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Abstract. Given a simple undirected graphG = (V,E) and an integer k < |V |, the Sparsest
k-Subgraph problem asks for a set of k vertices which induces the minimum number of edges.
As a generalization of the classical independent set problem, Sparsest k-Subgraph is
NP-hard and even not approximable unless P = NP in general graphs. Thus, we investigate
Sparsest k-Subgraph in graph classes where independent set is polynomial-time solvable,
such as subclasses of perfect graphs. Our two main results are the NP-hardness of Sparsest
k-Subgraph on chordal graphs, and a greedy tight 2-approximation algorithm. Finally, we
also show how to derive a PTAS for Sparsest k-Subgraph on proper interval graphs.

1 Introduction

1.1 Related Problems

Given a simple undirected graph G = (V,E) and an integer k < |V |, the Sparsest k-Subgraph
problem asks for a set of k vertices which induces1 the minimum number of edges. It appears that
this problem falls into the family of cardinality constrained optimization problems, introduced by
[7], and is more precisely a generalization of the so-called independent set problem. This obser-
vation immediately implies that Sparsest k-Subgraph is NP-hard and even not approximable
in general graphs unless P = NP, as the optimal value is 0 whenever there is an independent set
of size k. Thus, we only consider Sparsest k-Subgraph in graph classes where independent
set is polynomial-time solvable. Let us first present some related problems, and then discuss their
relation to Sparsest k-Subgraph. Actually, the following three problems can all be considered as
cardinality constrained versions of other well-known combinatorial optimization problems, namely
vertex cover and max clique, both very close to independent set.

In the maximum Quasi-Independent Set (QIS) problem [4] (also called k-edge-in in [11]),
we are given a graph G and an integer C, and we ask for a set of vertices S of maximum size
inducing at most C edges.

In the minimum Partial Vertex Cover (PVC) problem [12], we are given a graph G and
an integer C, and we ask for a set of vertices S of minimum size which covers1 at least C edges.

Finally, we can mention the corresponding maximization problem of Sparsest k-Subgraph,
namely Densest k-Subgraph, which consists in finding a subset S of exactly k vertices inducing
the maximum number of edges.

The decision versions of QIS, PV C, and Sparsest k-Subgraph are polynomially equivalent.
Indeed, QIS could be considered as a dual version of Sparsest k-Subgraph where the budget
(the number of edges in the solution of Sparsest k-Subgraph) is fixed. PV C and Sparsest
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1 An edge {u, v} ∈ E is said to be induced (resp. covered) by a set S if u ∈ S and (resp. or) v ∈ S.
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k-Subgraph are also polynomially equivalent as for any S, the number of edges induced by S plus
the number of edges covered by V \S equals |E|. Then, exact results for Densest k-Subgraph on
a graph class implies the same result for Sparsest k-Subgraph on the corresponding complemen-
tary class, and conversely. Unlike exact results, approximation algorithms do not transfer directly
between any of these problems.

Considering these remarks and previous studies on these problems, Figure 1 presents known
results and open problems about Sparsest k-Subgraph (SkS), Densest k-Subgraph (DkS) and
PVC in restricted graph classes. In each cell, the first line generally describes the general complexity
(NP-hard versus Polynomial), whereas other lines present some results concerning approximation
or parameterized complexity. We recall that proper interval graphs ⊆ interval graphs ⊆
chordal graphs ⊆ perfect graphs, as well as split graphs ⊆ chordal and bipartite,
cographs ⊆ perfect graphs.

Graphs classes DkS SkS PV C

general NP-h NP-h, not approx. NP-h, W [1]-h [12]
(c.f. max clique) (c.f. indep. set) 2-approx.[6]

n
1
4
+ε-approx. [3] exact O∗(1, 4C) [14]

chordal NP-h [9] NP-h [this paper] NP-h (c.f. SkS)
3-approx [15] 2-approx [this paper]

interval OPEN OPEN, OPEN
PTAS [16] FPT (C) [17] FPT (n-k) (c.f. SkS)

proper interval OPEN OPEN, OPEN
PTAS [16] PTAS [this paper]

bipartite NP-h [9] NP-h (c.f. PVC) NP-h [13]

line OPEN P (c.f. PVC) P [1]

planar OPEN NP-h (c.f. indep. set) NP-h (c.f. SkS)

cographs, split, P [9] P [5] P (c.f. SkS)
bounded treewidth

max. degree 2 P [9] P [5] P (c.f. SkS)

max. degree 3 NP-h [9] OPEN OPEN

Fig. 1: Main results for DkS, SkS and PVC in some restricted graph classes.

1.2 Contributions and Organization of the Paper

According to Figure 1, Densest k-Subgraph was already known to be NP-hard on chordal
graphs. However, as the complement of a chordal graph (and in particular the graph used in the
reduction of [9]) is a perfect graph and not necessarily a chordal graph, this result only provides
the NP-hardness of Sparsest k-Subgraph on perfect graphs.

Thus, our motivation is to study Sparsest k-Subgraph on a classical subclass of perfect
graphs. The main results of the paper are the NP-hardness of Sparsest k-Subgraph in chordal
graphs (Section 3), and a tight 2-approximation greedy algorithm (Section 2). Finally, we show in
Section 4 how the arguments of [16] (which provides a PTAS for DkS in interval graphs) can be
adapted to SkS in proper interval graphs. Notice that our NP-hardness result implies the NP-
hardness of PVC in chordal graphs, which supplements the recent NP-hardness of [2, 13] for PVC
in bipartite graphs. Due to space constraints, some details of the NP-hardness proof and the PTAS
in proper interval graphs were omitted and placed in the appendix.
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1.3 Notations and Definitions

All graphs studied in this paper are simple and without loop. For the remaining, G = (V,E) will
denote the input graph of the problem, and we define as usually n = |V |, m = |E|.
Chordal graphs are graphs with no induced cycle of length four or more. They may also be defined
equivalently in terms of simplicial elimination order [10]. A vertex v ∈ V is called simplicial if its
neighbourhood N(v) is a clique. A simplicial elimination order of G is an ordering v1, ..., vn of V
such that for all i ∈ {1, ..., n}, vi is simplicial in G[vi, ..., vn]. It is known that a graph G is chordal
if and only if it admits a simplicial elimination order. In addition, such an ordering can be found in
polynomial time for a chordal graph. Hence, we will suppose in the following that V = {v1, ..., vn} is
sorted according to a simplicial elimination order of G. Similarly, for a subset of vertices S ⊆ V , we
will denote by min(S) (resp max(S)) the first (resp. last) vertex of S in the simplicial elimination
order chosen for the graph. Finally, since we have a total ordering on the vertices, we will use the
notations x < y and x > y for two vertices x, y ∈ V .

Given two sets S1, S2 ⊆ V , we denote by cost(S1) the number of edges in the graph induced by
vertices of S1, and cost(S1, S2) = |{{v, v′} ∈ E, v ∈ S1, v

′ ∈ S2}|. Given a set S ⊆ V and x ∈ V , we
denote by d(x, S) the degree of x in S.

Finally, we refer the reader to the classical literature for definitions of approximation algorithms.

2 2-Approximation in Chordal Graphs

2.1 Idea of the Algorithm

We now present a tight 2-approximation algorithm for chordal graphs. First, notice that any ap-
proximation algorithm for Sparsest k-Subgraph must output a maximum independent set of size
k if such a set exists, as in this case the optimal value is 0. Hence, a natural idea for computing a
solution to Sparsest k-Subgraph is to choose first a maximum independent set S (this can be
done in polynomial time in chordal graphs). If k vertices or more were picked, then the algorithm
stops. Otherwise, several ideas may come up.

A first idea would be to remove this independent set from the graph, and iteratively pick another
one, until we get k vertices. This approach is the same as the 3-approximation of [15] for Densest k-
Subgraph in chordal graphs (computing maximum cliques instead of maximum independent sets).
Unfortunately, as shown in Figure 2 on the left, this algorithm has an unbounded approximation
ratio for Sparsest k-Subgraph even in interval graphs (a subclass of chordal graphs). It still
provides a 2-approximation in proper interval graphs [17].
Thus, after picking the first maximum independent set, our idea is to assign weights on remaining
vertices according to the size of their neighbourhood in the constructed solution. At each step, the
algorithm just picks an independent set (called a layer) among the vertices of minimum weight,
and then updates the weights of remaining vertices. The algorithm is more formally defined in the
next subsection. In the next paragraph, we describe the key idea of the analysis.

The idea of the proof of the 2-approximation ratio is to restructure an optimal solution S∗ until
we get S (the output of the algorithm), while bounding the cost variation during the restructura-
tions. Let us show what makes this restructuration work for the first layer. Let L be the independent
set chosen by the algorithm at the first step. Roughly speaking, for each nj ∈ L which is not in
S∗, we restructure S∗ by removing yj , the ”first” neighbour of nj which is after nj and in S∗,
and adding nj instead. As depicted in Figure 2 (on the right), we see that the degree of a vertex
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x1 x2 xt−1 xt

y1 y2

z1

1

y2n2x n1 y1

Fig. 2: On the left: example where picking successive independent sets gives an unbounded ratio.
For k = t + 2 the algorithm would take intervals {x1, ..., xt, y1, y2} of cost t whereas the solution
{x1, ..., xt, y2, z1} has cost 4. On the right: idea of the restructuration of a solution S∗. Circles denote
vertices of S∗, and crosses denote vertex of L (chosen by the algorithm). When replacing y1 by n1
and y2 by n2, the degree of x can only increase by one. Indeed, x cannot be connected to n1 and
n2, as L is an independent set.

x ∈ S∗ (x /∈ L) will increase by at most 1. Concerning future layers, the analysis will become more
complex, as we will have to take weights into account.

2.2 Algorithm and Analysis

Presentation of the Algorithm. As described previously, Algorithm 1 picks successively an
independent set among the vertices of lower weights. It also updates the weights according to the
picked vertices. For technical reasons, the weights are not exactly equal to their degree in the
constructed solution. Indeed, when restructuring an optimal solution to match Li we will see that
the degree of almost all ”surviving” vertices in the optimal solution increases by at most 1 (this is
why we add a ”bonus” of −1 in the updated weight Line 13), and even sometimes cannot increases
(this is why there is no ”bonus” Line 11). This modification will allow us to show that at the end
of the algorithm, the value W returned by the algorithm is a lower bound of the optimal value
(Lemma 3). We will then show that the real value of the returned solution cost(S) is less than two
times W (Lemma 4), and thus is a 2-approximation.

Remark 1. The maximum independent set of line 3 is greedily constructed as follows: pick the first
vertex of the simplicial elimination order in the independent set, delete its neighbourhood, and
repeat the operation until the graph becomes empty.

Even if we sometimes add −1 when updating the weights, we can observe that for a fixed x ∈ V ,
its successive weights are non decreasing:

Lemma 1. For all i ∈ {0, ..., t}, ∀x ∈ V \ (L0 ∪ · · · ∪ Li), wi+1(x) ≥ i+ 1.

Proof. Let i and x be as in the statement. Suppose by induction that wi(x) ≥ i (notice that
w0(x) = 0). If wi(x) ≥ i + 1 then the results follows. Otherwise wi(x) = i, and by construction of
the algorithm (Line 11), if d(x, Li) ≥ 1, then wi+1(x) ≥ i+ 1. Finally, if d(x, Li) = 0, then x must
belong to Li which contradicts the definition of x. ut

Restructuration of Solutions. Let S∗ be an optimal solution for the Sparsest k-Subgraph
problem in chordal graphs. We will now show that we can modify this solution in order to obtain
the output of the algorithm, while bounding the cost variation.
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Algorithm 1 A 2-approximation for Sparsest k-Subgraph in chordal graphs

1: S ← ∅, W ← 0, i← 0, w0(x) = 0 ∀x ∈ V
2: while |S| ≤ k do
3: Li ← a maximum independent set of the graph induced by {x ∈ V \(L0 ∪ ... ∪ Li−1) : wi(x) = i}
4: S ← S ∪ Li // or the (k − |S ∪ Li|) leftmost vertices of Li if |S ∪ Li| > k
5: W ←W + i|Li| // we update the cost computed by the algorithm
6: for x ∈ V do
7: if x ∈ (L0 ∪ ... ∪ Li) then
8: wi+1(x) = wi(x)
9: else

10: if d(x, Li) = 0 OR (d(x, Li) = 1 AND wi(x) = i) then
11: wi+1(x) = wi(x) + d(x, Li)
12: else
13: wi+1(x) = wi(x) + d(x, Li)− 1
14: i← i+ 1
15: t← i− 1 // Lt is the last ”layer” of the algorithm
16: return (S,W )

Let us define by induction a sequence (S∗i )i=−1,0,...,t with S∗−1 = S∗ and S∗t = S (the solution
returned by the algorithm), such that S∗i ⊆ V and |S∗i | = k for all i = −1...t. We also assure that
(L0 ∪ ...∪Li) ⊆ S∗i for all i = 0...t. To that end, given i ∈ {0, ..., t}, we show how to restructure the
set S∗i−1 into a new set S∗i . Let us first introduce some notations.
We partition the set Li (defined in the algorithm) into two sets of vertices, whether they belong to
S∗i−1 or not: Li = Mi ∪Ni, with Mi = Li ∩ S∗i−1.
The restructuration consists in adding all vertices of Ni to S∗i−1, and removing a carefully chosen
(see Definition 1) subset Di ⊆ S∗i−1\(L0 ∪ ... ∪ Li) (with |Di| = |Ni|). Then, we will define S∗i =
(S∗i−1\Di)∪Ni, Ri = S∗i−1\(Di∪L0∪ ...∪Li) and Ti = Mi∪Di. Figure 3 summarizes the situation.
To bound the cost variation, we show in Lemma 2 that the degree of ”surviving” vertices (i.e.
vertices in Ri) increases by at most one. The next definition shows how to choose properly the set
Di.

Definition 1. For i ∈ {0, . . . , t}, let Di be defined as follows:

Let us suppose we are given a set S∗i−1 ⊇ L0 ∪ ... ∪ Li−1, and show how to choose properly the set
Di ⊆ S∗i−1 \ (L0 ∪ ... ∪ Li).
Let Ni = {n1, ..., npi} and suppose that n1 < ... < npi defines an ordering of Ni according to
the simplicial elimination order of the graph. For all j = 1...pi successively, we pick a vertex
yj ∈ S∗i−1\(L0 ∪ ... ∪ Li) as follows:

yj =

{
min(Qj) if Qj 6= ∅

max(S∗i−1\(L0 ∪ ... ∪ Li)) if Qj = ∅ (1)

with Qj = {y ∈ S∗i−1\(L0 ∪ ... ∪ Li) such that nj < y, and {nj , y} ∈ E} (see Figure 3). Finally, we
define Di = {yj : 1 ≤ j ≤ pi}.

Now that Di is defined, recall that we have Ti = Mi ∩ Di, and the ”surviving vertices” Ri =
Ri−1 \ Ti. Let us now upper bound the degree of vertices of Ri.

Lemma 2. Let Ri = Ai ∪ Bi, with Ai = {x ∈ Ri : d(x, Li) = 0 or (d(x, Li) = 1 and wi(x) = i)}
and Bi = Ri\Ai. We have:
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Ri

Di

MiNi

Li−1

L0

S∗
i−1

Li

Ti

1

nj−1 nj nj+1

Qj−1 Qj Qj+1 = ∅

yj−1 yj yj+1

1

Fig. 3: On the left: description of set S∗i−1. We obtain S∗i from S∗i−1 by removing Di and adding Ni.
Notice that Ri−1 = Ri ∪ Ti, and Ri ∩ Ti = ∅. On the right: example of sets Qj , together with yj .
Circles represent vertices of the considered optimal solution, and crosses represent vertices chosen
by the algorithm that are not in the optimal solution. Edges between vertices of the optimal solution
have not been drawn for sake of simplicity.

– if x ∈ Ai, d(x, Li) ≤ d(x, Ti)
– if x ∈ Bi, d(x, Li) ≤ d(x, Ti) + 1

This immediatly implies that for all x ∈ Ri we have wi+1(x) ≤ d(x, Ti) + wi(x).

Proof. Let us show that if x ∈ Ai, then d(x,Ni) ≤ d(x,Di), and if x ∈ Bi, then d(x,Ni) ≤
d(x,Di) + 1. Since Li = Mi ∪ Ni and Ti = Mi ∪ Di (these unions being disjoint), the desired
inequalities follow immediatly.

– if x ∈ Ai, then either d(x, Li) = 0, which obviously implies the result, or d(x, Li) = 1 and
wi(x) = i. We thus only consider the second case. Here again if d(x,Ni) = 0 then the result is
straightforward, so let us suppose d(x,Ni) = 1, i.e. suppose that there exists a vertex of Ni,
say nj0 , such that x and nj0 are adjacent. Two cases are possible:
• First case: x < nj0 . Recall that nj0 is the only neighbour of x in Li. Hence, x is not adjacent

to all vertices of Li that are before nj0 in the simplicial elimination order. In addition, recall
that wi(x) = i. Thus, this case cannot happen since by definition of the algorithm, x would
have been chosen in Li instead of nj0 .
• Second case: nj0 < x. It is clear that in this case Qj0 6= ∅ (as at least x ∈ Qj0). As by

definition x /∈ Di, we have yj0 < x. By definition of chordal graphs, since {nj0 , yj0} ∈ E
and {nj0 , x} ∈ E, we must have {x, yj0} ∈ E. Hence d(x,Di) = 1 and the result follows.

– if x ∈ Bi, then let N−i = Ni ∩ {y ∈ Ni : y < x} and N+
i = Ni \ N−i . For all nj ∈ N−i such

that {nj , x} ∈ E, then as previously Qj 6= ∅ and by the definition of chordal graphs we have
{yj , x} ∈ E with yj ∈ Di. Thus, d(x,N−i ) ≤ d(x,Di). Finally we claim that d(x,N+

i ) ≤ 1.
Indeed, suppose that there exists nj1 , nj2 ∈ N+

i such that {x, nj1}, {x, nj2} ∈ E. By definition
of chordal graphs we must have {nj1 , nj2} ∈ E which contradicts the definition of Li which is
an independent set. This proves that d(x,Ni) ≤ d(x,Di) + 1 ut
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Let us now define the appropriate ζ function that computes the cost of an intermediate solution
S∗i . For all i ∈ {0, ..., t}, let

ζ(S∗i ) = cost(Ri) +
∑

x∈Ri
wi+1(x) +

∑

x∈L0∪···∪Li
wi+1(x)

Notice that ζ(S∗−1) = cost(S∗) and ζ(S∗t+1) =
∑
x∈S wt(x) = W .

Lemma 3. For all i ∈ {0, ..., t}, Di is such that ζ(S∗i ) ≤ ζ(S∗i−1).

Proof. By definition, we have:

ζ(S∗i ) = cost(Ri) +
∑
x∈Ri wi+1(x) +

∑
x∈L0∪···∪Li wi+1(x)

= cost(Ri) +
∑
x∈Ri wi+1(x) + i|Li|+

∑
x∈L0∪···∪Li−1

wi+1(x)

≤ cost(Ri) +
∑
x∈Ri(wi(x) + d(x, Ti)) + i|Li|+

∑
x∈L0∪···∪Li−1

wi(x) by Lemma 2

In addition, since Ri−1 = Ri ∪ Ti and |Ti| = |Li|, we have:

ζ(S∗i−1) = cost(Ri−1) +
∑
x∈Ri−1

wi(x) +
∑
x∈L0∪···∪Li−1

wi(x)

= cost(Ri) + cost(Ri, Ti) +
∑
x∈Ri wi(x) +

∑
x∈Ti wi(x) +

∑
x∈L0∪···∪Li−1

wi(x)

≥ cost(Ri) + cost(Ri, Ti) +
∑
x∈Ri wi(x) + i|Li|+

∑
x∈L0∪···∪Li−1

wi(x)

which matches the upper bound for ζ(S∗i ). ut

The previous lemma implies that W = ζ(S∗t ) ≤ ζ(S∗−1) = cost(S∗). Thus, to prove that Algo-
rithm 1 is a 2-approximation we only need the following lemma.

Lemma 4. cost(S) ≤ 2W .

Proof. Roughly speaking, when creating a layer Li and updating the cost W , the algorithm adds
i|Li|, i.e. for all x ∈ Li the algorithm only adds i instead of d(x, L0 ∪ · · · ∪Li−1). Thus, we will now
prove for any x ∈ Li, d(x, L0 ∪ · · · ∪ Li−1) ≤ 2i.

Let x in Li. For any l, 0 ≤ l ≤ i, let xl = wl(x) be the weight of x before creating layer Ll.
Thus, the successive weights of x is a sequence (x0, . . . , xi) where x0 = 0 and xi = i. Notice that
after x is added in Li its weight will not be changed.

Let us show by induction that for any l, d(x, L0 ∪ · · · ∪ Ll−1) ≤ xl + l. Let us suppose that the
previous statement is true for l and prove it for l+1. Let z = d(x, Ll). We have d(x, L0∪· · ·∪Ll) =
d(x, L0 ∪ · · · ∪ Ll−1) + z ≤ xl + l + z. As xl+1 ≥ xl + z − 1, we get the desired inequality.

Thus, for any x ∈ Li we get d(x, L0∪· · ·∪Li−1) ≤ xi+i = 2i, and thus cost(S) =
∑t
i=1

∑
x∈Li d(x, L0∪

· · · ∪ Li−1) ≤ 2
∑t
i=1 i|Li| = 2W . ut

Theorem 1. There is a tight polynomial 2-approximation algorithm for SkS in chordal graphs.

For the tightness result, consider the instance with n = 5, k = 4, and edges {x1, x2}, {x2, x3} and
{x4, x5} (notice that (x1, x2, x3, x4, x5) is a simplicial elimination order). The algorithm will first
pick x1, x3 and x4. Then, we have w1(x2) = w1(x5) = 1 and the algorithm takes x2 instead of x5.
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3 NP-hardness in Chordal Graphs

Main Arguments. The following NP-hardness proof is a reduction from the k-clique problem
in general graphs. Roughly speaking, given an input instance G = (V,E) together with k ∈ N,
we construct the split graph of adjacencies of G, i.e. we build a clique on a set A representing
the vertices of G, and an independent set F representing the edges of G, connecting A and F
with respect to the adjacencies of the graph. Then, we replace each vertex of the independent set
(corresponding to an edge e ∈ E) by a gadget Fe represented in Figure 4. Any solution will have to
take the same number of vertices among each gadget. The key idea is that there is two ways to take
these vertices in a gadget Fe. The first way (choosing Xe and Ze) encodes that the edge e belongs
to the k-clique. It is cheaper than the second way, but is adjacent to the clique A. The second way
(choosing Xe and Ye) encodes that edge e does not belong to the k-clique. It induces more edges,
but is not adjacent to the clique A. Thus, as depicted in Figure 4, a k-clique is encoded by not
picking the corresponding vertices in A, obtaining

(
k
2

)
gadgets of the first type, and m−

(
k
2

)
of the

second type. In this way, there is no edge in the solution between any gadget and the clique A. For
technical reasons, each vertex of A is duplicated n times.

Gadget. Let us define the gadget F mentioned above. F is composed of three sets X,Y and Z
of T vertices each (we will set the value of T later). We define X = {x1, ..., xT }, Y = {y1, ..., yT }
and Z = {z1, ..., zT }. the set X induces an independent set, while Z induces a clique, and there is
a clique of size (T − 1) on vertices {y2, ..., yT }. For all i ∈ {1, ..., T}, xi is adjacent to yi, and yi is
adjacent to all vertices of Z. Such a construction is depicted at the left of Figure 4.
In the following we will force the solution to take 2T vertices among each gadget. It is easy to see
that the sparsest 2T -subgraph of F is composed of the sets X and Z, which induces

(
T
2

)
edges. In

contrast, notice that choosing X and Y induces (
(
T
2

)
+ 1) edges.

Theorem 2. Sparsest k-Subgraph remains NP-hard in chordal graphs.

Proof. We reduce from the classical k-clique problem in general graphs. Let G = (V,E) and
k ∈ N. We note |V | = n, V = {v1, ..., vn}, |E| = m and T = n(n−k). In the following we will define
G′ = (V ′, E′) together with k′, C ′ ∈ N such that G′ is a chordal graphs which can be constructed in
polynomial time, and such that G contains a clique of size k if and only if one can find k′ vertices
in G′ which induce C ′ edges or less.

The Construction. V ′ is composed of two parts A and F :

– We first define a clique of size n2 over A = {aji : i, j ∈ {1, ..., n}}. For each u ∈ V , the ”column”
Au = {aju : j ∈ {1, ..., n}} represents the vertex u in G.

– For all e ∈ E, we construct a gadget Fe composed of Xe, Ye and Ze as defined previously. Let
Xe = {xe1, ..., xeT }, Ye = {ye1, ..., yeT } and Ze = {ze1, ..., zeT }. Moreover, for all e = {vp, vq} ∈ E,
all vertices of Ze are connected to Ap and Aq.

– We define k′ = m2T + T and C ′ = m
(
T
2

)
+
(
T
2

)
+ (m−

(
k
2

)
).

It is clear that the construction can be carried out in polynomial time. Let us briefly sketch
that G′ is a chordal graph: for each gadget, Xe, Ye, Ze is a simplicial elimination order. Then, the
remaining vertices form a clique. See Appendix A for a more rigorous proof.

Now we prove that G contains a clique of size k if and only if G′ contains k′ vertices inducing
at most C ′ edges.
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T
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k n − k
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k
2
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(
k
2

)
gadgets

TFe1 Fem

n

n

Au Av

1

Fig. 4: Schema of the reduction, with an example of a gadget Fe1 on the left and its relations to A.
Grey rectangles represent vertices of the solution.

G contains a k-clique ⇒ G′ contains k′ vertices inducing at most C′ edges.
Let us suppose that K ⊆ V is a clique of size k in G. W.l.o.g. we suppose K = {v1, ..., vk}.

Moreover, we note E0 = {{vp, vq} ∈ E such that vp, vq ∈ K} and E1 = {{vp, vq} ∈ E such that
vp /∈ K or vq /∈ K}. We construct K ′ ⊆ V ′ as follows:

– For all i ∈ {(k + 1), ..., n} and all j = {1, ..., n}, we add aji to K ′.
– For all e ∈ E, we add all vertices of Xe to K ′.
– For all e ∈ E0, we add all vertices of Ze to K ′.
– For all e ∈ E1, we add all vertices of Ye to K ′.

One can verify that K ′ is a set of k′ = 2mT+T vertices inducing exactly C ′ =
(
T
2

)
+m

(
T
2

)
+(m−

(
k
2

)
)

edges. Indeed, we picked T = n(n− k) vertices from A which is a clique and thus induce
(
T
2

)
edges.

Then, for all e ∈ E, we picked 2T vertices, which induce
(
T
2

)
edges if e ∈ E0, and (

(
T
2

)
+ 1) edges if

e ∈ E1. Since |E0| =
(
k
2

)
(and thus |E1| = m−

(
k
2

)
), we have the desired number of edges.

G contains a k-clique ⇐ G′ contains k′ vertices inducing at most C′ edges.
Suppose now that K ′ is a set of k′ vertices of G′ which induces at most C ′ edges. We re-define

the sets E0 and E1 as follows: E0 = {{vp, vq} ∈ E such that for all j ∈ {1, ..., n} we have ajp /∈ K ′
and ajq /∈ K ′}, and E1 = E\E0. Roughly speaking, E0 denotes the set of gadgets not adjacent to
vertices of the solution among A, and E1 the set of gadgets adjacent to at least one vertex of the
solution among A.

For all R ⊆ V ′, let tr(R) = K ′ ∩ R be the trace of K ′ on R, and for all v ∈ V ′, let µ(v) =
|tr(N(v))| be the number of neighbours of v belonging to K ′.
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Let u ∈ K ′ and v ∈ V ′\K ′. We say that (K ′\{u}) ∪ {v} is a safe replacement if we have
µ(v) ≤ µ(u) if {u, v} /∈ E′ and µ(v)− 1 ≤ µ(u) if {u, v} ∈ E′. For sake of readability, we will keep
and update the definitions of E0 and E1 when replacing vertices of A (e.g. if we remove a vertex
u ∈ A from K ′ such that there exists e ∈ E1 such that vertices of Ze were only adjacent to u among
all vertices of tr(A), then e now belongs to E0).

The proof consists in replacing some vertices of K ′ by other vertices not in K ′ without increasing
the number of induced edges, in order to obtain a solution that has the same structure as previously.
We call such a replacement a safe modification or a safe replacement.

The core of the proof is based on the three following lemmas.

Lemma 5. Without loss of generality (and optimality of K ′), we can suppose that for all e ∈ E
we have Xe ⊆ K ′.

Proof. Let S =
⋃
e∈E Xe. Since we have k′ > |S|, there always exists u ∈ K ′\S. Suppose that there

exists e ∈ E and i ∈ {1, ..., T} such that xei /∈ K ′. If yei /∈ K ′, then we have µ(xei ) = 0 and we
can thus safely replace any other vertex of K ′\S by xei . Now, if ye1 ∈ K ′, then µ(xei ) = 1. Since
{xei , yei } ∈ E′, (K ′\{ye1}) ∪ {xei} is a safe replacement. ut

Lemma 6. (See App. A.2) K ′ can be safely modified such that one of the two following holds:
Case A1: for all e ∈ E0 we have tr(Ze) = Ze.
Case A2: for all e ∈ E0 we have tr(Ye) = ∅.

Lemma 7. (See App. A.2) K ′ can be safely modified such that one of the two following holds:
Case B1: for all e ∈ E1 we have tr(Ye) = Ye.
Case B2: for all e ∈ E1 we have tr(Ze) = ∅.

Let us now define for each case and each e ∈ E the set of vertices De ⊆ Ye ∪Ze that have to be
replaced (see Figure 5 in Appendix A.3):

– case A1: for all e ∈ E0, De = Ye ∩K ′
– case A2: for all e ∈ E0, De = Ze \K ′
– case B1: for all e ∈ E1, De = Ze ∩K ′
– case B2: for all e ∈ E1, De = Ye \K ′

Notice that if De = ∅ for all e ∈ E0 (resp. e ∈ E1), then cases A1 and A2 (resp. B1 and B2) collapse.
If such a case happen for all e ∈ E, we can immediately conclude, as shown by the following lemma:

Lemma 8. If De = ∅ for all e ∈ E, then G contains a clique of size k.

Proof. By construction, we have |tr(A)| = T and |tr(Fe)| = 2T for all e ∈ E. Thus, cost(tr(A)) =(
T
2

)
and cost(tr(Fe)) =

(
T
2

)
+ 1 if Ye ⊆ K ′, and cost(tr(Fe)) =

(
T
2

)
if Ze ⊆ K ′. By construction,

Ye ⊆ K ′ if and only if e ∈ E1. Thus, since cost(K ′) ≤
(
T
2

)
+ m

(
T
2

)
+ m −

(
k
2

)
, we must have

|E1| ≤ m−
(
k
2

)
which is equivalent to |E0| ≥

(
k
2

)
. Hence, there exists at most b |A|−Tn c = k vertices

in G inducing at least
(
k
2

)
edges, i.e. G contains a clique of size k. ut

We now have to analyse the four cases of Lemma 6 and 7. We only detail here the first one (case
A1 and B1), and refer the reader to Appendix A.3 for the other ones.

Let us consider case A1 and B1. To summarize the situation, the solution K ′ can be partitioned
in K ′A = K ′ ∩A, and K ′F = K ′ \K ′A, the vertices selected in the gadgets. Let ∆0 =

∑
e∈E0

|De| be
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the number of extra vertices allocated in all the gadgets Fe, e ∈ E0, and ∆1 =
∑
e∈E1

|De| be the
number of extra vertices allocated in all the gadgets Fe, e ∈ E1. Let ∆ = ∆0 +∆1. Notice that we
have |K ′A| = T −∆, as a ”regular” solution that does not select any extra vertex in a gadget has
to pick T vertices in A. Moreover,

– vertices of K ′ selected in gadgets of E0 are not adjacent to K ′A (by definition of E0)
– each gadget of E0 induces at least

(
T
2

)
edges (as we are in case A1)

– each gadget of E1 induces at least
(
T
2

)
+ 1 edges (as we are in case B1)

– each of the ∆0 vertices is adjacent to at least T vertices in K ′ (such a vertex is in a set Ye, and
thus is connected to the T vertcies of Ze)

– each of the ∆1 vertices is adjacent to at least T + 1 vertices in K ′ (such a vertex is in a set Ze,
and thus is connected to at least 1 vertex of K ′A and to the T vertices of Ye)

Let us now lower bound the total cost of K ′. We have:

cost(K ′) ≥ |E0|
(
T

2

)
+ |E1|(

(
T

2

)
+ 1) +∆0T +∆1(T + 1) +

(
T −∆

2

)

= m

(
T

2

)
+ |E1|+∆T +∆1 +

(
T

2

)
−
(
∆

2

)
−∆(T −∆)

≥ m
(
T

2

)
+ (m− |E0|) +

(
T

2

)
+
∆2

2

Notice that in a bad structured solution, a large ∆ allows to select only a few vertices in A (T −∆
instead of T ), and thus to have many gadgets (more than

(
k
2

)
) in E0. Let us now consider the

contrapositive, i.e. we consider that G does not contain a k-clique, and show that K ′ induces more
than C ′ edges.

Let q and r such that ∆ = qn+ r, r < n. Let us upper bound |E0|. As there are T −∆ vertices
in A, the number of empty ”columns” (column u is empty iff none of the atu is selected) is at most
n− T−∆

n ≤ k + q.
As G does not contain a k-clique, the k+q vertices corresponding to these k+q columns cannot

induce a clique of size k + q, and thus |E0| <
(
k+q
2

)
. Thus, we get:

cost(K ′) > m

(
T

2

)
+ (m−

(
k + q

2

)
) +

(
T

2

)
+
∆2

2

= C ′ − (

(
q

2

)
+ kq) +

∆2

2

Thus, as ∆2

2 >
(
q
2

)
+ kq, we get the desired inequality. We refer now the reader to Appendix A.3

for the three other cases. ut

4 Approximation in Proper Interval Graphs

Let us now discuss the status of Sparsest k-Subgraph and Densest k-Subgraph on interval
graphs. First, notice that the complexity status (NP-hardness versus P) of Sparsest k-Subgraph
remains unknown in interval and proper interval graphs. We also recall that this question is a
longstanding open problem for DkS, as well as its complexity in planar graphs. Indeed, the former
paper [9] proves the NP-hardness of DkS in comparability, chordal graphs, and states the open
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question of its complexity in planar and (proper) interval graphs. Since then, and despite a lot of
effort, no major improvement has been done so far.
As interval graphs are exactly the intersection of chordal graphs and co-comparability graphs,
finding out the complexity status of Sparsest k-Subgraph in interval graphs would determine
the complexity of Densest k-Subgraph in a subclass of comparability graphs, improving the
results of [9]. Finally, as in [16] where the author design a PTAS for Densest k-Subgraph on
interval graph (despite the unknown complexity status), we show in Appendix B the following
theorem.

Theorem 3. There is a PTAS for SkS in proper intervals running in nO( 1
ε ).

This result uses the same kind of arguments as in [16]: restructuring an optimal solution in each
”block” of consecutive intervals, and using dynamic programing on these restructured blocks.
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A Missing Proofs of the NP-hardness

A.1 Proof of claim ”G′ is a chordal graph”

We have the following simplicial elimination scheme:

– For all e ∈ E, we can remove Xe since for all j ∈ {1, ..., T}, xej is only connected to yej .
– For all e ∈ E, we can remove Y e. Indeed the remaining neighbourhood of ye1 is Ze which is a

clique. And the remaining neighbourhood of yej with j ≥ 2 is a subset Y e ∪ Ze \ {ye1} which
induces a clique.

– For all e ∈ E, we can remove Ze since the remaining neighbourhood of zej is a subset of Ze and
vertices of A which induce a clique.

– The remaining vertices induce a clique on A and can thus be eliminated.
ut

A.2 Proof of Lemma 6 and 7 (safe replacements)

Proof (Proof of Lemma 6). Let us first restructure each gadget of E0 separately. For all e ∈ E0

such that tr(Ye) 6= ∅ and tr(Ze) 6= Ze, let j0 = max{j ∈ {1, ..., T} : yej ∈ tr(Ye)} and let j1 be such
that zej1 /∈ tr(Ze). Recall that Lemma 5 ensures that xej0 is in K ′. If j0 6= 1, then µ(yej0) = y+ z+ 1,
where y = |N(yej0)∩ tr(Ye)| and z = |N(yej0)∩ tr(Ze)|. On the other side, we have µ(zej1) ≤ y+ z+ 1
(more precisely, µ(zej1) = y+z+1 if ye1 ∈ K ′, and µ(zej1) = y+z if ye1 /∈ K ′). Roughly speaking, this
switch ensures that we necessarily “loose” the edge due to the vertex of Xe and we gain at most
one edge due to ye1. Hence µ(zej1) ≤ µ(yej0) and (K ′\{yej0}) ∪ {zej1} is a safe replacement. If j0 = 1,
then it means that tr(Ye) = {ye1}. Suppose that there exists j1 such that zej1 /∈ tr(Ze). We have
µ(ye1) = z+ 1 where z = |N(ye1)∩ tr(Ze)|, and µ(zej1) = z+ 1. Here again (K ′\{ye1})∪{zej1} is a safe
replacement. After all these replacements, given any e ∈ E0, tr(Ye) 6= ∅ implies that tr(Ze) = Ze.
Then, we proceed to replacements between gadgets Fe, e ∈ E0. If one can find a, b ∈ E0 such
that tr(Ya) 6= ∅ and tr(Zb) 6= Zb, then let j0 be such that yaj0 ∈ tr(Ya) and let j1 be such that

zbj1 /∈ tr(Zb). We have µ(yaj0) ≥ T + 1 and µ(zbj1) ≤ T − 1. Thus, (K ′\{yaj0}) ∪ {zbj1} is a safe
replacement.
Theses replacements end either when all the Ye are empty for all e ∈ E0 or when all the Ze are full
for all e ∈ E0, which achieves the proof of Lemma 6. ut

Proof (Proof of Lemma 7). The proof is roughly based on the fact that replacing a vertex of Ze
by a vertex of Ye permits to “loose” at least one edge with vertices A and “gain” one edge with
a vertex of Xe. Let us formally prove Lemma 7. Similarly to the proof of Lemma 6, we first
restructure each gadget of E1 separately: for all e ∈ E1 such that tr(Ze) 6= ∅ and tr(Ye) 6= Ye, let
j0 = max{j ∈ {1, ..., T} : yej /∈ K ′} and let j1 be such that zej1 ∈ tr(Ze). Recall that by definition of

E1, there exists i, j ∈ {1, ..., n} such that zej1 is adjacent to aji . We have µ(zej1) ≥ y + z + 1, where
y = |N(zej1) ∩ Ye| and z = |N(zej1) ∩ Ze|. On the other side, we have µ(yej0) ≤ z + y + 2 (indeed,
|N(yej0)∩Ze| = z + 1, |N(yej0)∩ Ye| ≤ y and |N(yej0)∩Xe| = 1). Since {yej0 , zej1} ∈ E′, it holds that
(K ′\{zj1})∪{yj0} is a safe replacement. After all these replacements, given any e ∈ E1, tr(Ze) 6= ∅
implies that tr(Ye) = Ye.
We now proceed to replacements between gadgets Fe, e ∈ E1. If one can find a, b ∈ E1 such that
tr(Za) 6= ∅ and tr(Yb) 6= Yb, then let j0 be such that ybj0 /∈ tr(Yb) and let j1 be such that zaj1 ∈ tr(Za).

We have µ(zaj1) ≥ T + 1 and µ(ybj0) ≤ T − 1. Thus (K ′\{zj1}) ∪ {yj1} is a safe replacement. ut
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A.3 End of NP-hardness proof: the three other cases

e ∈ E0

De

case A1

e ∈ E0

De

case A2

e ∈ E1

Decase B1

e ∈ E1

De

case B2

Xe

Ye

Ze

1

Fig. 5: Schema of different cases. Shaded rectangles represent parts of K ′.

Case A2 and B2
Let ∆0 =

∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0+∆1 (recall that in this case, De 6⊂ K ′ for all
e ∈ E). Here again we suppose ∆ > 0. Let us notice that for all u ∈ tr(A), µ(u) ≥ T . On the other
hand, for all e ∈ E such that there exists v ∈ De, we have µ(v) ≤ T (remark that if e ∈ E1, then
De ⊆ Ye, and if e ∈ E0, then v is not adjacent to tr(A) by definition of E0). Thus (K ′\{u}) ∪ {v}
is a safe replacement. Since before this replacement we had tr(A) = T +∆, it is clear that we can
repeat this replacement (i.e. K ′\{u} ∪ {v} where u ∈ tr(A) and v ∈ De for some e ∈ E) ∆ times
safely. At this point, the updated value of ∆ is 0, i.e. De = ∅ for all e ∈ E. By Lemma 8, we must
have a clique of size k in G.

Case A2 and B1
If there exists e ∈ E0 such that there exists u ∈ De, then µ(u) < T . If such a vertex exists, then

either |tr(A)| > T or there exists e′ ∈ E1 such that there exists v ∈ De′ . In the first case for all
x ∈ tr(A) we have µ(x) ≥ T , and (K ′ \ {x})∪{u} is a safe replacement. In the second case we have
µ(v) > T and here again (K ′ \ {v}) ∪ {u} is a safe replacement.
After these replacements we must have De = ∅ for all e ∈ E0, and we can apply the same arguments
as for case A1 and B1.

Case A1 and B2
If there exists e ∈ E1 such that there exists u ∈ De, then µ(u) < T . If such a vertex exists, then

either |tr(A)| > T or there exists e′ ∈ E0 such that there exists v ∈ De′ . In the first case for all
x ∈ tr(A) we have µ(x) ≥ T , and (K ′ \ {x})∪{u} is a safe replacement. In the second case we have
µ(v) > T and here again (K ′ \ {v}) ∪ {u} is a safe replacement.
After these replacements we must have De = ∅ for all e ∈ E1, and we can apply the same arguments
as for case A1 and B1.

B PTAS for Proper Intervals Graphs

In this section we design a PTAS for Sparsest k-Subgraph in proper interval graphs. We first
assume that the instance has one connected component. We prove that we can re-structure an
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optimal solution Opt into a near optimal solution Opt′ such that the pattern used in Opt′ in each
”block” (a block corresponds to a separator in the input graph) is simple enough to be enumerated
in polynomial time. Then, a dynamic programming algorithm will process the graph blocks by
blocks from left to right and enumerate for each one all the possible patterns.

Definitions Let us define some notations that will be used in the algorithm. Recall that we are
given a set of proper intervals I = {I1, ..., In} sorted by their right endpoints (and by their left
endpoints equivalently).

First, we define by induction the following decomposition of the input graph (see Figure 6). Let
Im1 = I1, L1 = Im1 , R1 = {Ij , j > m1, Ij overlaps Im1}. Then, given any i ≥ 1 we define (while
there remains some intervals after Ri):

– Imi+1
is the rightmost interval of the set X = {I /∈ Ri,∃I ′ ∈ Ri s.t. I overlaps I ′} (X is well

defined as the instance has a unique connected component)
– Li+1 = {Ij , j ≤ mi+1, Ij overlaps Imi+1 and Ij /∈ Ri}
– Ri+1 = {Ij , j > mi+1, Ij overlaps Imi+1

}.

Im1

Im2

R1

L2

R2

B1

B2

L3

1

Fig. 6: Schema of the decomposition used in the PTAS.

Let a denote the maximum i such that Imi is defined. Notice that Ra may be empty, and that
Imi ∈ Li for all i ∈ {1, ..., a}.

For any i ∈ {1, ..., a} we define the block i as Bi = Li
⋃
Ri. Thus, the set of intervals is

partitioned into blocs Bi for 1 ≤ i ≤ a.
For any 1 ≤ i ≤ a and any solution S (a subset of k intervals), let LSi = Li

⋂
S, RSi = Ri

⋂
S,

and BSi = Bi
⋂
S.

Notice that for any S and i, intervals of RSi do not intersect intervals of RSi−1, and intervals of
LSi do not intersect Imi−1 nor intervals of LSi−1.
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We can now write the cost of a solution S as the sum of the costs inside the blocks and the
costs between the blocks. Thus, we have cost(S) =

∑a
i=1 cost(B

S
i ) +

∑a−1
i=1 cost(R

S
i , L

S
i+1). Indeed,

by definition, the only edges between blocks Bi and Bi+1 are edges between Ri and Li+1.

Compacting blocks Let Comp be an injective function from I to I. For any S ⊆ I, we define
Comp(S) =

⋃
I∈S Comp(I). The function Comp is called a compaction if for any S ⊆ I and any

1 ≤ i ≤ a the following holds:

– for all I ∈ RSi we have Comp(I) ∈ Ri and r(Comp(I)) ≤ r(I).

– for all I ∈ LSi we have Comp(I) ∈ Li and r(I) ≤ r(Comp(I)).

Roughly speaking, a compaction ”pushes” intervals of BSi toward the center Imi . The idea is
that a compaction may increase the cost of a solution inside the blocks, but cannot increase the
costs between the blocks. Thus, let us define a ρ-compaction as a compaction Comp such that for
any S ⊆ I and for all i ∈ {1, ..., a} we have cost(Comp(BSi )) ≤ ρ.cost(BSi ).

Lemma 9. If Comp is a ρ-compaction, then for any solution S, cost(Comp(S)) ≤ ρ.cost(S).

Proof. By definition of the decomposition, we have

cost(Comp(S)) =

a∑

i=1

cost(Comp(BSi )) +

a−1∑

i=1

cost(Comp(RSi ), Comp(LSi+1))

≤
a∑

i=1

ρ.cost(BSi ) +

a−1∑

i=1

cost(Comp(RSi ), Comp(LSi+1))

We now prove that

a−1∑

i=1

cost(Comp(RSi ), Comp(LSi+1)) ≤
a−1∑

i=1

cost(RSi , L
S
i+1)

Indeed, let IR ∈ RSi and IL ∈ LSi+1 such that IR and IL do not overlap. Then by definition of a
compaction, we have r(Comp(IR)) ≤ r(IR) and l(IL) ≤ l(Comp(IL)). Thus, intervals Comp(IR)
and Comp(IL) do not overlap as well, which proves the result. ut

According to the previous lemma, we only have now to find compactions that preserve costs
inside the blocks. Given a fixed ε, the objective is now to define a (1 + ε)-compaction that has a
simple structure.
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Imi

Li

GL
1

GL
2

GL
3

IL
1

IL
2

IL
3

1

Fig. 7: Example of a compaction of a set X for a block Li, with P = 3, and xL = 7. Intervals
marked with a cross represent X. Intervals marked with a circle represent Comp(X).

Lemma 10. For any fixed P ∈ N, there is a (1 + 4
P )-compaction such that for any X, Comp(X)

can be described by (2P + 4) variables ranging in {0, . . . , n}.
Proof. According to Lemma 9, we only describe Comp(X) for X ⊆ Bi, given any 1 ≤ i ≤ a. Let
X = XL ∪ XR with XL ⊆ Li and XR ⊆ Ri. We define xL = |XL|, xR = |XR|. Moreover, we set
xL = qLP + rL (with rL < P ) and xR = qRP + rR (with rR < P ).

Let us split XL into P subsets (GLt )1≤t≤P of consecutive intervals (in the ordering of their
right endpoints), with |GLt | = qL + 1 for t ∈ {1, ..., rL} and |GLt | = qL for t ∈ {(rL + 1), ..., P}
(see Figure 7). Similarly, we split XR into P subsets (GRt )1≤t≤P of consecutive intervals, with
|GRt | = qR + 1 for t ∈ {1, ..., rR} and |GRt | = qR for t ∈ {(rR + 1), ..., P}.
For all t ∈ {1, ..., P}, let ILt (resp. IRt ) be the rightmost (resp. leftmost) interval of GLt (resp. GRt ).
The principle of the compaction is to flush every intervals of GLt (resp. GRt ) to the right (resp.
left). Thus, for t ∈ {1, ..., rL}, Comp(GLt ) is defined as the (qL + 1)-rightmost intervals I such that
r(I) ≤ r(ILt ), and for t ∈ {(rL + 1), ..., P}, Comp(GLt ) is defined as the qL-rightmost intervals I
such that r(I) ≤ r(ILt ).
Similarly, for t ∈ {1, ..., rR}, Comp(GRt ) is defined as the (qR + 1)-leftmost intervals I such that
r(IRt ) ≤ r(I), and for t ∈ {(rR + 1), ..., P}, Comp(GRt ) is defined as the qR-leftmost intervals I
such that r(IRt ) ≤ r(I). The construction for a block Li is depicted in Figure 7. It is clear that the
mapping Comp described above is a compaction. Moreover, given xL, rL, xR, rR and ILt (resp. IRt )
for all 1 ≤ t ≤ P , we are clearly able to construct Comp(X) in polynomial time. Thus, it remains
to prove that Comp is a (1 + 4

P )-compaction.
One can easily show the two following key arguments:

(i) all intervals of Li form a clique, as well as all intervals of Ri.
(ii) for any t1, t2 ∈ {1, ..., P} with t1 6= P and t2 6= 1, if an interval of Comp(GLt1) overlaps an

interval of Comp(GRt2), then for any s1 ∈ {(t1 + 1), ..., P} and any s2 ∈ {1, ..., (t2 − 1)}, all
intervals of GLs1 overlap all intervals of GRs2 .

For all t ∈ {1, ..., P}, we define xLt = |GLt | = |Comp(GLt )|, xRt = |GRt | = |Comp(GRt )|. By our
construction and (i), we have

cost(Comp(X)) ≤
(
xL
2

)
+

(
xR
2

)
+

P∑

t=1

cost(Comp(GLt ), Comp(X) ∩Ri)
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cost(X) ≥
(
xL
2

)
+

(
xR
2

)
+

P∑

t=1

cost(GLt , X ∩Ri)

Then, for all t ∈ {1, ..., P}, let λt ∈ {0, 1, ..., P} be the maximum s such that an interval of
Comp(GLt ) overlaps an interval of Comp(GRs ) (we set λt = 0 if no interval of Comp(GLt ) overlaps
an interval of Comp(GR1 )). By (ii), for all t ∈ {1, ..., P}, we have cost(Comp(GLt ), Comp(X)∩Ri) ≤
xLt
∑λt
u=1 x

R
u and for all t ∈ {2, ..., P}, we have cost(GLt , X ∩ Ri) ≥ xLt

∑λt−1−1
u=1 xRu (since some

intervals of GLt−1 overlap some intervals of GRλt−1
, it implies that all intervals of GLt overlap all

intervals of GRλt−1−1).
Combining the previous inequalities, we now have

cost(Comp(X)) ≤
(
xL
2

)
+

(
xR
2

)
+

P∑

t=1

xLt

λt∑

u=1

xRu

cost(X) ≥
(
xL
2

)
+

(
xR
2

)
+

P∑

t=2

xLt

λt−1−1∑

u=1

xRu

Thus, we have

∆ = cost(Comp(X))− cost(X) ≤ xL1
λ1∑

u=1

xRu +

P∑

t=2

xLt

λt∑

u=λt−1

xRu

As in our case we have xLt ≤ (qL + 1), we get ∆ ≤ (qL + 1)(
∑λP
u=1 x

R
u +

∑P
u=1 x

R
λu

) ≤ 2(qL + 1)xR ≤
2(xLP + 1)xR.

It remains now to handle particular cases, according to the values of xL and xR.

– If xL ≥ P , then 2(xLP + 1)xR ≤ 4
P xLxR, and

∆
cost(X) ≤

4
P xLxR

(xL−1)xL+(xR−1)xR ≤
4
P xLxR

1
2 (x

2
L+x

2
R)
≤ 4

P (we lower bounded (xR− 1) by xR
2 as cases with

xR ≤ 1 lead to even better ratio).
– If xL < P , then we set Comp(X∩Li) = XL (i.e. we keep the left part unchanged). If xR < P+1,

then we set Comp(X) = X and we get a 1-compaction. Notice that in these cases we are still able
to construct Comp(X) in polynomial time. Suppose now that xR ≥ P +1. One can improve the

previous lower bound and write cost(X) ≥ (xL−1)xL
2 + (xR−1)xR

2 +
∑P
t=1 x

L
t (
∑λt−1
u=1 xRu ). Indeed,

for all t ∈ {1, ..., xL} the set GLt is a singleton (and GLt = ∅ for t ∈ {xL+1, ..., P}), and thus the
interval ofGLt overlaps some intervals ofGRλt , which implies that it overlaps all intervals ofGRλt−1.

Thus, we get ∆ ≤∑P
t=1 x

L
t x

R
λt
≤∑xL

t=1 x
R
λt
≤ xR, and ∆

cost(X) ≤ 2xR
(xL−1)xL+(xR−1)xR ≤

2
P , which

terminates the proof of the lemma.
ut

Algorithm Let us now write a dynamic programming algorithm for the instances that have a
unique connected component (we will drop this hypothesis after). Let Opt be an optimal solution,
P a fixed integer and Comp the previous (1 + 4

P )-compaction. The algorithm constructs a solution
which is at least as good as Comp(Opt) by enumerating for all blocks all the possible compacted
patterns (i.e. all the possible Comp(X)).
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Let us now define more formally the algorithm, starting with the parameters. The first parameter
k′ ≤ k is the number of interval to choose. i is the starting block, meaning that the k′ interval must
be chosen in

⋃a
l=iBl. Finally, BSi−1 represents the set of 2P + 4 variables that encode the set of

intervals Xi−1 chosen in block (i− 1). Since we can construct Xi−1 from BSi−1 in polynomial time,
we will directly use BSi−1 to denote Xi−1, for the sake of readability.

Algorithm 2 DP (k′, i, BSi−1)

// For the sake of clarity we drop the classical operations related to the ”marking
// table” that avoid multiple computations with same arguments
// We also drop the base case i = a+ 1 (i.e. there are no more remaining intervals in the instance)
Ω ← all possible patterns for block i using less or equal than k′ intervals
return arg minB∈Ω cost(B

S
i−1 ∪B ∪DP (k′ − |B|, i+ 1, B))

Lemma 11. For any P , DP (k, 1, ∅) outputs a (1+ 4
P )-approximation for the Sparsest k-Subgraph

in nO(P ).

Proof. The objective is to prove that cost(DP (k, 1, ∅)) ≤ cost(Comp(Opt)), where Comp is the
previous (1+ 4

p )-compaction. According to Lemma 10, it is sufficient to get a (1+ 4
p )-approximation.

For sake of readability, for all i ∈ {1, ..., a}, we define B∗i = Comp(Opt)∩Bi and k∗i = |⋃al=iB∗i |.
We prove by induction on i (starting from i = a + 1) that cost(B∗i−1 ∪ DP (k∗i , i, B

∗
i−1)) ≤

cost(Comp(Opt) ∩⋃al=i−1Bl).
Let us suppose that the hypothesis is true for i+ 1 and prove it for i. Considering the iteration

where DP chooses B = B∗i .

cost(B∗i−1 ∪DP (k∗i , i, B
∗
i−1)) ≤ cost(B∗i−1) + cost(B∗i−1, B

∗
i ) +DP (k∗i − |B∗i |, i+ 1, B∗i )

(recall that cost(X1, X2) = |{(Il, Il′) ∈ E, Il ∈ X1, Il′ ∈ X2}|). Using the induction hypothesis we
get the desired result.

The dependency in P in the running time is due to the n2P+O(1) possible values for the set of
parameters and the branching time in n2P+O(1) when enumerating sets BSi . ut

Finally, let us extend the previous result to instances having several connected component. We
only sketch briefly the algorithm as it follows the same idea as [8] for the k-densest subgraph
problem.

Let us suppose that for any k′ ≤ k we have an algorithm A(k′, X) which is a ρ-approximation
for k′-sparsest subgraph on a instance X having one connected component.

Let (Ci)1≤i≤x denote the connected components of a (general) instance of Sparsest k-Subgraph.
It is sufficient to define a dynamic programming algorithm DP (k′, i) that computes a ρ approxima-
tion of the k′-sparsest subgraph on

⋃x
t=i(Ct) by keeping the best of all the A(l, Ci) +DP (k′ −

l, i+ 1), for 1 ≤ l ≤ k′. Thus, we get the following result:

Theorem 4. There is a PTAS for Sparsest k-Subgraph on proper interval graphs running in
nO( 1

ε )


