Finding a Sparse k-Subgraph in Restricted Graph Classes

Rémi Watrigant, Marin Bougeret and Rodolphe Giroudeau

LIRMM, Montpellier, France

Séminaire d'Optimisation Combinatoire LAMSADE, Université Paris-Dauphine 25/02/2013

Contents

- 2 PTAS in Proper Interval Graphs
- 3 FPT Algorithm in Interval Graphs
- Open Problems and Future Work

Input: a simple undirected graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize E(S) (the number of edges induced by S)

Input: a simple undirected graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize E(S) (the number of edges induced by S)

• Generalization of INDEPENDENT SET

 \Rightarrow SkS NP-hard in general graphs (+ W[1]-hard, inapproximable)

Input: a simple undirected graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize E(S) (the number of edges induced by S)

- Generalization of INDEPENDENT SET
 - \Rightarrow SkS NP-hard in general graphs (+ W[1]-hard, inapproximable)
- Related problems:
 - maximisation version: Densest k-Subgraph (DkS)
 - ★ exact result for DkS on $C \Leftrightarrow$ exact result for SkS on \overline{C}
 - dual version: Maximum Vertex Coverage (MVC)
 - ★ $S \subseteq V$ opt. solution for SkS \Leftrightarrow $V \setminus S$ opt. solution for MVC(n-k)

but approximation do not transfer...

Input: a simple undirected graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize E(S) (the number of edges induced by S)

- Generalization of INDEPENDENT SET
 - \Rightarrow SkS NP-hard in general graphs (+ W[1]-hard, inapproximable)
- Related problems:
 - maximisation version: Densest k-Subgraph (DkS)
 - ★ exact result for DkS on $C \Leftrightarrow$ exact result for SkS on \overline{C}
 - dual version: Maximum Vertex Coverage (MVC)
 - ★ $S \subseteq V$ opt. solution for $SkS \Leftrightarrow V \setminus S$ opt. solution for MVC(n-k)

but approximation do not transfer...

• we study SkS in classes where INDEPENDENT SET is polynomial-time solvable e.g. perfect graphs and their subclasses

Densest k-Subgraph

Densest k-Subgraph

 Chordal graphs: *NP*-hard [Corneil,Perl,1984] 3-approx. [Liazi,Milis,Zissimopoulos,2008] *FPT* ("obvious")

Sparsest k-Subgraph

• Chordal graphs: NP-hard [Bougeret,Giroudeau,W.,2013]

Densest k-Subgraph

- Chordal graphs: *NP*-hard [Corneil,Perl,1984] 3-approx. [Liazi,Milis,Zissimopoulos,2008] *FPT* ("obvious")
- Interval graphs: <u>NP-h/Poly</u>: open (since [Corneil,Perl,1984])
 PTAS [Nonner,2011]

- Chordal graphs: NP-hard [Bougeret,Giroudeau,W.,2013]
- Interval graphs: *NP*-h/Poly : open 2-approx. [Bougeret,Giroudeau,W.,2013] *FPT* [Bougeret,Giroudeau,W.,2013]

Densest k-Subgraph

- Chordal graphs: *NP*-hard [Corneil,Perl,1984] 3-approx. [Liazi,Milis,Zissimopoulos,2008] *FPT* ("obvious")
- Interval graphs: <u>NP-h/Poly</u>: open (since [Corneil,Perl,1984]) PTAS [Nonner,2011]
- Proper interval graphs:

 $\mathit{NP}\text{-}h/\mathsf{Poly}$: open

- Chordal graphs: NP-hard [Bougeret,Giroudeau,W.,2013]
- Interval graphs: *NP*-h/Poly : open 2-approx. [Bougeret,Giroudeau,W.,2013] *FPT* [Bougeret,Giroudeau,W.,2013]
- Proper interval graphs: *NP*-h/Poly : open *PTAS* [Bougeret,Giroudeau,W.,2013]

Densest k-Subgraph

- Chordal graphs: *NP*-hard [Corneil,Perl,1984] 3-approx. [Liazi,Milis,Zissimopoulos,2008] *FPT* ("obvious")
- Interval graphs: <u>NP-h/Poly</u>: open (since [Corneil,Perl,1984]) PTAS [Nonner,2011]
- Proper interval graphs: NP-h/Poly : open
- Bipartite graphs: <u>NP-h [Corneil,Perl,1984]</u>

- Chordal graphs: NP-hard [Bougeret,Giroudeau,W.,2013]
- Interval graphs: *NP*-h/Poly : open 2-approx. [Bougeret,Giroudeau,W.,2013] *FPT* [Bougeret,Giroudeau,W.,2013]
- Proper interval graphs: <u>NP-h/Poly</u> : open PTAS [Bougeret,Giroudeau,W.,2013]
- Bipartite graphs: <u>NP-h</u> [Joret,Vetta,2012]

Densest k-Subgraph

- Chordal graphs: *NP*-hard [Corneil,Perl,1984] 3-approx. [Liazi,Milis,Zissimopoulos,2008] *FPT* ("obvious")
- Interval graphs: <u>NP-h/Poly</u>: open (since [Corneil,Perl,1984]) PTAS [Nonner,2011]
- Proper interval graphs: NP-h/Poly : open
- Bipartite graphs: <u>NP-h [Corneil,Perl,1984]</u>
- Split graphs: Polynomial

- Chordal graphs: NP-hard [Bougeret,Giroudeau,W.,2013]
- Interval graphs: *NP*-h/Poly : open 2-approx. [Bougeret,Giroudeau,W.,2013] *FPT* [Bougeret,Giroudeau,W.,2013]
- Proper interval graphs: *NP*-h/Poly : open *PTAS* [Bougeret,Giroudeau,W.,2013]
- Bipartite graphs: NP-h [Joret,Vetta,2012]
- Split graphs: Polynomial

Densest k-Subgraph

- Chordal graphs: *NP*-hard [Corneil,Perl,1984] 3-approx. [Liazi,Milis,Zissimopoulos,2008] *FPT* ("obvious")
- Interval graphs: <u>NP-h/Poly</u>: open (since [Corneil,Perl,1984]) PTAS [Nonner,2011]
- Proper interval graphs: NP-h/Poly : open
- Bipartite graphs: <u>NP-h [Corneil,Perl,1984]</u>
- Split graphs: Polynomial
- Planar graphs: <u>NP-h/Poly</u> : open

- Chordal graphs: NP-hard [Bougeret,Giroudeau,W.,2013]
- Interval graphs: *NP*-h/Poly : open 2-approx. [Bougeret,Giroudeau,W.,2013] *FPT* [Bougeret,Giroudeau,W.,2013]
- Proper interval graphs: <u>NP-h/Poly</u> : open PTAS [Bougeret,Giroudeau,W.,2013]
- Bipartite graphs: <u>NP-h [Joret,Vetta,2012]</u>
- Split graphs: Polynomial
- Planar graphs: *NP*-h (from Independent Set) *FPT* ("obvious" linear kernel)

In this talk:

- *PTAS* in Proper Interval graphs.
- *FPT* algorithm in Interval graphs parameterized by the number of edges in the solution (stronger parameterization than by *k*).

Polynomial-Time Approximation Scheme (PTAS)

A *PTAS* for a minimization problem is an algorithm A_{ϵ} such that for any fixed $\epsilon > 0$, A_{ϵ} runs in polynomial time and outputs a solution of cost $< (1 + \epsilon)OPT$

Polynomial-Time Approximation Scheme (PTAS)

A *PTAS* for a minimization problem is an algorithm A_{ϵ} such that for any fixed $\epsilon > 0$, A_{ϵ} runs in polynomial time and outputs a solution of cost $< (1 + \epsilon)OPT$

Fixed-Parameter Tractable (FPT)

An *FPT* algorithm for a parameterized problem is an algorithm that exactly solves the problem in O(f(k).poly(n)) where n is the size of the instance and k the parameter of the instance.

Interval graphs = intersection graphs of intervals on the real line.

Interval graphs = intersection graphs of intervals on the real line.

proper interval graph = no interval contains properly another one = unit interval graphs

Contents

2 PTAS in Proper Interval Graphs

③ FPT Algorithm in Interval Graphs

Idea of the algorithm:

sorting intervals according to their right endpoints

- sorting intervals according to their right endpoints
- greedy decomposition of the graph into a path of separators

- sorting intervals according to their right endpoints
- greedy decomposition of the graph into a path of separators
- re-structuration of an optimal solution into a near optimal solution such that all near optimal solutions can be enumerated in polynomial time

- sorting intervals according to their right endpoints
- greedy decomposition of the graph into a path of separators
- re-structuration of an optimal solution into a near optimal solution such that all near optimal solutions can be enumerated in polynomial time
- dynamic programming processes the graph through the decomposition, enumerating all possible solutions.

 I_{m_1}

The decomposition

Remark

The only edges between blocks B_i and B_{i+1} are between R_i and L_{i+1} . Given $S \subseteq \mathcal{I}$ we have:

$$E(S) = \sum_{i=1}^{a} E(B_i \cap S) + \sum_{i=1}^{a-1} E(R_i \cap S, L_{i+1} \cap S)$$

Re-structuration of optimal solutions

Compaction

Let $S \subseteq I$ be a solution, and $S^c = comp(S) \subseteq I$ such that for each block $i \in \{1, ..., a\}$:

• for all $I \in S \cap L_i$, $comp(I) \in L_i$ and is at the right of I

• for all $I \in S \cap R_i$, $comp(I) \in R_i$ and is at the left of I

Re-structuration of optimal solutions

Compaction

- Let $S \subseteq I$ be a solution, and $S^c = comp(S) \subseteq I$ such that for each block $i \in \{1, ..., a\}$:
 - for all $I \in S \cap L_i$, $comp(I) \in L_i$ and is at the right of I
 - for all $I \in S \cap R_i$, $comp(I) \in R_i$ and is at the left of I

Re-structuration of optimal solutions

Compaction

- Let $S \subseteq \mathcal{I}$ be a solution, and $S^c = comp(S) \subseteq \mathcal{I}$ such that for each block $i \in \{1, ..., a\}$:
 - for all $I \in S \cap L_i$, $comp(I) \in L_i$ and is at the right of I
 - for all $I \in S \cap R_i$, $comp(I) \in R_i$ and is at the left of I

Re-structuration of optimal solutions

Compaction

- Let $S \subseteq \mathcal{I}$ be a solution, and $S^c = comp(S) \subseteq \mathcal{I}$ such that for each block $i \in \{1, ..., a\}$:
 - for all $I \in S \cap L_i$, $comp(I) \in L_i$ and is at the right of I
 - for all $I \in S \cap R_i$, $comp(I) \in R_i$ and is at the left of I

Re-structuration of optimal solutions

Compaction

Let $S \subseteq I$ be a solution, and $S^c = comp(S) \subseteq I$ such that for each block $i \in \{1, ..., a\}$:

• for all $I \in S \cap L_i$, $comp(I) \in L_i$ and is at the right of I

• for all $I \in S \cap R_i$, $comp(I) \in R_i$ and is at the left of I

Lemma

If comp is a compaction of a solution S such that for all block $i \in \{1,...,a\},$ we have

$$E(comp(S \cap B_i)) \leq \rho E(S \cap B_i)$$

Then comp(S) is a ρ -approximation of S.
Re-structuration of optimal solutions

Let us built a compaction that yields a $(1 + \frac{4}{P})$ -approximation for any fixed P.

Re-structuration of optimal solutions

Let us built a compaction that yields a $(1 + \frac{4}{P})$ -approximation for any fixed P. Let $X \subseteq B_i$ be a solution. We note $X = X_L \cup X_R$. Set sizes are in lowercase.

Re-structuration of optimal solutions

Let us built a compaction that yields a $(1 + \frac{4}{P})$ -approximation for any fixed P. Let $X \subseteq B_i$ be a solution. We note $X = X_L \cup X_R$. Set sizes are in lowercase. • we divide X_L into P consecutive subsets of same size $q_L \to X_1^L, ..., X_P^L$ • we divide X_R into P consecutive subsets of same size $q_R \to X_1^R, ..., X_P^R$

Then define the compaction: for any $t \in \{1, ..., P\}$

Re-structuration of optimal solutions

Let us built a compaction that yields a $(1 + \frac{4}{P})$ -approximation for any fixed *P*. Let $X \subseteq B_i$ be a solution. We note $X = X_L \cup X_R$. Set sizes are in lowercase.

• we divide X_L into P consecutive subsets of same size $q_L \to X_1^L, ..., X_P^L$

• we divide X_R into P consecutive subsets of same size $q_R \to X_1^R, ..., X_P^R$ Then define the compaction: for any $t \in \{1, ..., P\}$

- Y_t^L are the q_L rightmost intervals at the left of the rightmost interval of X_t^L
- Y_t^R are the q_R leftmost intervals at the right of the leftmost interval of X_t^R

Re-structuration of optimal solutions

What do we need to construct such a solution ?

Re-structuration of optimal solutions

What do we need to construct such a solution ?

- the leftmost interval of X_t^L for $t \in \{1, ..., P\}$
- the rightmost interval of X_t^R for $t \in \{1, ..., P\}$
- x_R, x_L (plus remainders of divisions by P...)

 $\Rightarrow 2P + O(1)$ variables ranging in $\{0, ..., n\}$

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio:

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio: • $OPT = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(X_t^L, X_u^R)$ • $SOL = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)$

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio:

•
$$OPI = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(X_t^L, X_u^U)$$

• $SOL = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)$

b
$$SOL = \binom{1}{2} + \binom{1}{2} + \sum_{t=1}^{n} \sum_{u=1}^{n} E(t)$$

But:

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio:

• $OPT = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{r_a} \sum_{u=1}^{a} E(X_t^L, X_u^R)$ • $SOL = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)$

But:

• if some intervals of Y_t^L overlap some intervals of Y_u^R

Then:

• all intervals of X_{t+1}^{L} overlap all intervals of $\bigcup_{i=1}^{u-1} X_i^{R}$

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio:

• $OPT = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{r_a} \sum_{u=1}^{a} E(X_t^L, X_u^R)$ • $SOL = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)$

But:

• if some intervals of Y_t^L overlap some intervals of Y_u^R

Then:

• all intervals of X_{t+1}^{L} overlap all intervals of $\bigcup_{i=1}^{u-1} X_i^{R}$

Finally, we can prove that $\frac{SOL}{OPT} \leq 1 + \frac{4}{P}$

Conclusion:

Theorem

For any *P*, the previous algorithm outputs a $(1 + \frac{4}{P})$ -approximation for the *k*-Sparsest Subgraph in Proper Interval graphs in $O(n^{O(P)})$

Contents

- PTAS in Proper Interval Graphs
- 3 FPT Algorithm in Interval Graphs
 - Open Problems and Future Work

Given a set $\mathcal I$ of intervals, $k \leq |\mathcal I|$ and a cost $\mathcal C^*$

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:

• we sort intervals according to their right endpoints

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:

- we sort intervals according to their right endpoints
- parameters of the dynamic programming:

 $k' \leftarrow k$, $C' \leftarrow C^*$, $s \leftarrow$ left endpoint of the leftmost interval

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:

- we sort intervals according to their right endpoints
- parameters of the dynamic programming: $k' \leftarrow k, C' \leftarrow C^*, s \leftarrow$ left endpoint of the leftmost interval
- given the parameters, we construct all subsets T s.t.

Given a set $\mathcal I$ of intervals, $k \leq |\mathcal I|$ and a cost $\mathcal C^*$

Idea of the algorithm:

- we sort intervals according to their right endpoints
- parameters of the dynamic programming: $k' \leftarrow k, C' \leftarrow C^*, s \leftarrow$ left endpoint of the leftmost interval
- \bullet given the parameters, we construct all subsets ${\cal T}$ s.t.
 - (i) T is connected
 - (ii) T starts after s (i.e. to the right of s)
 - (iii) $|T| \leq k'$ and $E(T) \leq C'$

Given a set $\mathcal I$ of intervals, $k \leq |\mathcal I|$ and a cost $\mathcal C^*$

Idea of the algorithm:

- we sort intervals according to their right endpoints
- parameters of the dynamic programming: $k' \leftarrow k, C' \leftarrow C^*, s \leftarrow$ left endpoint of the leftmost interval
- given the parameters, we construct $\frac{1}{2}$ subsets T s.t.
 - (i) *T* is connected
 - (ii) T starts after s (i.e. to the right of s)

(iii)
$$|T| \leq k'$$
 and $E(T) \leq C'$

• recursive call with :

$$\flat k' \leftarrow k' - |T|$$

•
$$C' \leftarrow C - E(T)$$

• $s \leftarrow$ left endpoint of the rightmost interval after T

Given a set $\mathcal I$ of intervals, $k \leq |\mathcal I|$ and a cost $\mathcal C^*$

Idea of the algorithm:

- we sort intervals according to their right endpoints
- parameters of the dynamic programming:

 $k' \leftarrow k$, $C' \leftarrow C^*$, $s \leftarrow$ left endpoint of the leftmost interval

- given the parameters, we construct $\frac{1}{2}$ subsets T s.t.
 - (i) T is connected
 - (ii) T starts after s (i.e. to the right of s)
 - (iii) $|T| \leq k'$ and $E(T) \leq C'$
- recursive call with :
 - $k' \leftarrow k' |T|$

•
$$C' \leftarrow C - E(T)$$

- $s \leftarrow$ left endpoint of the rightmost interval after T
- ⇒ at most k.C*.n different inputs what about the running time of one call ?

Given a set $\mathcal I$ of intervals, $k \leq |\mathcal I|$ and a cost $\mathcal C^*$

Idea of the algorithm:

- we sort intervals according to their right endpoints
- parameters of the dynamic programming:

 $k' \leftarrow k, \ C' \leftarrow C^*, \ s \leftarrow$ left endpoint of the leftmost interval

- given the parameters, we construct $\frac{1}{2}$ subsets T s.t.
 - (i) T is connected
 - (ii) T starts after s (i.e. to the right of s)
 - (iii) $|T| \leq k'$ and $E(T) \leq C'$
- recursive call with :
 - $k' \leftarrow k' |T|$

•
$$C' \leftarrow C - E(T)$$

- $s \leftarrow$ left endpoint of the rightmost interval after T
- ⇒ at most k.C*.n different inputs what about the running time of one call ?

Let $\Omega_s(C')$ be the set of all subsets satisfying (i), (ii) and (iii)

• given the parameters, we construct $\frac{1}{2}$ subsets T s.t.

- (i) T is connected
 (ii) T starts after s (i.e. to the right of s)
- (iii) $|T| \leq k'$ and $E(T) \leq C'$

Let $\Omega_s(C')$ be the set of all subsets satisfying (i), (ii) and (iii)

Lemma

• given the parameters, we construct all subsets T s.t.

```
(i) T is connected
(ii) T starts after s (i.e. to the right of s)
(iii) |T| \le k' and E(T) \le C'
```

Let $\Omega_s(C')$ be the set of all subsets satisfying (i), (ii) and (iii)

Restructuration of a connected component T. We process intervals of T using a cursor S_i .

Restructuration of a connected component T. We process intervals of T using a cursor S_i .

Restructuration of a connected component T. We process intervals of T using a cursor S_i .

Restructuration of a connected component T. We process intervals of T using a cursor S_i .

Restructuration of a connected component T. We process intervals of T using a cursor S_i .

Restructuration of a connected component T. We process intervals of T using a cursor S_i .

 \Rightarrow we only have to "guess" the number y_i of intervals overlapping $I_{current}$

Any connected component $T \in \Gamma_s(C)$ can be encoded by a vector $< y_1, ..., y_i, ..., y_t >$

We now bound the size of $\Gamma_s(C)$:

• $y_i = B \Rightarrow$ there exists a clique of size B in the solution

Any connected component $T \in \Gamma_s(C)$ can be encoded by a vector $< y_1, ..., y_i, ..., y_t >$

We now bound the size of $\Gamma_s(C)$:

• $y_i = B \Rightarrow$ there exists a clique of size B in the solution $\Rightarrow y_i \le \sqrt{2C} + 2$

Any connected component $T \in \Gamma_s(C)$ can be encoded by a vector $< y_1, ..., y_i, ..., y_t >$

We now bound the size of $\Gamma_s(C)$:

- $y_i = B \Rightarrow$ there exists a clique of size *B* in the solution $\Rightarrow y_i \le \sqrt{2C} + 2$
- each $T \in \Gamma_s(C)$ is a connected component, and each S_i crosses a different interval of T

Any connected component $T \in \Gamma_s(C)$ can be encoded by a vector $< y_1, ..., y_i, ..., y_t >$

We now bound the size of $\Gamma_s(C)$:

- $y_i = B \Rightarrow$ there exists a clique of size B in the solution $\Rightarrow y_i \le \sqrt{2C} + 2$
- each *T* ∈ Γ_s(*C*) is a connected component, and each *S_i* crosses a different interval of *T* ⇒ *t* ≤ *C* + 1

Any connected component $T \in \Gamma_s(C)$ can be encoded by a vector $< y_1, ..., y_i, ..., y_t >$

We now bound the size of $\Gamma_s(C)$:

- $y_i = B \Rightarrow$ there exists a clique of size *B* in the solution $\Rightarrow y_i \le \sqrt{2C} + 2$
- each $T \in \Gamma_s(C)$ is a connected component, and each S_i crosses a different interval of T $\Rightarrow t \leq C + 1$

Thus:

$$|\Gamma_{s}(C)| \leq (\sqrt{2C}+2)^{C+1}$$

and each step of the dynamic programming runs in FPT time.

Any connected component $T \in \Gamma_s(C)$ can be encoded by a vector $< y_1, ..., y_i, ..., y_t >$

We now bound the size of $\Gamma_s(C)$:

- $y_i = B \Rightarrow$ there exists a clique of size *B* in the solution $\Rightarrow y_i \le \sqrt{2C} + 2$
- each T ∈ Γ_s(C) is a connected component, and each S_i crosses a different interval of T
 ⇒ t ≤ C + 1

Thus:

$$|\Gamma_{s}(C)| \leq (\sqrt{2C}+2)^{C+1}$$

and each step of the dynamic programming runs in FPT time.

Theorem

Sparsest k-Subgraph in Interval Graphs is FPT parameterized by the cost of the solution.
Contents

Introduction

- PTAS in Proper Interval Graphs
- 3 FPT Algorithm in Interval Graphs

- NP-h/Poly in (Proper) Interval graphs ?
- extend FPT and/or approximation results to Chordal graphs ?
- polynomial kernel in Interval graphs ?

Thank you for your attention!