

Asymptotique du transport libre cinétique avec condition de Maxwell

Armand Bernou LJLL, Sorbonne Université En collaboration avec Nicolas Fournier (LPSM)

24 Juin 2021 Journées de probabilités 2021

Convergence vers l'équilibre du transport libre

1 Modèle et résultats précédents

- Équation du transport libre
- Conditions au bord
- Contexte et résultats précédents
- 2 Résultat et cadre probabiliste
- 3 Résultats numériques

Modèle

Modèle physique : gaz à très faible densité de particules (gaz de Knudsen). On néglige les interactions entre particules.

Modèle

Modèle physique : gaz à très faible densité de particules (gaz de Knudsen). On néglige les interactions entre particules.

La densité de probabilité f(t, x, v) de trouver une particule en position $x \in \Omega$ (domaine spatial), au temps $t \ge 0$, avec vitesse $v \in \mathbb{R}^d$, $d \ge 2$, vérifie l'EDP du transport libre

 $\partial_t f(t, x, v) + v \cdot \nabla_x f(t, x, v) = 0, \qquad (t, x, v) \in \mathbb{R}_+ \times \Omega \times \mathbb{R}^d.$

Modèle

Modèle physique : gaz à très faible densité de particules (gaz de Knudsen). On néglige les interactions entre particules.

La densité de probabilité f(t, x, v) de trouver une particule en position $x \in \Omega$ (domaine spatial), au temps $t \ge 0$, avec vitesse $v \in \mathbb{R}^d$, $d \ge 2$, vérifie l'EDP du transport libre

 $\partial_t f(t, x, v) + v \cdot \nabla_x f(t, x, v) = 0, \qquad (t, x, v) \in \mathbb{R}_+ \times \Omega \times \mathbb{R}^d.$

C'est l'équation du transport libre (cinétique) dans le domaine $\Omega \subset \mathbb{R}^d.$ On la complète avec

- une donnée initiale $f_0(\cdot, \cdot)$ sur $\Omega \times \mathbb{R}^d$;
- \blacksquare des conditions au bord $\partial \Omega$ du domaine spatial.

Une vue du transport libre

Conditions au bord

Ce choix a un impact crucial sur le modèle. Premier choix possible : la réflexion spéculaire (billard).

Conditions au bord

Ce choix a un impact crucial sur le modèle. Premier choix possible : la réflexion spéculaire (billard).

Réflexion spéculaire

Soit $x \in \partial\Omega$, n_x le vecteur normal unitaire pointant vers Ω à $x, v \in \mathbb{R}^d$ tel que $v \cdot n_x < 0$, alors la vitesse rentrante (après la réflexion) est

$$\eta_x(v) = v - 2(v \cdot n_x)n_x.$$

Conditions au bord

Ce choix a un impact crucial sur le modèle. Premier choix possible : la réflexion spéculaire (billard).

Réflexion spéculaire

Soit $x \in \partial\Omega$, n_x le vecteur normal unitaire pointant vers Ω à $x, v \in \mathbb{R}^d$ tel que $v \cdot n_x < 0$, alors la vitesse rentrante (après la réflexion) est

$$\eta_x(v) = v - 2(v \cdot n_x)n_x.$$

Limites de la réflexion spéculaire

Modèle trop simple qui retranscrit mal certains phénomènes physiques.

Limites de la réflexion spéculaire

Modèle trop simple qui retranscrit mal certains phénomènes physiques.

Exemple : pas de tension de surface exercée par le gaz sur le bord du domaine dans les directions tangentielles, ce qui est contraire aux observations.

Limites de la réflexion spéculaire

Modèle trop simple qui retranscrit mal certains phénomènes physiques.

Exemple : pas de tension de surface exercée par le gaz sur le bord du domaine dans les directions tangentielles, ce qui est contraire aux observations.

Une clé de compréhension : le mur est lui-même composé de plusieurs couches de molécules, possiblement espacées.

Réflexion diffuse

Une solution, due à Maxwell lui-même est d'utiliser à la place (au moins en partie) la réflexion diffuse.

Réflexion diffuse

Une solution, due à Maxwell lui-même est d'utiliser à la place (au moins en partie) la réflexion diffuse.

Réflexion diffuse

Soit $\Sigma := \partial \Omega \times \mathbb{R}^d$. Au bord, la densité f satisfait, pour $(t, x, v) \in \mathbb{R}_+ \times \Sigma$, avec $v \cdot n_x > 0$,

$$f(t, x, v) = cM(v)\widetilde{\gamma_+ f}(t, x),$$

où c est une constant de normalisation et γ_+f est le flux, donné par

$$\widetilde{\gamma_+f}(t,x) = \int_{\{v' \cdot n_x < 0\}} f(t,x,v') |v' \cdot n_x| \mathrm{d}v'.$$

Choix de M

Le cas le plus classique est la Maxwellienne de bord :

$$M(v) = \frac{e^{-\frac{|v|^2}{2}}}{(2\pi)^{\frac{d}{2}}}.$$

Choix de M

Le cas le plus classique est la Maxwellienne de bord :

$$M(v) = \frac{e^{-\frac{|v|^2}{2}}}{(2\pi)^{\frac{d}{2}}}.$$

D'autres choix sont possibles :

- **1** Avec une dépendance spatiale, $c(x)M(x,v) = c(x)e^{-\frac{|v|^2}{2\theta(x)}}$ où $\theta(x)$ est la température en $x \in \partial\Omega$, c(x) constante.
- 2 Billards stochastiques : M conserve l'énergie, pas de symétrie radiale.

Ici, on va supposer M à symétrie radiale, continue au voisinage de 0 avec $\int_{1}^{\infty} M(v) dv > 0$.

La condition de Maxwell

La combinaison convexe des deux réflexions est plus pertinente physiquement.

Condition de Maxwell

Pour
$$(t, x, v) \in \mathbb{R}_+ \times \Sigma$$
 avec $v \cdot n_x > 0$,

$$f(t, x, v) = (1 - \alpha(x))f(t, x, \eta_x(v)) + \alpha(x)cM(v)\widetilde{\gamma_+ f(t, x)},$$

avec $\alpha(x) \in [0, 1]$ le coefficient d'accommodation en $x \in \partial \Omega$.

La condition de Maxwell

La combinaison convexe des deux réflexions est plus pertinente physiquement.

Condition de Maxwell

Pour
$$(t, x, v) \in \mathbb{R}_+ \times \Sigma$$
 avec $v \cdot n_x > 0$,

$$f(t, x, v) = (1 - \alpha(x))f(t, x, \eta_x(v)) + \alpha(x)cM(v)\widetilde{\gamma_+ f}(t, x),$$

avec $\alpha(x) \in [0, 1]$ le coefficient d'accommodation en $x \in \partial \Omega$.

Hypothèses et résultat qualitatif

On considère le transport libre cinétique avec condition de Maxwell au bord, température constante et $d \ge 2$. On suppose que Ω est un domaine borné C^2 , de volume 1, et on pose $G := \Omega \times \mathbb{R}^d$. On considère $f_0 \in L^1(G)$.

Hypothèses et résultat qualitatif

On considère le transport libre cinétique avec condition de Maxwell au bord, température constante et $d \ge 2$. On suppose que Ω est un domaine borné C^2 , de volume 1, et on pose $G := \Omega \times \mathbb{R}^d$. On considère $f_0 \in L^1(G)$.

Le problème est bien posé (Arkeryd-Cercignani 93) : l'équation admet une solution unique f telle que $f(t, \cdot, \cdot) \in L^1(G)$ pour tout $t \ge 0$. On peut travailler avec des mesures, mais on perd l'unicité. On veut comprendre le comportement de f quand $t \to \infty$.

Hypothèses et résultat qualitatif

On considère le transport libre cinétique avec condition de Maxwell au bord, température constante et $d \ge 2$. On suppose que Ω est un domaine borné C^2 , de volume 1, et on pose $G := \Omega \times \mathbb{R}^d$. On considère $f_0 \in L^1(G)$.

Le problème est bien posé (Arkeryd-Cercignani 93) : l'équation admet une solution unique f telle que $f(t, \cdot, \cdot) \in L^1(G)$ pour tout $t \ge 0$. On peut travailler avec des mesures, mais on perd l'unicité. On veut comprendre le comportement de f quand $t \to \infty$.

Une hypothèse clé : $\forall x \in \partial \Omega$, $\alpha(x) \ge \alpha_0$ pour un $\alpha_0 > 0$. Si $\alpha \equiv 0$, il n'y a pas d'équilibre. Entre les deux, c'est compliqué.

Absence d'équilibre dans le cas purement spéculaire

Convergence qualitative vers l'équilibre

Entropie naturelle : soit $W(t) = \int_G f \ln(\frac{f}{M}) dv dx \ge 0$, alors

$$\frac{d}{dt}W(t) \le 0.$$

C'est une forme de Théorème H pour la transport libre.

Convergence qualitative vers l'équilibre

Entropie naturelle : soit $W(t) = \int_G f \ln(\frac{f}{M}) dv dx \ge 0$, alors

$$\frac{d}{dt}W(t) \le 0.$$

C'est une forme de Théorème H pour la transport libre.

De plus, si f(t, x, v) = M(v) pour tout $(t, x, v) \in \mathbb{R}_+ \times G$, W(t) = 0 pour tout $t \ge 0$.

On peut en fait montrer (Arkeryd-Nouri 94, LMKR 20) qu'en partant d'un $f_0 \in L^1(G)$ de masse 1, $f(t, \cdot, \cdot)$ converge vers

$$f_{\infty}(x,v) = M(v).$$

Convergence qualitative vers l'équilibre

Entropie naturelle : soit $W(t) = \int_G f \ln(\frac{f}{M}) dv dx \ge 0$, alors

$$\frac{d}{dt}W(t) \le 0.$$

C'est une forme de Théorème H pour la transport libre.

De plus, si f(t, x, v) = M(v) pour tout $(t, x, v) \in \mathbb{R}_+ \times G$, W(t) = 0 pour tout $t \ge 0$.

On peut en fait montrer (Arkeryd-Nouri 94, LMKR 20) qu'en partant d'un $f_0 \in L^1(G)$ de masse 1, $f(t, \cdot, \cdot)$ converge vers

$$f_{\infty}(x,v) = M(v).$$

Quel est le taux de convergence correspondant en norme L^1 ? Vitesses faibles qui persistent longtemps \rightarrow on s'attend à une convergence sous-exponentielle.

En norme $L^1,$ avec $\Omega = \mathbb{S}^{d-1}$ (symétrie radiale du domaine) :

En norme L^1 , avec $\Omega = \mathbb{S}^{d-1}$ (symétrie radiale du domaine) :

1 Tsuji-Aoki-Golse (2010) : taux de convergence en $\frac{1}{t^d}$ obtenu numériquement à partir de l'entropie W;

En norme L^1 , avec $\Omega = \mathbb{S}^{d-1}$ (symétrie radiale du domaine) :

- **1** Tsuji-Aoki-Golse (2010) : taux de convergence en $\frac{1}{t^d}$ obtenu numériquement à partir de l'entropie W;
- 2 Aoki-Golse (2011) : borne supérieure en $\frac{1}{t}$ pour tout d (application du théorème de renouvellement de Feller);

En norme L^1 , avec $\Omega = \mathbb{S}^{d-1}$ (symétrie radiale du domaine) :

- **1** Tsuji-Aoki-Golse (2010) : taux de convergence en $\frac{1}{t^d}$ obtenu numériquement à partir de l'entropie W;
- 2 Aoki-Golse (2011) : borne supérieure en $\frac{1}{t}$ pour tout d (application du théorème de renouvellement de Feller);
- **3** Kuo-Liu-Tsai et Kuo (2013-2014-2015): taux en $\frac{1}{t^d} \rightarrow$ description stochastique du système et obtention d'une LGN.

En norme L^1 , avec $\Omega = \mathbb{S}^{d-1}$ (symétrie radiale du domaine) :

- **1** Tsuji-Aoki-Golse (2010) : taux de convergence en $\frac{1}{t^d}$ obtenu numériquement à partir de l'entropie W;
- 2 Aoki-Golse (2011) : borne supérieure en $\frac{1}{t}$ pour tout d (application du théorème de renouvellement de Feller);
- **3** Kuo-Liu-Tsai et Kuo (2013-2014-2015): taux en $\frac{1}{t^d} \rightarrow$ description stochastique du système et obtention d'une LGN.

Toutes ces méthodes reposent fortement sur la symétrie du domaine.

En norme L^1 , avec $\Omega = \mathbb{S}^{d-1}$ (symétrie radiale du domaine) :

- **1** Tsuji-Aoki-Golse (2010) : taux de convergence en $\frac{1}{t^d}$ obtenu numériquement à partir de l'entropie W;
- 2 Aoki-Golse (2011) : borne supérieure en $\frac{1}{t}$ pour tout d (application du théorème de renouvellement de Feller);
- **3** Kuo-Liu-Tsai et Kuo (2013-2014-2015): taux en $\frac{1}{t^d} \rightarrow$ description stochastique du système et obtention d'une LGN.

Toutes ces méthodes reposent fortement sur la symétrie du domaine. Récemment, Lods and Mokhtar-Kharroubi (2020) ont obtenu un taux en $\frac{1}{t^{\frac{d}{2}}}$ sans hypothèse de symétrie.

En norme L^1 , avec $\Omega = \mathbb{S}^{d-1}$ (symétrie radiale du domaine) :

- **1** Tsuji-Aoki-Golse (2010) : taux de convergence en $\frac{1}{t^d}$ obtenu numériquement à partir de l'entropie W;
- 2 Aoki-Golse (2011) : borne supérieure en $\frac{1}{t}$ pour tout d (application du théorème de renouvellement de Feller);
- **3** Kuo-Liu-Tsai et Kuo (2013-2014-2015): taux en $\frac{1}{t^d} \rightarrow$ description stochastique du système et obtention d'une LGN.

Toutes ces méthodes reposent fortement sur la symétrie du domaine. Récemment, Lods and Mokhtar-Kharroubi (2020) ont obtenu un taux en $\frac{1}{4\pi}$ sans hypothèse de symétrie.

Un résultat purement déterministe (adaptation d'un théorème de Harris) : B. 2020 \rightarrow optimal dans le cas où M est la Maxwellienne de bord, possiblement dépendante de x, sans hypothèse de symétrie.

Illustration de la convergence : cas non radial

Convergence vers l'équilibre du transport libre

1 Modèle et résultats précédents

2 Résultat et cadre probabiliste

- Résultat
- Construction d'un processus adapté
- Couplage probabiliste

3 Résultats numériques

Résultat principal

Théorème (B., Fournier 2020)

Soit Ω un domaine borné, C^2 , $G := \Omega \times \mathbb{R}^d$. Soit $f_0 \in L^1(G)$, on note $f_t \in L^1(G)$ l'unique solution en $t \ge 0$. Si $r : \mathbb{R}_+ \to \mathbb{R}_+$ est str. croissante avec $r(x+y) \le r(x) + r(y)$, et

$$\int_{G} r\left(\frac{1}{|v|}\right) f_{0}(x,v) \, \mathrm{d} v \mathrm{d} x + \int_{G} r\left(\frac{1}{|v|}\right) M(v) \, \mathrm{d} v \mathrm{d} x < \infty,$$

alors, pour tout $t \ge 0$, pour une constante C > 0,

$$||f_t - f_\infty||_{L^1(G)} \le \frac{C}{r(t)}.$$

Quelques remarques

Le théorème est essentiellement pensé pour le cas $r(x) = (x+1)^{\gamma}$ pour un $\gamma > 0$. Si M est la Maxwellienne de bord et f_0 bornée, on peut choisir, pour tout $\epsilon > 0$, $\gamma = d - \epsilon$.
Quelques remarques

- **I** Le théorème est essentiellement pensé pour le cas $r(x) = (x+1)^{\gamma}$ pour un $\gamma > 0$. Si M est la Maxwellienne de bord et f_0 bornée, on peut choisir, pour tout $\epsilon > 0$, $\gamma = d - \epsilon$.
- **2** Il raffine la dépendance en f_0 du résultat.

Quelques remarques

- **I** Le théorème est essentiellement pensé pour le cas $r(x) = (x+1)^{\gamma}$ pour un $\gamma > 0$. Si M est la Maxwellienne de bord et f_0 bornée, on peut choisir, pour tout $\epsilon > 0$, $\gamma = d - \epsilon$.
- **2** Il raffine la dépendance en f_0 du résultat.
- **3** On peut adapter le théorème pour traiter le cadre mesure (plutôt que L^1), en perdant uniquement l'unicité de f_t .

Quelques remarques

- **1** Le théorème est essentiellement pensé pour le cas $r(x) = (x+1)^{\gamma}$ pour un $\gamma > 0$. Si M est la Maxwellienne de bord et f_0 bornée, on peut choisir, pour tout $\epsilon > 0$, $\gamma = d - \epsilon$.
- **2** Il raffine la dépendance en f_0 du résultat.
- **3** On peut adapter le théorème pour traiter le cadre mesure (plutôt que L^1), en perdant uniquement l'unicité de f_t .
- I Le résultat est également plus précis en la dépendance en M, et permet en particulier de regarder autre chose que la Maxwellienne de bord.

Construction d'une solution : préliminaires

Idée : pour tout $g \in L^1(G)$, on va construire un processus $(X_t, V_t)_{t \ge 0}$ dont la loi est solution du problème (EDP) + (Condition de bord) avec donnée initiale g.

Construction d'une solution : préliminaires

Idée : pour tout $g \in L^1(G)$, on va construire un processus $(X_t, V_t)_{t\geq 0}$ dont la loi est solution du problème (EDP) + (Condition de bord) avec donnée initiale g.

Pour cela, deux fonctions utiles :

$$\zeta(x,v) := \begin{cases} \inf\{t > 0, x + tv \in \partial\Omega\}, & x \in \Omega \text{ ou } x \in \partial\Omega, v \cdot n_x > 0, \\ 0 & x \in \partial\Omega, v \cdot n_x \le 0, \end{cases}$$
$$q(x,v) := x + \zeta(x,v)v.$$

Construction d'une solution : préliminaires

Idée : pour tout $g \in L^1(G)$, on va construire un processus $(X_t, V_t)_{t\geq 0}$ dont la loi est solution du problème (EDP) + (Condition de bord) avec donnée initiale g.

Pour cela, deux fonctions utiles :

$$\zeta(x,v) := \begin{cases} \inf\{t > 0, x + tv \in \partial\Omega\}, & x \in \Omega \text{ ou } x \in \partial\Omega, v \cdot n_x > 0, \\ 0 & x \in \partial\Omega, v \cdot n_x \le 0, \end{cases}$$
$$q(x,v) := x + \zeta(x,v)v.$$

Si l'on part au temps 0 en position x avec vitesse v, $\zeta(x, v)$ est le temps auquel on touche le bord, q(x, v) l'endroit où cette collision se produit.

Pour construire $(X_t, V_t)_{t \ge 0}$ (cas $\alpha \equiv 1$), On tire $(X_0, V_0) \sim g$, on pose $T_0 = 0$, $T_1 = T_0 + \zeta(X_0, V_0)$.

Pour construire $(X_t, V_t)_{t \ge 0}$ (cas $\alpha \equiv 1$),

- On tire $(X_0, V_0) \sim g$, on pose $T_0 = 0$, $T_1 = T_0 + \zeta(X_0, V_0)$.
- Pour $t \in (T_0, T_1)$, on pose $X_t = X_0 + tV_0$, $V_t = V_0$.

Pour construire $(X_t, V_t)_{t \ge 0}$ (cas $\alpha \equiv 1$),

- On tire $(X_0, V_0) \sim g$, on pose $T_0 = 0$, $T_1 = T_0 + \zeta(X_0, V_0)$.
- Pour $t \in (T_0, T_1)$, on pose $X_t = X_0 + tV_0$, $V_t = V_0$.
- On pose $X_{T_1} = q(X_0, V_0), V_{T_1} = R_1 \vartheta(X_{T_1}, \Theta_1)$. On pose aussi $T_2 = T_1 + \zeta(X_{T_1}, V_{T_1})$.

Pour construire $(X_t, V_t)_{t \ge 0}$ (cas $\alpha \equiv 1$),

- On tire $(X_0, V_0) \sim g$, on pose $T_0 = 0$, $T_1 = T_0 + \zeta(X_0, V_0)$.
- Pour $t \in (T_0, T_1)$, on pose $X_t = X_0 + tV_0$, $V_t = V_0$.
- On pose $X_{T_1} = q(X_0, V_0), V_{T_1} = R_1 \vartheta(X_{T_1}, \Theta_1)$. On pose aussi $T_2 = T_1 + \zeta(X_{T_1}, V_{T_1})$.

...

Pour construire $(X_t, V_t)_{t>0}$ (cas $\alpha \equiv 1$),

- On tire $(X_0, V_0) \sim g$, on pose $T_0 = 0$, $T_1 = T_0 + \zeta(X_0, V_0)$.
- Pour $t \in (T_0, T_1)$, on pose $X_t = X_0 + tV_0$, $V_t = V_0$.
- On pose $X_{T_1} = q(X_0, V_0), V_{T_1} = R_1 \vartheta(X_{T_1}, \Theta_1)$. On pose aussi $T_2 = T_1 + \zeta(X_{T_1}, V_{T_1})$.

• • • •

On utilise plusieurs suites i.i.d. de v.a.

1 $(R_i)_{i\geq 1}$ avec R_1 v.a. sur \mathbb{R}_+ (norme de la vitesse sortante); 2 $(\Theta_i)_{i\geq 1}$ v.a. sur $(-\frac{\pi}{2}, \frac{\pi}{2}) \times [0, \pi]^{d-2}$ telle que, pour $x \in \partial\Omega$, $R_1 \vartheta(x, \Theta_1) \sim M(v) | v \cdot n_x | \mathbf{1}_{\{v \cdot n_x > 0\}}.$

Pour construire $(X_t, V_t)_{t>0}$ (cas $\alpha \equiv 1$),

- On tire $(X_0, V_0) \sim g$, on pose $T_0 = 0$, $T_1 = T_0 + \zeta(X_0, V_0)$.
- Pour $t \in (T_0, T_1)$, on pose $X_t = X_0 + tV_0$, $V_t = V_0$.
- On pose $X_{T_1} = q(X_0, V_0), V_{T_1} = R_1 \vartheta(X_{T_1}, \Theta_1)$. On pose aussi $T_2 = T_1 + \zeta(X_{T_1}, V_{T_1})$.

• • • •

On utilise plusieurs suites i.i.d. de v.a.

1 $(R_i)_{i\geq 1}$ avec R_1 v.a. sur \mathbb{R}_+ (norme de la vitesse sortante); 2 $(\Theta_i)_{i\geq 1}$ v.a. sur $(-\frac{\pi}{2}, \frac{\pi}{2}) \times [0, \pi]^{d-2}$ telle que, pour $x \in \partial\Omega$, $R_1 \vartheta(x, \Theta_1) \sim M(v) | v \cdot n_x | \mathbf{1}_{\{v \cdot n_x > 0\}}.$

 \rightarrow construction pour $\alpha \equiv 1$. Si l'on veut ajouter une composante spéculaire, on lance une pièce pondérée à chaque T_i , $i \geq 1$, en affectant la réflexion spéculaire si elle donne face. Soit K l'opérateur donné, pour ϕ suffisamment régulier, $(t, x, v) \in \mathbb{R}_+ \times \partial\Omega \times \mathbb{R}^d$ avec $v \cdot n_x > 0$, par

 $K\phi(t, x, v) = \alpha(x)cM(v)\widetilde{\gamma_+\phi}(t, x) + (1 - \alpha(x))\phi(t, x, \eta_x(v)).$

Soit K l'opérateur donné, pour ϕ suffisamment régulier, $(t, x, v) \in \mathbb{R}_+ \times \partial\Omega \times \mathbb{R}^d$ avec $v \cdot n_x > 0$, par

 $K\phi(t, x, v) = \alpha(x)cM(v)\widetilde{\gamma_{+}\phi(t, x)} + (1 - \alpha(x))\phi(t, x, \eta_{x}(v)).$

Proposition

Soit $f_0 \in L^1(G)$ et $(X_t, V_t)_{t\geq 0}$ donné par la construction précédente avec donnée initiale f_0 . Alors, la loi de $(t, X_t, V_t)_{t\geq 0}$ admet une densité $f(\cdot, \cdot, \cdot)$ par rapport à la mesure de Lebesgue sur $\mathbb{R}_+ \times G$ et fest une solution faible de l'EDP avec condition de bord, i.e.

 $\ \ \, \blacksquare \ \, pour \ tout \ T>0, \ \ \int_0^T \int_G f(t,x,v) \mathrm{d}x \mathrm{d}v \mathrm{d}t <\infty; \ \ \, \\$

Soit K l'opérateur donné, pour ϕ suffisamment régulier, $(t, x, v) \in \mathbb{R}_+ \times \partial\Omega \times \mathbb{R}^d$ avec $v \cdot n_x > 0$, par

 $K\phi(t, x, v) = \alpha(x)cM(v)\widetilde{\gamma_+\phi}(t, x) + (1 - \alpha(x))\phi(t, x, \eta_x(v)).$

Proposition

Soit $f_0 \in L^1(G)$ et $(X_t, V_t)_{t \ge 0}$ donné par la construction précédente avec donnée initiale f_0 . Alors, la loi de $(t, X_t, V_t)_{t \ge 0}$ admet une densité $f(\cdot, \cdot, \cdot)$ par rapport à la mesure de Lebesgue sur $\mathbb{R}_+ \times G$ et fest une solution faible de l'EDP avec condition de bord, i.e.

$$\textbf{1} \ pour \ tout \ T > 0, \ \int_0^T \int_G f(t,x,v) \mathrm{d}x \mathrm{d}v \mathrm{d}t < \infty;$$

2 il existe un couple de mesures de Radon positives ρ_{\pm} sur $\Sigma_{\pm} := (0, \infty) \times \{(x, v) \in \partial\Omega \times \mathbb{R}^d, \pm (v \cdot n_x) > 0\}$ tel que

 $\rho_+ = K \rho_- \ sur \ \Sigma_+ \ au \ sens \ des \ distributions$

 $\begin{array}{l} et \ tel \ que \ pour \ tout \ \phi \in C_c^{\infty}(\mathbb{R}_+ \times G) \ avec \ \phi = 0 \ sur \\ (0,\infty) \times \{(x,v) \in \partial\Omega \times \mathbb{R}^d, (v \cdot n_x) = 0\}, \end{array}$

$$\langle f, (\partial_t + v \cdot \nabla_x) \phi \rangle_{(0,\infty) \times G} = - \langle f_0, \phi(0, \cdot, \cdot) \rangle_G + \langle \rho_+, \phi \rangle_{\Sigma_+} - \langle \rho_-, \phi \rangle_{\Sigma_-}.$$

Couplage stochastique

On va considérer $(X_t, V_t)_{t \ge 0}$ donné par la construction précédente avec donnée initiale f_0 et $(\tilde{X}_t, \tilde{V}_t)_{t \ge 0}$ donné par la même construction pour $g = f_{\infty}$. Par invariance, $\forall t \ge 0, (\tilde{X}_t, \tilde{V}_t) \sim f_{\infty}$.

Couplage stochastique

On va considérer $(X_t, V_t)_{t \ge 0}$ donné par la construction précédente avec donnée initiale f_0 et $(\tilde{X}_t, \tilde{V}_t)_{t \ge 0}$ donné par la même construction pour $g = f_{\infty}$. Par invariance, $\forall t \ge 0, (\tilde{X}_t, \tilde{V}_t) \sim f_{\infty}$.

On introduit le temps de couplage

$$\tau := \inf\{t \ge 0, (X_{t+s}, V_{t+s})_{s \ge 0} = (\tilde{X}_{t+s}, \tilde{V}_{t+s})_{s \ge 0}\}.$$

L'objectif est de corréler les v.a. apparaissant dans les définition de $(X_t, V_t)_{t\geq 0}$ et $(\tilde{X}_t, \tilde{V}_t)_{t\geq 0}$ pour obtenir $\mathbb{E}[r(\tau)] < \infty$.

Couplage stochastique

On va considérer $(X_t, V_t)_{t \ge 0}$ donné par la construction précédente avec donnée initiale f_0 et $(\tilde{X}_t, \tilde{V}_t)_{t \ge 0}$ donné par la même construction pour $g = f_{\infty}$. Par invariance, $\forall t \ge 0, (\tilde{X}_t, \tilde{V}_t) \sim f_{\infty}$.

On introduit le temps de couplage

$$\tau := \inf\{t \ge 0, (X_{t+s}, V_{t+s})_{s \ge 0} = (\tilde{X}_{t+s}, \tilde{V}_{t+s})_{s \ge 0}\}.$$

L'objectif est de corréler les v.a. apparaissant dans les définition de $(X_t, V_t)_{t\geq 0}$ et $(\tilde{X}_t, \tilde{V}_t)_{t\geq 0}$ pour obtenir $\mathbb{E}[r(\tau)] < \infty$.

Par propriétés de la distance en variation totale : si $(X_t, V_t) \sim f_t$ est solution au temps t et $(\tilde{X}_t, \tilde{V}_t) \sim f_\infty$, alors, par Markov,

$$\|f_t - f_\infty\|_{TV} = \inf_{(X,V) \sim f_t, (\tilde{X}, \tilde{V}) \sim f_\infty} \mathbb{P}((X, V) \neq (X, V))$$
$$\leq \mathbb{P}(\tau > t) \leq \frac{\mathbb{E}[r(\tau)]}{r(t)}.$$

21/37

Contrôle du temps de couplage

C'est LE point délicat : comment corréler les suites $(R_i, \Theta_i)_{i\geq 1}$ et $(\tilde{R}_i, \tilde{\Theta}_i)_{i\geq 1}$ qui apparaissent dans les constructions de $(X_t, V_t)_{t\geq 0}$ et $(\tilde{X}_t, \tilde{V}_t)_{t\geq 0}$?

Contrôle du temps de couplage

C'est LE point délicat : comment corréler les suites $(R_i, \Theta_i)_{i\geq 1}$ et $(\tilde{R}_i, \tilde{\Theta}_i)_{i\geq 1}$ qui apparaissent dans les constructions de $(X_t, V_t)_{t\geq 0}$ et $(\tilde{X}_t, \tilde{V}_t)_{t\geq 0}$?

Pour simplifier, supposons Ω strictement convexe. Alors si $(X_t, V_{t-}) \in \Sigma_-, \tilde{X}_t \in \Omega$ et $|\tilde{V}_t| \ge 1$, on pose $t' = t + \zeta(\tilde{X}_t, \tilde{V}_t) > t$.

Contrôle du temps de couplage

C'est LE point délicat : comment corréler les suites $(R_i, \Theta_i)_{i\geq 1}$ et $(\tilde{R}_i, \tilde{\Theta}_i)_{i\geq 1}$ qui apparaissent dans les constructions de $(X_t, V_t)_{t\geq 0}$ et $(\tilde{X}_t, \tilde{V}_t)_{t\geq 0}$?

Pour simplifier, supposons Ω strictement convexe. Alors si $(X_t, V_{t-}) \in \Sigma_-, \ \tilde{X}_t \in \Omega \text{ et } |\tilde{V}_t| \ge 1$, on pose $t' = t + \zeta(\tilde{X}_t, \tilde{V}_t) > t$. On peut choisir (couplage maximal) (R, Θ) dans la construction de V_t et $(\tilde{R}, \tilde{\Theta})$ pour la construction de $\tilde{V}_{t'}$ tels que, pour $T = t + \zeta(X_t, V_t)$,

$$\mathbb{P}\Big((X_{T+s}, V_{T+s})_{s \ge 0} = (\tilde{X}_{T+s}, \tilde{V}_{T+s})_{s \ge 0}\Big) \ge c.$$

pour un c > 0 uniforme.

Une vue du mécanisme de corrélation

Grossièrement, pour $T_0 = 0$, et $T_{k+1} = \inf\{t > T_k, X_t \in \partial\Omega\}$ pour tout $k \ge 0$, on peut donc introduire une sous-suite $(T_{i_k})_{k\ge 1}$ telle que $T_{i_0} = 0$ et, pour tout $k \ge 0$,

$$T_{i_{k+1}} = \inf \left\{ T_j > T_{i_k}, \tilde{X}_{T_j} \in \Omega, |\tilde{V}_{T_j}| \ge 1 \right\},\$$

Grossièrement, pour $T_0 = 0$, et $T_{k+1} = \inf\{t > T_k, X_t \in \partial\Omega\}$ pour tout $k \ge 0$, on peut donc introduire une sous-suite $(T_{i_k})_{k\ge 1}$ telle que $T_{i_0} = 0$ et, pour tout $k \ge 0$,

$$T_{i_{k+1}} = \inf \left\{ T_j > T_{i_k}, \tilde{X}_{T_j} \in \Omega, |\tilde{V}_{T_j}| \ge 1 \right\},\$$

puis une variable aléatoire géométrique $G\sim \mathcal{G}(c)$ et obtenir la majoration suivante

Grossièrement, pour $T_0 = 0$, et $T_{k+1} = \inf\{t > T_k, X_t \in \partial\Omega\}$ pour tout $k \ge 0$, on peut donc introduire une sous-suite $(T_{i_k})_{k\ge 1}$ telle que $T_{i_0} = 0$ et, pour tout $k \ge 0$,

$$T_{i_{k+1}} = \inf \left\{ T_j > T_{i_k}, \tilde{X}_{T_j} \in \Omega, |\tilde{V}_{T_j}| \ge 1 \right\},\$$

puis une variable aléatoire géométrique $G \sim \mathcal{G}(c)$ et obtenir la majoration suivante

 $\tau \le T_{i_G+1}.$

Grossièrement, pour $T_0 = 0$, et $T_{k+1} = \inf\{t > T_k, X_t \in \partial\Omega\}$ pour tout $k \ge 0$, on peut donc introduire une sous-suite $(T_{i_k})_{k\ge 1}$ telle que $T_{i_0} = 0$ et, pour tout $k \ge 0$,

$$T_{i_{k+1}} = \inf \left\{ T_j > T_{i_k}, \tilde{X}_{T_j} \in \Omega, |\tilde{V}_{T_j}| \ge 1 \right\},$$

puis une variable aléatoire géométrique $G \sim \mathcal{G}(c)$ et obtenir la majoration suivante

$$\tau \le T_{i_G+1}.$$

Comment contrôler les intervalles $T_{i_k+1} - T_{i_k}$? On a, sachant $\mathcal{F}_{T_{i_k}}$,

$$T_{i_{k+1}} - T_{i_k} \lesssim \frac{d(\Omega)}{|V_{T_{i_k}}|} + \frac{d(\Omega)}{|\tilde{V}_{T_{i_k}}|} + 1,$$

où $d(\Omega)$ est le diamètre de Ω . Premier terme pour contrôler les intervalles $T_{i+1} - T_i$, second terme nécessaire pour que la suite $(T_{i_k})_{k\geq 1}$ n'explose pas.

Contrôle de τ II

Quelles sont les distributions possibles pour V_{T_i} et \tilde{V}_{T_i} ?

 $\blacksquare \text{ Soit } V \sim \int_{\Omega} f_0 dx \text{ (cas } i = 0 \text{ pour } (X_t, V_t)_{t \ge 0} \text{ notamment)};$

2 soit
$$V_{T_i} \sim M(v) | v \cdot n_{X_{T_i}} | \mathbf{1}_{\{v \cdot n_{X_{T_i}} > 0\}};$$

3 soit $V \sim M(v)$ (cas i = 0 pour $(\tilde{X}_t, \tilde{V}_t)_{t \ge 0}$ notamment).

Contrôle de τ II

Quelles sont les distributions possibles pour V_{T_i} et \tilde{V}_{T_i} ?

 $\blacksquare \text{ Soit } V \sim \int_{\Omega} f_0 dx \text{ (cas } i = 0 \text{ pour } (X_t, V_t)_{t \ge 0} \text{ notamment)};$

2 soit
$$V_{T_i} \sim M(v) | v \cdot n_{X_{T_i}} | \mathbf{1}_{\{v \cdot n_{X_{T_i}} > 0\}};$$

B soit $V \sim M(v)$ (cas i = 0 pour $(\tilde{X}_t, \tilde{V}_t)_{t \ge 0}$ notamment).

Pour conclure, on utilise (un peu de travail) l'inégalité précédente sur $T_{i_{k+1}} - T_{i_k}$, les contrôles sur les $\frac{1}{|V|}$ donnés par les hypothèses sur r, f_0 et M, et le fait que $r(x+y) \lesssim r(x) + r(y)$:

$$\mathbb{E}[r(\tau)] \lesssim \mathbb{E}[r(T_{i_G+1} - T_{i_G})] + \mathbb{E}\Big[\sum_{i=0}^{G-1} r(T_{i_{k+1}} - T_{i_k})\Big] < \infty.$$

Le cas non-convexe

Précédemment, on s'est placé en t > 0 avec $X_t \in \partial\Omega$, $\tilde{X}_t \in \Omega$ et $|\tilde{V}_t| \ge 1$ pour obtenir une minoration uniforme.

Précédemment, on s'est placé en t > 0 avec $X_t \in \partial\Omega$, $\tilde{X}_t \in \Omega$ et $|\tilde{V}_t| \ge 1$ pour obtenir une minoration uniforme.

Dans le cas non-convexe, il faut être plus précis sur les positions de X_t et \tilde{X}_t . On va ainsi identifier une région $F \subset \partial\Omega$ tel que si $X_t \in F$, $\tilde{X}_t \in \Omega$, $|\tilde{V}_t| \geq 1$ avec $q(\tilde{X}_t, \tilde{V}_t) \in F$, alors on peut à nouveau corréler (R, Θ) intervenant dans la définition de V_t et $(\tilde{R}, \tilde{\Theta})$ intervenant dans la définition de \tilde{V}_t , V_t),

$$\mathbb{P}\Big((X_{T+s}, V_{T+s})_{s\geq 0} = (\tilde{X}_{T+s}, \tilde{V}_{T+s})_{s\geq 0}\Big) \geq c.$$

avec un c > 0 uniforme sur F. À partir de cette adaptation, la stratégie est similaire.

Convergence vers l'équilibre du transport libre

- 1 Modèle et résultats précédents
- 2 Résultat et cadre probabiliste
- 3 Résultats numériques

Une autre approche numérique

La construction du processus précédent permet d'approcher la simulation du problème à l'aide d'un système de particules plutôt que de l'entropie comme dans Tsuji et al.

On va se placer à nouveau dans le domaine étoilé suivant (2D).

Comportement qualitatif

On considère une distribution initiale uniforme en espace, avec la loi $\mathcal{N}(0, 0.01I_2)$ pour les vitesses. Paramètres : 10⁶ particules, $\alpha \equiv 1$ (réflexion diffuse), MMaxwellienne de bord.

Simulation numérique de la variation totale

Un problème pratique important la distance en variation totale est difficile à estimer numériquement.

Simulation numérique de la variation totale

Un problème pratique important la distance en variation totale est difficile à estimer numériquement.

On va utiliser la propriété suivante : si μ, ν sont deux mesures sur l'espace mesurable (E, \mathcal{E}) ,

$$\|\mu - \nu\|_{TV} = \frac{1}{2} \sup_{\phi: E \to [-1,1]} \left| \int \phi d\mu - \int \phi d\nu \right|.$$

Simulation numérique de la variation totale

Un problème pratique important la distance en variation totale est difficile à estimer numériquement.

On va utiliser la propriété suivante : si μ, ν sont deux mesures sur l'espace mesurable (E, \mathcal{E}) ,

$$\|\mu - \nu\|_{TV} = \frac{1}{2} \sup_{\phi: E \to [-1,1]} \Big| \int \phi d\mu - \int \phi d\nu \Big|.$$

On peut donc approcher la variation totale en testant les mesures contre une fonction ϕ . On présente des estimations correspondant aux choix $\phi(x, v) = |x|^4 + |v|^2$ et $\phi_2(x, v) = \sqrt{|x|} + \sqrt{|v|}$.
Cas de la Maxwellienne de bord

Courbe log-log -> on a bien un taux polynomial, comme attendu, mais sa valeur est loin de la prédiction théorique (faiblesse du choix de la fonction test).

Modification de la loi au bord

On peut, à la place de

$$M(v) = \frac{e^{-\frac{|v|^2}{2}}}{2\pi}, \qquad v \in \mathbb{R}^2,$$

considérer une modification qui augmente/diminue la concentration autour de 0:

$$M_a(v) \propto e^{-\frac{|v|^2}{2}} |v|^{\frac{3}{a}-3}, \qquad v \in \mathbb{R}^2, \quad a \in (0,3).$$

Ce nouveau choix modifie le taux de convergence (si le f_0 est bien choisi). En particulier, avec la donnée initiale mentionnée précedemment, on attend un taux d'exposant $\frac{3}{a} - 1$ pour $a \in]1, 3[$ (le problème est un peu plus compliqué pour a < 1).

Un exemple : le cas a = 2.5.

Déviation claire par rapport au cas a = 1 ! À nouveau, différence entre le taux observé et le taux théorique.

Dépendance en f_0 : a = 0.1

Avec la donnée initiale précédente \rightarrow exposant maximal 2. Comme prévu, pas de déviation significative par rapport au cas a = 1.

Et correction pour f_0 bien choisie, a = .5

Si on prend $V_0 = 0.1V$ où $V \sim M_a$ (équilibre pour a = 0.5 mais avec température 0.01), on voit bien la modification de la convergence.

Perspectives

 Étude de NESS à l'aide du processus construit ici (cf Evans-Menegaki 20).

Perspectives

- Étude de NESS à l'aide du processus construit ici (cf Evans-Menegaki 20).
- **2** Le cas où α peut s'annuler ponctuellement.

Perspectives

- Étude de NESS à l'aide du processus construit ici (cf Evans-Menegaki 20).
- **2** Le cas où α peut s'annuler ponctuellement.
- **3** Une autre façon d'introduire de la corrélation : la condition de Cercignani-Lampis (utilité du cadre probabiliste pour les équations collisionnelles).

Références

- K. Aoki and F. Golse, On the Speed of Approach to Equilibrium for a Collisionless Gas, Kinetic and Related Models 4 (2011), no. 1, 87–107.
- A. Bernou, Long-Time Behavior of Kinetic Equations with Boundary Effects, Ph.D. thesis, December 2020, Available online at https://www.ljll.math.upmc.fr/bernou/.
 - A. Bernou and N. Fournier, A Coupling Approach for the Convergence to Equilibrium for a Collisionless Gas, 2021, Annals of Applied Probability, in press.
- H.-W. Kuo, T.-P. Liu, and L.-C. Tsai, *Free Molecular Flow with Boundary Effect*, Communications in Mathematical Physics **318** (2013), no. 2, 375–409 (en).
- T. Tsuji, K. Aoki, and F. Golse, *Relaxation of a Free-Molecular Gas to Equilibrium Caused by Interaction with Vessel Wall*, Journal of Statistical Physics **140** (2010), no. 3, 518–543 (en).

Merci pour votre attention !