H_{\phi}^{-1} : [0,\infty) \to [1,\infty)$  be its inverse function. Consider the two following conditions:

I there exist C compact, petite,  $\delta > 0$  such that

 $\mathbb{E}_{x}[H_{\phi}^{-1}(\tau_{C}(\delta))] < \infty \text{ for all } x \in E, \qquad \sup_{x \in C} \mathbb{E}_{x}[H_{\phi}^{-1}(\tau_{C}(\delta))] < \infty;$ 

Assume that  $(X_t)_{t\geq 0}$  is non-explosive, irreducible, aperiodic. Let  $\phi : [1,\infty) \to \mathbb{R}^*_+$  $C^1$ , strictly increasing, strictly concave (+ technical properties). Define  $H_{\phi}(u) = \int_1^u \frac{ds}{\phi(s)}$  for all  $u \geq 1$ , and let  $H_{\phi}^{-1} : [0,\infty) \to [1,\infty)$  be its inverse function. Consider the two following conditions:

I there exist C compact, petite,  $\delta > 0$  such that

$$\mathbb{E}_{x}[H_{\phi}^{-1}(\tau_{C}(\delta))] < \infty \text{ for all } x \in E, \qquad \sup_{x \in C} \mathbb{E}_{x}[H_{\phi}^{-1}(\tau_{C}(\delta))] < \infty;$$

2 there exist a compact petite subset C of E, K > 0 constant and  $V : E \to [1, \infty)$  continuous with precompact sublevel sets such that for all  $x \in E$ ,

 $\mathcal{L}V(x) \le -\phi(V(x)) + K\mathbf{1}_C(x).$ 

Assume that  $(X_t)_{t\geq 0}$  is non-explosive, irreducible, aperiodic. Let  $\phi : [1,\infty) \to \mathbb{R}^*_+$  $C^1$ , strictly increasing, strictly concave (+ technical properties). Define  $H_{\phi}(u) = \int_1^u \frac{ds}{\phi(s)}$  for all  $u \geq 1$ , and let  $H_{\phi}^{-1} : [0,\infty) \to [1,\infty)$  be its inverse function. Consider the two following conditions:

I there exist C compact, petite,  $\delta > 0$  such that

$$\mathbb{E}_{x}[H_{\phi}^{-1}(\tau_{C}(\delta))] < \infty \text{ for all } x \in E, \qquad \sup_{x \in C} \mathbb{E}_{x}[H_{\phi}^{-1}(\tau_{C}(\delta))] < \infty;$$

2 there exist a compact petite subset C of E, K > 0 constant and  $V : E \to [1, \infty)$  continuous with precompact sublevel sets such that for all  $x \in E$ ,

$$\mathcal{L}V(x) \le -\phi(V(x)) + K\mathbf{1}_C(x).$$

In those two cases, there exists an invariant probability measure  $\pi$  on E such that for all  $x \in E$ ,

$$\lim_{t \to \infty} \phi(H_{\phi}^{-1}(t)) \| \mathcal{P}_t(x, \cdot) - \pi(\cdot) \|_{TV} = 0.$$

# Some Remarks

Typical rates that one obtains are of the form

$$r(t) = t^{\alpha} \ln(t)^{\beta} \exp(\gamma t^{\eta}), \quad \text{with } \eta \in (0,1) \text{ and } \begin{cases} \gamma > 0, \alpha, \beta \in \mathbb{R} \text{ or,} \\ \gamma = 0, \alpha > 0, \beta \in \mathbb{R} \text{ or,} \\ \gamma = \alpha = 0, \beta > 0. \end{cases}$$

# Some Remarks

Typical rates that one obtains are of the form

$$r(t) = t^{\alpha} \ln(t)^{\beta} \exp(\gamma t^{\eta}), \quad \text{with } \eta \in (0,1) \text{ and } \begin{cases} \gamma > 0, \alpha, \beta \in \mathbb{R} \text{ or,} \\ \gamma = 0, \alpha > 0, \beta \in \mathbb{R} \text{ or,} \\ \gamma = \alpha = 0, \beta > 0. \end{cases}$$

Example: if  $\alpha \in (0,1)$  and  $\phi(x) = x^{\alpha}$ , then  $\phi(H_{\phi}^{-1}(x)) \sim x^{\frac{\alpha}{1-\alpha}}$ .

# Some Remarks

Typical rates that one obtains are of the form

$$r(t) = t^{\alpha} \ln(t)^{\beta} \exp(\gamma t^{\eta}), \quad \text{with } \eta \in (0,1) \text{ and } \begin{cases} \gamma > 0, \alpha, \beta \in \mathbb{R} \text{ or,} \\ \gamma = 0, \alpha > 0, \beta \in \mathbb{R} \text{ or,} \\ \gamma = \alpha = 0, \beta > 0. \end{cases}$$

Example: if  $\alpha \in (0,1)$  and  $\phi(x) = x^{\alpha}$ , then  $\phi(H_{\phi}^{-1}(x)) \sim x^{\frac{\alpha}{1-\alpha}}$ .

## Remark

In constrast with the exponential case, there is no equivalence between the two conditions in the sub-geometric theorem.

An example for the sub-geometric case The gradient dynamic on  $\mathbb R$ 

We consider the process  $(X_t)_{t\geq 0}$  solution to the SDE

$$dX_t = -\partial_x V(X_t)dt + \sqrt{2}dB_t,$$

where  $(B_t)_{t>0}$  is a standard Brownian motion, and

$$V(x) = 2(1 + |x|^2)^{\frac{1}{4}}, \qquad x \in \mathbb{R}$$

The stochastic generator is given by  $\operatorname{Dom}(\mathcal{L}) = C^2(\mathbb{R})$  and

$$\mathcal{L} = \partial_{xx}^2 - \partial_x V \partial_x,$$

and the equilibrium distribution is  $\mu_{\infty}(x) \propto e^{-V(x)}$ .

An example for the sub-geometric case The gradient dynamic on  $\mathbb{R}$  II

Let  $W(x) = e^{\alpha V(x)}$  with  $\alpha \in (0, 1)$  constant. We have

$$\mathcal{L}W(x) = \alpha W(x)(1+x^2)^{-\frac{7}{4}} \left(1 - \frac{1}{2}x^2 + (\alpha - 1)x^2(1+x^2)^{\frac{1}{4}}\right).$$

In the bracket  $\rightarrow$  a negative quantity upper bounded by some constant outside a compact set  $C := \{x : W(x) \leq \overline{W}\}, \overline{W} > 0$  constant. Hence, for two constants  $\beta, K > 0$ , we have

$$\mathcal{L}W \le -\beta \frac{W}{\ln(W)^7} + K \mathbf{1}_C.$$

An example for the sub-geometric case The gradient dynamic on  $\mathbb{R}$  II

Let  $W(x) = e^{\alpha V(x)}$  with  $\alpha \in (0, 1)$  constant. We have

$$\mathcal{L}W(x) = \alpha W(x)(1+x^2)^{-\frac{7}{4}} \left(1 - \frac{1}{2}x^2 + (\alpha - 1)x^2(1+x^2)^{\frac{1}{4}}\right).$$

In the bracket  $\rightarrow$  a negative quantity upper bounded by some constant outside a compact set  $C := \{x : W(x) \leq \overline{W}\}, \overline{W} > 0$  constant. Hence, for two constants  $\beta, K > 0$ , we have

$$\mathcal{L}W \le -\beta \frac{W}{\ln(W)^7} + K \mathbf{1}_C.$$

Once again, all compact sets are petite, and for  $\phi(x) = \frac{x}{\ln(x)^7}$ , we find a final rate

$$r(t) = t^{-\frac{7}{8}} e^{ct^{\frac{1}{8}}}$$

for some constant c > 0.

■ To go from Condition 2 in the subgeometric theorem to f-ergodicity  $\rightarrow$  Young's functions and interpolation (you can find this in DFG 2009 or Fort-Roberts 2005).

- To go from Condition 2 in the subgeometric theorem to f-ergodicity  $\rightarrow$  Young's functions and interpolation (you can find this in DFG 2009 or Fort-Roberts 2005).
- A recent result (B. 2020) provides two new conditions for the sub-geometric case, one with a randomized hitting time, one with a Lyapunov inequalities for a function depending also on times, that are equivalent and lie between conditions 2 and 1 of the previous theorem.

- To go from Condition 2 in the subgeometric theorem to f-ergodicity  $\rightarrow$  Young's functions and interpolation (you can find this in DFG 2009 or Fort-Roberts 2005).
- A recent result (B. 2020) provides two new conditions for the sub-geometric case, one with a randomized hitting time, one with a Lyapunov inequalities for a function depending also on times, that are equivalent and lie between conditions 2 and 1 of the previous theorem.
- If The results presented here are not optimal (compactness assumptions can be relaxed).

- To go from Condition 2 in the subgeometric theorem to f-ergodicity  $\rightarrow$  Young's functions and interpolation (you can find this in DFG 2009 or Fort-Roberts 2005).
- A recent result (B. 2020) provides two new conditions for the sub-geometric case, one with a randomized hitting time, one with a Lyapunov inequalities for a function depending also on times, that are equivalent and lie between conditions 2 and 1 of the previous theorem.
- The results presented here are not optimal (compactness assumptions can be relaxed).
- I Lyapunov inequalities for the generator can be relaxed to hold only with the extended generator. For instance, the condition

$$\mathcal{L}V(x) \le -\beta V(x) + b\mathbf{1}_C(x),$$

can actually be relaxed into "the process  $(M_t)_{t>0}$  defined for all  $t \ge 0$  by

$$M_t := V(X_t) - V(x) + \beta \int_0^t V(X_s) ds - b \int_0^t \mathbf{1}_C(X_s) ds,$$

is a  $\mathbb{P}_x$ -local supermartingale".

#### References

A. Bernou, Long-Time Behavior of Kinetic Equations with Boundary Effects, Ph.D. thesis, December 2020, Available online at https://www.lpsm.paris/pageperso/bernou/These.pdf.

April 2020, Preprint.

- R. Douc, G. Fort, and A. Guillin, Subgeometric Rates of Convergence of *f*-Ergodic Strong Markov Processes, Stochastic Processes and their Applications **119** (2009), no. 3, 897 923.

G. Fort and G. O. Roberts, *Subgeometric Ergodicity of Strong Markov Processes*, The Annals of Applied Probability **15** (2005), no. 2, 1565–1589.

- M. Hairer, *Convergence of Markov Processes*, Lecture notes available at http://www.hairer.org/notes/Convergence.pdf, 2016.
  - S.P. Meyn and R. L. Tweedie, A Survey of Foster-Lyapunov Techniques for General State Space Markov Processes, 1993.

Thank you for your attention !