
Machine Learning

Machine Learning
Master of Data Science

Alexandre Aussem

LIRIS UMR 5205 CNRS
Data Mining & Machine Learning Group (DM2L)

University of Lyon 1
Web: perso.univ-lyon1.fr/alexandre.aussem

October 31, 2024

Machine Learning

Outline

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Introduction

Outline

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Introduction

Problem categories in Machine learning

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Introduction

Problem categories in Machine learning

Machine Learning

Introduction

Problem categories in Machine learning

Machine learning is a subfield of AI that involves using algorithms to enable
machines to learn from data and make decisions.

Supervised Learning : The algorithm is trained on labeled data, where
the target output is known. The goal is to learn a mapping between input
features and the corresponding targets. Ex. linear regression, logistic
regression, decision trees, and support vector machines.

Unsupervised Learning: The target values are missing. The goal may be
to: Discover hidden patterns or structure in the data, known as clustering
(e.g., k-means, hierarchical and spectral clustering), Determine the
distribution of data within the input space, known as density estimation.
project the data into a lower-dimensional space for the purpose of
visualization or dimensionality reduction (e.g., PCA, t-SNE), and anomaly
detection algorithms (e.g., outlier detection).

Semi-Supervised Learning: Supervised techniques that also make use of
a small amount of labeled data with a large amount of unlabeled data.
The problem arises whenever the acquisition of labeled data requires a
skilled human agent or a physical experiment. The cost associated with
the labeling process is prohibitive, whereas acquisition of unlabeled data
is relatively inexpensive. Ex. self-training algorithms (e.g., co-training),
transductive learning algorithms, and graph-based algorithms (e.g., label
propagation).

Machine Learning

Introduction

Problem categories in Machine learning

Reinforcement Learning: The algorithm learns from interactions with an
environment to make decisions that maximize a reward signal. The goal
is to learn a policy that maps states to actions that lead to the highest
reward over time. Ex. Q-learning, SARSA, and deep reinforcement
learning algorithms (e.g., actor-critic methods, deep deterministic policy
gradient).

Deep Learning: Involves using neural networks with multiple layers to
learn complex patterns in data. The algorithm learns by iteratively
adjusting the weights of the network to minimize the difference between
predicted and actual outputs. Ex. convolutional neural networks (CNNs),
recurrent neural networks (RNNs, LSTM) networks, and transformers
(BERT, GPT etc)

Transfer Learning: A pre-trained model is fine-tuned on a new task to
leverage the knowledge learned from the previous task. The goal is to
improve performance on the new task while reducing the amount of
training data required. Ex. using pre-trained word embeddings (e.g.,
Word2Vec, GloVe) for NLP tasks or pre-trained neural networks for image
classification tasks.

Machine Learning

Introduction

Problem categories in Machine learning

Ensemble Learning: Multiple models are combined to produce a better
prediction than any single model. The goal is to leverage the strengths of
each individual model and reduce the weaknesses. Examples include
bagging (random forests), boosting (Gradient Boosting Machine), and
stacking (team learning).

Time Series Analysis: The algorithm learns patterns in sequential data
over time to make predictions about future values. Examples include
ARIMA models, recurrent nets and transformers.

Natural Language Processing (NLP): The algorithm learns to analyze
and generate text data to perform tasks such as language translation,
sentiment analysis, and text summarization. Examples include word
embeddings, recurrent neural networks, and transformers.

Generative Adversarial Networks (GANs): Two algorithms compete
with each other to generate new data that is indistinguishable from the
original training data. The goal is to learn a generator network that can
produce realistic data samples. Examples include image generation, video
generation, and text generation.

Machine Learning

Introduction

Supervised learning

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Introduction

Supervised learning

Supervised learning : Classification vs Regression

A learning problem tries to predict properties of unknown data. In supervised
learning, the data comes with additional attributes that we want to predict.
We can separate supervised learning problems in a few large categories:

Classification: Identifying to which category an object belongs to.
Samples belong to two or more classes and we want to learn from already
labeled data how to predict the class of unlabeled data. Variants:
multi-class, multi-label classification, label ranking, collaborative filtering.

Regression: Predicting a continuous-valued attribute associated with an
object. Variants: multi-output learning when the desired output consists
of more continuous variables.

Common algorithms: Decision Trees, ensemble methods (bagging,
Random Forests, Boosting etc.) support vector machines (SVM), logistic
regression, linear regression, naive Bayes classification, ridge regression,
Lasso, k nearest neighbors, (deep) neural networks . . .

Machine Learning

Introduction

Supervised learning

Further problems in supervised learning

Structured (output) learning: techniques that involve predicting
structured objects, rather than scalar discrete or real values, e.g.
translating a natural language sentence into a syntactic representation
such as a parse tree, learning social networks, or gene regulatory
networks, NLP, speech recognition, and computer vision. Bayesian
networks and random fields, structured SVMs, Markov logic networks etc.
Approximate inference and learning methods are usually needed.

Probabilistic graphical models: large class of structured prediction
models. Learn the statistical relationships between the variables. Training
and prediction using a trained model are often computationally infeasible
and approximate inference is used.

Time series classification: Techniques that involve assigning time series
patterns to specific categories or predicting future values based on past
observations. The data is a sequence of discrete-time observations, not
i .i .d . anymore.

Collaborative filtering: Recommender systems collect preferences or
taste information from many users (collaborating) for making automatic
predictions (filtering) about the interests of each user.

Machine Learning

Introduction

Supervised learning

Further problems in supervised learning

Preprocessing: Feature extraction and normalization.

Dimensionality reduction: Reducing the number of random variables to
consider for parsimony and increased efficiency : PCA, SVD, feature
extraction and selection, non-negative matrix factorization, latent
Dirichlet allocation (LDA) . . .

Bias correction; selection bias and omission bias.

Handling of missing values.

Model selection: Comparing, validating and choosing parameters and
models for improved accuracy via parameter tuning. Grid search, cross
validation . . .

Machine Learning

Introduction

Supervised learning

Choosing the right estimator

Figure: A road map on how to approach problems with regard to which
estimators to try on your data.

Machine Learning

Introduction

Supervised learning

Model selection: illustration

Figure: A comparison of several classifiers in scikit-learn on synthetic
bivariate data.

Machine Learning

Introduction

Supervised learning

Model comparisons: illustration

Approach ACC AUC RMS
L is tuned L=200 L is tuned L=200 L is tuned L=200

Ad 0.846±0.11 0.857±0.10 0.880±0.13 0.893±0.12 0.676±0.13 0.668±0.10
AdET 0.784±0.13 0.862±0.09 0.796±0.14 0.898±0.12 0.572±0.13 0.667±0.09
AdSt 0.847±0.12 0.833±0.11 0.898±0.12 0.874±0.13 0.603±0.11 0.598±0.08
ArcX4 0.866±0.09 0.852±0.09 0.920±0.09 0.892±0.11 0.715±0.10 0.686±0.10
ArcX4ET 0.866±0.09 0.868±0.08 0.921±0.09 0.901±0.10 0.715±0.10 0.693±0.09
Bag 0.858±0.08 0.823±0.10 0.914±0.10 0.875±0.12 0.714±0.09 0.660±0.10
BagET 0.865±0.10 0.836±0.11 0.916±0.11 0.893±0.11 0.717±0.10 0.673±0.10
Logb 0.848±0.10 0.845±0.10 0.880±0.12 0.884±0.13 0.679±0.14 0.635±0.09
RF 0.865±0.09 0.864±0.09 0.915±0.11 0.896±0.12 0.716±0.10 0.689±0.10
RadP 0.859±0.08 0.850±0.09 0.915±0.09 0.889±0.13 0.714±0.09 0.669±0.09
RadPET 0.864±0.10 0.861±0.09 0.915±0.11 0.908±0.10 0.716±0.10 0.680±0.09
Rot 0.864±0.09 0.865±0.08 0.916±0.10 0.903±0.11 0.722±0.10 0.700±0.10
Rotb 0.862±0.09 0.865±0.09 0.913±0.10 0.897±0.11 0.719±0.10 0.702±0.11
RotbET 0.864±0.09 0.866±0.09 0.913±0.10 0.900±0.11 0.719±0.10 0.704±0.11
RotET 0.864±0.09 0.871±0.08 0.915±0.10 0.901±0.10 0.721±0.10 0.698±0.10
Swt 0.851±0.10 0.859±0.09 0.899±0.10 0.888±0.11 0.692±0.08 0.638±0.07
SwtET 0.864±0.10 0.866±0.08 0.913±0.11 0.890±0.11 0.699±0.09 0.649±0.08
Vad 0.812±0.10 0.858±0.09 0.817±0.13 0.894±0.12 0.628±0.14 0.684±0.11
VadET 0.791±0.13 0.864±0.08 0.792±0.15 0.899±0.11 0.601±0.15 0.681±0.09

Machine Learning

Introduction

Supervised learning

Terminology

Common terms, synonyms or closely related topics:

Machine Learning

Statistical Learning

Computational Learning Theory

Knowledge Discovery in Databases

Pattern Recognition

Data Mining

Artificial Intelligence

̸= Cognitive science . . .

Machine Learning

Introduction

Supervised learning

Illustration: Handwritten digit recognition

Machine Learning

Introduction

Supervised learning

Illustration: Handwritten digit recognition

Each digit corresponds to a 28× 28 pixel image, represented by a vector
comprising 784 real numbers. The goal is to build a machine that will
take such a vector x as input and that will produce the identity of the
digit 0, . . . , 9 as the output.

This is a nontrivial problem due to the wide variability of handwriting.

The original input variables are typically preprocessed (feature extraction)
to transform them into some new space of variables

The precise form of the function f (x) is determined during the training
phase,

Machine Learning

Introduction

Typical problems

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Introduction

Typical problems

Image annotation/retrieval

Machine Learning

Introduction

Typical problems

Multi-label learning

Machine Learning

Introduction

Typical problems

Multivariate prediction

Machine Learning

Introduction

Typical problems

Label ranking

Machine Learning

Introduction

Typical problems

Multi-task learning

Machine Learning

Introduction

Typical problems

Collaborative filtering

Machine Learning

Introduction

Typical problems

Dyadic prediction

Machine Learning

Introduction

Typical problems

Further problems

Structured output prediction

Multi-task learning and transfer learning

Matrix factorization

Sequence learning, time series prediction and data stream mining

Metric learning

Topic Modelling

Causal inference

. . .

Machine Learning

Introduction

Typical problems

Softwares

Machine Learning

Introduction

The Supervised Learning setting

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Introduction

The Supervised Learning setting

Supervised learning

In the setting of supervised learning, a function of f (.,w) : X → Y is to
be learned, that predicts well on instances that are drawn from a joint
probability distribution p(x, y) on X × Y .

The true distribution p(x, y) is unknown. Instead, one has access to a
training set D = {(x1, y1), . . . , (xn, yn)}.
In statistical learning models, the training sample (xi , yi) are assumed to
have been drawn i.i.d. from p(x, y).

Machine Learning

Introduction

The Supervised Learning setting

Generalization error

Given a loss function L(f (x,w), y) X × X → R that measures the
difference between the predicted value f (x,w) and the true value y . The
objective is to minimize the expected ”risk”:

True loss, generalization error or expected risk :

E(w) = E[L(f (X,w),Y)] =

∫ ∫
L(f (x,w), y)p(x, y)dxdy

The True loss is expressed as an expectation over the unknown joint
probability distribution p(x, y).

Machine Learning

Introduction

The Supervised Learning setting

Supervised learning

The ideal goal is to select a function f (.,w) ∈ H, where H is a space of
functions called a hypothesis space, so that the true loss is minimised.

As p(x, y) is unknown, a common paradigm is to estimate a function f̂
through (regularized) empirical risk minimization.

The loss function may be chosen for numerical reasons (e.g. convexity).

Distinct loss functions may lead to functions f̂ that differ significantly in
their predictions.

Machine Learning

Introduction

The Supervised Learning setting

Standard loss functions

In regression, L(·) is typically the squared loss:

E[L(f (X ,w),Y)] =

∫ ∫
(f (x,w)− y)2p(x, y)dxdy

In classification, L(·) is typically the zero-one loss:

E[L(f (X ,w),Y)] = P(X ,Y)[f (X ,w) ̸= Y]

=
∑
y

∫
I[f (x,w) ̸= y]p(x, y)dx

In probabilstic classification, f ((X ,w), y) is an estimate for P(y |x) and
L(·) is typically the logarithmic loss:

E[L(f (X ,w),Y)] = −
∫ ∫

log (f ((x ,w), y)))p(x, y)dxdy

Machine Learning

Introduction

The Supervised Learning setting

MAP estimate in classification

In classification, L(f (x), y) = I(f (x) ̸= y) called the 0-1 loss. (w is
omitted for conciseness). It is convenient to denote by Ck the class k. So

arg min
f∈H

∑
y

∫
I[f (x,w) ̸= y]p(x, y)dy

= arg min
f∈H

K∑
i=1

∫
I(f (x) ̸= Ck)p(x,Ck)dx

= arg min
f∈H

∫ { K∑
i=1

I(f (x) ̸= Ck)p(Ck |x)

}
p(x)dx

For all x , the optimal solution f (x) satisfies

arg min
f∈H

{
K∑
i=1

I(f (x) ̸= Ck)p(Ck |x)

}

Machine Learning

Introduction

The Supervised Learning setting

MAP estimate in classification

When L(f (x), y) is 0-1 loss, we can prove that MAP estimate minimizes
0-1 loss,

arg min
f∈H

K∑
i=1

L[f (x),Ck]P(Ck |x) = arg min
f∈H

K∑
i=1

I(f (x) ̸= Ck)P(Ck |x)

= arg min
f∈H

[1− P(f (x) = Ck |x)]

= argmax
f∈H

P(f (x) = Ck |x)

The optimal solution for the 0-1 loss is the most likely class (the mode of
the distribution).

Machine Learning

Introduction

The Supervised Learning setting

Posterior mean minimizes quadratic loss

For continuous outputs, a more appropriate loss function is squared error
or quadratic loss.

The posterior expected loss is given by

∫
y

L[f (x), y]p(y |x)dy =

∫
y

[y − f (x)]2 p(y |x)dy

=

∫
y

[
y 2 − 2yf (x) + f (x)2

]
p(y |x)dy

Machine Learning

Introduction

The Supervised Learning setting

Posterior mean minimizes quadratic loss

Setting the derivative w.r.t. f equal to zero gives

∂ρ

∂f
=

∫
y

[−2y + 2f (x)]p(y |x)dy = 0 ⇒

∫
y

f (x)p(y |x)dy =

∫
y

yp(y |x)dy

f (x)

∫
y

p(y |x)dy = Ep(y|x)[Y] = E[Y |x]

⇒ f (x) = E[Y |x]

Hence the the minimum mean squared error solution or MMSE is the
posterior mean.

Machine Learning

Introduction

The Supervised Learning setting

Squared loss

t

xx0

y(x0)

y(x)

p(t|x0)

The regression function y(x), which minimizes the expected squared loss, is
given by the mean of the conditional distribution p(t|x).

Machine Learning

Introduction

The Supervised Learning setting

Loss functions

There are situations in which squared loss can lead to very poor results in
regression and where more sophisticated approaches are needed. An
important example concerns situations in which the conditional
distribution p(y |x) is multimodal.

A simple generalization of the squared loss, called the Minkowski loss, is
given by

E[L(f (X,w),Y)] =

∫ ∫
|f (x,w)− y |qp(x, y)dxdy

Is there a closed-form expression for the optimal solution f ⋆(·)?

Machine Learning

Introduction

The Supervised Learning setting

Loss functions

E[L(f (X,w),Y)] =

∫ ∫
|f (x,w)− y |qp(x, y)dxdy

One can show that the optimal solution, f̂ (x), reduces to

The conditional mean, E[Y |x], for q = 2 (i.e., quadratic loss function)

The conditional median of p(y |x) for q = 1 (i.e., absolute loss function)

The conditional mode of p(y |x) for q → 0 (i.e., zero-one loss function)

Is there w⋆ such that f (·,w⋆) = f̂ (·)? Otherwise the model will be biased.

Machine Learning

Introduction

The Supervised Learning setting

Posterior median minimizes the absolute loss

A more robust alternative to the quadratic loss is the absolute loss. The
optimal estimate is the posterior median,

ρ =

∫
y

L[f (x), y]p(y |x)dy =

∫
y

|y − f (x)|p(y |x)dy

=

∫
y<f (x)

(f (x)− y)p(y)|x)dy +

∫
y≥f (x)

(y − f (x))p(y |x)dy

∂ρ

∂f
=

∫
y<f (x)

p(y |x)dy −
∫

y≥f (x)

p(y |x)dy = 0

⇒ P(Y < f (x)|x) = P(Y ≥ f (x)|x) = 0.5

Machine Learning

Introduction

The Supervised Learning setting

Loss function and consistency

The loss function should approximate the actual cost we are paying due
to misclassifcation errors.

There are many loss functions that are non-convex and discontinuous.
It is difficult to optimize these losses directly (e.g. gradient-based
optimization).

The loss functions used for training classifiers (e.g. exponential loss,
hinge loss) are usually approximations or surrogates of the zero-one-loss
(misclassification rate).

In practice, we consider a surrogate loss function which can be optimized
by efficient algorithms.

A learning algorithm is consistent if the expected risk of a learned
function converges to the Bayes risk as the training sample size increases.

Machine Learning

Introduction

The Supervised Learning setting

More complex loss functions with multiple labels

So far, each instance was associated with a single label Y . In real-world
applications, one object is usually relevant to multiple labels {Y1, . . . ,YL}.
Ranking these labels is a central part of many information retrieval
problems, such as document retrieval, collaborative filtering, sentiment
analysis, and online advertising.

The rank-loss evaluates the label order induced by giving a numerical
score for each item in some sense:

Lrankloss(f (x), y) =
1

n+ · n−

∑
yi≤yj

I[fi (x) ≥ fj(x)]

where n+ = {yi : yi = +1} and n− = {yj : yj = −1}.
It is difficult to find surrogate loss consistent with the ranking loss.

Machine Learning

Introduction

The Supervised Learning setting

Empirical loss

The true loss E(w) can not be computed exactly as the distribution
p(x, y) is unkown. We may estimate the expected risk from D using the
approximation,

E[f (X)] =
∫

f (x)p(x)dx ≃ 1

n

n∑
j=1

f (xj)

So, the intent is to find a function f (.,w) that minimizes the empirical
loss,

Empirical loss:

Ê(w) =
1

n

n∑
j=1

L(f (xj ,w), yj)

Machine Learning

Introduction

The curse of dimensionality

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Introduction

The curse of dimensionality

The curse of dimensionality

In practical applications, we have to deal with spaces of high
dimensionality comprising many input variables

Suppose the input space is divided into cells and any new test point is
assigned to the class that has a majority number of representatives in the
same cell as the test point.

Machine Learning

Introduction

The curse of dimensionality

The curse of dimensionality

x1

D = 1
x1

x2

D = 2

x1

x2

x3

D = 3

Machine Learning

Introduction

The curse of dimensionality

The curse of dimensionality

As the number of such cells grows exponentially with D, we need an
exponentially large quantity of training data in order to ensure that the
cells are not empty

For a polynomial of order M, the number of coefficients to estimate
varies as O(DM). More parsimonious models are needed.

Our geometrical intuitions fail badly when we consider spaces of higher
dimensionality. Learning algorithms based on the euclidean metric suffer
drastically from the curse of dimensionality.

Machine Learning

Introduction

The curse of dimensionality

The curse of dimensionality

ε

vo
lu

m
e

fra
ct

io
n

D = 1

D = 2

D = 5

D = 20

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D = 1

D = 2

D = 20

r

p
(
r
)

0 2 4
0

1

2

Left: fraction of the volume of a sphere lying in the range 1− ϵ et 1 for various values
of D. Right: probability density with respect to radius r of a Gaussian distribution for
various values of D.

Machine Learning

Introduction

The curse of dimensionality

The curse of dimensionality

With high-dimensional data, the Euclidean distance is not informative
because all vectors are almost equidistant to the search query vector.

Local methods work best in low-dimensional embeddings.

Example: The k-nearest neighbors algorithm (k-NN) is a non-parametric
method used for classification and regression (majority vote of its k
neighbors or average of their values) where the function is only
approximated locally.

Dimension reduction is usually performed prior to applying the k-NN
algorithm to high-dimensional data (d > 10).

Machine Learning

Introduction

The curse of dimensionality

Binary classification

Many ML problems can be cast as binary classification problems.

The goal is to infer a function f : X → {−1,+1} from D such that the
expected risk, P(X ,Y)[f (X ,w) ̸= y], is as low as possible.

The model output value is often regarded as score of the positive class
that is compared to some arbitrary threshold θ.

A probabilistic classifier output an estimate of P(Y = 1|x), but
calibration of the probabilities is often required when the loss is expressed
as an expected cost.

Machine Learning

Introduction

Polynomial curve fitting

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Introduction

Polynomial curve fitting

Example: Polynomial curve fitting

x

t

0 1

−1

0

1

f (x ,w) = w0 + w1x + w2x
2 + . . .+ wMxM =

M∑
j=0

wjx
j

Machine Learning

Introduction

Polynomial curve fitting

Sum of the squares

t

x

y(xn,w)

tn

xn

The sum of the squares of the errors measures the misfit between the function
y(x ,w), for any given value of w, and the training set data points,

Ê(w) =
1

N

N∑
n=1

{f (xn,w)− yn}2

Machine Learning

Introduction

Polynomial curve fitting

Polynomial of order 0

x

t

M = 0

0 1

−1

0

1

Machine Learning

Introduction

Polynomial curve fitting

Polynomial of order 1

x

t

M = 1

0 1

−1

0

1

Machine Learning

Introduction

Polynomial curve fitting

Polynomial of order 3

x

t

M = 3

0 1

−1

0

1

Machine Learning

Introduction

Polynomial curve fitting

Polynomial of order 9

x

t

M = 9

0 1

−1

0

1

Machine Learning

Introduction

Polynomial curve fitting

Polynomial of order 9

We observe that, as M increases, the magnitude of the coefficients typically
gets larger, i.e. |wj | → ∞ when M → ∞.

Machine Learning

Introduction

Polynomial curve fitting

Over-fitting

M

E
R
M
S

0 3 6 9
0

0.5

1
Training
Test

Machine Learning

Introduction

Polynomial curve fitting

Regularization

Regularization is one technique often used to control the over-fitting
phenomenon. It involves adding a penalty term to the error function to
discourage the coefficients from reaching large values,

Ê(w) =
1

2

M∑
n=1

{f (xn,w)− yn}2 +
λ

2
∥w∥2

λ controls the effective complexity of the model and hence determines the
degree of over-fitting.

Machine Learning

Introduction

Polynomial curve fitting

Regularization lnλ = −18

x

t

ln λ = −18

0 1

−1

0

1

Machine Learning

Introduction

Polynomial curve fitting

Regularization lnλ = 0

x

t

ln λ = 0

0 1

−1

0

1

Machine Learning

Introduction

Polynomial curve fitting

Regularization : ERMLS vs. lnλ

E
R
M
S

ln λ−35 −30 −25 −20
0

0.5

1
Training
Test

Machine Learning

Introduction

Polynomial curve fitting

Polynomial of order 9

We see that, as λ increases, the magnitude of the coefficients typically gets
larger.

Machine Learning

Introduction

Polynomial curve fitting

Bayes optimal prediction

In regression, we typically assume that y = f (x) + ϵ where ϵ is a white
noise with variance σ2. the expected squared loss can be written in the
form:

E[w] =

∫ ∫
(f (x ,w)− y)2fX ,Y (x , y)dxdy

=

∫ ∫
(f (x ,w)− E[Y |x])2fX ,Y (x , y)dxdy

+

∫
{
∫

(E[Y |x]− y)2fY/X (y)dy}fX (x)dx

where the conditional expectation E[Y |x] =
∫

yp(y |x))dy , is the Bayes

optimal prediction for the squared loss function,

The last term, equal to σ2, is the intrinsic noise on the data and
represents the minimum achievable value of the expected loss.

Machine Learning

Introduction

The Bias-Variance decomposition

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Introduction

The Bias-Variance decomposition

The Bias-Variance decomposition

f (x ,w) is dependent of D. Taking the expectation of this expression with
respect to D,

ED[(f (x ,w)− E[Y |x])2] = (ED[(f (x ,w)]− E[Y |x])2

+ ED[(f (x ,w)− ED[(f (x ,w)])2]

we get the following decomposition of the expected squared loss:

Error = (bias)2 + variance + noise

The model with the optimal predictive capability is the one that leads to
the best balance between bias and variance.

Machine Learning

Introduction

The Bias-Variance decomposition

Regularization

Regularization is one technique often used to control the over-fitting
phenomenon. It involves adding a penalty term to the error function to
discourage the coefficients from reaching large values,

Ê(w) =
1

2

M∑
n=1

{f (xn,w)− yn}2 +
λ

2
∥w∥2

λ controls the bias-variance trade-off. Bias represents the extent to
which the average prediction over all data sets differs from the desired
regression function. Variance measures the extent to which the solutions
for individual data sets vary around their average

Machine Learning

Introduction

The Bias-Variance decomposition

The bias-variance decomposition as a fonction of lnλ

x

t
ln λ = 2.6

0 1

−1

0

1

x

t

0 1

−1

0

1

Machine Learning

Introduction

The Bias-Variance decomposition

The bias-variance decomposition as a fonction of lnλ

x

t
ln λ = −0.31

0 1

−1

0

1

x

t

0 1

−1

0

1

Machine Learning

Introduction

The Bias-Variance decomposition

The bias-variance decomposition as a fonction of lnλ

x

t
ln λ = −2.4

0 1

−1

0

1

x

t

0 1

−1

0

1

Machine Learning

Introduction

The Bias-Variance decomposition

The bias-variance decomposition

ln λ

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15

(bias)2

variance

(bias)2 + variance
test error

Very flexible models having low bias and high variance, and relatively rigid models
having high bias and low variance.

Machine Learning

Introduction

The Bias-Variance decomposition

A bias-variance decomposition in classification

Several bias-variance decompositions in classification exist, one is given by

ED[P(Y ̸= f (X ,w))] = 1− P(j⋆|X)

+ EX [(P(j⋆|X)− P(ĵ |X))P(ĵ |f ,X)]

+ EX [
∑
j ̸=ĵ

((P(j⋆|X)− P(j |X))P(j |f ,X))]

with notations

P(j |f , x)) = PD(f (x ,w) = j |X = x))

P(j |x)) = P(Y = j |x))
j⋆(x) = argmax

j
P(j |x)

ĵ(x) = argmax
j

P(j |f , x)

Machine Learning

Introduction

The Bias-Variance decomposition

The bias-variance decomposition

We obtain the following decomposition of the expected squared loss

Bias-variance decomposition in regression

Error = (bias)2 + variance + noise

Bias-variance decomposition in classification

Error = bias + spread + Bayes error

The spread acts as variance en regression. Noise and Bayes error are irreducible.
The goal is to find the best balance between bias and variance (or spread).

Machine Learning

Introduction

The Bias-Variance decomposition

Decision Theory

Probability theory provides a consistent mathematical framework for
quantifying and manipulating uncertainty.

Determination of p(x , t) from a set of training data is typically a difficult
inference problem in high dimensional spaces (curse of dimensionality).

We also need a decision theory that, when combined with probability
theory, allows us to make optimal decisions in situations involving
uncertainty.

We need a rule that assigns each value of x to one of the available classes
given by p(x , t). These decision should be optimal in some appropriate
sense (cost dependent).

Machine Learning

Introduction

The Bias-Variance decomposition

Decision Theory

We need a rule that that divide the input space into regions Rk called
decision regions, one for each class, such that all points in Rk are
assigned to class Ck .

The boundaries between decision regions are called decision boundaries
or decision surfaces.

Machine Learning

Introduction

The Bias-Variance decomposition

Decision Theory

Suppose p(x, y) is given with y ∈ {C1, . . . , CK}, we are interested in
p(Ck |x). Using Bayes’ theorem,

p(Ck |x) =
p(x|Ck)p(Ck)

p(x)

We can interpret p(Ck) as the prior probability for the class Ck , and
p(Ck |x) as the corresponding posterior probability.

If our aim is to minimize the chance of assigning x to the wrong class, we
choose the class having the higher posterior probability.

This amounts to choose k s.t. p(Ck |x) > p(Cj |x), ∀j ̸= k. In this case
Rk = {x|p(Ck |x) > p(Cj |x), ∀j ̸= k}.

Machine Learning

Introduction

The Bias-Variance decomposition

Minimizing the misclassification rate

Note that
p(Ck |x) > p(Cj |x)

is equivalent to

p(x|Ck)p(Ck) > p(x|Cj)p(Cj)

So, instead of learning p(Ck |x), we may learn K distinct models p(x|Ck)
for k = 1, . . . , L . The p(Ck) are easily estimated..

Machine Learning

Introduction

The Bias-Variance decomposition

Minimizing the misclassification rate

In the 2-class problem, the probability an error occurring is given by

P(mistake) = p(x ∈ R2, C1) + p(x ∈ R1, C2)

=

∫
R2

p(x, C1)dx +

∫
R1

p(x, C2)dx

Clearly to minimize P(mistake) we should arrange that each x is assigned
to whichever class has the smaller value.

Machine Learning

Introduction

The Bias-Variance decomposition

Minimizing the misclassification rate

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

Machine Learning

Introduction

The Bias-Variance decomposition

Minimizing the expected loss

The misclassification rate is not appropriate when the consequences of
the mistakes can be dramatically different, we need an overall measure of
loss (or cost function) incurred in taking any of the available decisions.

By assigning a new value of x , with true class Ck , to class Cj (where j
may not be equal to k), we incur some level of loss that we denote by Lkj .

The average loss is given by

E(L) =
∑
k

∑
j

∫
Rj

Lkjp(x, Ck)dx

Machine Learning

Introduction

The Bias-Variance decomposition

Minimizing the expected loss

E(L) =
∑
k

∑
j

∫
Rj

Lkjp(x, Ck)dx

The goal is to choose the regions Rj in order to minimize E(L), which
implies that for each x we should minimize

∑
k

Lkjp(x, Ck)

Thus the trivial decision rule that minimizes E(L) assigns each new x to

the class j for which the quantity
∑
k

Lkjp(x, Ck) is minimum.

Machine Learning

Introduction

The Bias-Variance decomposition

The reject option

x

p(C1|x) p(C2|x)

0.0

1.0
θ

reject region

Inputs x such that max
k

p(Ck |x) < θ, are rejected.

Machine Learning

Introduction

The Bias-Variance decomposition

Inference and decision

There are three distinct approaches to solving decision problems, in decreasing
order of complexity,

1 Generative models: Learn p(x|Ck) for each class Ck) individually. Also
separately infer the prior class probabilities p(Ck). Then use Bayes’
theorem to find p(Ck |x). One may also model the joint distribution
p(x, Ck) directly.

2 Discriminative models: Learn p(Ck |x), and then subsequently use
decision theory to assign each new x to one of the classes.

3 Non probabilitic models: Find a function f (x), called a discriminant
function, which maps each input x directly onto a class label.
Probabilities play no role here.

Machine Learning

Introduction

The Bias-Variance decomposition

Generative models

The relative merits of Generative models:

If x has high dimensionality, a large training set is needed to determine
p(Ck |x) from p(x|Ck). to reasonable accuracy.

Advantage: it allows the marginal density of data to be determined,

p(x) =
∑
k

p(x|Ck)p(Ck)

Useful for detecting new data points that have low probability under the
model known as (outlier detection) or (novelty detection).

Disadvantage: wasteful of computational resources and excessively
demanding of data if we only wish to make classification decisions.
p(x|Ck) may contain a lot of structure that has little effect on the
posterior. probabilities

Machine Learning

Introduction

The Bias-Variance decomposition

Illustration

p(x|C1)

p(x|C2)

x

cl
as

s
de

ns
iti

es

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

x

p(C1|x) p(C2|x)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

The left-hand mode of p(x |C1), on the left plot, has no effect on p(C1|x).

Machine Learning

Introduction

The Bias-Variance decomposition

Illustration: Decision boundaries

−2 −1 0 1 2

−2

−1

0

1

2

3

Machine Learning

Classifier Evaluation

Outline

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Classifier Evaluation

Model Selection

We have already seen that, in the maximum likelihood approach, the
performance on the training set is not a good indicator of predictive
performance on unseen data due to the problem of over-fitting

If data is plentiful, the best approach is simply to decompose D into 3
subsets:

A training set, some of the available data to train a range of
models.
A validation set to estimate of the predictive performance of
the models and compare them on independent data.
A test set on which the performance of the selected model is
finally evaluated.

Machine Learning

Classifier Evaluation

Cross-validation

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Classifier Evaluation

Cross-validation

Cross-validation

In many applications, however, the supply of data for training and testing
will be limited, and in order to build good models, we wish to use as
much of the available data as possible for training.

One solution is to use S-fold cross-validation. The technique involves
taking the available data and partitioning it into S groups. Then S − 1 of
the groups are used to train a set of models that are then evaluated on
the remaining group.

The procedure is repeated for all S possible choices for the held-out
group and the performance scores from the S runs are then averaged

Machine Learning

Classifier Evaluation

Cross-validation

Cross-validation

run 1

run 2

run 3

run 4

Machine Learning

Classifier Evaluation

Evaluation of binary classifiers

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Classifier Evaluation

Evaluation of binary classifiers

Evaluation of binary classifiers

There are many metrics that can be used to measure the performance of
a classifier or predictor; different fields have different preferences for
specific metrics due to different goals.

To evaluate a classifier, one compares its output to a perfect classification
and cross tabulates the data into a 2× 2 contingency table (confusion
matrix),

Positive Negative

Positive prediction TP FP
Negative prediction FN TN

Prevalence (i.e., the positive rate) has a significant impact on prediction
values. A stupid classifier achieves an accuracy rate above 50% with
(imbalanced data sets).

The cost function may not be symmetrical, depending on the application.

Machine Learning

Classifier Evaluation

Evaluation of binary classifiers

Evaluation of binary classifiers

Precision =
TP

TP + FP
; Recall =

TP

TP + FN

Specificity =
TN

TN + FP
; Sensibility =

TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN
; Balanced Acc. =

1

2
(Spe. + Sens.)

Each of the 2× 2 tables can be summarized as a pair of 2 numbers. In addition
to the paired metrics, there are also single metrics that give a single score. An
F-score is a combination of the precision and the recall:

F-score = (1 + β2) · Precision · Recall
β2 · Precision + Recall

Machine Learning

Classifier Evaluation

Evaluation of binary classifiers

Evaluation of binary classifiers

Prevalence has a significant impact on prediction values.

Suppose there is a test for a disease with 99% sensitivity and 99%
specificity. If 2000 people are tested and the prevalence is 50%, 1000 of
them are sick and 1000 healthy. Thus about 990 TP (and 990 TN) are
likely, with 10 FP (and 10 FN). The P and N prediction values would be
99%.

If the prevalence is only 5%, only 100 are sick. The likely result is 99 TP,
1 FN, 1881 TN and 19 FP. Of the 19+99 people tested positive, only 99
really have the disease, - only 84% chance that a patient has the disease
given that his test result is positive, and only 1 chance in 1882, (0.05%)
that the patient has the disease despite a negative test result.

Machine Learning

Classifier Evaluation

Evaluation of binary classifiers

ROC Curve

The overall performance of the classifier can be visualized and studied
using the Receiver Operating Characteristic curve of ROC curve.

A ROC curve, is a graphical plot that illustrates the performance of a
binary classifier system as its discrimination threshold is varied. The
curve is created by plotting the sensitivity against the specificity at
various threshold settings.

The best possible prediction method would yield a point in the upper left
corner or coordinate (1, 1) of the ROC space,

The diagonal divides the ROC space. Points above the diagonal represent
good classification results (better than random), points below the line
represent poor results (worse than random)

Machine Learning

Classifier Evaluation

Evaluation of binary classifiers

Courbe ROC

The area under the curve (AUC) is equal to the probability that a classifier will
rank a randomly chosen positive instance higher than a randomly chosen
negative one.

Machine Learning

Multi-class Classification

Outline

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Multi-class Classification

Multiclass classification

Multiclass or multinomial classification is the problem of classifying
instances into one of K classes (K > 2).

Many binary classification algorithms can be turned into multiclass
classifiers by a variety of strategies.

1 One-against-all : involves training a single classifier per class,
with the samples of that class as positive samples and all other
samples as negatives. Base classifiers produce real-valued
confidence scores rather than just a class label.

2 One-against-one: K (K − 1)/2 binary classifiers are trained,
each with the samples of the pair of classes. At prediction
time, all classifiers are applied; the class with the highest
number of votes is usually predicted.

3 Error-Correcting Output Codes (ECOC) is an ensemble
method designed for multi-class classification problem where
each class is assigned a unique binary string of length n, called
a codeword.

Machine Learning

Multi-class Classification

Illustration

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

Machine Learning

Multi-class Classification

Error-correcting output code

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Multi-class Classification

Error-correcting output code

ECOC - Illustration

Classe vl hl dl cc ol or
0 0 0 0 1 0 0
1 1 0 0 0 0 0
2 0 1 1 0 1 0
3 0 0 0 0 1 0
4 1 1 0 0 0 0
5 1 1 0 0 1 0
6 0 0 1 1 0 1
7 0 0 1 0 0 0
8 0 0 1 1 0 0
9 0 0 0 1 1 0

Table: A 6 bit error-correcting output code for a ten-class problem

Machine Learning

Multi-class Classification

Error-correcting output code

ECOC - Illustration

In digit recognition task, we need to map each hand written digit to one
of K = 10 classes. Every column is given an interpretation

Column notation meaning

1 vl contains a vertical line
2 hl contains a horizontal linee
3 dl contains a diagonal line
4 cc contains a closed curve
5 ol contains an open curve on the right side
6 or contains an open curve on the left side

Machine Learning

Multi-class Classification

Error-correcting output code

ECOC - Illustration

During training, one binary classifier is learned for each column.

To classify a new data point x , all n binary classifiers are evaluated to
obtain a 6-bit string. Finally, we choose the class whose codeword is
closet to x ’s output string as the predicted label.

Example : 110001 is closest to 110000, thus the output class is 4.

The rows have more bits than is necessary (log2(10)). Using some
redundant ”error-correcting” bits, we can tolerant some error.

If d is the minimum Hamming distance between any pair of code words,
then the code can correct at least [(d − 1)/2] single bit errors.

In the previous code, d = 2 thus no error is allowed.

Machine Learning

Multi-class Classification

Error-correcting output code

ECOC

There are many ways to design the error-correcting output code.

When K is small, one can use exhaustive codes. Each code has length
2K−1 − 1. Row 1 contains only ones. Row 2 consists of 2K−2 zeros
followed by 2K−2 − 1 ones, and so on. This code has the largest inter-row
Hamming distance.

When K is large, random codes can be used. Random code works as well
as optimally constructed code.

The major benefit of error-corrective coding is variance reduction via
model averaging.

Machine Learning

Multi-class Classification

Error-correcting output code

One-against-one

One-against-one suffers from ambiguities (just as one-against-all) in that
some regions of its input space may receive the same number of votes.

Instead of taking the class with the highest number of votes, it is possible
to combine the K(K − 1)/2 outputs values of the One-against-one
strategy to obtain a posterior class probabilities.

Let Cij denotes ”x is in class Ci or Cj” and let

Pij = P(Ci |Cij ,X = x)

Can P(Ci |X = x) be written as a function of Pij ?

Machine Learning

Multi-class Classification

Error-correcting output code

One-against-one

The idea:

P(
K⋃
j=1

Cj |X = x) = 1

= P(
K⋃

j=1,i ̸=j

Cij |X = x)

=
K∑

j=1,i ̸=j

P(Cij |X = x)− (K − 2) · P(Ci |X = x)

with

Pij = P(Ci |Cij ,X = x) =
P(Ci |X = x)

P(Cij |X = x)

Machine Learning

Multi-class Classification

Error-correcting output code

One-against-one

One obtains the K a posteriori probabilities given the K(K − 1)/2
probabilities Pij :

Recombination

P(Ci |X = x) =
1∑K

j=1,i ̸=j
1
Pij

− (K − 2)

With Pij = 1,∀i , we get P(Ci |X = x) = 1 as expected.

No clear advantage between one-against-one and one-against-all
techniques.

Machine Learning

Multi-Label Classification

Outline

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Multi-Label Classification

Multi-label classification

The multi-label classification (MLC) problem differs from conventional
classification, as multiple labels can be assigned simultaneously to the
same instance.

This situation is encountered in many recent real-world problems,
including image indexing and annotation, facial expression analysis, text
categorization, sentiment analysis, fault-control, drug side effects
prediction, genome-wide protein function assignment, early detection of
chronic diseases to cite just a few.

For example, a document can be classified as both ”spam” and ”politics”.
Or, a patient can be diagnosed with both ”cancer” and ”diabetes”.

Multilabel learning is a challenging problem because it is difficult to learn
the relationships between multiple labels.

The MLC problem has received increasing attention from the ML
community.

Machine Learning

Multi-Label Classification

Learning setting

Learning in MLC amounts to finding a mapping from a space of features
X = Rd to a space of labels Y = {0, 1}m, given a set of training samples
in X × Y and a loss function L.

Formally, the training set D = {(x(i), y(i))}si=1 consists in i.i.d. samples
drawn from the joint distribution p(x, y) (x ∈ X , y ∈ Y), and the loss
function L : Y × Y → [0,∞) is a distance on the label space.

The goal of learning is then to build a function h : X → Y which maps
any new input x to its proper set of labels, as closely as possible given the
loss function L.

There are many different cost functions that can be used for multilabel
learning.

Machine Learning

Multi-Label Classification

Learning setting

From a probabilistic perspective, solving this problem amounts to
modeling the conditional joint distribution p(y|x), and inferring
Bayes-optimal predictions by minimizing the expected loss,
h⋆(x) = argmin

ŷ
Ey|x [L(ŷ, y)].

Multi-label classification raises a number of computational and statistical
challenges, mainly due the size of the output space which grows
exponentially with the number of labels. Typically, modeling naively
p(y|x) requires estimating O(2m) parameters, while inferring a
Bayes-optimal prediction for an arbitrary loss function requires O(22m)
evaluations of L.

Label dependencies have to be incorporated into the learning process in
order to improve the classification performance.

Machine Learning

Multi-Label Classification

MLC loss functions

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Multi-Label Classification

MLC loss functions

MLC cost functions

There are many different cost functions that can be used for multilabel
learning. Some of the most common cost functions include:

Hamming loss: This is the most common cost function for multilabel
learning. It measures the number of labels that are misclassified.

Zero-one loss: This is a stricter cost function than Hamming loss. It
measures the number of labels that are misclassified, as well as the
number of labels that are not classified at all.

F-measure: This cost function balances the precision and recall of the
predictions.

The choice of cost function depends on the specific application. For example, if
the application requires a high precision, then the zero-one loss function may
be a good choice. If the application requires a high recall, then the F-measure
may be a good choice.

Machine Learning

Multi-Label Classification

MLC loss functions

Further MLC cost functions

The Jaccard index, is defined as the number of correctly predicted labels

divided by the union of predicted and true labels,
|T ∩ P|
|T ∪ P| where P and T

are sets of predicted labels and true labels respectively.

Precision is
|T ∩ P|
|P| ,

Recall is
|T ∩ P|
|T | ,

F1 is their harmonic mean

Machine Learning

Multi-Label Classification

MLC loss functions

Hamming loss

Optimizing decomposable loss functions such as the popular Hamming
loss requires only to model the marginal distribution of each label.

LH(y, h(x)) =
1

m

m∑
i=1

I[yi = hi (x)],

where I[·] is the standard {False,True} → {0, 1} mapping.

Binary relevance is a simple method for multilabel learning. It treats
each label as a separate binary classification problem. This means that the
model is trained to predict each label independently of the other labels.

Binary relevance can be inaccurate if the labels are not independent of
each other.

Machine Learning

Multi-Label Classification

MLC loss functions

The Zero-one loss

Contrary to decomposable loss functions, optimizing complex
performance metrics such as the subset 0/1 loss, the F-measure or the
Jaccard index requires to model the joint distribution of the labels (at
least to some extent),

The subset 0/1 loss, which generalizes the well-known 0/1 loss from the
conventional to the multi-label setting, i.e.,

LS(y, h(x)) = I[y = h(x)].

The risk-minimizing prediction for subset 0/1 loss is given by the mode of
the conditional distribution p(y|x), a.k.a. the maximum a posterior
probability estimate (MAP), or the most probable explanation (MPE),

h⋆(x) = argmax
y

p(y|x).

Therefore, one iteration through the 2m label combinations suffices to
compute h⋆(x) for the subset 0/1 loss.

Machine Learning

Multi-Label Classification

MLC learning methods

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Multi-Label Classification

MLC learning methods

Learning Methods

Probabilistic classifier chains (PCC) explicitly learn a maximum-likelihood
estimate of p(y|x) with logistic classifiers for MAP inference
(computationally expensive).

Label ranking is a method that ranks the labels for each instance. The
top-ranked labels are then considered to be the predicted labels (difficult
to train).

Ensemble learning is a method for combining the predictions from
multiple models. This can be done by averaging the predictions, or by
using a voting system (computationally expensive).

Weighted majority voting combines the predictions from multiple binary
classifiers. The weights for the classifiers are determined by their accuracy
(computationally expensive).

Machine Learning

Multi-Label Classification

MLC learning methods

Challenges of multilabel learning

There are many challenges associated with multilabel learning. Some of
the most common challenges include:

The curse of dimensionality: This is the problem of having too many
features relative to the number of instances. This can make it difficult to
learn the relationships between the features and the labels.

Label imbalance: This is the problem of having some labels that are
much more common than others. This can make it difficult to learn the
minority labels.

Class overlap: This is the problem of having labels that are similar to
each other. This can make it difficult to distinguish between the labels.

These challenges can be addressed using a variety of techniques, such as
feature selection,

Machine Learning

Classification and Regression Models

Outline

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Classification and Regression Models

Shrinkage methods

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Classification and Regression Models

Shrinkage methods

Shrinkage methods

We have seen that regularization control the over-fitting phenomenon by
adding a penalty term to the error function,

This technique, also called ridge regression, is an example of shrinkage
method applied to least squares regression, to improve a least-squares
estimator. Least-squares solutions having a large number of coefficients
different from zero are penalized.

Only the variables whose impact on the empirical risk is considerable have
a coefficient bigger than zero and consequently appear in the fitted linear
model.

Doing shrinkage is therefore an implicit embedded manner of doing
feature selection since only a subset of variables contributes to the final
predictor.

Machine Learning

Classification and Regression Models

Shrinkage methods

Ridge regression

An equivalent way to write the ridge problem is

ŵr = argmin
w

N∑
i=1

(yi − xT
i w)2,

subject to

p∑
j=1

w 2
j ≤ L

The ridge regression solution is

ŵr = (XTX + λI)−1XTY

where I is the identity matrix of size p

Machine Learning

Classification and Regression Models

Shrinkage methods

Lasso

Another well known shrinkage method is lasso where the estimate of the
linear parameters is returned by

ŵr = argmin
w

N∑
i=1

(yi − xT
i w)2,

subject to

p∑
j=1

|wj | ≤ L

The 1-norm penalty allows a stronger constraint on the coefficients,
however it makes the solution nonlinear and requires a quadratic
programming algorithm.

If L >

p∑
j=1

ŵj the lasso returns the common least-squares solution. The

penalty factor L is typically set by cross-validation.

Machine Learning

Classification and Regression Models

Naive Bayes classifiers

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Classification and Regression Models

Naive Bayes classifiers

Naive Bayes classifier

The Naive Bayes (NB) classifier is a baseline model just as decision trees.

Consider a multi-class learning problem. Y that takes values in the set
{c1, . . . , cK}. The Bayes optimal classifier should return

c∗(x) = arg max
j=1,...,K

Prob{Y = cj |x}

Using the Bayes theorem,

c∗(x) = arg max
j=1,...,K

Prob{x|Y = cj}Prob{Y = cj}
Prob{x}

= arg max
j=1,...,K

Prob{x|Y = cj}Prob{Y = cj}

Machine Learning

Classification and Regression Models

Naive Bayes classifiers

Naive Bayes classifier

It is easy to estimate each of the a priori probabilities Prob{Y = cj}. The
estimation of Prob{x{Y = cj} is much harder.

The NB classifier is based on the simplifying assumption that the input
values are conditionally independent given the target value:

Prob{x|Y = cj} = Prob{x1, . . . , xn|Y = cj} =
n∏

h=1

Prob{xh|Y = cj}

The NB classification is then:

cNB(x) = arg max
j=1,...,K

Prob{Y = cj}
n∏

h=1

Prob{xh|Y = cj}

Machine Learning

Classification and Regression Models

Naive Bayes classifiers

Naive Bayes classifier

The naive Bayes classifier is relevant when modeling the joint distribution
of p(x |y) is difficult.

Example : classification of documents based on a bag-of-word
representation; i.e. each word of a reference dictionary is present in the
document or not.

The document i is represented by a vector of binary random variables.
X i : Ω 7→ {0, 1}p, with x i

j = 1 iff word j of the dictionary is present in the
ith document.

Machine Learning

Classification and Regression Models

Naive Bayes classifiers

Naive Bayes classifier

It is possible to approach the problem using directly a conditional model
of p(y | x) or using a generative model of the joint distribution modeling
separately p(y) and p(x |y) and computing p(y |x) using Bayes rule.

The naive Bayes model is a generative model.

Y i is naturally modeled as a multinomial distribution with

p(y i) =
K∏

k=1

π
y ik
k . However p(x i |y i) = p(x i

1, . . . , x
i
p|y i) has a priori 2p − 1

parameters. The key assumption made is that X i
1, . . . ,X

i
p are all

independent conditionally on Y i .

While ignoring the correlations between words it works well in practice.

Machine Learning

Classification and Regression Models

Naive Bayes classifiers

Naive Bayes classifier

These conditional independence assumptions correspond to the following
graphical model:

Y i

X i
1 X i

2

. . .

X i
p

Machine Learning

Classification and Regression Models

Naive Bayes classifiers

Naive Bayes classifier

The distribution of Y i is a multinomial distribution which we
parameterize with (π1, ..., πK), and we write

µjk = P(X
(i)
j = 1|Y (i)

k = 1)

We then have

p(X i = x i ,Y i = y i) = p(xi , yi)

= p(x i |y i)p(y i)

=

p∏
j=1

p(x i
j |y i)p(y i)

Machine Learning

Classification and Regression Models

Naive Bayes classifiers

Naive Bayes classifier

The last expression leads to

p(x i , y i) =
[p∏

j=1

K∏
k=1

µjk
x ij y

i
k (1− µjk)

(1−x ij)y
i
k

] K∏
k=1

π
y ik
k

log p(x i , y i) =
K∑

k=1

(p∑
j=1

(
x i
j y

i
k logµjk + (1− x i

j)y
i
k log(1− µjk)

)
+ y i

k log(πk)
)

Note that, in spite of the name the naive Bayes classifier is not a
Bayesian approach to classification.

Machine Learning

Classification and Regression Models

Support vector machines

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines (linear case)

Consider a binary classification task. The problem of separating input
data by a linear boundary is ill-posed as there are infinitely many possible
separating hyperplanes characterized by the equation

β0 + xTβ = 0

The vector normal to the hyperplane is given by β∗ =
β

|β|
The signed distance of a point x to the hyperplane is called the geometric
margin and is given by

β∗T (x − x0) =
xTβ − βxT

0

|β| =
1

|β| (x
Tβ + β0)

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines (linear case)

This technique relies on an optimization approach to compute separating
hyperplanes and was shown to lead to good classification performance on
real data.

The SVM approach computes the (unique) maximal margin
hyperplane for a training set, i.e. the optimal separating hyperplane
which separates the two classes by maximizing the distance to the closest
point from either class.

The problem is modeled as the optimization problem

max
β,β0

C subject to
1

|β|yi (x
T
i β + β0) ≥ C for i = 1, . . . ,N

So that all the points are at least a distance C from the decision
boundary.

Machine Learning

Classification and Regression Models

Support vector machines

Margin

y = 1
y = 0

y = −1

margin

Figure: The margin is defined as the perpendicular distance between the
decision boundary and the closest of the data points.

Machine Learning

Classification and Regression Models

Support vector machines

Maximizing the margin

y = 1

y = 0

y = −1

Figure: The location of this boundary is determined by a subset of the
data points, known as support vectors.

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines

We can set |β| = 1/C . The maximization problem can be reformulated in
a minimization form

min
β,β0

1

2
|β|2 subject to yi (x

T
i β + β0) ≥ 1 for i = 1, . . . ,N

The constraints impose a margin around the linear decision of thickness
1/|β|.
This optimization problem is a convex optimization problem (quadratic
criterion with linear inequality constraints) where the primal Lagrangian is

LP(β, β0) =
1

2
|β|2 −

N∑
i=1

αi [yi (x
T
i β + β0)− 1]

αi ≥ 0 are the Lagrangian multipliers.

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines

Setting the derivatives β and β0 to zero we obtain:

β =
N∑
i=1

αiyixi , 0 =
N∑
i=1

αiyi

Substituting these in the primal form, we obtain the dual

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk

subject to αi ≥ 0.

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines

The dual optimization problem is now

max
α

LD = max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiyk⟨xi , xk⟩

subject to

N∑
i=1

αiyi = 0, for αi ≥ 0, i = 1, . . . ,N

.

⟨xi , xk⟩ is the inner product of xi and xk .

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines

It can be shown that the optimal solution must satisfy the
Karush-Kuhn-Tucker (KKT) condition

αi [yi (x
T
i β + β0)− 1] = 0, ∀i

This means that either of these two situations holds

1 yi (x
T
i β + β0) = 1, i.e. the point is on the boundary of the

margin, then αi > 0
2 yi (x

T
i β + β0) > 1, i.e. the point is not on the boundary of the

margin, then αi = 0

The training points having an index i such that αi > 0 are called the
support vectors.

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines

The decision function can be written as

h(x , β, β0) = sign[xTβ + β0] = sign[
∑
sv

yiαi ⟨xi , x⟩+ β0]

Attractive property of SVM: it is expressed as a function of a limited
number training points (support vectors) which are on the boundaries.
Points far from the class boundary do not play a major role, unlike linear
discriminant models.

In the separable case

C =
1

|β| =
1√∑N
i=1 αi

(1)

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines (nonlinear case)

The extension of the SVM to nonlinear classification relies on the
transformation of the input variables input space by using basis
functions.

Consider a regression problem where x ∈ X ⊂ Rn and define m new
transformed variables zj = zj(x), j = 1, . . . ,m, where zj(·) is a pre-defined
nonlinear transformation (e.g. zj(x1, x2) = log x1 + log x2). This is
equivalent to mapping the input space X into a new space, known as the
feature space, Z = {z = z(x)|x ∈ X},
If m < n, this boils down to a dimensionality reduction.

We may fit a linear model y =
m∑
j=1

βmzm to the training data in the new

input space z ∈ Rm. By doing this, we carry out a nonlinear fitting of
data using conventional linear techniques.

Machine Learning

Classification and Regression Models

Support vector machines

Kernels

A dot-product kernel is a function K , such that for all x , x ′ ∈ X

K(x , x ′) = ⟨z(x), z(x ′)⟩

where ⟨z1, z2⟩ = zT1 z2 stands for the inner product and z(·) is the
mapping from the original to the feature space Z.

Consider a simple kernel function given by
K(x , x ′) = ⟨x , x ′⟩2 = ⟨z(x), z(x ′)⟩. The feature mapping takes the form
z(x) = (x2

1 ,
√
2x1x2, x

2
2)

T and therefore comprises second order terms.

Stationary kernels K(x , x ′) = k(x − x ′) are invariant to translations in
input space, e.g. radial basis functions or Gaussian kernels.

Extensions of kernels to handle symbolic objects greatly expand the range
of problems that can be addressed.

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines

The parametric identification step for binary classification by SVM in the
separable case requires the solution of a quadratic programming problem
in the space Z:

max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiyk⟨zi , zk⟩

=max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykK(xi , xk)

subject to
N∑
i=1

αiyi = 0, and αi ≥ 0, i = 1, . . . ,N

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines

The resolution of this problem differs from the linear one by the
replacement of the quantities ⟨xi , xk⟩ with K(xi , xk)

Whatever the dimensionality m, the SVM computation requires only the
availability of the kernel matrix K .

We don’t need to know the underlying feature transformation function
z(x).

The use of a kernel function is an attractive computational short-cut. In
practice, the approach consists in defining a kernel function directly,
hence implicitly defining the feature space.

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines

Figure: Binary classification in two dimensions showing contours of
constant f (x) obtained from a SVM with Gaussian kernel. The support
vectors are in circles.

Machine Learning

Classification and Regression Models

Support vector machines

Support vector machines

Although the data set is not linearly separable in the two-dimensional
data space X , it is linearly separable in the nonlinear feature space Z
defined implicitly by the nonlinear kernel function K .

Thus the training data points are perfectly separated in the original data
space.

Machine Learning

Classification and Regression Models

Support vector machines

Overlapping class distributions

So far, we assumed that the training data points are linearly separable in
the feature space Z.

In practice, the class-conditional distributions may overlap, in which case
exact separation of the training data can lead to poor generalization.

We need to reformulated the maximization problem so as to allow some
of the training points to be misclassified. The goal is now to maximize
the margin while softly penalizing points that lie on the wrong side of the
margin boundary,

min
β,β0

1

2
|β|2 + C

∑
|ξi | subject to yi (x

T
i β + β0) ≥ 1− ξi , ∀i

The hyperparameter C > 0 controls the trade-off between the slack
variable penalty and the margin.

Machine Learning

Classification and Regression Models

Support vector machines

Overlapping class distributions

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

Figure: Illustration of the slack variables. Relaxing the hard margin
constraint gives a soft margin and allows some of the training set data
points to be misclassified.

Machine Learning

Classification and Regression Models

Support vector machines

Overlapping class distributions

−2 0 2

−2

0

2

Figure: Illustration of the SVM with Gaussian kernels applied to a non
separable data set in two dimensions.

Machine Learning

Classification and Regression Models

Decision and regression trees

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Classification and Regression Models

Decision and regression trees

Decision and Regression Trees

Tree induction from samples have been an active topic in the machine
learning, the most representative methods of decision-tree induction are
the ID3, C4 and the CART (Classification and Regression Trees)
algorithm.

A decision tree partitions the input space into mutually exclusive
regions, each of which is assigned a procedure to characterize its data
points

An internal node is a decision-making unit that evaluates a decision
function to determine which child node to visit next. A terminal node or
leaf has no child nodes and is associated with one of the partitions of the
input space.

In classification trees each terminal node contains a label that indicates
the class for the associated input region.

Machine Learning

Classification and Regression Models

Decision and regression trees

Classification and Regression Trees

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

Figure: A binary decision tree.

Machine Learning

Classification and Regression Models

Decision and regression trees

Decision and Regression Trees

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

Figure: Input space partitioning induced on the input space by the binary
tree.

Machine Learning

Classification and Regression Models

Decision and regression trees

Decision and Regression Trees

The structural identification in binary regression trees addresses the
problem of choosing the optimal partitioning of the input space.

Two steps of the procedure to construct an appropriate decision tree:
CART first grows the tree on the basis of the training set, and then
prunes the tree back based on a minimum cost-complexity principle.

Tree growing : CART makes a succession of splits that partition the
training data into disjoint subsets. Starting from the root node that
contains the whole dataset, an exhaustive search is performed to find the
split that best reduces a certain cost function.

Machine Learning

Classification and Regression Models

Decision and regression trees

Regression Trees

Consider a node t and let D(t) be the corresponding subset of the
original DN . The empirical error of the local model fitting the N(t) data
contained in the node t is:

Remp(t) = min
αt

N(t)∑
i=1

L(yi , ht(xi , αt))

For any possible split s of node t into the two children tr and tl (and
N(tr) + N(tl) = N(t)), define

∆E(s, t) = Remp(t)− (Remp(tl) + Remp(tr))

The best split is s∗ = argmax
s

∆E(s, t)

Machine Learning

Classification and Regression Models

Decision and regression trees

Decision Trees

Let p(Ck) the probability of class Ck in some node.

Heterogeneity in the candidate node can measured by several criteria:

Entropy (ID3,C4.5) : H = −
∑
k

p(Ck) log2(p(Ck)), bounded

by log2(nbclasses) with equally balanced classes.

Gini index (CART) : Gini = 1−
∑
k

p2(Ck)

Error rate : Error = 1−max
k

(p(Ck))
For example, with the Gini index at node t, Gini(t), the homogeneity
gain of a split s at node t is given by,

∆E(s, t) = Gini(t)−
m∑
j=1

p(tj)Gini(tj)

where p(tj) is the probability of reaching node tj from node t.

Machine Learning

Classification and Regression Models

Decision and regression trees

Decision and Regression Trees

Once the best split is attained, the dataset is partitioned into the two
disjoint subsets of length N(tr) and N(tl), respectively. The same method
is recursively applied to all the leaves.

The procedure terminates either when the error measure associated with
a node falls below a certain tolerance level, or when the error reduction
∆E resulting from further splitting does not exceed a threshold value.

The tree that the growing procedure yields is typically too large and
presents a serious risk of overfitting the dataset. For that reason a
pruning procedure is often adopted.

Machine Learning

Classification and Regression Models

Decision and regression trees

Tree pruning

Consider a fully expanded tree Tmax characterized by L terminal nodes.
Let us introduce a complexity based measure of the tree performance

Rλ(T) = Remp(T) + λ|T | (2)

where λ is a hyper-parameter that accounts for the tree’s complexity and
|T | is the number of terminal nodes of the tree T. For a fixed λ we define
with T (λ) the tree structure which minimizes Rλ(T)

λ is gradually increased in order to generate a sequence of tree
configurations with decreasing complexity

TL = Tmax ⊃ TL−1 ⊃ · · · ⊃ T2 ⊃ T1 (3)

where Ti has i terminal nodes.

Machine Learning

Classification and Regression Models

Decision and regression trees

Tree pruning

In practice, this requires a sequence of shrinking steps where for each
step we select the value of λ leading from a tree to a tree of inferior
complexity.

At the end of the shrinking process we have a sequence of candidate trees
which have to be properly assessed in order to perform the structural
selection.

Cross-validation or independent testing can be used for model selection.

Machine Learning

Classification and Regression Models

Decision and regression trees

Regression Trees

Regression trees are a very easy-to-interpret representation of a nonlinear
input/output mapping.

However, these methods are characterized by rough discontinuity at the
decision boundaries which might bring undesired effects to the overall
generalization.

Dividing the data by partitioning the input space shows typically small
estimator bias but at the cost of an increased variance. This is particularly
problematic in high-dimensional spaces where data become sparse.

One response to the problem is the adoption of simple local models (e.g.
constant or linear to minimize variance at the cost of an increased bias)
or to use of soft splits, allowing data to lie simultaneously in multiple
regions.

Machine Learning

Classification and Regression Models

Ensemble Methods

1 Introduction
Problem categories in Machine
learning
Supervised learning
Typical problems
The Supervised Learning setting
The curse of dimensionality
Polynomial curve fitting
The Bias-Variance decomposition

2 Classifier Evaluation
Cross-validation
Evaluation of binary classifiers

3 Multi-class Classification
Error-correcting output code

4 Multi-Label Classification
MLC loss functions
MLC learning methods

5 Classification and Regression
Models

Shrinkage methods
Naive Bayes classifiers
Support vector machines
Decision and regression trees
Ensemble Methods

Machine Learning

Classification and Regression Models

Ensemble Methods

Combination of two estimators

Consider two unbiased estimators θ̂1 and θ̂2 of the same parameter θ,

E [θ̂1] = θ E [θ̂2] = θ

having equal and non zero variance

Var
[
θ̂1

]
= Var

[
θ̂2

]
= v

and being uncorrelated, i.e. Cov[θ̂1, θ̂2] = 0.

Let θ̂cm be the combined estimator

θ̂cm =
θ̂1 + θ̂2

2

Machine Learning

Classification and Regression Models

Ensemble Methods

Combination of two estimators

This estimator has the nice properties of being unbiased

E [θ̂cm] =
E [θ̂1] + E [θ̂2]

2
= θ

and with a smaller variance than the original estimators

Var
[
θ̂cm

]
=

1

4
Var

[
θ̂1 + θ̂2

]
=

Var
[
θ̂1

]
+ Var

[
θ̂2

]
4

=
v

2

This trivial computation shows that the simple average of two unbiased
estimators with a non zero variance returns a combined estimator with
reduced variance.

Machine Learning

Classification and Regression Models

Ensemble Methods

Combination of m estimators

Now, we want to estimate the unknown parameter θ by combining a set
of m estimators θ̂j , j = 1, . . . ,m. having expected values and variances
given by,

E [θ̂j] = µj Var
[
θ̂j

]
= vj

Suppose we are interested in estimating θ by forming a linear combination

θ̂cm =
m∑
j=1

wj θ̂j = wT θ̂

θ̂ = [θ̂1, . . . , θ̂m]
T is the vector of estimators and w = [w1, . . . ,wm]

T is
the weighting vector.

Machine Learning

Classification and Regression Models

Ensemble Methods

Combination of m estimators

The mean-squared error of the combined system is

MSE = E [(θ̂cm − θ)2]

= E [(wT θ̂ − E [wT θ̂])2] + (E [wT θ̂]− θ)2

= E [(wT (θ̂ − E [θ̂]))2] + (wTµ− θ)2

= wTΩw + (wTµ− θ)2

where Ω is the covariance matrix whose ijth term is
Ωij = E [(θ̂i − µi)(θ̂j − µj)] and µ = (µ1, . . . , µm)

T is the vector of
expected values.

The MSE error has a variance and a bias terms dependent the covariance
and a bias of the single estimators.

Machine Learning

Classification and Regression Models

Ensemble Methods

Linear constrained combination

A commonly used constraint is

m∑
j=1

wj = 1, wj ≥ 0, j = 1, . . . ,m

This means that the combined estimator is unbiased if the individual
estimators are unbiased.

The constraint can be enforced in minimizing the MSE by writting w as

w = (uTg)−1g

where u = (1, . . . , 1)T is an m-dimensional vector of ones,
g = (g1, . . . , gm)

T and gj > 0, ∀j = 1, . . . ,m.

Machine Learning

Classification and Regression Models

Ensemble Methods

Linear constrained combination

The Lagrangian function writes

L = wTΩw + (wTµ− θ)2 + λ(wTu − 1)

with λ Lagrange multiplier.

The optimum is achieved if we set

g∗ = [Ω + (µ− θu)(µ− θu)T]−1u

Machine Learning

Classification and Regression Models

Ensemble Methods

Linear constrained combination

With unbiased estimators (µ = θ) we obtain

g∗ = Ω−1u

With unbiased and uncorrelated estimators

g∗
j =

1

vj
j = 1, . . . ,m

This means that the optimal term g∗
j of each estimator is inversely

proportional to its own variance.

Machine Learning

Classification and Regression Models

Ensemble Methods

Model averaging approaches

In model selection the winner-takes-all approach is intuitively the
approach which should work the best.

However, the final model can be improved not by choosing the one that
performs apparently best but by creating a model whose output is the
combination of the output of the models.

The reason is that every hypothesis f (·) is only an estimate of the real
target and, like any estimate, is affected by a bias and a variance term.

A variance reduction can be obtained by simply combining uncorrelated
estimators. This simple idea underlies some of the most effective
techniques recently proposed in machine learning.

Machine Learning

Classification and Regression Models

Ensemble Methods

Stacked regression

Suppose we have m distinct predictors fj(·), for j = 1 . . . ,m obtained
from a given training set D.

The idea of averaging models is to design an average estimator
m∑
j=1

βj fj(·)

Once computed the least-squares solution β̂, the combined estimator is

f̂ (x) =
m∑
j=1

β̂j fj(x)

Machine Learning

Classification and Regression Models

Ensemble Methods

Stacked regression

The fjs are correlated because all of them are estimated on the same
training set D.

Stacked regression is an idea for combining estimators without suffering
of the correlation problem. It consists in estimating the β̂js by solving the
following optimization task,

β̂ = argmin
β

N∑
i=1

(
yi −

m∑
j=1

βj f
(−i)
j (xi)

)2

s.t. βj ≥ 0, ∀j .

f
(−i)
j (xi) is the leave-one-out estimate of the jth model, i.e. the predicted
outcome in xi of the jth model trained on D with the ith sample (xi , yi)
set aside.

Avoids giving unfairly high weight to models with higher complexity.

Machine Learning

Classification and Regression Models

Ensemble Methods

Bagging

A learning algorithm is informally called unstable if small changes in the
training data lead to significantly different models and relatively large
changes in accuracy.

Unstable learners can have low bias but have typically high variance.
Unstable methods can have their accuracy improved by perturbing (i.e.
generating multiple versions of the predictor by perturbing the training
set or learning method) and combining.

Combining multiple estimator is a variance reduction technique.
Bagging aims to improve accuracy for unstable learners by averaging over
such discontinuities.

Machine Learning

Classification and Regression Models

Ensemble Methods

Bagging

The idea of bagging or bootstrap aggregating is to imitate the
stochastic process underlying the realization of D

A set of m repeated bootstrap samples are taken from D. A model is
built for each bootstrap sample and a final predictor is built by
aggregating the m models

In the regression case the bagging predictor is the average, in
classification it is the majority vote.

Machine Learning

Classification and Regression Models

Ensemble Methods

Random Forest

Random forests differ from bagging in only one way: RF use a modified
tree learning algorithm that selects, at each candidate split in the learning
process, a random subset of the features. This process is sometimes
called ”feature bagging”.

The reason is to reduce the correlation of the trees in ordinary bootstrap
samples.

Typically, for a classification problem with p features,
√
p (rounded down)

features are used in each split.

The out-of-bag (oob) error for each data point is recorded and averaged
over the forest.

Machine Learning

Classification and Regression Models

Ensemble Methods

Feature importance and dissimilarity measure

Random forests can be used to rank the importance of variables in a
regression or classification problem in a natural way. To measure the
importance of the j-th feature after training, the values of the j-th feature
are permuted among the training data and the out-of-bag error is again
computed on this perturbed data set.

Random forests naturally lead to a dissimilarity measure between the
(labeled) observations and also between unlabeled data: the idea is to
construct a random forest predictor that distinguishes the “observed”
data from (suitably) generated synthetic data.

For missing values, novelty detection, variable interaction etc. Consult
www.stat.berkeley.edu/b̃reiman/RandomForests/cc home.htm

Variant: Extremely randomized trees. The top-down splitting in the tree
learner is randomized further. Instead of computing the locally optimal
feature/split combination, a random feature + value is selected for the
split.

Machine Learning

Classification and Regression Models

Ensemble Methods

Boosting

Boosting is one of the most powerful learning ideas introduced in the last
ten years.

Boosting is a general method which attempts to boost the accuracy of
any given learning algorithm. It was originally designed for classification
problems but it can profitably be extended to regression as well.

Boosting encompasses a family of methods. The focus of boosting
methods is to produce a series of “weak” learners in order to produce a
powerful combination.

A weak learner is a learner that has accuracy only slightly better than
chance.

Machine Learning

Classification and Regression Models

Ensemble Methods

Boosting

Examples that are incorrectly predicted by previous classifiers in the series
are chosen more often than examples that were correctly predicted.

Thus Boosting attempts to produce new classifiers that are better able to
predict examples for which the current ensemble’s performance is poor.

Unlike Bagging, the resampling of the training set is dependent on the
performance of the earlier classifiers.

The two most important types of boosting algorithms are the Ada Boost
(Adaptive Boosting) algorithm (Freund, Schapire, 1997) and the Arcing
algorithm (Breiman, 1996).

Machine Learning

Classification and Regression Models

Ensemble Methods

Ada Boost

Consider a binary classification problem where the output take values in
{−1, 1}.
A weak classifier is one whose misclassification error rate is only slightly
better than random guessing.

The purpose of boosting is to sequentially apply the weak classification
algorithm to repeatedly modified versions of the data, thereby producing
a sequence of classifiers fj(·).
The predictions of the m weak classifiers are then combined through a
weighted majority vote to produce he final prediction

f̂ (x) = sign

(
m∑
j=1

αj fj(x)

)

Machine Learning

Classification and Regression Models

Ensemble Methods

Ada Boost

Machine Learning

Classification and Regression Models

Ensemble Methods

Ada Boost

The weights αj of the different classifiers are computed by the algorithm.
The idea is to give higher influence to the more accurate classifiers in the
sequence.

At each step, the boosting algorithm samples N times from a distribution
that puts a weight wi on each sample (xi , yi) of D.

Initially the weights are all set to wi = 1/N. Then, the weights are
individually modified and the classification algorithm is re-applied to the
resampled training set.

Machine Learning

Classification and Regression Models

Ensemble Methods

Ada Boost

Initialize the weights to wi = 1/N

For j = 1 to m,

Fit a classifier fj(·) on D using weights wi and compute the
misclassification error on the training set

ϵ̂j =

∑N
i=1 wi I[yi ̸= fj(xi)]∑N

i=1 wi

Let αj = log((1− ϵ̂j)/ϵ̂j)

Set wi ← wi

{
exp[−αj] if correctly classified

exp[αj] if incorrectly classified

Normalize the weights.

Output f̂ (x) = sign

(
m∑
j=1

αj fj(x)

)
.

Machine Learning

Classification and Regression Models

Ensemble Methods

Ada Boost

Machine Learning

Classification and Regression Models

Ensemble Methods

Ada Boost

Boosting has its roots in a theoretical framework for studying machine
learning called the PAC learning model.

The empirical error of the final hypothesis fboo is at most

m∏
j=1

[
2
√

ϵ̂j · (1− ϵ̂j)
]

Boosting is simple and easy to program. Moreover, it has few parameters
(e.g. max number of classifiers) to tune.

Instead of trying to design a learning algorithm which should be accurate
over the entire space, one can instead focus on finding weak algorithms
that only need to be better than random.

A nice property of Ada Boost is its ability to identify outliers (hard
samples).

Machine Learning

Classification and Regression Models

Ensemble Methods

Gradient boosting

Like other boosting methods, gradient boosting combines weak
”learners” into a single strong learner in an iterative fashion

The gradient boosting method assumes a real-valued y and seeks an
approximation f̂ (x) in the form of a weighted sum of functions

f̂ (x) =
m∑
j=1

αj fj(x)

The idea is to apply a steepest descent step to this minimization problem
with the following equations

fm(x) = fm−1(x)− γm

n∑
i=1

∇fm−1L(y , fm−1(x))

where the derivatives are taken with respect to the functions fi

Machine Learning

Classification and Regression Models

Ensemble Methods

Gradient boosting

Given a training set {(xi , yi)}ni=1 and a differentiable loss function L(y , f (x)),
the generic gradient boosting method is:

1 Initialize model with a constant value f0(x) = argmin
γ

n∑
i=1

L(yi , γ).

2 For m = 1 to M:

1 Compute so-called pseudo-residuals:

rim = −
[
∂L(yi , f (xi))

∂f (xi)

]
f (x)=fm−1(x)

∀i = 1, . . . , n.

2 Fit a base learner hm(x) to pseudo-residuals {(xi , rim)}ni=1.
3 Compute γm by solving the 1D optimization problem:

γm = argmin
γ

n∑
i=1

L (yi , fm−1(xi) + γhm(xi)) .

4 Update the model fm(x) = fm−1(x) + γmhm(x).
3 Output: fM(x).

Machine Learning

Classification and Regression Models

Ensemble Methods

Gradient boosting

Gradient boosting is typically used with decision trees (especially CART
trees) of a fixed size as base learners.

J, the number of terminal nodes in trees, can be adjusted for a data set
at hand. It controls the level of interaction between variables in the
model. With J = 2 (decision stumps), no interaction between variables is
allowed. Typically 4 ≤ J ≤ 8 work well.

XGBoost is an open-source software library which provides the gradient
boosting framework. It now has integrations with scikit-learn for Python
users and supports the distributed processing frameworks Apache
Hadoop, Apache Spark, and Apache Flink.

XGBoost became popular among the Kaggle community where it has
been used for a large number of competitions.

Machine Learning

Classification and Regression Models

Ensemble Methods

Arcing

Adaptive Resampling and Combining (ARCing) was proposed as a
modification of the original Ada Boost algorithms by Breiman.

It is based on the idea that the success of boosting is related to the
adaptive resampling property where increasing weight is placed on those
samples more frequently misclassified.

The complex updating equations of Ada Boost are replaced by much
simpler formulations. The final classifier is obtained by unweighted voting

Machine Learning

Classification and Regression Models

Ensemble Methods

Arcing

Initialize the weights to wi = 1/N

For j = 1 to m,

Fit a classifier fj(·) to the training data obtained by resampling
using weights wi

Compute the ei the number of misclassifications of the ith
sample by the j classifiers f1 . . . , fj
The updated weights are defined by

wi =
1 + e4i∑N

i=1(1 + e4i)

The output is obtained by unweighted voting of the m
classifiers hj ,

farc(x) = sign

 m∑
j=1

fj(x)

 .

	Introduction
	Problem categories in Machine learning
	Supervised learning
	Typical problems
	The Supervised Learning setting
	The curse of dimensionality
	Polynomial curve fitting
	The Bias-Variance decomposition

	Classifier Evaluation
	Cross-validation
	Evaluation of binary classifiers

	Multi-class Classification
	Error-correcting output code

	Multi-Label Classification
	MLC loss functions
	MLC learning methods

	Classification and Regression Models
	Shrinkage methods
	Naive Bayes classifiers
	Support vector machines
	Decision and regression trees
	Ensemble Methods

