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Sparsest k-Subgraph Problem (SkS)

Input: a simple undirected graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize E (S) (the number of edges induced by S)
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Sparsest k-Subgraph Problem (SkS)

Input: a simple undirected graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize E (S) (the number of edges induced by S)
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k = 4: sparsest 4-subgraph = 0 edges

k = 6: sparsest 6-subgraph = 3 edges
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Sparsest k-Subgraph Problem (SkS)

Input: a simple undirected graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize E (S) (the number of edges induced by S)

Generalization of independent set

⇒ SkS NP-hard in general graphs (+ inapproximable)
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◮ maximisation version: Densest k-Subgraph (DkS)

exact result for DkS on the class C
m

exact result for SkS on the class C̄

◮ dual version: Maximum Vertex Coverage (MVC)
k vertices covering the max. number of edges

m
(n − k) vertices inducing the min. number of edges
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Sparsest k-Subgraph Problem (SkS)

Input: a simple undirected graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize E (S) (the number of edges induced by S)

Generalization of independent set

⇒ SkS NP-hard in general graphs (+ inapproximable)

Related problems:
◮ maximisation version: Densest k-Subgraph (DkS)

exact result for DkS on the class C
m

exact result for SkS on the class C̄

◮ dual version: Maximum Vertex Coverage (MVC)
k vertices covering the max. number of edges

m
(n − k) vertices inducing the min. number of edges

but approximation do not transfer...

Watrigant, Bougeret, Giroudeau Approximating the Sparsest k-Subgraph in Chordal Graphs 3/18



Summary:

Densest k-Subgraph Sparsest k-Subgraph

Watrigant, Bougeret, Giroudeau Approximating the Sparsest k-Subgraph in Chordal Graphs 4/18



Summary:

Densest k-Subgraph

General graphs:
NP-hard, no PTAS [Khot,’04], APX = OPEN

O(nd ) approx. for some d ≤ 1/3 [Feige,’01]

Sparsest k-Subgraph

General graphs:
NP-hard (from Independent Set)

no approx. (unbounded ratio)
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Chordal Graphs

Definition

A graph G is chordal if it does not contain any cycle of length four or more as an
induced subgraph.
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b
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Chordal Graphs
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induced subgraph.
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v1 vi vj vk vl vn
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Chordal Graphs

Definition

A graph G is chordal if it does not contain any cycle of length four or more as an
induced subgraph.

Folklore

A graph is chordal iff it admits a simplicial elimination order.
Such an ordering can be found in polynomial time.
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2-approximation in chordal graphs

Idea of the algorithm:
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( having i neighbors in the partial solution)

Idea of the analysis:

restructuration of an optimal solution
OPT= OPT0→OPT1→ ... → OPTi−1 → OPTi → ... → OPTt = ALGO

how: layer by layer
restructuration OPTi−1 → OPTi :
suppose that layers L0, ..., Li−1 are the same for OPTi−1 and ALGO
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2-approximation in chordal graphs: idea of restructuration

Li

Li−1

L0

OPTi−1

a subset of

k vertices
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Li−1
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a subset of
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Li MiNi

Di

idea : to "bring" the layer Li into OPTi−1

Li = Ni ∪ Mi , with Mi = Li ∩ OPTi−1

goal: to find a set Di ⊆ OPTi−1
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2-approximation in chordal graphs: idea of restructuration

Li−1

L0

OPTi−1

a subset of

k vertices

Li MiNi

Di

idea : to "bring" the layer Li into OPTi−1

Li = Ni ∪ Mi , with Mi = Li ∩ OPTi−1

goal: to find a set Di ⊆ OPTi−1

replace Di by Ni

Watrigant, Bougeret, Giroudeau Approximating the Sparsest k-Subgraph in Chordal Graphs 13/18



2-approximation in chordal graphs

L0

Li−1

legend:

∈ OPT

∈ ALGO

∈ OPT ∩ ALGO

Li

Ni Mi
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u
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i ) + 1
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Li−1
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OPTi−1

Li MiNi
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OPTi

Li MiNi

L∗

i

u ∈ Rib

∀u ∈ Ri we have c(u, Li) ≤ c(u, L∗

i )+ 1
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Then we can show:
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∗

i )
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Then we can show:
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Thus:

c(OPTt) ≤ c(OPT0) +
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Then we can show:
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Thus:

c(OPTt) ≤ c(OPT0) +
∑t

i=1 c(Ri , L
∗
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⇔ c(ALGO) ≤ c(OPT ) + c(OPT )
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Theorem:

There is a (tight) 2-approximation for Sparsest k-Subgraph in chordal graphs.
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Conclusion

What is known:

SkS and DkS NP-hard in chordal graphs

SkS and DkS approximable in chordal graphs (constant ratio)

PTAS for DkS in interval graphs

PTAS for SkS in proper interval graphs
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Conclusion

What is known:

SkS and DkS NP-hard in chordal graphs

SkS and DkS approximable in chordal graphs (constant ratio)

PTAS for DkS in interval graphs

PTAS for SkS in proper interval graphs

What is OPEN:

approximation schemes/lower bounds in chordal graphs ?

complexity status in (proper) interval graphs for SkS and DkS ?

complexity status in planar graphs for DkS ?
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Merci de votre attention !

Questions ?
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