
Parameterized Complexity of the Sparsest
k-Subgraph Problem in Chordal Graphs ?

Marin Bougeret, Nicolas Bousquet, Rodolphe Giroudeau, and Rémi Watrigant

LIRMM, Université Montpellier 2, France

Abstract. In this paper we study the Sparsest k-Subgraph problem
which consists in finding a subset of k vertices in a graph which induces the
minimum number of edges. The Sparsest k-Subgraph problem is a natu-
ral generalization of the Independent Set problem, and thus is NP-hard
(and even W [1]-hard) in general graphs. In this paper we investigate the
parameterized complexity of both Sparsest k-Subgraph and Densest k-
Subgraph in chordal graphs. We first provide simple proofs that Densest
k-Subgraph in chordal graphs is FPT and does not admit a polynomial
kernel unless NP ⊆ coNP/poly (both parameterized by k). More involved
proofs will ensure the same behavior for Sparsest k-Subgraph in the same
graph class.

1 Introduction

1.1 Presentation of the Problem and Related Work

Given a simple undirected graph G = (V,E) and an integer k, the Sparsest k-
Subgraph problem asks to find k vertices in G inducing the minimum number of
edges. The decision version asks if there exists a k-subgraph inducing at most C
edges. As a generalization of the classical independent set problem (for C = 0),
Sparsest k-Subgraph is NP-hard in general graphs, as well as W [1]-hard when
parameterized by k (as independent set is W [1]-hard [10]). In addition, there is
an obvious XP algorithm for Sparsest k-Subgraph when parameterized by k,
as all subsets of size k can be enumerated in O(nk) time, where n is the number
of vertices in the graph.

Several problems closely related to Sparsest k-Subgraph have been exten-
sively studied in the past decades. Among them, one can mention the maximization
version of Sparsest k-Subgraph, namely the Densest k-Subgraph, for which
several results have been obtained in general or restricted graphs. In [8], the au-
thors showed that Densest k-Subgraph remains NP-hard in bipartite, compa-
rability and chordal graphs, and is polynomial-time solvable in trees, cographs, and
split graphs. The complexity status of Densest k-Subgraph in interval graphs,
proper interval graphs and planar graphs is left as an open problem, and is still
not answered yet. More recently, [5] improved some of these results by showing
that both Densest k-Subgraph and Sparsest k-Subgraph are polynomial-
time solvable in bounded cliquewidth graphs, and [3] developed exact algorithms
for Sparsest k-Subgraph, Densest k-Subgraph and other similar problems
in general graphs parameterized by k and the maximum degree ∆ of the graph.

? This work has been funded by grant ANR 2010 BLAN 021902

2

During the past two decades, a large amount of work has been dedicated to the
approximability of Densest k-Subgraph in general graphs. So far, the best ap-
proximation ratio is O(nδ) for some δ < 1/3 [9], while the only negative result
is due to Khot [14] ruling out a PTAS under some complexity assumptions. Still
concerning Densest k-Subgraph but in restricted graph classes, [16] developed a
PTAS in interval graphs, and [7, 15] developed constant approximation algorithms
in chordal graphs. In [17], we recently proved that Sparsest k-Subgraph remains
NP-hard in chordal graphs and admits a 2-appoximation algorithm.
We can also mention the dual version of Sparsest k-Subgraph, namely the max-
imum partial vertex cover problem, for which we are looking for k vertices in
the input graph which cover the maximum number of edges. Very recently [1] and
[13] independently proved the NP-hardness of maximum partial vertex cover
in bipartite graphs, which directly transfers to Sparsest k-Subgraph (since find-
ing k vertices covering the maximum number of edges is equivalent to find (n− k)
vertices inducing the minimum number of edges).
More generally, Sparsest k-Subgraph, Densest k-Subgraph and maximum
partial vertex cover fall into the family of cardinality constrained optimiza-
tion problems introduced by Cai [6]. In its survey, the author proved that these
three problems are W [1]-hard in regular graphs, and gives an XP algorithm for
general graphs with a better running time than the trivial algorithm.
As said previously, Sparsest k-Subgraph and Densest k-Subgraph are natu-
ral generalizations of k-independent set and k-clique, and are thus important
both from a theoretical and practical point of view. Our motivation is to study
their computational (parameterized) complexity in graph classes where they re-
mains NP-hard whereas k-independent set and k-clique are polynomial-time
solvable, such as the well-known class of perfect graphs and some of its subclasses.
To that end, we study their parameterized complexity in the class of chordal graphs,
an important subclass of perfect graphs which arises in many practical situations
[12]. More precisely, we prove that both Sparsest k-Subgraph and Densest
k-Subgraph in chordal graphs are fixed-parameter tractable and do not admit
a polynomial kernel under some classical complexity assumptions. As we will see,
the results are quite easy to obtain for Densest k-Subgraph, but require some
efforts for Sparsest k-Subgraph.

1.2 Organization of the Paper

In the following section (Section 2), we recall the classical definitions of param-
eterized complexity and chordal graphs. Our two main results, namely the FPT
algorithm and kernel lower bound for Sparsest k-Subgraph in chordal graphs,
are presented respectively in Sections 4 and 5. Before all these, we study as an ap-
petizer the parameterized complexity of Densest k-Subgraph in chordal graphs
in Section 3. Due to space restrictions, some proofs and figures were omitted and
placed in appendices.

2 Parameterized Algorithms, Chordal Graphs

Parameterized algorithms. An interesting way to tackle NP-hard problems is the
parameterized complexity. A parameterized problem Q is a subset of Σ∗×N, where

3

the second component is called the parameter of the instance. A fixed-parameter
tractable (FPT for short) problem is a problem for which there exists an algorithm
which, given (x, k) ∈ Σ∗ × N, decides whether (x, k) ∈ Q in time f(k)|x|O(1) for
some computable function f . Such an algorithm becomes efficient with an hopefully
small parameter. A kernel is a polynomial algorithm which, given (x, k) ∈ Σ∗×N,
outputs an instance (x′, k′) such that (x, k) ∈ Q⇔ (x′, k′) ∈ Q and |x′|+k′ ≤ f(k)
for some computable function f . The existence of a kernel is equivalent to the
existence of an FPT-algorithm. Nevertheless one can ask the function f to be
a polynomial. If so, then the kernel is called a polynomial kernel. If a problem
admits a polynomial kernel, then it roughly means that we can, in polynomial
time, compress the initial instance into an instance of size poly(k) which contains
all the hardness of the instance. In order to rule out polynomial kernels, we will
use the recent concept of cross-composition [2].

Roughly speaking, a cross-composition is a polynomial reduction from t in-
stances of a (non-parameterized) problem A to a single instance of a parameterized
problem B such that the constructed instance is positive iff one of the input in-
stances is positive. In addition, the parameter of the constructed instance must be
of size polynomial in the maximum size of the input instances and the logarithm
of t. It is known that if A is NP-hard and A cross-composes into B, then B can-
not admit a polynomial kernel under some complexity assumptions. For a stronger
background concerning the parameterized complexity, we refer the reader to [10].
Formal definitions of cross-compositions and related notions are given in Appendix
C.

Chordal graphs. A graph G = (V,E) is a chordal graph if it does not contain
an induced cycle of length at least four. As said previously, chordal graphs form
an important subclass of perfect graphs. One can also equivalently define chordal
graphs in terms of a special tree decomposition. Indeed, it is known [11] that a
graph G = (V,E) is a chordal graph if and only if one can find a tree T = (X , A)
with X ⊆ 2V such that for all v ∈ V , the set of nodes of T containing v, that is
Xv = {X ∈ X : v ∈ X}, induces a (connected) tree, and such that for all u, v ∈ V
we have {u, v} ∈ E if and only if Xu ∩ Xv 6= ∅. Moreover, given a chordal graph,
this corresponding tree can be found in polynomial time. From this definition, it is
clear that each X ∈ X induces a clique in G.

3 Appetizer: Parameterized Complexity of Densest
k-Subgraph in Chordal Graphs

The goal of this section is to prove the following result:

Theorem 1. Densest k-Subgraph in chordal graphs is FPT and does not admit
a polynomial kernel unless NP ⊆ coNP/poly, both parameterized by k.

Proof. First, concerning the fixed-parameter tractability, notice that if the input
graph G contains a clique of size k or more (which can be tested in polynomial time
in chordal graphs), then it must be an optimal solution. Otherwise, it implies that
the treewidth of G is upper bounded by k (since the treewidth equals the maximum
clique number in chordal graphs), and we can apply the dynamic programming of

4

[4] over a classical tree decomposition of G in order to compute an optimal solution
in FPT time.

Then, concerning the kernel lower bound, let us show that Densest k-Subgraph
cross-composes into itself (parameterized by k). Indeed, suppose that we are given
a sequence of t chordal graphs on n vertices together with k,C ∈ N (i.e. t instances
of Densest k-Subgraph in chordal graphs sharing the same number of vertices
and values for k and C, which is the polynomial equivalence relation). Let us con-
sider the disjoint union of these t graphs, and for all i ∈ {1, ..., t}, add a clique Ki

on n2 vertices connected to all vertices of Gi (and not connected to the others).
One can easily prove that the resulting graph is a chordal graph on t · (n + n2)
vertices (recall that Gi is a chordal graph for all i ∈ {1, ..., t}, and we cannot create
any cycle of length four or more with the clique Ki). Then, we prove that there is a

set of size (n2 +k) vertices in the resulting graph inducing at least (
(
n2

2

)
+kn2 +C)

edges if and only if there exists i ∈ {1, ..., t} such that Gi contains k vertices in-
ducing C edges or more. First, one can easily verify that if Gi contains a subset
X of size k inducing C edges at least, then X ∪Ki induces the desired number of
edges. On the contrary, one can prove that a whole clique Ki must be taken in the
solution to induce the desired number of edges. Since the remaining vertices must
have average degree at least n2, there is no vertex in other components. Hence,
since Densest k-Subgraph in chordal graphs is NP-hard, it does not admit a
polynomial kernel unless NP ⊆ coNP/poly. ut

An interesting fact about the previous cross-composition is that it also holds
for interval graphs as long as the input graphs are interval graphs. Unfortunately,
since the complexity (NP-hard versus Polynomial) of Densest k-Subgraph in
interval graphs is still unknown, we cannot conclude any negative result under the
classical complexity assumptions. However, it still shows that the NP-hardness
of Densest k-Subgraph in interval graphs would imply that it does not even
admit a polynomial kernel (unless NP ⊆ coNP/poly). Taking the contrapositive,
and still under the same complexity assumption, we have that it is sufficient1 to
derive a polynomial kernel in order to show that Densest k-Subgraph in interval
graphs is not NP-hard.

4 FPT Algorithm for Sparsest k-Subgraph in Chordal
Graphs

Definitions and Notations. Let G = (V,E) be a chordal graph and T = (X , A)
be its corresponding tree decomposition as defined in section 2. Recall that for
each X ∈ X , X induces a clique in G. Actually, T can be chosen such that each
X ∈ X induces a maximal clique [11]. However, we will not make any such suppo-
sition in the following, since the algorithm will modify the graph through its tree
decomposition, and we will sometimes loose this maximality property.

We denote respectively by L and I the set of leaves and internal nodes of T
(we have X = L∪ I). In the following we suppose that T is rooted at an arbitrary

1 A polynomial kernel is theoretically easier to find than a polynomial algorithm, since a
polynomial (and even a constant size) kernel can be easily derived from a polynomial
algorithm.

5

node Xr. Let X ∈ X , we denote by pred(X) the unique predecessor of X in T (by
convention pred(Xr) = ∅), and by succ(X) the set of successors of X in T . For a
vertex v ∈ V (resp. a node X ∈ X), we denote by d(v) (resp. d(X)) its degree in
G (resp. in T). For a set of vertices U ⊆ V (resp. set of nodes A ⊆ X), we denote
by G[U] (resp. T [A]) the subgraph of G induced by U (resp. the subforest of T
induced by A). We say that a vertex v ∈ V is a lonely2 vertex (resp. almost lonely
vertex) if |Xv| = 1 (resp. |Xv| = 2), i.e. if it appears in only one (resp. two) nodes
of T .

First Observations. A maximum independent set can be computed in polynomial
time in chordal graphs (since chordal graphs are perfect). Hence, we first determine
if there exists an independent set of size k. In this case, we return this set which is
naturally an optimal solution. Thus, we assume in the following that the graph G
does not contain an independent set of size k.

Notice that we can assume that for every leaf L of the tree we do not have
L ⊆ pred(L) (otherwise we can contract the two nodes). Therefore, for each leaf L
of the tree, there is a vertex x ∈ L such that x /∈ pred(L), i.e. x is a lonely vertex.
Since there is no independent set of size k in G, and since lonely vertices of leaves
are pairwise non adjacent, we have the following:

Observation 1 We can assume that |L| < k.

Let us now state a simple property verified by optimal solutions. Let S be a set of
k vertices. Assume that there are vertices x ∈ S and y ∈ V \S such that Xy (Xx.
Then it means that N(y) ⊆ N(x). Thus, if we replace x by y in the solution, the
number of edges in the solution cannot increase. A set S is closed under inclusion
if there is no vertex x in S such that there exists y ∈ V \ S such that Xy (Xx. So
there always exists an optimal solution closed under inclusion.

Idea of the Algorithm. Our goal is to find an optimal solution closed under
inclusion. First note that any optimal solution closed under inclusion must contain
a lonely vertex per leaf of T . Indeed, as each leaf L is not included in pred(L),
there exists a lonely vertex x in L. Thus, either the solution intersects L, and since
it is closed by inclusion it contains a lonely vertex, or we can take a vertex of the
solution and replace it by x, which does not create any additional edge (since no
vertex of N(x) = L \ {x} was in the solution).

Our method can be summarized as follows. First, we take a lonely vertex in
each leaf and guess a binary flag w(L) ∈ {0, 1} for each leaf L which indicates
whether another vertex of L has to (with value 1) or does not have to (with value
0) be taken in the solution. The width of such a branching is bounded according to
Observation 1. Then, given a leaf L with w(L) = 1, we first try to add to the solution
the “most interesting” vertex of the leaf (for example a lonely vertex). When this
is not possible (the neighborhood of the vertices of L can be incomparable if these
vertices appear on incomparable subtrees), we apply some branching rules that
re-structure the tree and create new “interesting vertices”.

2 Notice that every lonely vertex is a so-called ”simplicial vertex” (a vertex whose neigh-
borhood is a clique). However, if a node of the tree is contained in another node, a
simplicial vertex may not be a lonely one. Since we do not make any supposition on
the tree T (we will in particular duplicate nodes during the algorithm), we will prefer
the term ”lonely”.

6

Terminology for the Algorithm. The algorithm is a branching algorithm com-
posed of pre-processing rules (which do not require branching) and branching rules.
When a rule is applied, we assume that previous rules cannot be applied.

During the algorithm, a partial solution S (initialized to ∅) will be constructed,
and the input graph G = (V,E) together with k, T (and thus X , L and I) will
be modified. To avoid heavy notation we will keep these variables to denote the
current input, and denote by G0 the original graph, and by N0 the neighborhood
function of G0.

In the following, taking a vertex v ∈ V in the solution means that v is added
to S, and v is removed both from the graph G and the tree T (removing each of
its occurrences). Deleting a vertex means removing the vertex from G and from T .
If a leaf of T becomes empty after taking or deleting a vertex, then simply remove
the leaf.

Let F ∈ I be a leaf of T [I] (i.e. a node of T which all successors are leaves).
The node F is a bad father if there exists a vertex u which appears in at least two
leaves of succ(F). So a node is a bad father if the leaves attached to it are not
vertex disjoint. We denote by #BF the number of bad fathers of the tree. Finally,
we denote by #AL (for ”almost leaf”) the number of internal nodes of T whose at
least one successor is a leaf. Notice that #AL,#BF ≤ |L|.

In addition, as said previously, we will put “flags” on some leaves L∗ ⊆ L
by introducing a boolean function w : L∗ → {0, 1}, which indicates whether it
intersects the solution (value 1) or not (value 0). At the beginning of the algorithm
we have L∗ = ∅. For a solution S ⊆ V0, we say that S respects the flags w if for
all L ∈ L∗, w(L) = 0 iff S ∩ L = ∅. During the algorithm we will use the term
”guessing” the value w(L) of L ∈ L. By this, we mean that we try the two possible
choices (consistent with the previous ones), creating at most two distinct executions
of the algorithm. Notice that L∗ will be implicitly updated (i.e. L belongs to L∗
in the next executions if we have guessed w(L)).
We also add a function g : L∗ → 2S . Roughly speaking, we will modify g during
the algorithm such that g remembers the neighbors of the remaining vertices V in
the partial solution S already constructed. Notice that we introduced g only for
the analysis, and more precisely for maintaining our invariants (see bellow).

Correctness and Time Complexity. As usually in a branching algorithm, we
bound the time complexity by bounding both the depth and the maximum degree
of the search tree. More precisely, we will show that:

– Each rule can be applied in FPT time.

– The branching degree of each branching rule is a function of k.

– Any branching rule strictly decreases (k,#AL,#BF) using the lexicographic
order, whose initial value only depends on the initial value of k (by Observation
1).

– Any pre-processing rule does not increase (k,#AL,#BF) and decreases |V |+
|I|.

Thus, the number of branching steps of the search tree is a function of k only,
whereas the number of steps between two branchings is polynomial in n (recall
that |X | is polynomial in n), which leads to an FPT running time.

7

Recall that S denotes the partial current solution. Concerning the correctness
of the algorithm, we will say that a rule is safe if it preserves all the following
invariants:

1. The tree T is still a tree decomposition (as defined in 2) of G, which is an
induced subgraph of G0.

2. If a vertex of the partial solution is adjacent to a ”surviving” vertex v ∈ V ,
then v must appear in a leaf where a flag is defined, i.e.:
N0(S) ∩ V ⊆ ⋃L∈L∗ L.

3. The neighborhood of a surviving vertex u in the partial solution is defined by
the union of g(L) for each L in which u appears, i.e. g : L∗ → 2S is such that
∀u ∈ V we have N0(u) ∩ S =

⋃
L∈Xu∩L∗ g(L).

In particular, this invariant implies that if there are u, v ∈ V such that Xu∩L∗ ⊆
Xv ∩L∗ (i.e. v appears in at least as many labelled leaves as u), then we must
have N0(u) ∩ S ⊆ N0(v) ∩ S (i.e. v is adjacent to at least as many vertices of
the solution as u).

4. If there is an optimal solution (closed under inclusion) S∗ ⊆ V such that
S ⊆ S∗, and S∗ respects the flags w, then one of the branching will output an
optimal solution.

Reduction Rules. Notice that each of the following rules defines a new value for
variables k, T , S, w and g. However, for the sake of readability we will not mention
variables that are not modified. Due to space restrictions, all safeness proofs were
placed in Appendix B.

Pre-Processing Rule 1: useless duplicated node.
If there exists X ∈ X such that X /∈ L∗ and X ⊆ pred(X), then contract X and
pred(X) (i.e. delete X, and connect every Y ∈ succ(X) to pred(X)).

Pre-Processing Rule 2: removing a (almost) lonely vertex.
If there exists L ∈ L∗ such that w(L) = 0, then if L contains a lonely vertex v,

delete v. Otherwise, if L contains an almost lonely vertex v, then delete v.

Branching Rule 1: taking a lonely vertex.
If there exists L ∈ L∗ such that w(L) = 1 and L contains a lonely vertex v, then

take v in the solution and decrease k by one. In addition, add v into g(L), and if
L does not become empty, then guess a new value w(L).

Remark 1. At this point, since Pre-Processing Rule 1 does not apply, it is clear
that every leaf L ∈ L \ L∗ contains a lonely vertex. The following branching rule
aims to process these leaves.

Branching Rule 2: processing leaves with no flag.
If there exists L ∈ L \ L∗, then take a lonely vertex v ∈ L in the solution and

decrease k by one. In addition, add v into g(L), and if L does not become empty,
guess a value w(L).

Remark 2. At this point, notice that L∗ = L, i.e. a flag has been assigned to each
leaf. Indeed, suppose that there exists L ∈ L \ L∗. If L contains a lonely vertex,

8

then Branching Rule 1 must apply. Otherwise, Pre-Processing Rule 1 must apply.
In addition, there is no lonely vertex in the leaves, as otherwise Branching Rule 1
or Pre-Processing Rule 2 would apply.

Branching Rule 3: partitioning leaves of a bad father.
If there exists a bad father F ∈ X , let L′ be the set of leaves in succ(F) and
C =

⋃
L∈L′ L be the set of vertices contained these leaves. Partition C into the

equivalence classes C1, ..., Ct of the following equivalence relation: two vertices
u, v ∈ C are equivalent if Xu ∩ L′ = Xv ∩ L′ (i.e. u and v appear in the same
subset of leaves of F). For all i ∈ {1, ..., t}, let Li ⊆ L′ denote the subset of leaves
in which vertices of Ci were before the partitioning. Then, replace the leaves of F
by C1, ..., Ct, and for all i ∈ {1, ..., t}, guess w(Ci) and set g(Ci) =

⋃
L∈Li g(L).

Let us give the intuition of Branching Rule 3. This rule ensures that the set of
leaves attached to a same node are vertex disjoint and that the partition was made
in such a way that two vertices in the same leaf after the application of the rule
were in the same subset of leaves before it. Notice that the remaining Branching
Rules can create bad fathers, but decrease k.

Branching Rule 4: taking a lonely vertex in a father.
If there exists L ∈ L such that pred(L) contains a lonely vertex v, then take v

in the solution, delete k by one, and create a new leaf N adjacent to pred(L) and
containing vertices of L \ {v}. Finally, guess a value for w(N) and set g(N) = {v}.

Branching Rule 5: taking an almost lonely vertex in a leaf.
If there exists L ∈ L such that w(L) = 1 and L contains an almost lonely vertex v

(thus contained in L and pred(L)), then take v in the solution, decrease k by one,
and create a new leafN adjacent to pred(L) and containing vertices of pred(L)\{v}.
If L does not become empty, then guess a new value w(L). Finally, guess a value
w(N), add v into g(L), and set g(N) = {v}.

End of the Algorithm.

Lemma 1. If no rule can be applied then either G is empty or k = 0.

According to the introduction and all the safeness lemmas, the size of the search
tree is a function of k. Then, let us remark that all rules can be applied in FPT
time. This is clear for Pre-Processing Rules 1 and 2, as well as for Branching Rules
1, 2, 4 and 5. Concerning Branching Rule 3, which consists in partitioning a subset
of leaves, it runs in FPT time as long as |L| is a function of k. This is obviously the
case at the beginning of the algorithm (since |L| < k), and the number of leaves
only increase by one in Branching Rule 4 and 5, and by a function of the previous
number of leaves in Branching Rule 3. Since the branching rules are applied at
most f(k) times, we get the desired result.

Theorem 2. There is an FPT algorithm for Sparsest k-Subgraph in chordal
graphs, parameterized by k.

However, the running time of the algorithm may be a tower of 2 of height k,
since Branching Rule 3 may create 2t new leaves, where t is the number of previous

9

leaves of the node F . Nevertheless, we can slightly modify the algorithm in order to
obtain a O∗(2k

2

) running time3. Indeed, after the application of this rule, all leaves
L such that w(L) = 0 can be gathered into one leaf, since all these vertices are
not in the solution. And since all leaves are vertex disjoint, the number of leaves L
such that w(L) = 1 is at most k (since one vertex of each leaf is in the solution).
Hence, the number of leaves of F after the application of Branching Rule 3 can
actually be bounded by k + 1. Then, as said previously, the only other branching
rules which increase the number of leaves are Branching Rules 4 and 5, which both
add at most one leaf when they are applied. However, since these branching rules
are decreasing k, the maximum number of leaves of a node F before the application
of Branching Rule 3 is 2k. Hence, this rule (which upper bounds the running time

of the algorithm) runs in time O∗(2O(2k2)) (we have at most 22k leaves and we
choose at most k leaves such that w(L) = 1). For sake of readability, the presented
algorithm does not contain this slight modification.

5 Kernel Lower Bound of Sparsest k-Subgraph in Chordal
Graphs

Intuition of the proof. The following kernel lower bound is obtained using a cross-
composition. It is an extension of our previous work [17], showing the NP-hardness
of Sparsest k-Subgraph in chordal graphs. Let us first give the intuition of this
result, and then explain the modification we apply which leads to the kernel lower
bound. We then explicit the whole construction of the cross-composition and give
a formal proof of the result.

The NP-hardness proof is a reduction from the classical k-clique problem in
general graphs and roughly works as follows. Given an input instance G = (V,E),
k ∈ N of k-clique, we first build a clique A representing the vertices of G. We also
represent each edge ej = {u, v} ∈ E by a gadget Fj , and connect the representative
vertices of u and v in A to some vertices of Fj (see the left of Figure 1). The
reduction will force the solution to take in A the representatives of (n− k) vertices
of G (corresponding to the complement of a solution S of size k in G), and also to
take the same number of vertices among each gadget. The key idea is that the cost
of a gadget Fj increases by one if it is adjacent to one of the selected vertices of A.
Thus, since the goal is to minimize the cost, we will try to maximize the number
of gadgets adjacent to the representatives of S (i.e. vertices we did not pick in A),
the maximum being reached when S is a clique in G.

To adapt this reduction into a cross-composition, we add an instance selector
composed of 2 log t gadgets adjacent to A (where t is the number of input instances
of the cross-composition) which encodes the binary representation of each instance
index. These gadgets have the same structure as the Fj . For technical reasons, this
instance selector has to be duplicated many times, as well as the clique A which
we must duplicate t times in order to encode the vertex set of each instance. The
right of Figure 1 represents the construction in a simplified way. Let us now define
formally the gadgets and state their properties.

Definition of a gadget. Let T ∈ N (we will set the value of T later). The ver-
tex set of each gadget is composed of three sets of T vertices X,Y and Z, with

3 The O∗(.) notation avoids polynomial terms.

10

X = {x1, ..., xT }, Y = {y1, ..., yT } and Z = {z1, ..., zT }. The set X induces an inde-
pendent set, the set Z induces a clique, and there is a (T −1)-clique on {y2, ..., yT }.
In addition, for all i ∈ {1, ..., T}, we connect yi to all vertices of Z and to xi. The
left of Figure 1 summarizes the construction.
In the following cross-composition, we will force the solution to take 2T vertices
among each gadget F . It is easy to see that the sparsest 2T -subgraph of F is com-
posed of the sets X and Z, which induces

(
T
2

)
edges. In addition, if we forbid the

set Z to be in the solution (if the gadget is adjacent to some picked vertices of A),
then the remaining 2T vertices (namely X and Y) induce (

(
T
2

)
+ 1) edges.

X1

Y1

Z1

gadget F1 for e1 = {u, v} ∈ Ei

T

n

n Ai

X1

Y1

Z1

Xm

Ym

Zm

Zα1
1

Fα1
1

Fβ1
1

clique on
tn2 vertices A1 At

k n − k

(
k
2

)
gadgets m −

(
k
2

)
gadgets

T

bin. representation
of i : 1 1 0

2Mq
gadgets

T

F1 Fm

Yα1
1

Xα1
1

ZβM
q

YβM
q

XβM
qFαM

j
FβM

j

Fα1
q

Fβ1
q

Ai
u Ai

v

Ai

1

Fig. 1: Schema of the cross-composition (right) and a detailed gadget (left). Grey
rectangles represent vertices of the solution, supposing that Gi contains a clique of
size k. Notice that gadgets of the bottom have been drawn in the reverse direction
(e.g. Xβ1

1
is below Yβ1

1
). Edges of the clique A have not been drawn for sake of

clarity.

Theorem 3. Sparsest k-Subgraph does not admit a polynomial kernel in chordal
graphs unless NP ⊆ coNP/poly (parameterized by k).

Proof. Let (G1, k1), ..., (Gt, kt) be a sequence of t instances of k-clique, with Gi =
(Vi, Ei) for all i ∈ {1, ..., t}. W.l.o.g. we suppose that t = 2q for some q ∈ N, and
define T = n(n− k) and M = n6.

11

Our polynomial equivalence relation is the following: for 1 ≤ i, j ≤ t, (Gi, ki) is
equivalent to (Gj , kj) if |Vi| = |Vj | = n, |Ei| = |Ej | = m and ki = kj = k. One can
verify that this relation is a polynomial equivalence relation. In what follows we
suppose that all instances of the sequence are in the same equivalence class. The
output instance G′ = (V ′, E′), k′, C ′ is defined as follows (see Figure 1):

– For each i ∈ {1, ..., t} we construct a clique Ai on n2 vertices, where Ai is
composed of n subcliques Ai1, ..., A

i
n. We also add all possible edges between all

cliques (Ai)i=1..n. Hence, A =
⋃t
i=1A

i is a clique of size tn2.
– Since all instances have the same number of edges, we construct m gadgets

(Fj)j=1..m, where each Fj is composed of Xj , Yj and Zj as described previously.
For all i ∈ {1, ..., t}, if there is an edge ej = {u, v} ∈ Ei, then we connect all
vertices of Zj to all vertices of Aiu and Aiv. Let us define F =

⋃m
j=1 Fj the

subgraph of all gadgets of the ”edge selector”.
– We add 2qM gadgets (Fαhj)h=1..M

j=1..q and (Fβhj)h=1..M
j=1..q , where all gadgets are iso-

morphic to the edge gadgets, and thus composed of Xαhj
, Yαhj and Zαhj (resp.

Xβhj
, Yβhj and Zβhj) for all h ∈ {1, ...,M} and all j ∈ {1, ..., q}. Let i ∈ {1, ..., t},

and consider its binary representation b ∈ {0, 1}q. For all j ∈ {1, ..., q}, if the

jth bit of b equals 0, then connect all vertices of Ai to all vertices of
⋃M
h=1 Zαhj .

Otherwise, connect all vertices of Ai to all vertices of
⋃M
h=1 Zβhj . Let us de-

fine B =
⋃M
h=1

⋃q
j=1(Fαhj ∪ Fβhj) the subgraph of all gadgets of the ”instance

selector”.
– We set k′ = T +2Tm+4TqM and C ′ =

(
T
2

)
+
(
T
2

)
(m+2Mq)+(m−

(
k
2

)
)+Mq.

It is clear thatG′, k′ and C ′ can be constructed in time polynomial in
∑t
i=1 |Gi|+

ki. Then, one can verify that G′ is a chordal graph. Indeed, it is known [12] that
a graph is chordal if and only if one can repeatedly find a simplicial vertex (a ver-
tex whose neighborhood is a clique) and delete it from the graph until it becomes
empty. Such an ordering is called a simplicial elimination order. It is easily seen
that for each gadget, X,Y and then Z is a simplicial elimination order (each gadget
is only adjacent to the clique A via its set Z). Finally it remains the clique A which
can be eliminated.

In addition, notice that the parameter k′ is a polynomial in n, k and log t only
and thus respect the definition of a cross-composition. We finally prove that there
exists i ∈ {1, ..., t} such that Gi contains a clique K of size k if and only if G′

contains a set K ′ of k′ vertices inducing C ′ edges or less.

Lemma 2. If there exists i ∈ {1, ..., t} such that Gi contains a k-clique, then G′

contains k′ vertices inducing at most C ′ edges.

Proof. Suppose that K ⊆ Vi is a clique of size k in Gi. W.l.o.g. suppose that
K = {v1, ..., vk}, and that {{u, v}, u, v ∈ K} = {e1, ..., e(k2)}. Let b ∈ {0, 1}q be the

binary representation of i. We build K ′ as follows (see Figure 1).

– For all j ∈ {1, ...,
(
k
2

)
}, K ′ contains Xj and Zj (2T vertices inducing

(
T
2

)
edges

for each gadget Fj).

– For all j ∈ {
(
k
2

)
+ 1, ...,m}, K ′ contains Xj and Yj . (2T vertices inducing

(
(
T
2

)
+ 1) edges for each gadget Fj).

12

– For all u /∈ {1, ..., k}, K ′ contains Aiu (T vertices inducing
(
T
2

)
edges).

– For all h ∈ {1, ...,M}, and all j ∈ {1, ..., q}, K ′ contains Xαhj
and Xβhj

. More-

over, if the jth bit of b equals 1, then K ′ contains Yβhj and Zαhj , otherwise K ′

contains Zβjj
and Yαhj (4T vertices inducing (2

(
T
2

)
+ 1) edges for each pair of

gadgets Fαhj and Fβhj).

One can easily verify that K ′ is a set of k′ vertices inducing C ′ edges. ut
We terminate the proof by the following lemma, whose proof is in Appendix C:

Lemma 3. If G′ contains k′ vertices inducing at most C ′ edges, then ∃i ∈ {1, ..., t}
such that Gi contains a k-clique.

References

1. N. Apollonio and B. Simeone. The maximum vertex coverage problem on bipartite
graphs. Discrete Applied Mathematics, (in press), 2013.

2. H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Cross-composition: A new tech-
nique for kernelization lower bounds. In STACS, pages 423–434, 2011.

3. E. Bonnet, B. Escoffier, V. Th. Paschos, and E. Tourniaire. Multi-parameter complex-
ity analysis for constrained size graph problems: using greediness for parameterization.
to appear in IPEC 2013.

4. N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, and V. Th. Paschos. Exact and
approximation algorithms for densest k-subgraph. In WALCOM, pages 114–125, 2013.

5. H. Broersma, P. A. Golovach, and V. Patel. Tight complexity bounds for FPT
subgraph problems parameterized by clique-width. In Proceedings of the 6th
international conference on Parameterized and Exact Computation, IPEC’11, pages
207–218, Berlin, Heidelberg, 2012. Springer-Verlag.

6. L. Cai. Parameterized complexity of cardinality constrained optimization problems.
Computer Journal, 51(1):102–121, 2008.

7. D. Chen, R. Fleischer, and J. Li. Densest k-subgraph approximation on intersection
graphs. In Proceedings of the 8th international conference on Approximation and
online algorithms, pages 83–93. Springer, 2011.

8. D.G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete
Applied Mathematics, 9(1):27 – 39, 1984.

9. U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica,
29:2001, 1999.

10. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
11. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.

Journal of Combinatorial Theory, Series B, 16(1):47 – 56, 1974.
12. M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New

York, USA, 1980.
13. G. Joret and A. Vetta. Reducing the rank of a matroid. CoRR, abs/1211.4853, 2012.
14. S. Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite

clique. SIAM Journal of Computing, 36:1025–1071, 2004.
15. M. Liazi, I. Milis, and V. Zissimopoulos. A constant approximation algorithm for

the densest k-subgraph problem on chordal graphs. Information Processing Letters,
108(1):29–32, 2008.

16. T. Nonner. PTAS for densest k-subgraph in interval graphs. In Proceedings of the
12th international conference on Algorithms and Data Structures, pages 631–641.
Springer, 2011.

17. R. Watrigant, M. Bougeret, and R. Giroudeau. Approximating the sparsest k-
subgraph in chordal graphs. to appear in WAOA 2013.

13

A Formal Definitions for Kernel Lower Bounds

In order to establish kernel lower bounds, we use the concept of cross-composition
of [2]:

Definition 1 (Polynomial equivalence relation [2]). An equivalence relation
R on Σ∗ is called a polynomial equivalence relation if the two following conditions
hold:

– There is an algorithm that given two strings x, y ∈ Σ∗, decides whether x and
y belong to the same equivalence class in (|x|+ |y|)O(1) time.

– For any finite set S ⊆ Σ∗, the equivalence relation R partitions the elements
of S into at most (maxx∈S |x|)O(1) classes.

Definition 2 (OR-cross-composition [2]). Let L ⊆ Σ∗ be a set and let Q ⊆
Σ∗ × N be a parameterized problem. We say that L OR-cross-composes into Q if
there is a polynomial equivalence relation R and an algorithm which, given t strings
belonging to the same equivalence class of R, computes an instance (x∗, k∗) ∈
Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that:

– (x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 ≤ i ≤ t
– k∗ is bounded by a polynomial in maxti=1|xi|+ log t

Theorem 4 ([2]). If some set L ⊆ Σ∗ is NP-hard and L OR-cross-composes
into the parameterized problem Q, then there is no polynomial kernel for Q unless
NP ⊆ coNP/poly.

B Missing Proofs of Section 4

B.1 Safeness of Pre-Processing Rule 1

Proof. The new tree still verifies invariant 1. As X /∈ L∗, ⋃L∈L∗ L remains un-
changed, and since S is also unchanged, invariant 2 is clearly preserved. In the
same way, as X /∈ L∗, ⋃L∈Xu∩L∗ g(L) remains unchanged for any u, and invariant
3 is preserved. Invariant 4 remains true as we do not modify S nor w.

Let us now check what is decreasing when applying this rule. Notice that this
rule may increase #BF as pred(X) may become a bad father. However, in this case
the rule decreases #AL, and thus (k,#AL,#BF) decreases. Otherwise (if #BF
does not increase), either #AL decreases, or (k,#AL,#BF) remains unchanged
and |V |+ |I| decreases.

ut

B.2 Safeness of Pre-Processing Rule 2

Proof. Here again invariant 1 still holds. Then, since we just remove a vertex from
the graph and do not modify the solution, invariant 2 is still true. For the same
reason, and since g(L) is not modified either, invariant 3 holds. Let us prove that
invariant 4 is preserved. Consider an optimal solution S∗ closed under inclusion
which satisfies S ⊆ S∗ and the flags on the leaves. As w(L) = 0, no vertex of L
is used in S∗, and in particular v /∈ S∗. Thus, vertices of S∗ \ S are still in the

14

remaining graph and the invariant still holds.
Then, obviously |V | + |I| decreases while k remains unchanged. The only case in
which #BF may increase is when L = {v} and succ(pred(L)) = L (i.e. L was
the unique leaf of pred(L)), and pred(pred(L)) is an almost leaf). In this case L
is deleted and thus pred(L) now becomes a leaf and pred(pred(L)) may become
a bad father. However in this case pred(L) and pred(pred(L)) were two almost
leaves, and thus the deletion of v (and thus L) decreases #AL, which proves that
(k,#AL,#BF) cannot increase. ut

B.3 Safeness of Branching Rule 1

Proof. Here again a vertex is deleted from the graph and thus invariant 1 is still
verified. In addition, neighbors of v in the remaining graph must appear in the leaf
L only (since v is lonely), which receives a flag w(L). Hence invariants 2 holds.
Since v has been added to g(L), invariant 3 holds too. For the last invariant, let us
consider S∗ an optimal solution closed under inclusion such that S ⊆ S∗ and S∗

satisfies the flags of w. Suppose that v /∈ S∗. Let x ∈ L ∩ S∗ (such a vertex must
exist, according to w(L)). Let us prove that N0(v) ∩ S∗ ⊆ N0(x) ∩ S∗ (as this will
imply that replacing x by v in S∗ cannot increase its cost). By invariant 3, it holds
that N0(v)∩S ⊆ N0(x)∩S. By invariant 1 and by definition of the tree T , it holds
that N0(v)∩ S∗ ∩ V ⊆ N0(x)∩ S∗ ∩ V . Since S∗ = S ∪ (S∗ ∩ V), the result follows
and invariant 4 is true.
Finally, it is clear that k decreases. ut

B.4 Safeness of Branching Rule 2

Proof. Using the same arguments as in Branching Rule 1, invariants 1, 2 and 3
hold. Then, let us consider S∗ an optimal solution closed under inclusion such that
S ⊆ S∗ and S∗ satisfies the flags of w. Suppose that v /∈ S∗. Since L has no
flag, two cases may happen: either S∗ ∩ L = ∅ or S∗ ∩ L 6= ∅. In the first case,
since invariant 2 implies N0(v) ∩ S = ∅, and since v is a lonely vertex, we have
N0(v) ∩ S∗ = ∅. Hence replacing any other vertex of S∗ by v cannot increase its
number of induced edges. Suppose now that S∗ ∩L 6= ∅, and let x ∈ L ∩ S∗. As in
the proof of Branching Rule 1, let us prove that N0(v) ∩ S∗ ⊆ N0(x) ∩ S∗ (as this
will imply that replacing x by v in S∗ cannot increase its cost). By invariant 3, it
holds that N0(v) ∩ S ⊆ N0(x) ∩ S. By invariant 1 and by definition of the tree T ,
it holds that N0(v)∩S∗ ∩V ⊆ N0(x)∩S∗ ∩V . Since S∗ = S ∪ (S∗ ∩V), the result
follows and invariant 4 is true.
Here again it is clear that k decreases.

B.5 Safeness of Branching Rule 3

Proof. Notice first that by construction #BF decreases, whereas k and #AL re-
main unchanged.

Let us now check the invariants. Since vertices which appear in a leaf before the
transformation still appear on some leaves, invariant 2 is preserved. By Remark 2,
no leaf contains a lonely vertex. Thus, all vertices of C are contained in F and thus
induce a clique. Since we do not modify F , no vertex nor edge has been removed

15

from the graph, and invariant 1 still holds. For proving that invariant 3 still holds,
let i ∈ {1, ..., t} and u ∈ Ci. Before the partitioning we had:

N0(u) ∩ S =
⋃

L∈Xu∩L
g(L)

=

(⋃

L∈Xu∩L′
g(L)

)
∪


 ⋃

L∈Xu∩(L\L′)

g(L)




And by definition, we now have
⋃
L∈Xu∩L′ g(L) = g(Ci). Hence, the invariant is

preserved.
Let us now turn to invariant 4. Consider a solution S∗ optimal and closed by
inclusion satisfying S ⊆ S∗ and the flags w on the leaves. If we consider the
branching where every new leaf Ci receives the right flag with respect to S∗ ∩ Ci,
then the solution S∗ satisfies the assigned flags, and invariant 2 holds. ut

B.6 Safeness of Branching Rule 4

Proof. First, it is clear that invariant 1 still holds, since we just removed a vertex
v from the graph, and duplicated a node of the tree in a leaf. Then, since we
created a leaf N containing all neighbors of v, and since we assigned a value w(N)
for this new leaf, invariant 2 is preserved. Concerning invariant 3, notice that for
all u ∈ pred(L), its neighborhood in the partial solution after the branching rule
(N0(u)∩S) is exactly the union of its neighborhood in the previous partial solution
and {v}. By definition of g(N), and since u now belongs to N , this proves that the
invariant is still true.
Let us know prove that invariant 4 still holds. Let S∗ be an optimal solution
closed under inclusion which satisfies S ⊆ S∗ and the already assigned flags w. If
S∗ ∩ pred(L) 6= ∅ then the result is straightforward since v is lonely. Otherwise,
there are two cases:

– first case: there exists L ∈ pred(L) such that S∗ ∩ L 6= ∅. In this case, let
u ∈ S∗ ∩ L. Since L does not contain any lonely vertex (see Remark 2), S∗ is
actually not closed under inclusion, which proves that this case is impossible.

– second case: for all L ∈ pred(L) we have S∗ ∩L = ∅. In this case it means that
N0(v) ∩ S∗ = ∅ and thus we can replace any other vertex of S∗ by v without
increasing its cost.

Finally, it is clear that k decreases.

B.7 Safeness of Branching Rule 5

Proof. Since we just removed a vertex from G and duplicated a node, creating a
leaf, invariant 1 still holds. In addition, neighbors of v in the remaining graph must
appear in the new leaf N , which receives a flag w(N). Hence invariant 2 and 3
also hold (notice that we added v into g(L), and that g(N) has been set to {v}).
Concerning invariant 4, let S∗ be an optimal solution closed under inclusion, such
that S ⊆ S∗, and respecting the flags w. Let x ∈ S∗ ∩ L (such a vertex must
exist, according to w(L)), and suppose that v /∈ S∗. By invariant 2 it holds that

16

N0(v)∩S ⊆ N0(x)∩S. Since there is no lonely vertex in L (cf Remark 2), it holds
that N0(v) ∩ S∗ ∩ V ⊆ N0(v) ∩ S∗ ∩ V . Since S∗ = S ∪ (S∗ ∩ V), this proves that
invariant 4 is preserved.
Finally, k strictly decreases.

B.8 Proof of Lemma 1

Proof. Let us first prove that the depth of T is at most 1 (that is, T is a star). Sup-
pose by contradiction that there exists an internal node F of depth at least 1, i.e.
at least one leaf is adjacent to F , and F 6= Xr (and thus pred(F) exists). By Pre-
Processing Rule 2 and Branching Rule 5, no leaf of F has an almost lonely vertex.
So every vertex which appears in F and a leaf of F also appears in pred(F) (since
otherwise Branching Rule 3 would apply). In addition, Pre-Processing Rule 1 en-
sures that F * pred(F). Then there exists a vertex v in F which is not in pred(F).
Hence v must be a lonely vertex of F and Branching Rule 4 can be applied, a
contradiction.

So T is a star rooted on Xr. Since Branching Rule 3 cannot be applied, leaves
of Xr are vertex disjoint. So every vertex which appears in a leaf is a lonely or an
almost lonely vertex. Let L be such a leaf. If w(L) = 0, then Pre-Processing Rule
2 can be applied. Otherwise Branching rule 1 or 5 can be applied as long as Xr

has a leaf.

Hence G is now reduced to a clique. If k = 0 then we already have the solution
and can output it. If k > 0, then since each vertex is a lonely one, Branching Rule
1 can apply and we can thus choose arbitrarily any remaining vertex.

Thus, the algorithm ends when the graph is empty or when k = 0. If the graph
is empty and k > 0, then we know that the current branching is not the right one,
and then the output does not provide an optimal solution. In the other cases, we
compare the costs of all produced solutions (in each branching). Since invariant 4 is
preserved in all pre-processing and branching rules, one of the branch of the search
tree must provide a solution of optimal cost. Therefore the minimum over all the
possible branchings provides a solution with an optimal cost, which finishes the
proof. ut

C Missing Proofs of Section 5

C.1 Proof of Lemma 3

Let us first state some definitions.

Definitions. Suppose now that K ′ is a set of k′ vertices inducing C ′ edges. For a
set S ⊆ V ′, we denote by tr(S) = S ∩ K ′ the trace of the solution on S. For all
v ∈ V ′, let µ(v) = |tr(N(v))| be the number of neighbors of v belonging to K ′.
Let I = {1, ...,m} ∪ {αhj }h=1..M

j=1..q ∪ {βhj }h=1..M
j=1..q be the set of all indices of gadgets.

As in the definition of the gadgets given above, we define for all γ ∈ I the sets
Xγ = {xγ1 , ..., xγT }, Yγ = {yγ1 , ..., yγT } and Zγ = {zγ1 , ..., zγT }.
We define E0 = {γ ∈ I such that ∀x ∈ tr(A), no vertex of Zγ is adjacent to x},

17

i.e. E0 represents the indices of all gadgets Fγ which are not adjacent to vertices
of the solution among the clique A. Then, define E1 = I \ E0, which represents
indices of gadgets which are adjacent to at least one vertex of tr(A).

In the three following lemmas (4, 5 and 6), we show that we can restructure the
solution inside each gadget in order to encode a solution for the k-clique instance.
To do so, we define the notion of safe replacement :

Safe replacements. Let u ∈ K ′ and v ∈ V ′\K ′. We say that (K ′\{u}) ∪ {v} is
a safe replacement if we have µ(v) ≤ µ(u) if {u, v} /∈ E′ and µ(v) − 1 ≤ µ(u) if
{u, v} ∈ E′. It is easily seen that in this case (K ′\{u})∪{v} does not induce more
edges than K ′. For the sake of readability, we will keep the same notations and
update the set K ′ when applying replacements, as well as the sets E0 and E1 when
replacing vertices of A (e.g. if there exists γ ∈ E1 such that Fγ is adjacent to a
unique vertex u ∈ tr(A), and if a replacement removes u from the solution, then γ
now belongs to E0).

Lemma 4. Without loss of generality (and optimality of K ′), we can suppose that
for all γ ∈ I we have Xγ ⊆ K ′.

Proof. Let S =
⋃
γ∈I Xγ . Since we have k′ > |S|, we have K ′\S 6= ∅. Suppose that

there exists γ ∈ I and i ∈ {1, ..., T} such that xγi /∈ K ′. Recall that yγi is the only
neighbor of xγi . If yγi /∈ K ′, then we have µ(xγi) = 0 and we can thus safely replace
any other vertex of K ′\S by xγi . Now, if yγi ∈ K ′, then µ(xγi) = 1. Since xγi and yγi
are adjacent, (K ′\{yγi }) ∪ {xγi } is a safe replacement. ut

In the following, we suppose that for all γ ∈ I we have Xγ ⊆ K ′.

Lemma 5. K ′ can be safely modified such that one of the two following cases must
happen (see Figure 2):

– case A1: for all γ ∈ E0 we have tr(Zγ) = Zγ .
– case A2: for all γ ∈ E0 we have tr(Yγ) = ∅.

Proof. Let us first restructure each gadget of E0 separately. For all γ ∈ E0 such that
tr(Yγ) 6= ∅ and tr(Zγ) 6= Zγ , let j0 = max{j ∈ {1, ..., T} : yγj ∈ tr(Yγ)} and let j1
be such that zγj1 /∈ tr(Zγ). Recall that Lemma 4 ensures that xγj0 is in K ′. If j0 6= 1,
then µ(yγj0) = y+ z+ 1, where y = |N(yγj0)∩ tr(Yγ)| and z = |N(yγj0)∩ tr(Zγ)|. On
the other side, we have µ(zγj1) ≤ y + z + 1 (more precisely, µ(zγj1) = y + z + 1 if
yγ1 ∈ K ′, and µ(zγj1) = y+z if yγ1 /∈ K ′). Roughly speaking, this switch ensures that
we necessarily “loose” the edge due to the vertex of Xγ and we gain at most one
edge due to yγ1 . Hence µ(zγj1) ≤ µ(yγj0) and (K ′\{yγj0})∪{z

γ
j1
} is a safe replacement.

If j0 = 1, then it means that tr(Yγ) = {yγ1 }. Suppose that there exists j1 such that
zγj1 /∈ tr(Zγ). We have µ(yγ1) = z+1 where z = |N(yγ1)∩tr(Zγ)|, and µ(zγj1) = z+1.
Here again (K ′\{yγ1 }) ∪ {zγj1} is a safe replacement. After all these replacements,
given any γ ∈ E0, tr(Yγ) 6= ∅ implies that tr(Zγ) = Zγ .
Then, we proceed to replacements between gadgets Fγ , γ ∈ E0. If one can find
a, b ∈ E0 such that tr(Ya) 6= ∅ and tr(Zb) 6= Zb, then let j0 be such that yaj0 ∈ tr(Ya)

and let j1 be such that zbj1 /∈ tr(Zb). We have µ(yaj0) ≥ T + 1 and µ(zbj1) ≤ T − 1.

Thus, (K ′\{yaj0}) ∪ {zbj1} is a safe replacement.

18

These replacements end either when tr(Yγ) = ∅ for all γ ∈ E0 or when tr(Zγ) = Zγ
for all γ ∈ E0, which achieves the proof of Lemma 4. ut

Lemma 6. K ′ can be safely modified such that one of the two following cases must
happen (see Figure 2):

– case B1: for all γ ∈ E1 we have tr(Yγ) = Yγ .
– case B2: for all γ ∈ E1 we have tr(Zγ) = ∅.

Proof. The proof is roughly based on the fact that replacing a vertex of Zγ by
a vertex of Yγ permits to “loose” at least one edge with vertices A and “gain”
one edge with a vertex of Xγ . Let us formally prove Lemma 6. Similarly to the
proof of Lemma 5, we first restructure each gadget of E1 separately: for all γ ∈ E1

such that tr(Zγ) 6= ∅ and tr(Yγ) 6= Yγ , let j0 = max{j ∈ {1, ..., T} : yγj /∈ K ′}
and let j1 be such that zγj1 ∈ tr(Zγ). Recall that by definition of E1, there exists

i, j ∈ {1, ..., n} such that zγj1 is adjacent to aji . We have µ(zγj1) ≥ y + z + 1, where
y = |N(zγj1)∩Yγ | and z = |N(zγj1)∩Zγ |. On the other side, we have µ(yγj0) ≤ z+y+2
(indeed, |N(yej0γ) ∩ Zγ | = z + 1, |N(yγj0) ∩ Yγ | ≤ y and |N(yγj0) ∩Xγ | = 1). Since
{yγj0 , z

γ
j1
} ∈ E′, it holds that (K ′\{zj1}) ∪ {yj0} is a safe replacement. After all

these replacements, given any γ ∈ E1, tr(Zγ) 6= ∅ implies that tr(Yγ) = Yγ .
We now proceed to replacements between gadgets Fγ , γ ∈ E1. If one can find
a, b ∈ E1 such that tr(Za) 6= ∅ and tr(Yb) 6= Yb, then let j0 be such that ybj0 /∈ tr(Yb)
and let j1 be such that zaj1 ∈ tr(Za). We have µ(zaj1) ≥ T + 1 and µ(ybj0) ≤ T − 1.
Thus (K ′\{zj1}) ∪ {yj1} is a safe replacement.
As previously, the replacements ends either when tr(Yγ) = Yγ for all γ ∈ E1 or
when tr(Zγ) = ∅ for all γ ∈ E1. ut

γ ∈ E0

Dγ

case A1

γ ∈ E0

Dγ

case A2

γ ∈ E1

Dγcase B1

γ ∈ E1

Dγ

case B2

Xγ

Yγ

Zγ

1

Fig. 2: Schema of different cases. Shaded rectangles represent part of K ′.

We now define for each case and each γ ∈ I the set of vertices Dγ ⊆ Yγ ∪ Zγ
that have to be replaced:

– case A1: for all γ ∈ E0, Dγ = Yγ ∩K ′
– case A2: for all γ ∈ E0, Dγ = Zγ \K ′
– case B1: for all γ ∈ E1, Dγ = Zγ ∩K ′
– case B2: for all γ ∈ E1, Dγ = Yγ \K ′

Notice that if Dγ = ∅ for all γ ∈ E0 (resp. for all γ ∈ E1), then cases A1 and A2
(resp. B1 and B2) collapse. If such a case happen for all γ ∈ I, we can immediately

19

conclude, as we will see in Lemma 8. Now, we will show that if cases A1 and B1
happen (or if Dγ = ∅ for all γ ∈ I), then the solution must hit the clique A in only
one subclique Ai for some i ∈ {1, ..., t}:

Lemma 7. If cases A1 and B1 happen (or if Dγ = ∅ for all γ ∈ I), then there
exists i ∈ {1, ..., t} such that tr(A) ⊆ Ai, i.e. the solution K ′ only appears in one
clique Ai among A.

Proof. Let ∆ =
∑
γ∈I |Dγ |, and suppose by contradiction that there exists i, j ∈

{1, ..., t} with i 6= j such that K ′ ∩ Ai 6= ∅ and K ′ ∩ Aj 6= ∅. First, since we are
in case A1 and B1, the number of edges induced by each gadget is at least

(
T
2

)
.

Then, let S (resp. S̄) be the number of pairs of gadgets corresponding to a bit on
which the binary representations of i and j is the same (resp. differ). Recall that
S+ S̄ = Mq. Then, since i 6= j, the binary representations of i and j must differ on
at least one bit, which implies S̄ ≥ M . Let us count the number of edges induced
by each pair of gadget, whether they correspond to a bit value shared by the binary
representation of i and j or not.
Let p ∈ {1, ..., q} such that the binary representations of i and j are the same.
Then, for all h ∈ {1, ...,M}, three cases may happen:

– Yαhp ⊆ K ′ and Yβhp ⊆ K ′. In this case the pair of gadgets induces at least

2
(
T
2

)
+ 2 edges.

– Yαhp ⊆ K ′ and Zβhp ⊆ K ′ (or the contrary). In this case the pair of gadgets

induces at least 2
(
T
2

)
+ 1 edges.

– Zαhp ⊆ K ′ and Zβhp ⊆ K ′. In this case the pair of gadgets induces at least

2
(
T
2

)
+ T edges, since either Zαhp or Zβhp is adjacent to at least one vertex of

tr(Ai).

Hence, in all three cases the solution in each pair of such gadgets induces at least
(2
(
T
2

)
+ 1) edges.

Let us now focus on some p ∈ {1, ..., q} such that the binary representations
of i and j differ. Then, for all h ∈ {1, ...,M}, notice that both Zαhp and Zβhp are

adjacent to at least one vertex in Ai ∪Aj . Here again three cases may happen:

– Yαhp ⊆ K ′ and Yβhp ⊆ K ′. In this case the pair of gadgets induces at least

2
(
T
2

)
+ 2 edges.

– Yαhp ⊆ K ′ and Zβhp ⊆ K ′ (or the contrary). In this case the pair of gadgets

induces at least 2
(
T
2

)
+ T + 1 edges.

– Zαhp ⊆ K ′ and Zβhp ⊆ K ′. In this case the pair of gadgets induces at least

2
(
T
2

)
+ 2T edges.

Hence, in all three cases the solution in each pair of such gadgets induces at least
(2
(
T
2

)
+ 2) edges. In addition, it is easily seen that the number of edges induced by

tr(A) is
(
T
2

)
−
(
∆
2

)
−∆(T −∆), since it is a clique of size (T −∆). To resume:

– tr(A) induces (
(
T
2

)
−
(
∆
2

)
−∆(T −∆)) edges.

– Each gadget (both from the edge or the instance selector) induces at least
(
T
2

)

edges (there are (m+ 2Mq) gadgets), and more precisely:

20

• Each pair of gadgets corresponding to a shared bit value of the binary
representation of i and j induces (

(
T
2

)
+ 1) edge (i.e. one more than the

”normal” ones). There are S such pairs of gadgets.
• Each pair of gadgets corresponding to a different bit value of the binary

representation of i and j induces (
(
T
2

)
+ 2) edge (i.e. two more than the

”normal” ones). There are S̄ such pairs of gadgets.

Thus we have:

E(K ′) ≥
(
T

2

)
−
(
∆

2

)
−∆(T −∆) +

(
T

2

)
(m+ 2Mq) + S + 2S̄

=

(
T

2

)
−
(
∆

2

)
−∆(T −∆) +

(
T

2

)
(m+ 2Mq) +Mq + S̄

≥
(
T

2

)
−
(
∆

2

)
−∆(T −∆) +

(
T

2

)
(m+ 2Mq) +Mq +M

And thus

E(K ′)− C ′ ≥M −m+

(
k

2

)
−
(
∆

2

)
−∆(T −∆)

Since M = n6, we have E(K ′) > C ′ which is impossible. ut
Lemma 8. If Dγ = ∅ for all γ ∈ I, then there exists i ∈ {1, ..., t} such that G
contains a clique of size k.

Proof. By construction, we have |tr(A)| = T and |tr(Fγ)| = 2T for all γ ∈ I. Thus,

E(tr(A)) =
(
T
2

)
and E(tr(Fγ)) =

(
T
2

)
+1 if γ ∈ E1, and E(tr(Fe)) =

(
T
2

)
if γ ∈ E0.

Hence, we have E(K ′) ≥
(
T
2

)
+
(
T
2

)
(m+ 2Mq) + |E1|.

By Lemma 7, there exists i ∈ {1, ..., t} such that tr(A) ⊆ Ai. Thus, there are at
most Mq gadgets among the instance selector which are not adjacent to tr(A), and
which can belong to E0. This implies that there are at least Mq gadgets among
the instance selector which must belong to E1. Let Ee0 = E0 ∩ {1, ...,m} be the
restriction of E0 in the edge selector, and similarly Ee1 = {1, ...,m} \ Ee0 . The
arguments above show that |Ee1 | ≤ m−

(
k
2

)
, which implies |Ee0 | ≥

(
k
2

)
. In addition,

each gadget j ∈ Ee0 corresponding to the edge ej = {u, v} of Gi is adjacent to the
cliques Aiu and Aiv, which must be such that Aiu ∩ K ′ = ∅ and Aiv ∩ K ′ = ∅ by
definition of E0. However, since |tr(A)| = |tr(Ai)| = T , the number of such cliques
is at most n− bTn c = k. This proves that these |Ee0 | edges of G can be induced by
at most k vertices, i.e. Gi contains a clique of size k. ut

Let us now combine the four possible cases of Lemmas 5 and 6:

– Case A1 and B1: let ∆ =
∑
γ∈I |Dγ |, and suppose that ∆ > 0 (otherwise we

conclude by Lemma 8). Let us count the number of edges induced by such
a solution. To do so, we count the number of edges induced by the solution
among vertices of A, and the number of edges covered by the solution among
the gadgets. First, it is clear that |tr(A)| = T−∆, and thus the number of edges
induced by tr(A) is (

(
T
2

)
−
(
∆
2

)
− ∆(T − ∆)) since A is a clique. In addition,

since we are in case A1 and B1, the trace of the solution in all gadgets (both
from the edge or the instance selector) covers at least

(
T
2

)
edges. More precisely,

for each gadget γ ∈ I three cases may happen:

21

• if Dγ = ∅, then tr(Fγ) covers exactly
(
T
2

)
edges if γ ∈ E0 and exactly

(
T
2

)

edges if γ ∈ E1.
• if Dγ 6= ∅, then:

∗ if γ ∈ E0, then since each vertex of Yγ is connected to all vertices
of Zγ and to one vertex of Xγ , we have that tr(Fγ) covers exactly

(
(
T
2

)
+ |Dγ |(T + 1)) edges (see Figure 2).

∗ if γ ∈ E1, then since each vertex of Zγ is connected to all vertices of
Yγ , and to at least one vertex of tr(A), we have that tr(Fγ) covers at

least (
(
T
2

)
+ 1 + |Dγ |(T + 1)) edges (recall that if Dγ the gadgets covers

exactly (
(
T
2

)
+ 1) edges).

Summing up to all gadgets, the solution among all gadgets covers (
(
T
2

)
(m +

2Mq) + |E1|+∆(T + 1)) edges.
We define Ee0 = E0 ∩ {1, ...,m} the restriction of E0 to the edge selector and
Eb0 = E0 \ Ee0 the restriction of E0 to the instance selector, as well as the
corresponding sets Ee1 = E1 ∩ {1, ...,m} and Eb1 = E1 \ Ee1 .
By Lemma 7, there exist i ∈ {1, ..., t} such that tr(A) ⊆ Ai. This implies that
|Eb0| = |Eb1| = Mq (roughly speaking, for each pair of gadgets of the instance
selector, only one of the two is connected to Ai and thus to tr(A), depending on
the corresponding bit value). Thus, we have |E1| = Mq+|Ee1 | = Mq+m−|Ee0 |.
Combining all these, we obtain:

E(K ′) ≥
(
T

2

)
−
(
∆

2

)
−∆(T−∆)+

(
T

2

)
(m+2Mq)+∆(T+1)+Mq+m−|Ee0 |

And thus:

E(K ′)− C ′ ≥
(
k

2

)
+∆(T + 1)− |Ee0 | −

(
∆

2

)
−∆(T −∆)

=
∆(∆+ 3)

2
+

(
k

2

)
− |Ee0 |

Thus, since we supposed E(K ′)− C ′ ≤ 0 it implies

|Ee0 | ≥
∆(∆+ 3)

2
+

(
k

2

)
(1)

On the other hand, the number of vertices of Gi inducing all edges of Ee0 is at

most k + b∆n c. Hence we have |Ee0 | ≤
(
k+b∆n c

2

)
. Hence we have:

(
k + b∆n c

2

)
≥ ∆(∆+ 3)

2
+

(
k

2

)

If ∆ < n, then b∆n c = 0 and it contradicts the previous inequality. If ∆ ≥ n,
then it contradicts inequality (1) since we have by definition |Ee0 | ≤ m. Hence,
we must have ∆ = 0 and the result follows by Lemma 8.

– Case A2 and B2: let ∆0 =
∑
γ∈E0

|Dγ |, ∆1 =
∑
γ∈E1

|Dγ |, and ∆ = ∆0 +∆1,
and suppose that ∆ > 0 (otherwise we conclude by Lemma 8). Let us no-
tice that for all u ∈ tr(A), µ(u) ≥ T . On the other hand, for all γ ∈ I such

22

that there exists v ∈ Dγ , we have µ(v) ≤ T (remark that if γ ∈ E1, then
Dγ ⊆ Yγ , and if γ ∈ E0, then v is not adjacent to tr(A) by definition of E0).
Thus (K ′\{u})∪{v} is a safe replacement. Since before this replacement we had
tr(A) = T+∆, it is clear that we can repeat this replacement (i.e. K ′\{u}∪{v}
where u ∈ tr(A) and v ∈ Dγ for some γ ∈ I) ∆ times safely. At this point,
the updated value of ∆ is 0, i.e. Dγ = ∅ for all γ ∈ I. We then conclude by
Lemma 8.

– Case A2 and B1: if there exists γ ∈ E0 such that there exists u ∈ Dγ , then
µ(u) < T . If such a vertex exists, then either |tr(A)| > T or there exists
γ′ ∈ E1 such that there exists v ∈ Dγ′ . In the first case for all x ∈ tr(A) we
have µ(x) ≥ T , and (K ′ \ {x}) ∪ {u} is a safe replacement. In the second case
we have µ(v) > T and here again (K ′ \ {v}) ∪ {u} is a safe replacement.
After these replacements we must have Dγ = ∅ for all γ ∈ E0, and we can
apply the case A1 and B1.

– Case A1 and B2: if there exists γ ∈ E1 such that there exists u ∈ Dγ , then
µ(u) < T . If such a vertex exists, then either |tr(A)| > T or there exists
γ′ ∈ E0 such that there exists v ∈ Dγ′ . In the first case for all x ∈ tr(A) we
have µ(x) ≥ T , and (K ′ \ {x}) ∪ {u} is a safe replacement. In the second case
we have µ(v) > T and here again (K ′ \ {v}) ∪ {u} is a safe replacement.
After these replacements we must have Dγ = ∅ for all γ ∈ E1, and we can
apply the case A1 and B1.

