Rate of convergence towards equilibrium for

a collisionless gas
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Problem and main result

We consider a C* bounded domain D in R" for n € {2,3}, 9D its boundary. We write n,
for the unit inward normal vector at x € 0D. As in [TAG10, AG11], we study the kinetic

free-transport equation
Of +v-V,f=0 (x,0)€DxR", (1)

completed with a boundary condition. We consider the so-called diffuse reflexion, for all
(x,v) € 0,G={(x,v) €D XR" v-n, >0},

f(t,z,v)(v-n,)= (vnx)cM(v)(/

v'n, >0

f(t,x,v’)\v’-nx\dv’), (2)

with ¢ a normalizing constant.

Figure 1: Diffuse reflection at the boundary. Possible outcoming velocities in blue.

The function M 1s a Gaussian distribution

1 ol
M(U) — (27.‘.)77,/26 :

This problem corresponds to the behavior of a collisionless gas (Knudsen) enclosed in a
vessel. Starting from fy, € L!(D x R"), the solution to the problem (1), (2) such that

f(0,z,v)= fy(x,v) a.e. in D x R", (3)
exists, is unique, and converges in the L' sense towards an equilibrium given by
M
Uoo(X,0) = (U)/ folz,v)dxdv.
‘D ’ D xR
We prove by slemigroup arguments that the rate of this convergence 1s W, more
precisely m(éﬁ;n for any “reasonable” f;. This model is a good example of “weak
(hypo)dissipativity™.
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Figure 2: Convergence towards equilibrium. In red, particles which touched the boundary.

Well-posedness, mass conservation and semigroup

The problem (1, 2, 3) satisfies positivity, a result due to the very simple form of characteris-
tics and to the fact that the boundary operator is itself positive. The trace of an L' solution
f to (1) exists at the boundary, we write it v f. The mass conservation is easily obtained by
Green’s theorem:

d

il vV, f(t,z,v)dxdv

f(t,x,v)dxdv = —/

D xR™

= / 1St 2, 0)(v-ng)dvdS(z),
0D xR”

with dS(x) the surface measure of 0D at x and where the sign is due to the fact that n, is
the inward normal vector at x. Since ¢ [ _ M (v)|v-n,|dv=1, we easily have

/ VS v engldv= /
V-1, >0 v, <0

from which we conclude. We can thus associate to the problem a semigroup of operators
(.S¢)¢>0, such that

1.50=1d, S; =55, forall s >0,t >0,

2.5 >0forallt >0,

3.t — S; is (strongly) continuous, i.e. for all f € L'(D xR"), ||S;f — fll;: — 0 as t — 0,
4. | e Stfdzdv= [, .. fdxdv for all t > 0 (mass conservation).

Given fy€ L'(D x R") an initial datum, ¢ >0 S; fy = f(t,z,v) is the solution to (1, 2, 3) at
time t. From now on we write f, for fy— li~, SO that f; is of mass 0.

’)/f|?] °n:C|dU7

A Subgeometric Lyapunov Inequality

We introduce the function

(2.0) = inf{s>0:x+sv € 9D} if (x,v) € (DxR")UI, G,
TV 0 otherwise

From [EGKM13], this function satisfies v-V,o(z,v) = —1 a.e. in D xR", and behaves as ﬁ

when [|v|| — 0. We consider, for 7 > 0, the weights m; = (¢*+o(x,v))" and ||g||,n. = ||gmi|| 1
for all g € L'(D x R™). One can show that

T
- / 1Sl < 1+ LTSl @

for 1 <i<(n+1)—, for all T'> 0 and with some constants b, x > 0. The upper bound on i
comes from the necessary condition 1n the proof that

/ m;(x,v) M (v)|v-ng.|dv < oco.
v >0

Doeblin-Harris Condition

Using the nice forms of the characteristics for the problem (1, 2, 3), we can show that, for

all p > 0 there exists 7T'(p) > 0 satisfying for some measure v % 0,

ST(p)fZV/

{o<p}

fdxdv, Ve L' (DxR"),f>0. (5)

Sketch of proof in dimension 3

We conclude with the help of (5) and (4). We derive the following alternative:
fllms < Alfllps o ([ fllm, > Al fll 2,

for some well-chosen A. In both case, for ||.||o.5= |||+ B||- || + || f]|m,» We prove that
for some o >0, 5 > 0,

157 0,8 < 1 f]a,s,
from which we conclude || S7f ||, < M| f||m, for all T'> 0, some M3 > 0.
Consider the norm ||.||o.5.1= ||| 21 +B||- ||, + || - ||1mg- With a similar computation, for some

Z constant, using
mi < Amp—+exms_,

1

+—, We obtain

with €, =
€x
Z\Stfllap1 < HfHoz,ﬂ,lJrOjHSTmeg-

Iterating this result, we conclude that for all £ > 0,

1
S Fllo gy < (

)1l

reinjecting this in
157 flla,ga+ 20l STf g < 11l
and 1terating, we gain one more exponent to conclude that for all £ > 0,

1
15011 % frl /1
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