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Problem and main result
We consider a C2 bounded domain D in Rn for n∈{2,3}, ∂D its boundary. We write nx
for the unit inward normal vector at x∈ ∂D. As in [TAG10, AG11], we study the kinetic

free-transport equation

∂tf +v ·∇xf =0 (x,v)∈D×Rn, (1)

completed with a boundary condition. We consider the so-called diffuse reflexion, for all

(x,v)∈ ∂+G= {(x,v)∈ ∂D×Rn,v ·nx> 0},

f (t,x,v)(v ·nx) = (v ·nx)cM(v)
(∫

v′·nx>0
f (t,x,v′)|v′ ·nx|dv′

)
, (2)

with c a normalizing constant.
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Figure 1: Diffuse reflection at the boundary. Possible outcoming velocities in blue.

The function M is a Gaussian distribution

M(v) =
1

(2π)n/2
e−

‖v‖2
2 .

This problem corresponds to the behavior of a collisionless gas (Knudsen) enclosed in a

vessel. Starting from f0∈L1(D×Rn), the solution to the problem (1), (2) such that

f (0,x,v) = f0(x,v) a.e. in D×Rn, (3)

exists, is unique, and converges in the L1 sense towards an equilibrium given by

µ∞(x,v) =
M(v)

|D|

∫
D×Rn

f0(x,v)dxdv.

We prove by semigroup arguments that the rate of this convergence is 1
(t+1)n−, more

precisely ln(t+1)n+1

(t+1)n for any “reasonable” f0. This model is a good example of “weak
(hypo)dissipativity”.

Figure 2: Convergence towards equilibrium. In red, particles which touched the boundary.

Well-posedness, mass conservation and semigroup
The problem (1, 2, 3) satisfies positivity, a result due to the very simple form of characteris-
tics and to the fact that the boundary operator is itself positive. The trace of an L1 solution
f to (1) exists at the boundary, we write it γf . The mass conservation is easily obtained by
Green’s theorem:

d

dt

∫
D×Rn

f (t,x,v)dxdv=−
∫
D×Rn

v ·∇xf (t,x,v)dxdv

=

∫
∂D×Rn

γf (t,x,v)(v ·nx)dvdS(x),

with dS(x) the surface measure of ∂D at x and where the sign is due to the fact that nx is
the inward normal vector at x. Since c

∫
v·nx>0M(v)|v ·nx|dv=1, we easily have∫

v·nx>0
γf |v ·nx|dv=

∫
v·nx<0

γf |v ·nx|dv,

from which we conclude. We can thus associate to the problem a semigroup of operators
(St)t≥0, such that
1.S0= Id, St+s=StSs for all s≥ 0, t≥ 0,
2.St≥ 0 for all t≥ 0,
3. t→St is (strongly) continuous, i.e. for all f ∈L1(D×Rn), ‖Stf−f‖L1→ 0 as t→ 0,
4.
∫
D×RnStfdxdv=

∫
D×Rnfdxdv for all t≥ 0 (mass conservation).

Given f0∈L1(D×Rn) an initial datum, t≥ 0 Stf0= f (t,x,v) is the solution to (1, 2, 3) at
time t. From now on we write f0 for f0−µ∞, so that f0 is of mass 0.

A Subgeometric Lyapunov Inequality
We introduce the function

σ(x,v) =

{
inf{s> 0 :x+sv ∈ ∂D} if (x,v)∈ (D×Rn)∪∂+G,
0 otherwise .

From [EGKM13], this function satisfies v·∇xσ(x,v) =−1 a.e. inD×Rn, and behaves as 1
‖v‖

when ‖v‖→ 0. We consider, for i≥ 0, the weights mi= (e2+σ(x,v))i and ‖g‖mi
= ‖gmi‖L1

for all g ∈L1(D×Rn). One can show that

‖STf‖mi
−κ
∫ T

0

‖Ssf‖mi−1≤‖f‖mi
+b(1+T )‖f‖L1, (4)

for 1≤ i≤ (n+1)−, for all T > 0 and with some constants b,κ> 0. The upper bound on i
comes from the necessary condition in the proof that∫

v·nx>0
mi(x,v)M(v)|v ·nx|dv <∞.

Doeblin-Harris Condition
Using the nice forms of the characteristics for the problem (1, 2, 3), we can show that, for

all ρ> 0 there exists T (ρ)> 0 satisfying for some measure ν 6≡ 0,

ST (ρ)f ≥ ν
∫
{σ≤ρ}

fdxdv, ∀f ∈L1(D×Rn),f ≥ 0. (5)

Sketch of proof in dimension 3
We conclude with the help of (5) and (4). We derive the following alternative:

‖f‖m2
≤A‖f‖L1, or ‖f‖m2

>A‖f‖L1,

for some well-chosen A. In both case, for ‖.‖α,β = ‖.‖L1+β‖.‖m3−+α‖f‖m2
, we prove that

for some α> 0,β > 0,
‖STf‖α,β≤‖f‖α,β,

from which we conclude ‖STf‖m3−≤M3‖f‖m3− for all T > 0, some M3> 0.
Consider the norm ‖.‖α,β,1= ‖.‖L1+β‖.‖m1

+α‖.‖m0
. With a similar computation, for some

Z constant, using
m1≤λm0+ελm3−,

with ελ= 1
λn−, we obtain

Z‖STf‖α,β,1≤‖f‖α,β,1+α
ελ
λ
‖STf‖m3−.

Iterating this result, we conclude that for all t≥ 0,

‖Stf‖α,β,1.
( 1

(t+1)(n−1)−

)
‖f‖m3−,

reinjecting this in
‖STf‖α,β,1+2α‖STf‖m0

≤‖f‖α,β,1,
and iterating, we gain one more exponent to conclude that for all t> 0,

‖Stf‖.
1

(t+1)n−
‖f‖.
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