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Probabilistic Graphical Models

Présentation du cours PGM

Total de 30 heures de cours :
18h CM (6 séances),
9h TD (3 séances)
3h de TP (A faire chez soi)

Travaux pratiques :
TP avec PyAgruM, librairie Python pour l’apprentisage de la
structure et des paramètres des réseaux bayésiens
dynamiques et pour l’inférence.
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Independence Models

Conditional independence

Modeling complex data

To model complex data, several questions have to be answered:

What is the task and the loss function?
What are the statistical properties and assumptions and
underlying the data generating process?
What have to be captured from the probabilistic distribution
to perform the task ?
How to learn the model parameters and perform inference
in reasonable time?

Once the model is chosen, two more issues:

Learning of the parameters of the model.
Inference of probabilistic queries
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Examples

Image: In a monochromatic image, each pixel is represented by a
discrete random variable. The image may be modelled using a Markov
network.

Bioinformatics: Consider a long sequence of ADN bases. If each base
of this sequence is modelled by a discrete random variable taking
values in {A,C,G, T}, the sequence may be modeled by a Markov
chain.
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Conditional independence

Examples

Speech processing: consider the syllables of a word represented as a
random signal. To retrieve the words from the signals, we may use a
hidden Markov model.

Text: The text may be modelled by a vector whose components are the
keyword appearance frequency, i.e. “bag of words” model. A naive
Bayes classifier works well for spam detection although the order of the
words and the correlation between the keywords frequencies are not
taken into account.
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Complexity vs. tractability

Poor models are usually based on simple independence assumptions
among variables that are rarely met in practice but they are easy to
learn.

In contrast, rich models allow complex statistical interactions to be
captured but are difficult to learn (lack of data) and computationally
demanding.

In practice, one has to achieve a trade off for the model to be able to
generalize well (statistical point of view) while keeping the
computational burden of training and inference as low as possible
(tractable computations).
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Basic properties

Fundamental rules of probability. Let X and Y be two random variables,

Sum rule:
p(X) =

∑
Y

p(X,Y ).

Product rule:

p(X,Y ) = p(Y |X)p(X).

Independence. X and Y are independent iff

p(X,Y ) = p(X)p(Y ).
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Independence Models

Conditional independence

Basic properties

Conditional independence. Let X,Y, Z be random variables.

We define X and Y to be conditionally independent
given Z if and only if

p(X,Y |Z) = p(X|Z)p(Y |Z).

Property: If X and Y are conditionally independent
given Z, then

p(X|Y,Z) = p(X|Z).
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Basic properties

Independent and identically distributed. A set of random variables is
independent and identically distributed (i.i.d.) if each variable
has the same probability distribution and they are jointly
independent.

Bayes formula. For two random variables X,Y we have

p(X|Y ) =
p(Y |X)p(X)

p(Y )
.
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Conditional independence

Let X, Y and Z denote 3 disjoint sets of random variables defined on
X × Y × Z,

Definition

X and Y are conditional independent given Z, denoted X⊥⊥Y | Z, iff
∀(x,y, z) ∈ X × Y × Z such that p(z) > 0:

p(x,y|z) = p(x|z)p(y|z)

The condition is equivalent to

p(x, y, z)p(z) = p(x, z)p(y, z)
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Conditional independence

An alternative definition of conditional independence is:

Theorem

X⊥⊥Y | Z iff there exists two functions f and g such that

p(x,y, z) = f(x, z)g(y, z).

Proof: =⇒ holds trivially. To show the converse:

p(x,y, z)p(z) = f(x, z)g(y, z)
∑
x′,y′

f(x′, z)g(y′, z),

p(x, z)p(y, z) = f(x, z)

∑
y′

g(y′, z)

 g(y, z)

(∑
x′

f(x′, z)

)
,
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Independence models

Conditional independences inferred from data by means of statistical
independence tests can be used to learn the structure of probabilistic
graphical models.

An independence model has an axiomatic characterization or
properties that allows to build formal deductive system.

Definition

An independence model I over a set V consists in a set of triples ⟨X,Y | Z⟩,
called independence relations, where X, Y and Z are disjoint subsets of V.

Equivalently, I1 is a dependence map for I2 (D-map), if I2 ⊆ I1. Finally,

I1 is a perfect map for I2 (P-map), if I1 = I2.
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Independence models

Definition

A probability distribution p defined over V is said faithful to an independence
model I when all and only the independence relations in I hold in p, that is,

⟨X,Y | Z⟩ ∈ I ⇐⇒ X⊥⊥Y | Z w.r.t. p.

An independence model I is said probabilistic, if there exists a
probability distribution p which is faithful to it.
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Independence Models

Graphoids

Semi-graphoids

Consider four mutually disjoint random variables, W, X, Y and Z. The
following properties hold for any probability distribution:

Symmetry: ⟨X,Y | Z⟩ ⇐⇒ ⟨Y,X | Z⟩.
Decomposition: ⟨X,Y∪W | Z⟩ =⇒ ⟨X,Y | Z⟩.
Weak Union: ⟨X,Y∪W | Z⟩ =⇒ ⟨X,Y | Z∪W⟩.
Contraction:
⟨X,Y | Z⟩ ∧ ⟨X,W | Z∪Y⟩ =⇒ ⟨X,Y∪W | Z⟩.

Any independence model that respects these four properties is called a
semi-graphoid.
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Graphoids

Graphoids

Another property holds in strictly positive distributions, that is when
p > 0:

Intersection:
⟨X,Y | Z∪W⟩ ∧ ⟨X,W | Z∪Y⟩ =⇒ ⟨X,Y∪W | Z⟩.

Any independence model that respects these five properties is called a
graphoid.
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Independence Models

Graphoids

The characterization problem

It is possible to detect contradictory conditional independence relations,
by checking if they respect the semi-graphoid properties.

Do the semi-graphoid properties provide a sufficient condition to
characterize a probabilistic independence model? No!

Uncompleteness: the graphoid axioms are insufficient to characterize
probabilistic independence models.
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Independence Models

Graphoids

The characterization problem

The following set of probabistic CI relations (and their symetric
counterparts) satisfies the graphoid axioms, yet does not have any
faithful probability distribution:

⟨A,B | {C,D}⟩ ∧ ⟨C,D | A⟩ ∧ ⟨C,D | B⟩ ∧ ⟨A,B | ∅⟩.

In fact, no finite set of CI properties characterizes the probabilistic
independence models.

Probabilistic independencies have no finite complete axiomatic
characterization.
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Independence Models

Graphoids

The characterization problem

independence
models

p p > 0

semi-graphoids

graphoids

Figure: p denotes CI of probability distribution, and p > 0 stands for
strictly positive probability distribution.
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Probabilistic Graphical models

A probabilistic graphical model (PGM) represents graphically a joint
distribution.

The nodes in the graph represent random variables, and the (lack of)
edges represent conditional independence (CI) assumptions.

Several useful properties:

Provide a simple way to visualize the probabilistic structure
of a joint probability distribution.
Insights into the CI properties can be obtained by
inspection of the graph.
Complex computations, required to perform inference and
learning can be expressed in terms of graphical
manipulations.

Several kinds of PGMs: directed, undirected, mixed etc.
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PGMs

Graphs

A graph G is an ordered pair of sets (V, E). V = {V1, . . . , Vn}, are the
nodes (or vertices), E represents the edges.

A clique is a set of nodes such that each node is adjacent to every other
node in the set. A maximal clique is a clique that does not accept any
other clique as a proper superset.

A walk between two nodes V1 and Vk is a sequence of adjacent nodes
in the form V1, . . . , Vk. A walk with only distinct nodes is called a path. A
path with V1 = Vk is called a cycle.

A complete graph is a graph that has only one maximal clique.

A chordal graph is a graph in which every cycle with more than 3
distinct nodes admits a smaller cycle as a proper subset.
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PGMs

Graphical models

A

B C D

A

B C D

A

B C D

Directed, undirected and mixed graphs edges. The expressiveness of
these models differ.
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Probabilistic graphical models

A PGM always consists in a set of parameters Θ and a graphical
structure G.

G encodes a set of conditional independence relations between the
variables and induces an independence model denoted I(G). By
definition, I(G) is an I-map for p, that is,

⟨X,Y | Z⟩ ∈ I(G) =⇒ X⊥⊥Y | Z w.r.t. p.

G allows explicit modelling of expert knowledge in the form of
conditional independencies.

And the edges provide a convenient way of communicating the
investigator’s beliefs of the causal influences among variables
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PGMs

Probabilistic graphical models

A PGM is a compact graphical model for a joint distribution.

The relationship between factorization, conditional independence, and
graph structure comprises much of the power of the graphical modeling
framework:

The conditional independence viewpoint is most useful for designing
models.

The factorization viewpoint is most useful for designing inference
algorithms.

Problems: structure learning (G), parameter learning (Θ), and
inference using the model (e.g. P (X | Y)).
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Markov Networks

Markov networks (MNs), also called Markov random fields, are the
most popular graphical models based on undirected graphs

Factorization

The probability distribution p factorizes as

p(x) =
1

Z

∏
C∈ClG

ϕC(xC), with Z =
∑
x

∏
C∈ClG

ϕC(xC)

ClG is the set of all cliques in G. Z is called the partition function. Each
ϕi function is called a factor, a potential function, or a clique potential.

ϕC(xC) ≥ 0 ensures that p(x) ≥ 0.
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Undirected graphical models

u-separation

⟨X,Y | Z⟩ belongs to I(G) iff Z u-separates X and Y in G, that is,
every path between a node in X and a node in Y contains a node in Z.

A

B C

D

E F

From the graph, we see that {A,B}⊥⊥{D,E, F} | C holds but not
{A,B}⊥⊥F | E.
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Factorization

Let G be an undirected graph over the random variables V, and p a
probability distribution over V.

G is an I-map for p if for all X,Y,Z ∈ V,

X⊥⊥ GY | Z =⇒ X⊥⊥ PY | Z.

Theorem

I(G) is an I-map for p if p factorizes into a product of potentials over the
cliques in G. The converse holds only if p > 0.
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Two undirected graphs

A

B

C

D

(d) Graph 1: A⊥⊥C | {D,B}
and B⊥⊥D | {A,C}.

A

B

C

D

(e) Graph 2: A⊥⊥C | {D,B}
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Clique potentials

The factorization over the maximal cliques are for each Markov network:

(Graph 1) p(v) = ϕ1(a, b)ϕ2(b, c)ϕ3(c, d)ϕ4(d, a)

(Graph 2) p(v) = ϕ1(a, b, d)ϕ2(d, b, c)

In the case of binary variables, we may define the clique potentials in
the form of numerical tables.
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Clique potentials

B
0 1

A
0 2/3 3/3
1 1/3 1/3

(a) ϕ1(a, b)

C
0 1

B
0 1/2 2/2
1 1/2 3/2

(b) ϕ2(b, c)

D
0 1

C
0 3/3 2/3
1 2/3 1/3

(c) ϕ3(c, d)

A
0 1

D
0 3/10 1/10
1 1/10 2/10

(d) ϕ4(d, a)
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Clique potentials

B
A D 0 1

0 0 1/8 3/8
1 1/8 1/8

1 0 2/8 1/8
1 2/8 2/8

(e) ϕ1(a, b, d)

B
C D 0 1

0 0 1/6 4/6
1 1/6 1/6

1 0 1/6 2/6
1 2/6 3/6

(f) ϕ2(b, c, d)
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Clique potentials

These potentials are valid, i.e.
∑

a,b,c,d p(a, b, c, d) = 1.

However individual clique potentials do not necessarily sum to 1, and
therefore do not necessarily correspond to marginal or conditional
probability distributions.

Potential functions in Markov network do not lend to an intuitive
probabilistic interpretation. One must go through a factorization to
obtain a proper probability measure.

Potential functions are often expressed as exponential parametric
functions for practical reasons.
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Clique potentials

Not every probability distribution is UG-faithful.

The probabilstic IC relation X ⊥⊥Y and X ⊥̸⊥Y | Z cannot be faithfully
represented an UG model because X ⊥⊥Y | ∅ necessarily implies
X ⊥⊥Y | Z (strong union property) in UG models.

As a result, the only undirected graph that is an I-map for p is the
complete graph, which necessarily results in 7 free parameters instead
of 6, as p(x, y, z) = p(x)p(y)p(z|x, y).
A Markov network is not perfectly suited to encode p in this situation.
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Undirected graphical models

Markov blanket

The notions of Markov blanket and Markov boundary are essential in
feature selection..

Definition

A Markov blanket of X in V is a subset M ⊆ (V \X) such that
X⊥⊥V \ (X ∪M) |M. A Markov boundary is an inclusion-optimal Markov
blanket, i.e., none of its proper subsets is a Markov blanket.

In a faithful UG the Markov boundary of a variable X is unique and is
given by neighbors of X.
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Image denoising using MRF

An UG model representing a
Markov random field for image
de-noising,

xi is a binary variable denoting
the state of pixel i in the
unknown noise-free image,

yi denotes the corresponding
value of pixel i in the observed
noisy image. xi

yi
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Image denoising using MRF

Because a potential function is an arbitrary, non-negative function over
a maximal clique, we may define a joint distribution over x and y by

p(x,y) =
1

Z
exp{−E(x,y)}

Neighbouring pixels are correlated and only a small percentage of the
pixels are corrupted.

We want the energy to be lower when {xi, xj} and {xi, yi} have the
same sign than when they have the opposite sign.

The complete energy function takes the form

E(x,y) = h
∑
i

xi − β
∑

{i,j}∈E

xixj − η
∑
i

xiyi
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Image denoising using MRF

Given y are the (observed) pixels of the noisy image, one has to solve
the MAP:

argmax
x

p(x,y) = argmax
x

exp{−E(x,y)}

A local maximum can be easily obtained by simple coordinate-wise
gradient ascent methods.

This is an example of the Ising model which has been widely studied in
statistical physics.
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Image denoising using MRF

Illustration of image de-noising
using a Markov random field
(Besag, 1974).

On the top, the corrupted image
after randomly changing 10% of
the pixels. On the bottom, the
restored images obtained using
iterated conditional models (ICM)
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Bayesian networks

Definition

A Bayesian network consists in a set of random variables V = {V1, . . . , Vn},
a simple directed acyclic graph G = (V, E), and a set of parameters Θ.
Together, G and Θ define a probability distribution p over V which factorizes
as:

p(v) =
∏

Vi∈V

p(vi|paVi
).

paVi
denotes the parents of node Vi in G.

Θ are the probabilities p(vi|paVi
).
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Illustration

A

B

C

D

The corresponding factorization is

p(v) = p(a)p(d|a)p(b|a)p(c|b, d)

.
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Conditional probability tables

A
0 1

0.4 0.6

(g) p(a)

D
0 1

A
0 0.6 0.4
1 0.5 0.5

(h) p(d|a)

B
0 1

A
0 0.3 0.7
1 0.1 0.9

(i) p(b|a)

C
B D 0 1

0 0 0.8 0.2
1 0.7 0.3

1 0 0.5 0.5
1 0.7 0.3

(j) p(c|b, d)

Table: A set of conditional probability tables that define a valid set of
parameters Θ for the Bayesian network structure.
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Conditional probability tables

These tables define valid conditional probability distributions that can be
intuitively interpreted.

Each of the factors p(vi|paVi
) can be seen as a potential function

ϕi(vi,paVi
) in a Markov network.

In a Bayesian network, each factor defines a conditional probability
distribution for Vi, and thus respects the normalization constraint∑

vi
ϕi(vi,paVi

) = 1.
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Parametric conditional distributions

The number of parameters required to specify a PCT grows
exponentially with M the number of parents.

A more parsimonious form uses a logistic sigmoid function acting on a
linear combination of the parents. Consider a graph comprising M
parents x1, . . . , xM and a single child y,

p(y = 1 | x1, . . . , xM ) = σ(w0 +

M∑
i=1

wixi)

σ(a) = (1 + exp(−a))−1 is the sigmoid function and
w = (w0, w1 . . . , wM )T is a vector of M + 1 parameters.

The conditional distribution is now governed by a number of parameters
that grows linearly with M .
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Linear-Gaussian models

A multivariate Gaussian can be expressed as a directed graph
corresponding to a linear-Gaussian model.

Examples of linear-Gaussian models: probabilistic principal component
analysis, factor analysis, and linear dynamical systems.

If node i represents a continuous random variable Xi having a
Gaussian distribution of the form,

p(xi | pai) = N (xi |
∑

j∈pai

wijxj + bi, σ
2
i )

wij and bi are parameters governing the mean, and σ2
i is the variance

of the conditional distribution.

The mean and covariance of the joint distribution are determined
recursively.
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d-separation

Every DAG G induces a formal independence model I(G) over V, by
means of a graphical separation criterion called d-separation

Within a path V1, . . . , Vk, an intermediate node Vi is said to be a collider
is an intermediate node Vi in the form Vi−1 → Vi ← Vi+1 called a
v-structure.

d-separation is equivalent to u-separation when G contains no
v-structure
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d-separation

Let X⊥⊥ GY | Z denotes a CI relation encoded in a DAG G.

Definition

For any disjoint set of random variables X, Y and Z, X⊥⊥ GY | Z iff Z
d-separates X and Y in G, that is, every path between X and Y contains

a non-collider that belongs to Z,
or a collider that does not belong to Z∪ANZ.

ANZ are the ancestors of nodes Z.
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d-separation

A

B

C

D

We have A⊥⊥C | {D,B} and D⊥⊥B | A because D → C ← B is a closed
path.
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d-separation

A friendly interpretation of d-separation is to consider a path as an
information flow.

Consider a path between X and Y , and a conditioning set Z.

When Z is empty, each intermediate node that is not a collider is open,
that is, it lets the flow go through. Conversely, each intermediate node
that is a collider is closed, and blocks the flow.

The variables in Z change the state of the nodes, i.e. from open to
closed and vice-versa.

If Z d-separates X and Y , all the paths between X and Y are closed.
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d-separation (again)

A

B C

D

E F
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d-separation

A⊥⊥B | C because the only path A→ C → B is closed by C that is
observed.

However, A ⊥̸⊥{B,F} | {C,E} because in the path A→ C ← D → F
the non-collider D is open, as well as the collider C that is observed.

A ⊥̸⊥F | ∅, because of the open path A→ C → E → F .

Conditioning on E does not d-separate A and F either, it closes the
previous path but opens a new one with A→ C → E ← D.

To close all paths, it is sufficient to condition on {C,D}, E it no longer
necessary in the conditioning set.
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Markov blanket

The notions of Markov blanket and Markov boundary are essential in
feature selection..

Definition

A Markov blanket of X in V is a subset M ⊆ (V \X) such that
X⊥⊥V \ (X ∪M) |M. A Markov boundary is an inclusion-optimal Markov
blanket, i.e., none of its proper subsets is a Markov blanket.

In a faithful DAG the Markov boundary of a variable X is unique and is
given by MBx = PCX ∪SPX , that is, the parents, children and
spouses of X.
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Markov property

As with Markov networks, a Bayesian network structure always defines
an I-map of the underlying probability distribution.

Theorem

Let G be a DAG, I(G) is an I-map for p iff p factorizes recursively over G.
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Local Markov property

From the d-separation, every node is independent of its
non-descendants given its parents (a.k.a. local Markov property),
that is, Vi⊥⊥NDVi \PAVi | PAVi .

Because G is a DAG, we may arrange its nodes in a topological
ordering V1, . . . , Vn according to G, that is, i < j if Vi → Vj is in G.

From the chain rule of probabilities, we show that

p(v) =

n∏
i=1

p(vi|v1, . . . , vi−1)

=

n∏
i=1

p(vi|paVi
)
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Famous networks used as benchmarks

ALARM

37 nodes

46 arcs

509 parameters
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Graphs with three nodes

A Markov chain is a particular
DAG.

We have X ⊥̸⊥Y | ∅:

p(x, y) =
∑
z

p(x)p(z|x)p(y|z)

= p(x)
∑
z

p(z|x)p(y|z)

= p(x)p(y|x)
̸= p(x)p(y)

X Z Y
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Graphs with three nodes

A Markov chain is a special
DAG.

We verify that X ⊥⊥Y | Z:

p(y|z, x) =
p(x, y, z)

p(x, z)

=
p(x, y, z)∑
y′ p(y′, x, z)

=
p(x)p(z|x)p(y|z)∑
y′ p(x)p(z|x)p(y′|z)

= p(y|z)

X Z Y
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PGMs

Directed graphical models

Graphs with three nodes

Z is a latent cause.

We verify that X ⊥̸⊥Y | ∅:

p(x, y) =
∑
z

p(z)p(x|z)p(y|z)

̸= p(x)p(y) X Y

Z
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PGMs

Directed graphical models

Graphs with three nodes

Z is a latent cause.

We verify that X ⊥⊥Y | Z:

p(x, y|z) =
p(x, y, z)

p(z)

=
p(z)p(y|z)p(x|z)

p(z)

= p(x|z)p(y|z)

X Y

Z
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PGMs

Directed graphical models

Graphs with three nodes

Explaining away or V-structure.

We verify that X ⊥⊥Y | ∅:

p(x, y) =
∑
z

p(x, y, z)

= p(x)p(y)
∑
z

p(z|x, y)

= p(x)p(y)

X Y

Z
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PGMs

Directed graphical models

Graphs with three nodes

Explaining away or V-structure.

We verify that X ⊥̸⊥Y | Z:

p(x, y|z) =
p(x, y, z)

p(z)

=
p(x)p(y)p(z|x, y)

p(z)

̸= p(x|z)p(y|z)

X Y

Z
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Directed graphical models

Hidden Markov chain

A Hidden Markov Model is a
dynamic Bayesian network.
Often used because we only
have a noisy observation of the
random process.

Yt are the visible variables, and
Xt the hidden variables.

We have:

Xt+1 ⊥⊥ Xt−1 | Xt

Yt+1 ⊥⊥ Yt | Xt

Xt−1 Xt Xt+1

Yt−1 Yt Yt+1
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PGMs

Illustration

Various inferences on Asia
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PGMs

Illustration

Toy problem 1

Consider a bag containing the following
tokens:

2 2 2 2

1 1 1 2

1 2 2

1 2 Show that
Value ⊥⊥ Form | Color.

Build all the faithful DAGs of
p(V,C, F ).

Learn the parameters.

Compute
P (V = 1 | F = square) using
the model.
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PGMs

Illustration

Toy problem 2

Consider a car with Battery (0=flat,
1=fully charged), Fuel tank (0=empty,
1=full) and Fuel Gauge reading
(0=empty, 1=full).

Assume that B⊥⊥F | ∅ .

B F

G

P (G = 1 | B = 1, F = 1) = 0.8

P (G = 1 | B = 1, F = 0) = 0.2

P (G = 1 | B = 0, F = 1) = 0.2

P (G = 1 | B = 0, F = 0) = 0.1

P (B = 1) = 0.9

P (F = 1) = 0.9

Compute:

p(F = 0 | G = 0)

p(F = 0 | G = 0, B = 0)
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PGM’s expressiveness

Bayesian curve fitting and prediction
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PGMs

PGM’s expressiveness

Relation between DAG and UG

A chain DAG,
x1 x2 xN−1 xN

Its equivalent UG representation,
x1 x2 xN−1 xN
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PGMs

PGM’s expressiveness

Relation between DAG and UG

p(x) = p(x1)p(x2 | x1)p(x3 | x2) . . . p(xN | xN−1)

=
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3) . . . ψN−1,N (xN−1, xN ).

This is easily done by identifying,

ψ1,2(x1, x2) = p(x1)p(x2 | x1)
ψ2,3(x2, x3) = p(x3 | x2)

...

ψN−1,N (xN−1, xN ) = p(xN | xN−1)

The maximal cliques in the UG are the pairs of neighbouring nodes in
the DAG. In this case, Z = 1.
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PGMs

PGM’s expressiveness

Relation between DAG and UG

x1 x3

x4

x2

x1 x3

x4

x2

The process of ‘marrying the parents’ is known as moralization, and the
resulting undirected graph, after dropping the arrows, is called the
”moral graph”.

Graph moralization plays an important role in exact inference
techniques such as the junction tree algorithm.
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PGMs

PGM’s expressiveness

Relation between DAG and UG

p(x) = p(x1)p(x2)p(x3)p(x4 | x1, x2, x3)

=
1

Z
ψ1,2,3,4(x1, x2, x3, x4).

In going from a directed to an undirected representation we had to
discard some CI properties from the graph (e.g. X1⊥⊥X2 | X4).

It turns out that the two types of graph can express different CI
properties.
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PGMs

PGM’s expressiveness

PGM’s expressiveness

independence
models

p compositional
graphoids

UGs

DAGs

decomposable
models
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PGM’s expressiveness

Noisy XOR

C
A B γ̄ γ

ᾱ
β̄ (1− ϵ)/4 ϵ/4
β ϵ/4 (1− ϵ)/4

α
β̄ ϵ/4 (1− ϵ)/4
β (1− ϵ)/4 ϵ/4

p(a, b, c) for the noisy XOR (exclusive OR) relationship

P (A = B ⊕ C) = 1− ϵ

p > 0 for any ϵ ∈]0, 1/2[∪]1/2, 0[.
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PGMs

PGM’s expressiveness

Noisy XOR

We have A⊥⊥B, B⊥⊥C and C ⊥⊥A.

Due to the strong union property, A⊥⊥B =⇒ A⊥⊥B | C, no undirected
graph that can encode any of the independence relations in p

p is not UG-faithful. The complete graph is the I-map.

The Markov network model requires 7 free parameters to encode p.
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PGMs

PGM’s expressiveness

Noisy XOR

p is not DAG-faithful either. Due to the composition property, any DAG
that encodes two of the independence relations in p necessarily breaks
a dependence relation as well (A⊥⊥B ∧A⊥⊥C =⇒ A⊥⊥{B,C}).
The DAG A→ C ← B encodes only one of the independence relation.
This BN structure results in the factorization
p(a, b, c) = p(a)p(b)p(c|a, b), which encodes p with 6 free parameters.

In this example p is neither UG-faithful nor DAG-faithful, so both Markov
networks and Bayesian networks are not well-suited models to encode
p efficiently.

Yet, p can be encoded efficiently with only 4 parameters.
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PGMs

PGM’s expressiveness

Extensions

Classical PGMs have a limited expressive power as independence
models.

Over the years, many alternative PGMs have been proposed to
overcome these limitations, by extending and unifying UGs and DAGs.

Ancestral graphs, Anterial graphs, LWF chain graphs, AMP
chain graphs. . .
Four types of edges are allowed: directed edges and three
types of undirected edges.

Increased expressive power comes at the expense of an increased
complexity.

Factorization of p? Practical parametrization of the model? Learning
and inference?
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Inference and MAP Estimation

The 4 basic problems with PGMs

There are 4 basic problems to be solved for the model to be useful in
real-world applications:

1 Problem 1: Inference. Given some observation, compute the
conditional distribution of the remaining variables (NP-hard if loops in
the graph).

2 Problem 2: MAP Inference. Find the MAP over this conditional
distribution.

3 Problem 3: Learning. Given a sequence of observations, estimate the
MAP of the parameters (Easy problem with a complete data set).

4 Problem 4: Learning. Given a sequence of observations, learn the
topological structure of the PGM (NP-hard).
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Inference and MAP Estimation

Problem 1: Inference

Suppose we have a set of correlated random variables with joint
distribution p(x1, . . . , xN |θ).
Let us partition this vector into the visible variables Xv, which are
observed, and the hidden variables, Xh, which are unobserved.

Inference refers to computing the posterior distribution of the unknowns
given the evidence:

p(xh|xv, θ) =
p(xh,xv|θ)
p(xv|θ)

=
p(xh,xv|θ)∑
x′
h
p(x′

h,xv|θ)
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Inference and MAP Estimation

Problem 1: Inference

Sometimes only some of the hidden variables are of interest.

Let’s partition the hidden variables into query variables, Xq, whose
value we wish to know, and the remaining nuisance variables, Xn,
which we are not interested in.

We can compute what we are interested in by marginalizing out the
nuisance variables:

p(xq|xv, θ) =
∑
xn

p(xq,xn|xv, θ)
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Inference and MAP Estimation

Inference in a chain

Problem 1: Inference in a chain

x1 x2 xN−1 xN

Exact inference on a graph comprising a chain of nodes can be
performed efficiently in time that is linear in the number of nodes.

p(x) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3) . . . ψN−1,N (xN−1, xN ).

The algorithm that can be interpreted in terms of messages passed
along the chain.
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Inference and MAP Estimation

Inference in a chain

Problem 1: Inference in a chain

Consider the inference problem of finding the marginal distribution p(xn)

p(xn) =
∑
x1

. . .
∑
xn−1

∑
xn+1

. . .
∑
xN

p(x)

=
1

Z

∑
xn−1

ψn−1,n(xn−1, xn)

[
. . .

[∑
x1

ψ1,2(x1, x2)

]]
. . .


×

∑
xn+1

ψn,n+1(xn, xn+1)

. . .
∑

xN

ψN−1,N (xN−1, xN )

 . . .


=
1

Z
µα(xn)µβ(xn).
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Inference and MAP Estimation

Inference in a chain

Problem 1: Inference in a chain

The algorithm that can be interpreted in terms of messages passed
along the chain.

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

With N discrete variables each having K states, the messages µα(xn)
and µβ(xn) can be evaluated recursively in O(NK2). by exploiting the
IC properties of this simple graph in order to obtain an efficient
calculation.

This is linear in the length of the chain, in contrast to the exponential
cost of a naive approach.
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Inference and MAP Estimation

Inference in a chain

Exact inference in a (poly)tree

As for chains, inference can be performed efficiently using local
message passing in trees and polytrees.

A polytree is a directed acyclic graph whose underlying undirected
graph is a tree.

The message passing formalism is also applicable to undirected and
directed trees and to polytrees. It is called the sum-product algorithm.

It requires a graphical construction called a factor graph.
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Inference and MAP Estimation

Inference in a chain

Factor graphs

First transform the PGM into a factor graph:
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Inference and MAP Estimation

Sum-product algorithm

Sum-product algorithm

Start form the leaves:

x f

µx→f (x) = 1

xf

µf→x(x) = f(x)
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Inference and MAP Estimation

Sum-product algorithm

Sum-product algorithm

Consider a simple example to illustrate the operation of the
sum-product algorithm:

x1 x2 x3

x4

fa fb

fc p(x) =
1

Z
fa(x1, x2)fb(x2, x3)fc(x2, x4).
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Inference and MAP Estimation

Sum-product algorithm

Sum-product algorithm

Say node x3 is the root node. Start from the leaf nodes x1 and x4
towards the root x3 and perform the following sequence of messages:

µx1→fa(x1) = 1

µfa→x2(x2) =
∑
x1

fa(x1, x2)

µx4→fc(x4) = 1

µfc→x2(x2) =
∑
x4

fc(x2, x4)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2)

µfb→x3(x3) =
∑
x2

fb(x2, x3)µx2→fb(x2)

x1 x2 x3

x4
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Inference and MAP Estimation

Sum-product algorithm

Sum-product algorithm

Then, from the root node towards the leaf nodes:

µx3→fb(x3) = 1

µfb→x2(x2) =
∑
x3

fb(x2, x3)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2)

µfa→x1(x1) =
∑
x2

fa(x1, x2)µx2→fa(x2)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2)

µfc→x4(x4) =
∑
x2

fc(x2, x4)µx2→fc(x2)

x1 x2 x3

x4
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Inference and MAP Estimation

Sum-product algorithm

Sum-product algorithm

One message has now passed in each direction across each link,

To evaluate the marginals:

p(x2) =
1

Z
µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=
1

Z

[∑
x1

fa(x1, x2)

][∑
x3

fb(x2, x3)

][∑
x4

fc(x2, x4)

]

=
1

Z

∑
x1

∑
x3

∑
x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

=
1

Z

∑
x1

∑
x3

∑
x4

p(x)
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Max-sum algorithm

Problem 2: MAP Inference

Suppose we have a set of correlated random variables with joint
distribution p(x1, . . . , xN |θ).
Let us partition this vector into the visible variables Xv, which are
observed, and the hidden variables, Xh, which are unobserved.

MAP Inference refers to computing the MAP of the posterior distribution:

x⋆
h = argmax

xh

p(xh|xv, θ))
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Inference and MAP Estimation

Max-sum algorithm

Problem 2: The max-sum algorithm

The sum-product algorithm takes a joint distribution p(x) expressed as a
factor graph and efficiently find marginals over the component variables.

MAP inference: find a setting of the variables that has the largest
probability and give the probability.

This can be addressed through a closely related algorithm called
max-sum algorithm, which can be viewed as an application of
dynamic programming in the context of graphical models
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Inference and MAP Estimation

Max-sum algorithm

Problem 2: MAP inference in a chain

x1 x2 xN−1 xN

MAP inference on a graph comprising a chain of nodes can be
performed efficiently in time that is linear in the number of nodes.

p(x) =
1

Z
max

x1,...,xN

[ψ1,2(x1, x2)ψ2,3(x2, x3) . . . ψN−1,N (xN−1, xN )]

=
1

Z
max
x1

[
max
x2

ψ1,2(x1, x2)

[
. . .max

xN

ψN−1,N (xN−1, xN )

]]
.

The structure of this calculation is identical to that of the sum-product
algorithm,

Application: find the most probable sequence of hidden states in a
HMM, known as the Viterbi algorithm.
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Inference and MAP Estimation

Max-sum algorithm

Exact inference in general graphs

The message passing framework (i.e. sum-product and max-sum
algorithms) can be generalized to graphs having loops, using the
junction tree algorithm (Lauritzen et al., 1988).

A DAG is first converted to an UG by moralization, (not required for an
UG).

Next the graph is triangulated, i.e. adding extra links to eliminate
chord-less cycles containing four or more nodes.
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Max-sum algorithm

The junction tree algorithm

Then, construct a tree-structured undirected graph called a join tree,
whose nodes correspond to the maximal cliques of the triangulated
graph, and whose links connect pairs of cliques that have variables in
common.

The selection of which pairs of cliques to connect in this way is
important and is done so as to give a maximal spanning tree.

If the number of variables in the largest clique is high, the junction tree
algorithm becomes impractical.



Probabilistic Graphical Models

Inference and MAP Estimation

Max-sum algorithm

Approximate inference in general graphs

For many problems of practical interest, it is not be feasible to use exact
inference, effective approximation methods are needed.

A simple idea to approximate inference in graphs with loops is to apply
the sum-product algorithm as it is.

This approach is known as loopy belief propagation (Frey and
MacKay, 1998) and is possible because the message passing rules are
purely local, even though there is no guarantee that it will yield good
results.
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Parameter & Structure Learning

The 4 basic problems with PGMs

There are 4 basic problems to be solved for the model to be useful in
real-world applications:

1 Problem 1: Inference. Given some observation, compute the
conditional distribution of the remaining variables (NP-hard if loops in
the graph).

2 Problem 2: MAP Inference. Find the MAP over this conditional
distribution (NP-hard).

3 Problem 3: Learning. Given a sequence of observations, estimate the
MAP of the parameters (Easy problem with a complete data set).

4 Problem 4: Learning. Given a sequence of observations, learn the
Markov boundary of some variable or the complete topological
structure of the PGM (NP-hard).
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Parameter & Structure Learning

Problem 3: Parameter learning

Find the MAP estimate for the parameters:

θ̂ = argmax
θ

N∑
i=1

log p(xi|θ) + log p(θ)

p(θ) is the prior on the parameters.
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Parameter & Structure Learning

Problem 3: Learning from complete data

If all the variables are fully observed (i.e. no missing data and no hidden
variables), the data is complete.

For a DGM with complete data, the likelihood is given by

p(x|θ) =
N∏
i=1

p(xi|θ)

=
N∏
i=1

V∏
t=1

p(xit|xi,pa(t), θt)

=

V∏
t=1

p(Dt|θt)

Dt is the data associated with node t and its parents.
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Parameter & Structure Learning

Problem 3: Learning from complete data

Now suppose that the prior factorizes as well:

p(θ) =

V∏
t=1

p(θt)

Then clearly the posterior also factorizes:

p(θ|D) ∝ p(D|θ)p(θ) =
V∏

t=1

p(Dt|θt)p(θt)
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Parameter & Structure Learning

Problem 3: Learning with missing and/or latent
variables

If we have missing data and/or hidden variables, the likelihood no
longer factorizes, and indeed it is no longer convex.

This means we will usually can only compute a locally optimal ML or
MAP estimate.

Bayesian inference of the parameters is even harder and requires
suitable approximate inference techniques.
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Parameter & Structure Learning

Problem 4: structure learning

Given a sequence of observations, learn the topological structure of
the PGM (NP-hard). The problem of learning a BN structure has
attracted much attention.

Problem: the number of possible DAGs with n variables is
superexponential w.r.t n. For instance, NS(5) = 29281 and
NS(10) = 4.2× 1018.

Search-and-score methods search over a space of structures
employing a scoring function to guide the search. The most prominent
algorithm in this class is the Greedy Equivalent Search (GES).

Constraint-based algorithms use statistical independence tests to
impose constraints on the network structure and infer the final DAG. PC
is prototypical constraint-based algorithm.
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Learning the Markov Boundary

Aliferis et al. 2002
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Learning the Markov Boundary



Probabilistic Graphical Models

Parameter & Structure Learning

Constraint-based structure learning
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Skeleton further orientation
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PC algorithm on ASIA
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PC algorithm on ASIA
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Search for V-structures and further orientation
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ALARM

End

CVP PCWP
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BP
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HRBP HREK HRSA
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True graph
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Gene networks
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Epidemiological studies
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A causal graph: Hip fracture risk factor analysis
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Hidden Markov Models

Markov Models

A Markov model is a stochastic model used to model randomly
changing systems where it is assumed that future states depend only
on the current state not on the events that occurred before it.

This assumption is called the:

Markov property

P (Xn+1 = j|X1 = i1, . . . , Xn = in) = P (Xn+1 = j|Xn = in)
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Hidden Markov Models

Markov chains

The Markov property enables reasoning and computation with the
model that would otherwise be intractable.

If P (Xn+1 = j|Xn = in) = pij does not depend on n then the Markov
model is homogeneous.

The simplest Markov model is the Markov chain. It models the state of
a system with a random variable that changes through time.
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Hidden Markov Models

Markov chains

Markov chain

4

1

3

20.4

0.2

0.1

0.3

0.3

0.5

0.2

0.2

0.8

0.2

0.1

0.3

0.4

Transition matrix

P =


0.3 0.2 0.5 0
0.1 0.2 0.3 0.4
0 0.8 0.2 0
0.2 0.1 0.3 0.4



Such that ∀i,
∑
j

Pij = 1



Probabilistic Graphical Models

Hidden Markov Models

Coin toss Models

Someone is performing coin
tosses in a room. He tells you
the result of the coin flips,
nothing else (e.g. probability of
heads, number of coins,
transition probabilities).

We only observe a sequence of
heads (H) and tails (T).

Which model (1 or 2 coins)
best matches the
observations?

Two scenarios:

Single coin

H Tp(H)

1− p(H)

1− p(H)

p(H)

Two coins

1 2a11

a12

a22

a21

P (H) = p1 P (H) = p2
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Hidden Markov models

A hidden Markov model (HMM) is a Markov model in which the system
is assumed to be a Markov process with unobserved (hidden) states.

In simpler Markov models (like a Markov chain), the state is directly
visible to the observer, and therefore the state transition probabilities
are the only parameters.

In a HMM, the output, dependent on the state, is visible. Each state has
a probability distribution over the possible outputs. Therefore, the
sequence of outputs generated by an HMM gives some information
about the sequence of state.

Many applications in temporal pattern recognition such as speech,
handwriting, gesture recognition, and bioinformatics.
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Hidden Markov models

The random variable qt is the hidden state at time t. which is assumed
to consist of one of N possible values {s1, . . . , sn}, modeled as a
categorical distribution.

The random variable Ot is the observation at time t (with
y(t) ∈ {y1, y2, y3, y4}). Ot is typically a letter from an alphabet of M
symbols V = {v1, . . . , vM}.
In the standard HMM, the state space is discrete, while the
observations themselves can either be discrete or continuous (e.g.
Gaussian distribution).

The parameters of a hidden Markov model are of two types: N2

transition probabilities and NM emission probabilities (also known as
output probabilities).
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Example: Urn and ball model
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Discrete symbol HMM

X1 X2 X3

y1 y2 y3 y4

b11 b21

b12
b22
b31

b13
b14

b32
b33

b34

b24

a12 a23

a21
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Notations

A complete specification of an HMM is given its paremeters Λ = (A,B, π)
and is defined by:

Its n hidden states S = {s1, . . . , sn}.
The M observable symbols V = {v1, . . . , vM}. Ot denotes the symbol
at time t.

The state transition matrix aij = A(i, j)

The observation symbol probability distribution B:
bj(k) = P (Ot = vk|qt = sj) with

∑M
k=1 bj(k) = 1

The initial state distribution π = {πj}j=1,...,n where πj = P (q1 = sj)
and

∑n
j=1 πj = 1.
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The 3 basic problems with HMMs

There are 3 basic problems to be solved for the model to be useful in
real-world applications:

1 Problem 1: Evaluation. Compute of the probability P (O|Λ) of the
observation sequence {O1, . . . , OT } given an HMM Λ = (A,B, π).

2 Problem 2: Inference. Given a sequence {O1, . . . , OT } and the model
Λ, chose a state sequence Q = q1, . . . , qT which is meaningful (i.e. that
best explains the observations) in some sense ? Several optimality
criteria to be imposed.

3 Problem 3: Training. Given a sequence {O1, . . . , OT } , how do we
adjust the model Λ = (A,B, π) to maximize P (O|Λ)?
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Direct evaluation of P (O|Λ)

The most straightforward way to compute of P (O|Λ) is through
enumerating all every state sequence q1, . . . , qT :

P (O|Λ) =
∑
Q

P (O,Q|Λ) =
∑
Q

P (O|Q,Λ)P (Q|Λ)

=
∑
Q

P (q1|Λ)
T∏

t=1

P (Ot|qt,Λ)
T∏

t=2

P (qt|qt−1,Λ)

=
∑
Q

πq1

T∏
t=2

bqt(Ot)aqt−1,qt

The calculation of P (O|Λ) involves O(2T · nT ) calculations. A more
efficient procedure is needed.
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Forward Approach

Let αt(i) = P (O1, . . . , Ot, qt = si|Λ) = P (Ot
1, qt = si|Λ)

α1(i) = P (O1, q1 = si|Λ) = πibi(O1)

αt+1(j) = P (O1, . . . , Ot, Ot+1, qt+1 = sj |Λ)

=

n∑
i=1

P (Ot
1, Ot+1, qt = si, qt+1 = sj |Λ)

=

n∑
i=1

P (Ot+1|qt+1 = si,Λ)P (Ot
1, qt = si|Λ)aij

= [
n∑

i=1

αt(i)aij ]bj(Ot+1)

Finally : P (O|Λ) =
∑n

i=1 αT (i)
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Backward Approach

Likewise, let βt(i) = P (Ot+1, . . . , OT |qt = si,Λ)

βT (i) = 1

As previously

βt(i) =

n∑
j=1

aijbj(Ot+1)βt+1(j)

Finally : P (O|Λ) =
∑n

i=1 πibi(O1)β1(i).

In both cases, the complexity is O(n2T )
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Which state qt is the most likely?

There are several ways of finding the optimal state sequence.

Which state qt is the most likely?

Let γt(i) = P (qt = si|OT
1 )

γt(i) = P (qt = si|OT
1 )

= P (qt = si|O1, . . . , Ot, Ot+1, . . . , OT )

=
P (O1, . . . , Ot, qt = si|Λ)P (Ot+1, . . . , OT |qt = si,Λ)

P (OT
1 |Λ)

=
αt(i)βt(i)∑n

j=1 αt(j)βt(j)

Then we solve qt = argmaxi[γt(i)]

One problem is that the state sequence may not even be valid, for
instance if state transitions have zero probability.



Probabilistic Graphical Models

Hidden Markov Models

Optimal state sequence: Viterbi algorithm

The single best path sequence is given by maxQ P (O,Q|Λ). Define

δt(i) = max
q1,...,qT

P (q1, . . . , qt−1, qt = si, O1, . . . , OT |Λ)

By induction (dynamic programming), we have the recursion:

δt+1(j) = [max
i
δt(i)aij ]bj(Ot+1)

Hence the complete recursive procedure,

1 δ1(i) = πibi(O1)
2 δt+1(j) = [maxi δt(i)aij ]bj(Ot+1)
3 maxQ P (O,Q|Λ) = maxi δT (i)
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Training

The most difficult problem of HMMs is to adjust the model parameters
to maximize the likelihood.

Suppose we have the sequence O = {O1, . . . , On}, the goal is to find
the parameters Λ = (A,B, π) such that P (O|Λ) =

∏n
k=1 P (Ok|Λ) is

locally maximum using gradient or EM techniques.

We compute Λk+1 from Λk such that P (O|Λk+1) ≥ P (O|Λk).

Eventually, the likelihood function converges to a critical point.

We define next the Baum-Welch iterative procedure for choosing model
parameters.
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Baum-Welch Algorithm

Let ξkt (i, j) = P (qt = si, qt+1 = sj |Ok,Λ)

=
P (qt = si, qt+1 = sj , O

k|Λ)
P (Ok|Λ)

=
αk
t (i)aijbj(O

k
t+1)β

k
t+1(j)

P (Ok|Λ)

We have γt(i) = P (qt = si|OT
1 )

=
n∑

j=1

P (qt = si, qt+1 = sj |OT ,Λ)

=

n∑
j=1

ξkt (i, j) =
αt(i)βt(i)∑n

j=1 αt(j)βt(j)
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Baum-Welch Algorithm

The parameters of new HMM model Λp+1 are re-estimated from the
previous one Λp:

āij =

∑m
k=1

∑
t ξ

k
t (i, j)∑m

k=1

∑
t γ

k
t (i)

b̄j(l) =

∑m
k=1

∑
{t/Ok

t =vl}
γk
t (j)∑m

k=1

∑
t γ

k
t (i)

π̄i =
1

m

m∑
k=1

γk
1 (i)
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Baum-Welch Algorithm

1 Given Λ0 = (A,B, π) et p = 0

2 Do: Compute ξkt (i, j) with γk
1 (i), ∀1 ≤ i, j ≤ n with 1 ≤ t ≤ T − 1 and

Λp

3 Estimate āij , b̄j(l), π̄i

4 Let Λp = (Ā, B̄, π̄)

5 p← p+1

6 Until convergence
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Extensions

HMMs are generative models: they model a joint distribution of
observations and hidden states.

A discriminative model can be used in place of the generative model of
standard HMMs. This type of model directly models the conditional
distribution of the hidden states given the observations X.

HMM can also be generalized to allow continuous observations and/or
state spaces (typically Gaussian), however, in general, exact inference
in HMMs with continuous latent variables is infeasible.

A uniform prior distribution over the transition probabilities was implicitly
assumed. Another prior candidate is the Dirichlet distribution.
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Parcours ”Mathematiques, Vision et Apprentissage”, ENS Cachan 2017.


	Independence Models
	Conditional independence
	Graphoids

	PGMs
	Undirected graphical models
	Directed graphical models
	Illustration
	PGM's expressiveness

	Inference and MAP Estimation
	Inference in a chain
	Sum-product algorithm
	Max-sum algorithm

	Parameter & Structure Learning
	Hidden Markov Models

