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Sparsest k-Subgraph Problem (SkS)

Input: a simple undirected graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize E (S) (the number of edges induced by S)
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Generalization of independent set

⇒ SkS NP-hard in general graphs (+ W[1]-hard, inapproximable)

Related problems:
◮ maximisation version: Densest k-Subgraph (DkS)

⋆ exact result for DkS on C ⇔ exact result for SkS on C̄
◮ dual version: Maximum Vertex Coverage (MVC)

⋆ S ⊆ V opt. solution for SkS ⇔ V \ S opt. solution for MVC(n-k)

but approximation do not transfer...
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◮ maximisation version: Densest k-Subgraph (DkS)

⋆ exact result for DkS on C ⇔ exact result for SkS on C̄
◮ dual version: Maximum Vertex Coverage (MVC)

⋆ S ⊆ V opt. solution for SkS ⇔ V \ S opt. solution for MVC(n-k)

but approximation do not transfer...

we study SkS in classes where independent set is polynomial-time solvable
e.g. perfect graphs and their subclasses
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In restricted graphs classes:

Densest k-Subgraph Sparsest k-Subgraph
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In restricted graphs classes:

Densest k-Subgraph

Chordal graphs:
NP-hard [Corneil,Perl,1984]
3-approx. [Liazi,Milis,Zissimopoulos,2008]

FPT ("obvious")

Sparsest k-Subgraph

Chordal graphs:
NP-hard [Bougeret,Giroudeau,W.,2013]
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Interval graphs:
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PTAS [Nonner,2011]

Proper interval graphs:
NP-h/Poly : open

Bipartite graphs:
NP-h [Corneil,Perl,1984]

Split graphs:
Polynomial

Planar graphs:
NP-h/Poly : open

Sparsest k-Subgraph

Chordal graphs:
NP-hard [Bougeret,Giroudeau,W.,2013]

Interval graphs:
NP-h/Poly : open
2-approx. [Bougeret,Giroudeau,W.,2013]

FPT [Bougeret,Giroudeau,W.,2013]

Proper interval graphs:
NP-h/Poly : open

PTAS [Bougeret,Giroudeau,W.,2013]

Bipartite graphs:
NP-h [Joret,Vetta,2012]

Split graphs:
Polynomial

Planar graphs:
NP-h (from Independent Set)

FPT ("obvious" linear kernel)
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In this talk:

PTAS in Proper Interval graphs.

FPT algorithm in Interval graphs parameterized by the number of edges in
the solution (stronger parameterization than by k).
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Definitions

Polynomial-Time Approximation Scheme (PTAS)

A PTAS for a minimization problem is an algorithm Aǫ such that for any fixed
ǫ > 0, Aǫ runs in polynomial time and outputs a solution of cost < (1 + ǫ)OPT
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Definitions

Polynomial-Time Approximation Scheme (PTAS)

A PTAS for a minimization problem is an algorithm Aǫ such that for any fixed
ǫ > 0, Aǫ runs in polynomial time and outputs a solution of cost < (1 + ǫ)OPT

Fixed-Parameter Tractable (FPT)

An FPT algorithm for a parameterized problem is an algorithm that exactly solves
the problem in O(f (k).poly(n)) where n is the size of the instance and k the
parameter of the instance.
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Definitions

Interval graphs = intersection graphs of intervals on the real line.

A B C

D

E

A
B

C

D

E
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Definitions

Interval graphs = intersection graphs of intervals on the real line.

A B C

D

E

A
B

C

D

E

proper interval graph = no interval contains properly another one = unit interval
graphs
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PTAS in Proper Interval Graphs

Idea of the algorithm:
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PTAS in Proper Interval Graphs

Idea of the algorithm:

sorting intervals according to their right endpoints

greedy decomposition of the graph into a path of separators

re-structuration of an optimal solution into a near optimal solution such that
all near optimal solutions can be enumerated in polynomial time

dynamic programming processes the graph through the decomposition,
enumerating all possible solutions.
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PTAS in Proper Interval Graphs
The decomposition:
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PTAS in Proper Interval Graphs
The decomposition:

Im1

Im2

R1

L2

B1
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PTAS in Proper Interval Graphs
The decomposition:

Im1

Im2

R1

L2

R2

B1

B2

L3
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PTAS in Proper Interval Graphs
The decomposition

Remark

The only edges between blocks Bi and Bi+1 are between Ri and Li+1.
Given S ⊆ I we have:

E (S) =
a

∑

i=1

E (Bi ∩ S) +
a−1
∑

i=1

E (Ri ∩ S , Li+1 ∩ S)
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

Compaction

Let S ⊆ I be a solution, and Sc = comp(S) ⊆ I such that for each block
i ∈ {1, ..., a}:

for all I ∈ S ∩ Li , comp(I ) ∈ Li and is at the right of I

for all I ∈ S ∩ Ri , comp(I ) ∈ Ri and is at the left of I
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

Compaction

Let S ⊆ I be a solution, and Sc = comp(S) ⊆ I such that for each block
i ∈ {1, ..., a}:

for all I ∈ S ∩ Li , comp(I ) ∈ Li and is at the right of I

for all I ∈ S ∩ Ri , comp(I ) ∈ Ri and is at the left of I

Lemma

If comp is a compaction of a solution S such that for all block i ∈ {1, ..., a}, we
have

E (comp(S ∩ Bi )) ≤ ρE (S ∩ Bi )

Then comp(S) is a ρ-approximation of S .
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

Let us built a compaction that yields a (1 + 4
P
)-approximation for any fixed P .
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Let X⊆ Bi be a solution. We note X =XL ∪XR . Set sizes are in lowercase.
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

Let us built a compaction that yields a (1 + 4
P
)-approximation for any fixed P .

Let X⊆ Bi be a solution. We note X =XL ∪XR . Set sizes are in lowercase.

we divide XL into P consecutive subsets of same size qL → X L
1 , ...,X

L
P

we divide XR into P consecutive subsets of same size qR → XR
1 , ...,XR

P

Then define the compaction: for any t ∈ {1, ...,P}
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Let us built a compaction that yields a (1 + 4
P
)-approximation for any fixed P .

Let X⊆ Bi be a solution. We note X =XL ∪XR . Set sizes are in lowercase.

we divide XL into P consecutive subsets of same size qL → X L
1 , ...,X

L
P

we divide XR into P consecutive subsets of same size qR → XR
1 , ...,XR

P

Then define the compaction: for any t ∈ {1, ...,P}
Y L

t are the qL rightmost intervals at the left of the rightmost interval of X L
t

Y R
t are the qR leftmost intervals at the right of the leftmost interval of XR

t

Imi

Li

Ri

X L
1

X L
P

XR
1

XR

P

qL

qL

qR

qR

Y L
1

Y L
P

Y R
1

Y R

P
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

What do we need to construct such a solution ?

Imi

Li

Ri

X L
1

X L
P

XR
1

XR

P

qL

qL

qR

qR

Y L
1

Y L
P

Y R
1

Y R

P
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

What do we need to construct such a solution ?

the leftmost interval of X L
t for t ∈ {1, ...,P}

the rightmost interval of XR
t for t ∈ {1, ...,P}

xR , xL (plus remainders of divisions by P ...)

⇒ 2P + O(1) variables ranging in {0, ..., n}

Imi

Li

Ri

X L
1

X L

P

XR
1

XR

P

qL

qL

qR

qR

Y L
1

Y L

P

Y R
1

Y R

P
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PTAS in Proper Interval Graphs

Imi

Li

Ri

X L
1

X L

P

XR
1

XR
P

qL

qL

qR

qR

Y L
1

Y L

P

Y R
1

Y R
P

Sketch of proof of the (1 + 4
P
) approximation ratio:
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Imi

Li

Ri

X L
1

X L

P

XR
1

XR
P

qL

qL

qR

qR

Y L
1

Y L

P

Y R
1

Y R
P

Sketch of proof of the (1 + 4
P
) approximation ratio:

OPT=
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (X L
t ,XR

u )

SOL =
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (Y L
t ,Y R

u )
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PTAS in Proper Interval Graphs

Imi

Li

Ri

t

u

Sketch of proof of the (1 + 4
P
) approximation ratio:

OPT=
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (X L
t ,XR

u )

SOL =
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (Y L
t ,Y R

u )
But:

Watrigant, Bougeret, Giroudeau Finding a Sparse k-Subgraph in Restricted Graph Classes 16/25



PTAS in Proper Interval Graphs

Imi

Li

Ri

t

u

Sketch of proof of the (1 + 4
P
) approximation ratio:

OPT=
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (X L
t ,XR

u )

SOL =
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (Y L
t ,Y R

u )
But:

if some intervals of Y L
t overlap some intervals of Y R

u

Then:

all intervals of X L
t+1 overlap all intervals of

⋃u−1

i=1 XR
i
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Sketch of proof of the (1 + 4
P
) approximation ratio:

OPT=
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (X L
t ,XR

u )

SOL =
(

xL

2

)

+
(

xR

2

)

+
∑a

t=1

∑a

u=1 E (Y L
t ,Y R

u )
But:

if some intervals of Y L
t overlap some intervals of Y R

u

Then:

all intervals of X L
t+1 overlap all intervals of

⋃u−1

i=1 XR
i

Finally, we can prove that SOL

OPT
≤ 1 + 4

P
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PTAS in Proper Interval Graphs
Conclusion:

Theorem

For any P , the previous algorithm outputs a (1 + 4
P
)-approximation for the

k-Sparsest Subgraph in Proper Interval graphs in O(nO(P))
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FPT Algorithm in Interval Graphs

Given a set I of intervals, k ≤ |I| and a cost C∗
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′ and E(T ) ≤ C
′

Watrigant, Bougeret, Giroudeau Finding a Sparse k-Subgraph in Restricted Graph Classes 19/25



FPT Algorithm in Interval Graphs

Given a set I of intervals, k ≤ |I| and a cost C∗

Idea of the algorithm:

we sort intervals according to their right endpoints

parameters of the dynamic programming:
k ′ ← k , C ′ ← C∗, s ← left endpoint of the leftmost interval

given the parameters, we construct all subsets T s.t.

(i) T is connected
(ii) T starts after s (i.e. to the right of s)
(iii) |T | ≤ k

′ and E(T ) ≤ C
′

recursive call with :
◮ k

′ ← k
′ − |T |

◮ C
′ ← C − E(T )

◮ s ← left endpoint of the rightmost interval after T
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Given a set I of intervals, k ≤ |I| and a cost C∗

Idea of the algorithm:

we sort intervals according to their right endpoints

parameters of the dynamic programming:
k ′ ← k , C ′ ← C∗, s ← left endpoint of the leftmost interval

given the parameters, we construct all subsets T s.t.

(i) T is connected
(ii) T starts after s (i.e. to the right of s)
(iii) |T | ≤ k

′ and E(T ) ≤ C
′

recursive call with :
◮ k

′ ← k
′ − |T |

◮ C
′ ← C − E(T )

◮ s ← left endpoint of the rightmost interval after T

⇒ at most k .C∗.n different inputs
what about the running time of one call ?
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parameters of the dynamic programming:
k ′ ← k , C ′ ← C∗, s ← left endpoint of the leftmost interval

given the parameters, we construct all subsets T s.t.

(i) T is connected
(ii) T starts after s (i.e. to the right of s)
(iii) |T | ≤ k

′ and E(T ) ≤ C
′

recursive call with :
◮ k

′ ← k
′ − |T |

◮ C
′ ← C − E(T )

◮ s ← left endpoint of the rightmost interval after T

⇒ at most k .C∗.n different inputs
what about the running time of one call ?

Let Ωs(C
′) be the set of all subsets satisfying (i), (ii) and (iii)
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FPT Algorithm in Interval Graphs

given the parameters, we construct all subsets T s.t.

(i) T is connected
(ii) T starts after s (i.e. to the right of s)
(iii) |T | ≤ k

′ and E(T ) ≤ C
′

Let Ωs(C
′) be the set of all subsets satisfying (i), (ii) and (iii)

Lemma
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given the parameters, we construct all subsets T s.t.

(i) T is connected
(ii) T starts after s (i.e. to the right of s)
(iii) |T | ≤ k

′ and E(T ) ≤ C
′

Let Ωs(C
′) be the set of all subsets satisfying (i), (ii) and (iii)

Lemma

T1

T2

Tl

Ωs(C
′)

T ′

1

T ′

2

T ′

l′

Γs(C
′)

restructuration

can be enumerated

in FPT time

cost

< y1, ..., yi , ..., yt >
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FPT Algorithm in Interval Graphs
Restructuration of a connected component T.
We process intervals of T using a cursor Si .
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Icurrent : leftmost interval of T crossing Si
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FPT Algorithm in Interval Graphs
Restructuration of a connected component T.
We process intervals of T using a cursor Si .

Si+1

Icurrent
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FPT Algorithm in Interval Graphs
Restructuration of a connected component T.
We process intervals of T using a cursor Si .

Si+1

Icurrent

⇒ we only have to "guess" the number yi of intervals overlapping Icurrent
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FPT Algorithm in Interval Graphs

Any connected component T ∈ Γs(C ) can be encoded by a vector
< y1, ..., yi , ..., yt >

We now bound the size of Γs(C ) :

yi = B ⇒ there exists a clique of size B in the solution
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yi = B ⇒ there exists a clique of size B in the solution
⇒ yi ≤

√
2C + 2

each T ∈ Γs(C ) is a connected component, and each Si crosses a different
interval of T

⇒ t ≤ C + 1

Thus:
|Γs(C )| ≤ (

√
2C + 2)C+1

and each step of the dynamic programming runs in FPT time.
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FPT Algorithm in Interval Graphs

Any connected component T ∈ Γs(C ) can be encoded by a vector
< y1, ..., yi , ..., yt >

We now bound the size of Γs(C ) :

yi = B ⇒ there exists a clique of size B in the solution
⇒ yi ≤

√
2C + 2

each T ∈ Γs(C ) is a connected component, and each Si crosses a different
interval of T

⇒ t ≤ C + 1

Thus:
|Γs(C )| ≤ (

√
2C + 2)C+1

and each step of the dynamic programming runs in FPT time.

Theorem

Sparsest k-Subgraph in Interval Graphs is FPT parameterized by the cost of the
solution.
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Open problems and Future Work

NP-h/Poly in (Proper) Interval graphs ?

extend FPT and/or approximation results to Chordal graphs ?

polynomial kernel in Interval graphs ?
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Thank you for your attention!
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