Rate of convergence towards equilibrium for a collisionless gas

Armand Bernou¹, advisor Stéphane Mischler²

Contact: armand.bernou@sorbonne-universite.fr

¹LPSM, Sorbonne Université, Paris, France. ² CEREMADE, Université Paris Dauphine, Paris, France.

Problem and main result

We consider a C^2 bounded domain D in \mathbb{R}^n for $n \in \{2,3\}$, ∂D its boundary. We write n_x for the unit inward normal vector at $x \in \partial D$. As in [TAG10, AG11], we study the kinetic free-transport equation

 $\partial_t f + v \cdot \nabla_x f = 0 \quad (x, v) \in D \times \mathbb{R}^n, \tag{1}$

with dS(x) the surface measure of ∂D at x and where the sign is due to the fact that n_x is the inward normal vector at x. Since $c \int_{v \cdot n_x > 0} M(v) |v \cdot n_x| dv = 1$, we easily have

$$\int_{v \cdot n_x > 0} \gamma f |v \cdot n_x| dv = \int_{v \cdot n_x < 0} \gamma f |v \cdot n_x| dv,$$

from which we conclude. We can thus associate to the problem a semigroup of operators $(S_t)_{t\geq 0}$, such that 1. $S_0 = Id$, $S_{t+s} = S_t S_s$ for all $s \geq 0, t \geq 0$,

completed with a boundary condition. We consider the so-called diffuse reflexion, for all $(x, v) \in \partial_+ G = \{(x, v) \in \partial D \times \mathbb{R}^n, v \cdot n_x > 0\},\$

$$f(t,x,v)(v \cdot n_x) = (v \cdot n_x)cM(v) \left(\int_{v' \cdot n_x > 0} f(t,x,v') |v' \cdot n_x| dv' \right), \quad (2)$$

with c a normalizing constant.

Figure 1: Diffuse reflection at the boundary. Possible outcoming velocities in blue.

The function M is a Gaussian distribution

This problem corresponds to the behavior of a collisionless gas (Knudsen) enclosed in a vessel. Starting from $f_0 \in L^1(D \times \mathbb{R}^n)$, the solution to the problem (1), (2) such that

2. $S_t \ge 0$ for all $t \ge 0$,

3. $t \to S_t$ is (strongly) continuous, i.e. for all $f \in L^1(D \times \mathbb{R}^n)$, $||S_t f - f||_{L^1} \to 0$ as $t \to 0$, 4. $\int_{D \times \mathbb{R}^n} S_t f dx dv = \int_{D \times \mathbb{R}^n} f dx dv$ for all $t \ge 0$ (mass conservation). Given $f_0 \in L^1(D \times \mathbb{R}^n)$ an initial datum, $t \ge 0$ $S_t f_0 = f(t, x, v)$ is the solution to (1, 2, 3) at time t. From now on we write f_0 for $f_0 - \mu_\infty$, so that f_0 is of mass 0.

A Subgeometric Lyapunov Inequality

We introduce the function

 $\sigma(x,v) = \begin{cases} \inf\{s > 0 : x + sv \in \partial D\} \text{ if } (x,v) \in (D \times \mathbb{R}^n) \cup \partial_+ G, \\ 0 \text{ otherwise }. \end{cases}$

From [EGKM13], this function satisfies $v \cdot \nabla_x \sigma(x, v) = -1$ a.e. in $D \times \mathbb{R}^n$, and behaves as $\frac{1}{\|v\|}$ when $\|v\| \to 0$. We consider, for $i \ge 0$, the weights $m_i = (e^2 + \sigma(x, v))^i$ and $\|g\|_{m_i} = \|gm_i\|_{L^1}$ for all $g \in L^1(D \times \mathbb{R}^n)$. One can show that

$$\|S_T f\|_{m_i} - \kappa \int_0^T \|S_s f\|_{m_{i-1}} \le \|f\|_{m_i} + b(1+T)\|f\|_{L^1},$$
(4)

for $1 \le i \le (n+1)-$, for all T > 0 and with some constants $b, \kappa > 0$. The upper bound on i comes from the necessary condition in the proof that

 $\int_{v \cdot n_x > 0} m_i(x, v) M(v) | v \cdot n_x | dv < \infty.$

 $f(0,x,v) = f_0(x,v)$ a.e. in $D \times \mathbb{R}^n$,

exists, is unique, and converges in the L^1 sense towards an equilibrium given by

$$\mu_{\infty}(x,v) = \frac{M(v)}{|D|} \int_{D \times \mathbb{R}^n} f_0(x,v) dx dv.$$

We prove by semigroup arguments that the rate of this convergence is $\frac{1}{(t+1)^{n-}}$, more precisely $\frac{\ln(t+1)^{n+1}}{(t+1)^n}$ for any "reasonable" f_0 . This model is a good example of "weak (hypo)dissipativity".

Doeblin-Harris Condition

(3)

Using the nice forms of the characteristics for the problem (1, 2, 3), we can show that, for all $\rho > 0$ there exists $T(\rho) > 0$ satisfying for some measure $\nu \neq 0$,

$$S_{T(\rho)}f \ge \nu \int_{\{\sigma \le \rho\}} f dx dv, \qquad \forall f \in L^1(D \times \mathbb{R}^n), f \ge 0.$$
(5)

Sketch of proof in dimension 3

We conclude with the help of (5) and (4). We derive the following alternative:

 $||f||_{m_2} \le A ||f||_{L^1}$, or $||f||_{m_2} > A ||f||_{L^1}$,

for some well-chosen A. In both case, for $\|.\|_{\alpha,\beta} = \|.\|_{L^1} + \beta \|.\|_{m_{3-}} + \alpha \|f\|_{m_2}$, we prove that for some $\alpha > 0, \beta > 0$,

 $\|S_T f\|_{\alpha,\beta} \le \|f\|_{\alpha,\beta},$

from which we conclude $||S_T f||_{m_{3-}} \le M_3 ||f||_{m_{3-}}$ for all T > 0, some $M_3 > 0$. Consider the norm $||.||_{\alpha,\beta,1} = ||.||_{L^1} + \beta ||.||_{m_1} + \alpha ||.||_{m_0}$. With a similar computation, for some Z constant, using

 $m_1 \leq \lambda m_0 + \epsilon_{\lambda} m_{3-},$

with $\epsilon_{\lambda} = \frac{1}{\lambda^{n-1}}$, we obtain

$$Z\|S_T f\|_{\alpha,\beta,1} \le \|f\|_{\alpha,\beta,1} + \alpha \frac{\epsilon_{\lambda}}{\lambda} \|S_T f\|_{m_3}$$

Figure 2: Convergence towards equilibrium. In red, particles which touched the boundary.

Well-posedness, mass conservation and semigroup

The problem (1, 2, 3) satisfies positivity, a result due to the very simple form of characteristics and to the fact that the boundary operator is itself positive. The trace of an L^1 solution f to (1) exists at the boundary, we write it γf . The mass conservation is easily obtained by Green's theorem:

$$\begin{split} \frac{d}{dt} \int_{D \times \mathbb{R}^n} f(t, x, v) dx dv &= -\int_{D \times \mathbb{R}^n} v \cdot \nabla_x f(t, x, v) dx dv \\ &= \int_{\partial D \times \mathbb{R}^n} \gamma f(t, x, v) (v \cdot n_x) dv dS(x), \end{split}$$

Iterating this result, we conclude that for all $t \ge 0$,

$$\|S_t f\|_{\alpha,\beta,1} \lesssim \left(\frac{1}{(t+1)^{(n-1)-}}\right) \|f\|_{m_{3-}}$$

reinjecting this in

$$\|S_T f\|_{\alpha,\beta,1} + 2\alpha \|S_T f\|_{m_0} \le \|f\|_{\alpha,\beta,1},$$

and iterating, we gain one more exponent to conclude that for all t > 0,

 $||S_t f|| \lesssim \frac{1}{(t+1)^{n-1}} ||f||.$

References

- [AG11] K. Aoki and F. Golse. On the speed of approach to equilibrium for a collisionless gas. *Kinetic and Related Models*, 4(1):87–107, 2011.
- [EGKM13] R. Esposito, Y. Guo, C. Kim, and R. Marra. Non-isothermal boundary in the boltzmann theory and fourier law. *Communications in Mathematical Physics*, 323(1):177–239, Oct 2013.
- [TAG10] T. Tsuji, K. Aoki, and F. Golse. Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall. *Journal of Statistical Physics*, 140(3):518–543, Aug 2010.