Rate of convergence towards equilibrium for a collisionless gas

I N N O V

亿îledeFrance

Armand Bernou ${ }^{1}$, advisor Stéphane Mischler ${ }^{2}$

Contact: armand.bernou@sorbonne-universite.fr
${ }^{1}$ LPSM, Sorbonne Université, Paris, France. ${ }^{2}$ CEREMADE, Université Paris Dauphine, Paris, France.

Problem and main result

We consider a C^{2} bounded domain D in \mathbb{R}^{n} for $n \in\{2,3\}, \partial D$ its boundary. We write n_{x} for the unit inward normal vector at $x \in \partial D$. As in [TAG10, AG11], we study the kinetic free-transport equation

$$
\begin{equation*}
\partial_{t} f+v \cdot \nabla_{x} f=0 \quad(x, v) \in D \times \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

completed with a boundary condition. We consider the so-called diffuse reflexion, for all $(x, v) \in \partial_{+} G=\left\{(x, v) \in \partial D \times \mathbb{R}^{n}, v \cdot n_{x}>0\right\}$,

$$
\begin{equation*}
f(t, x, v)\left(v \cdot n_{x}\right)=\left(v \cdot n_{x}\right) c M(v)\left(\int_{v^{\prime} \cdot n_{x}>0} f\left(t, x, v^{\prime}\right)\left|v^{\prime} \cdot n_{x}\right| d v^{\prime}\right) \tag{2}
\end{equation*}
$$

with c a normalizing constant.

Figure 1: Diffuse reflection at the boundary. Possible outcoming velocities in blue
The function M is a Gaussian distribution

$$
M(v)=\frac{1}{(2 \pi)^{n / 2}} e^{-\frac{\|v\|^{2}}{2}}
$$

This problem corresponds to the behavior of a collisionless gas (Knudsen) enclosed in a vessel. Starting from $f_{0} \in L^{1}\left(D \times \mathbb{R}^{n}\right)$, the solution to the problem (1), (2) such that

$$
\begin{equation*}
f(0, x, v)=f_{0}(x, v) \text { a.e. in } D \times \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

exists, is unique, and converges in the L^{1} sense towards an equilibrium given by

$$
\mu_{\infty}(x, v)=\frac{M(v)}{|D|} \int_{D \times \mathbb{R}^{n}} f_{0}(x, v) d x d v .
$$

We prove by semigroup arguments that the rate of this convergence is $\frac{1}{(t+1)^{n+}}$, more precisely $\frac{\ln (t+1)^{n+1}}{(t+1)^{n}}$ for any "reasonable" f_{0}. This model is a good example of "weak (hypo)dissipativity".

Figure 2: Convergence towards equilibrium. In red, particles which touched the boundary.

Well-posedness, mass conservation and semigroup

The problem $(1,2,3)$ satisfies positivity, a result due to the very simple form of characteristics and to the fact that the boundary operator is itself positive. The trace of an L^{1} solution f to (1) exists at the boundary, we write it γf. The mass conservation is easily obtained by Green's theorem:

$$
\begin{aligned}
\frac{d}{d t} \int_{D \times \mathbb{R}^{n}} f(t, x, v) d x d v & =-\int_{D \times \mathbb{R}^{n}} v \cdot \nabla_{x} f(t, x, v) d x d v \\
& =\int_{\partial D \times \mathbb{R}^{n}} \gamma f(t, x, v)\left(v \cdot n_{x}\right) d v d S(x),
\end{aligned}
$$

with $d S(x)$ the surface measure of ∂D at x and where the sign is due to the fact that n_{x} is the inward normal vector at x. Since $c \int_{v \cdot n_{x}>0} M(v)\left|v \cdot n_{x}\right| d v=1$, we easily have

$$
\int_{v \cdot n_{x}>0} \gamma f\left|v \cdot n_{x}\right| d v=\int_{v \cdot n_{x}<0} \gamma f\left|v \cdot n_{x}\right| d v
$$

from which we conclude. We can thus associate to the problem a semigroup of operators $\left(S_{t}\right)_{t \geq 0}$, such that

1. $S_{0}=I d, S_{t+s}=S_{t} S_{s}$ for all $s \geq 0, t \geq 0$,
2. $S_{t} \geq 0$ for all $t \geq 0$,
3. $t \rightarrow S_{t}$ is (strongly) continuous, i.e. for all $f \in L^{1}\left(D \times \mathbb{R}^{n}\right),\left\|S_{t} f-f\right\|_{L^{1}} \rightarrow 0$ as $t \rightarrow 0$,
4. $\int_{D \times \mathbb{R}^{n}} S_{t} f d x d v=\int_{D \times \mathbb{R}^{n}} f d x d v$ for all $t \geq 0$ (mass conservation).

Given $f_{0} \in L^{1}\left(D \times \mathbb{R}^{n}\right)$ an initial datum, $t \geq 0 S_{t} f_{0}=f(t, x, v)$ is the solution to $(1,2,3)$ at time t. From now on we write f_{0} for $f_{0}-\mu_{\infty}$, so that f_{0} is of mass 0 .

A Subgeometric Lyapunov Inequality

We introduce the function

$$
\sigma(x, v)=\left\{\begin{array}{l}
\inf \{s>0: x+s v \in \partial D\} \text { if }(x, v) \in\left(D \times \mathbb{R}^{n}\right) \cup \partial_{+} G \\
0 \text { otherwise }
\end{array}\right.
$$

From [EGKM13], this function satisfies $v \cdot \nabla_{x} \sigma(x, v)=-1$ a.e. in $D \times \mathbb{R}^{n}$, and behaves as $\frac{1}{\|v\|}$ when $\|v\| \rightarrow 0$. We consider, for $i \geq 0$, the weights $m_{i}=\left(e^{2}+\sigma(x, v)\right)^{i}$ and $\|g\|_{m_{i}}=\left\|g m_{i}\right\|_{L^{1}}$ for all $g \in L^{1}\left(D \times \mathbb{R}^{n}\right)$. One can show that

$$
\begin{equation*}
\left\|S_{T} f\right\|_{m_{i}}-\kappa \int_{0}^{T}\left\|S_{s} f\right\|_{m_{i-1}} \leq\|f\|_{m_{i}}+b(1+T)\|f\|_{L^{1}} \tag{4}
\end{equation*}
$$

for $1 \leq i \leq(n+1)-$, for all $T>0$ and with some constants $b, \kappa>0$. The upper bound on i comes from the necessary condition in the proof that

$$
\int_{v \cdot n_{x}>0} m_{i}(x, v) M(v)\left|v \cdot n_{x}\right| d v<\infty
$$

Doeblin-Harris Condition

Using the nice forms of the characteristics for the problem (1,2,3), we can show that, for all $\rho>0$ there exists $T(\rho)>0$ satisfying for some measure $\nu \not \equiv 0$,

$$
\begin{equation*}
S_{T(\rho)} f \geq \nu \int_{\{\sigma \leq \rho\}} f d x d v, \quad \forall f \in L^{1}\left(D \times \mathbb{R}^{n}\right), f \geq 0 \tag{5}
\end{equation*}
$$

Sketch of proof in dimension 3

We conclude with the help of (5) and (4). We derive the following alternative:

$$
\|f\|_{m_{2}} \leq A\|f\|_{L^{1}}, \quad \text { or } \quad\|f\|_{m_{2}}>A\|f\|_{L^{1}}
$$

for some well-chosen A. In both case, for $\|\cdot\|_{\alpha, \beta}=\|\cdot\|_{L^{1}}+\beta\|\cdot\|_{m_{3-}}+\alpha\|f\|_{m_{2}}$, we prove that for some $\alpha>0, \beta>0$,

$$
\left\|S_{T} f\right\|_{\alpha, \beta} \leq\|f\|_{\alpha, \beta}
$$

from which we conclude $\left\|S_{T} f\right\|_{m_{3-}} \leq M_{3}\|f\|_{m_{3-}}$ for all $T>0$, some $M_{3}>0$.
Consider the norm $\|\cdot\|_{\alpha, \beta, 1}=\|\cdot\|_{L^{1}}+\beta\|\cdot\|_{m_{1}}+\alpha\|\cdot\|_{m_{0}}$. With a similar computation, for some Z constant, using

$$
m_{1} \leq \lambda m_{0}+\epsilon_{\lambda} m_{3-},
$$

with $\epsilon_{\lambda}=\frac{1}{\lambda^{n}}$, we obtain

$$
Z\left\|S_{T} f\right\|_{\alpha, \beta, 1} \leq\|f\|_{\alpha, \beta, 1}+\alpha \frac{\epsilon_{\lambda}}{\lambda}\left\|S_{T} f\right\|_{m_{3-}} .
$$

Iterating this result, we conclude that for all $t \geq 0$,

$$
\left\|S_{t} f\right\|_{\alpha, \beta, 1} \lesssim\left(\frac{1}{(t+1)^{(n-1)-}}\right)\|f\|_{m_{3-}}
$$

reinjecting this in

$$
\left\|S_{T} f\right\|_{\alpha, \beta, 1}+2 \alpha\left\|S_{T} f\right\|_{m_{0}} \leq\|f\|_{\alpha, \beta, 1}
$$

and iterating, we gain one more exponent to conclude that for all $t>0$,

$$
\left\|S_{t} f\right\| \lesssim \frac{1}{(t+1)^{n-}}\|f\|
$$

References

[AG11] K. Aoki and F. Golse. On the speed of approach to equilibrium for a collisionless gas. Kinetic and Related Models, 4(1):87-107, 2011.
[EGKM13] R. Esposito, Y. Guo, C. Kim, and R. Marra. Non-isothermal boundary in the boltzmann theory and fourier law. Communications in Mathematical Physics, 323(1):177-239, Oct 2013.
[TAG10] T. Tsuji, K. Aoki, and F. Golse. Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall. Journal of Statistical Physics, 140(3):518-543, Aug 2010.

