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Sparsest k-Subgraph Problem (SkS)

Input: a simple undirected graph G = (V, E), k < |V/|.
Output: aset S C V of size exactly k.

Goal: minimize E(S) (the number of edges induced by S)
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Sparsest k-Subgraph Problem (SkS)

Input: a simple undirected graph G = (V, E), k < |V/|.
Output: aset S C V of size exactly k.

Goal: minimize E(S) (the number of edges induced by S)

@ Generalization of INDEPENDENT SET
= SkS NP-hard in general graphs (+ W[1]-hard, inapproximable)
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Sparsest k-Subgraph Problem (SkS)

Input: a simple undirected graph G = (V, E), k < |V/|.
Output: aset S C V of size exactly k.

Goal: minimize E(S) (the number of edges induced by S)

@ Generalization of INDEPENDENT SET
= SkS NP-hard in general graphs (+ W[1]-hard, inapproximable)

@ Related problems:
> maximisation version: Densest k-Subgraph (DkS)
* exact result for DS on C < exact result for SkS on C
» dual version: Maximum Vertex Coverage (MVC)
* S C V opt. solution for SkS < V' \ S opt. solution for MVC(n-k)

but approximation do not transfer...
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Sparsest k-Subgraph Problem (SkS)

Input: a simple undirected graph G = (V, E), k < |V/|.
Output: aset S C V of size exactly k.

Goal: minimize E(S) (the number of edges induced by S)

@ Generalization of INDEPENDENT SET
= SkS NP-hard in general graphs (+ W[1]-hard, inapproximable)

@ Related problems:
> maximisation version: Densest k-Subgraph (DkS)
* exact result for DS on C < exact result for SkS on C
» dual version: Maximum Vertex Coverage (MVC)
* S C V opt. solution for SkS < V' \ S opt. solution for MVC(n-k)

but approximation do not transfer...

@ we study SKS in classes where INDEPENDENT SET is polynomial-time solvable
e.g. perfect graphs and their subclasses
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In restricted graphs classes:

Densest k-Subgraph Sparsest k-Subgraph
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In restricted graphs classes:

Densest k-Subgraph Sparsest k-Subgraph
@ Chordal graphs: @ Chordal graphs:
NP-hard [Corneil,Perl,1984] NP-hard [Bougeret,Giroudeau,W.,2013]

3-approx. [Liazi,Milis,Zissimopoulos,2008]
FPT ("obvious")
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In restricted graphs classes:

Densest k-Subgraph Sparsest k-Subgraph
@ Chordal graphs: @ Chordal graphs:
NP-hard [Corneil,Perl,1984] NP-hard [Bougeret,Giroudeau,W.,2013]

3-approx. [Liazi,Milis,Zissimopoulos,2008]
FPT ("obvious" @ Interval graphs:
NP-h/Poly : open
@ Interval graphs: 2-approx. [Bougeret,Giroudeau,W.,2013]

NP-h/Poly : open (since [Corneil,Perl,1984]) FPT [Bougeret,Giroudeau,W.,2013]
PTAS [Nonner,2011]
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In restricted graphs classes:

Densest k-Subgraph Sparsest k-Subgraph
@ Chordal graphs: @ Chordal graphs:
NP-hard [Corneil,Perl,1984] NP-hard [Bougeret,Giroudeau,W.,2013]

3-approx. [Liazi,Milis,Zissimopoulos,2008]

o .
FPT ("obvious") Interval graphs

NP-h/Poly : open

@ Interval graphs: 2-approx. [Bougeret,Giroudeau,W.,2013]
NP-h/Poly : open (since [Corneil,Perl,1984]) FPT [Bougeret,Giroudeau,W.,2013]
PTAS [Nonner,2011] @ Proper interval graphs:

@ Proper interval graphs: NP-h/Poly : open
NP-h/Poly : open PTAS [Bougeret,Giroudeau,W.,2013]
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In restricted graphs classes:

Densest k-Subgraph Sparsest k-Subgraph
@ Chordal graphs: @ Chordal graphs:
NP-hard [Corneil,Perl,1984] NP-hard [Bougeret,Giroudeau,W.,2013]

3-approx. [Liazi,Milis,Zissimopoulos,2008]

o .
FPT ("obvious") Interval graphs

NP-h/Poly : open

@ Interval graphs: 2-approx. [Bougeret,Giroudeau,W.,2013]
NP-h/Poly : open (since [Corneil,Perl,1984]) FPT [Bougeret,Giroudeau,W.,2013]
PTAS [Nonner,2011] @ Proper interval graphs:

@ Proper interval graphs: NP-h/Poly : open
NP-h/Poly : open PTAS [Bougeret,Giroudeau,W.,2013]

o Bipartite graphs: @ Bipartite graphs:

NP-h [Corneil,Perl,1984] NP-h [Joret,Vetta,2012]
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In restricted graphs classes:

Densest k-Subgraph Sparsest k-Subgraph
@ Chordal graphs: @ Chordal graphs:
NP-hard [Corneil,Perl,1984] NP-hard [Bougeret,Giroudeau,W.,2013]

3-approx. [Liazi,Milis,Zissimopoulos,2008]

o .
FPT ("obvious") Interval graphs

NP-h/Poly : open

@ Interval graphs: 2-approx. [Bougeret,Giroudeau,W.,2013]
NP-h/Poly : open (since [Corneil,Perl,1984]) FPT [Bougeret,Giroudeau,W.,2013]
PTAS [Nonner,2011] @ Proper interval graphs:

@ Proper interval graphs: NP-h/Poly : open
NP-h/Poly : open PTAS [Bougeret,Giroudeau,W.,2013]

o Bipartite graphs: @ Bipartite graphs:

NP-h [Corneil,Perl,1984] NP-h [Joret,Vetta,2012]

@ Split graphs: @ Split graphs:
Polynomial Polynomial
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In restricted graphs classes:

Densest k-Subgraph Sparsest k-Subgraph
@ Chordal graphs: @ Chordal graphs:
NP-hard [Corneil,Perl,1984] NP-hard [Bougeret,Giroudeau,W.,2013]

3-approx. [Liazi,Milis,Zissimopoulos,2008]

o .
FPT ("obvious") Interval graphs

NP-h/Poly : open

@ Interval graphs: 2-approx. [Bougeret,Giroudeau,W.,2013]
NP-h/Poly : open (since [Corneil,Perl,1984]) FPT [Bougeret,Giroudeau,W.,2013]
PTAS [Nonner,2011] @ Proper interval graphs:

@ Proper interval graphs: NP-h/Poly : open
NP-h/Poly : open PTAS [Bougeret,Giroudeau,W.,2013]

o Bipartite graphs: @ Bipartite graphs:

NP-h [Corneil,Perl,1984] NP-h [Joret,Vetta,2012]

@ Split graphs: @ Split graphs:
Polynomial Polynomial

@ Planar graphs: @ Planar graphs:

NP-h/Poly : open NP-h (from Independent Set)

FPT ("obvious" linear kernel)
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In this talk:
@ PTAS in Proper Interval graphs.

@ FPT algorithm in Interval graphs parameterized by the number of edges in
the solution (stronger parameterization than by k).
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Definitions

Polynomial-Time Approximation Scheme (PTAS)

A PTAS for a minimization problem is an algorithm A, such that for any fixed
e >0, A runs in polynomial time and outputs a solution of cost < (1 + €)OPT
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Definitions

Polynomial-Time Approximation Scheme (PTAS)

A PTAS for a minimization problem is an algorithm A, such that for any fixed
e >0, A runs in polynomial time and outputs a solution of cost < (1 + €)OPT

Fixed-Parameter Tractable (FPT)

An FPT algorithm for a parameterized problem is an algorithm that exactly solves
the problem in O(f(k).poly(n)) where n is the size of the instance and k the
parameter of the instance.
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Definitions

Interval graphs = intersection graphs of intervals on the real line.

A, ©O—6
—_ —— — 0’
I D 1 —-
Ll ) 1 EI e
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Definitions

Interval graphs = intersection graphs of intervals on the real line.

A, P—®
. e’
I i £ G

|

proper interval graph = no interval contains properly another one = unit interval
graphs
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PTAS in Proper Interval Graphs

Idea of the algorithm:
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PTAS in Proper Interval Graphs

Idea of the algorithm:
@ sorting intervals according to their right endpoints
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PTAS in Proper Interval Graphs

Idea of the algorithm:
@ sorting intervals according to their right endpoints

@ greedy decomposition of the graph into a path of separators
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PTAS in Proper Interval Graphs

Idea of the algorithm:
@ sorting intervals according to their right endpoints
@ greedy decomposition of the graph into a path of separators

@ re-structuration of an optimal solution into a near optimal solution such that
all near optimal solutions can be enumerated in polynomial time
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PTAS in Proper Interval Graphs

Idea of the algorithm:
@ sorting intervals according to their right endpoints
@ greedy decomposition of the graph into a path of separators
@ re-structuration of an optimal solution into a near optimal solution such that
all near optimal solutions can be enumerated in polynomial time
@ dynamic programming processes the graph through the decomposition,
enumerating all possible solutions.
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PTAS in Proper Interval Graphs

The decomposition:
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PTAS in Proper Interval Graphs

The decomposition:
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PTAS in Proper Interval Graphs

The decomposition:

Ry
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PTAS in Proper Interval Graphs

The decomposition:

Ry
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PTAS in Proper Interval Graphs

The decomposition:
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PTAS in Proper Interval Graphs

The decomposition:

Ry

~
N

R>
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PTAS in Proper Interval Graphs

The decomposition

Remark

The only edges between blocks B; and B;11 are between R; and L; ;.
Given S C 7 we have:

a a—1
E(S)=> E(B:NS)+> E(RNS,Liy1NS)
i=1 i=1
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PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Compaction

Let S C 7 be a solution, and S¢ = comp(S) C T such that for each block
ie{l,..,a}:

o forall I € SNL;, comp(l) € L; and is at the right of /

o forall I € SNR;, comp(l) € R; and is at the left of /
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Re-structuration of optimal solutions

Compaction

Let S C 7 be a solution, and S¢ = comp(S) C T such that for each block
ie{l,..,a}:

o forall I € SNL;, comp(l) € L; and is at the right of /
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Re-structuration of optimal solutions

Compaction

Let S C 7 be a solution, and S¢ = comp(S) C T such that for each block
ie{l,..,a}:
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PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Compaction

Let S C 7 be a solution, and S¢ = comp(S) C T such that for each block
ie{l,..,a}:

o forall I € SNL;, comp(l) € L; and is at the right of /

o forall I € SNR;, comp(l) € R; and is at the left of /
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PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Compaction

Let S C 7 be a solution, and S¢ = comp(S) C T such that for each block
ie{l,..,a}:

o forall I € SNL;, comp(l) € L; and is at the right of /

o forall I € SNR;, comp(l) € R; and is at the left of /

Lemma

If comp is a compaction of a solution S such that for all block i € {1, ..., a}, we
have
E(comp(S N Bi)) < pE(SN B;)

Then comp(S) is a p-approximation of S.
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PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Let us built a compaction that yields a (1 + %)—approximation for any fixed P.
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PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Let us built a compaction that yields a (1 + %)—approximation for any fixed P.
Let XC B; be a solution. We note X =X, UXg. Set sizes are in lowercase.
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PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Let us built a compaction that yields a (1 + %)—approximation for any fixed P.
Let XC B; be a solution. We note X =X, UXg. Set sizes are in lowercase.

@ we divide X, into P consecutive subsets of same size q. — X[, ..., X5

@ we divide Xg into P consecutive subsets of same size gg — X{7, ..., XF
Then define the compaction: for any t € {1, ..., P}
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PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Let us built a compaction that yields a (1 + %)—approximation for any fixed P.
Let XC B; be a solution. We note X =X, UXg. Set sizes are in lowercase.

@ we divide X, into P consecutive subsets of same size q. — X[, ..., X5

@ we divide Xg into P consecutive subsets of same size gg — X{7, ..., XF
Then define the compaction: for any t € {1, ..., P}

@ Y| are the g, rightmost intervals at the left of the rightmost interval of X\

@ Y[ are the gr leftmost intervals at the right of the leftmost interval of X[

qar XIL\ Y1L

™~
L; h.xﬁ\ y,g\. I,
%Xf \YlR .\
™~
ar X¢ \Y,f

R;
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PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

What do we need to construct such a solution ?

qar XlL\ Y1L

\
L; m‘Xﬁ\ YFé\. Im,-
%XIR\YlR I\
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PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

What do we need to construct such a solution ?
@ the leftmost interval of X/} for t € {1, ..., P}
@ the rightmost interval of X for t € {1,..., P}
@ xg, x, (plus remainders of divisions by P...)
= 2P + O(1) variables ranging in {0, ..., n}

qar XlL\ Y1L

N
L mxﬁ\ Y \, Im;
%X{? \YlR I\
™~

R; R R
AN
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PTAS in Proper Interval Graphs

qar XIL\ Y1L

N
L mxﬁ\ YF%\, Im;
%Xﬁ \ Y I\
™~

R; R R
PNEANZ

Sketch of proof of the (1 + %) approximation ratio:
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PTAS in Proper Interval Graphs

qar XIL\ Y1L

N
L mxﬁ\ YF%\, Im;
%Xf \ Y I\
™~

R; R R
PNEANZ

Sketch of proof of the (1 + %) approximation ratio:
@ OPT= (4) + () + 3opy 30y ECXLXE)
o SOL= (%) + (%) + X1 Xy E(VEY)
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PTAS in Proper Interval Graphs

Sketch of proof of the (1 + %) approximation ratio:
> OPT= (2) + () + Sy ey EXEXE)
> SOL = (2)+ (8) + To, S0, E(VL YD)

But:
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PTAS in Proper Interval Graphs

A t
L ™~
\I 1 \I I
N 1 ™
NG : N
\ u
R;

Sketch of proof of the (1 + %) approximation ratio:

° OPT=(3)+ (F) + Xt1 Xgms E(XEXT)

@ SOL=(3)+ (F) + Xt Xamr E(VEYE)
But:

@ if some intervals of Y- overlap some intervals of Y
Then:

. . -1
o all intervals of X/ ; overlap all intervals of [ J;_” X[
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PTAS in Proper Interval Graphs

Sketch of proof of the (1 + %) approximation ratio:

° OPT=(3) + (3) + Xim1 pmr E(XCXE)

0 SOL— () + (3) + 550, 5L E(vi V)
But:

o if some intervals of Y overlap some intervals of Y
Then:

@ all intervals of X/, overlap all intervals of U;’;ll XR

Finally, we can prove that 295 <1+ 4
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PTAS in Proper Interval Graphs

Conclusion:

Theorem

For any P, the previous algorithm outputs a (1 + #)-approximation for the
k-Sparsest Subgraph in Proper Interval graphs in O(n°(P))
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FPT Algorithm in Interval Graphs

Given a set 7 of intervals, k < |Z| and a cost C*
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FPT Algorithm in Interval Graphs

Given a set 7 of intervals, k < |Z| and a cost C*

Idea of the algorithm:
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FPT Algorithm in Interval Graphs

Given a set Z of intervals, k < |Z| and a cost C*

Idea of the algorithm:
@ we sort intervals according to their right endpoints
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FPT Algorithm in Interval Graphs

Given a set Z of intervals, k < |Z| and a cost C*

Idea of the algorithm:
@ we sort intervals according to their right endpoints

@ parameters of the dynamic programming:
k' + k, C' + C*, s + left endpoint of the leftmost interval
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FPT Algorithm in Interval Graphs

Given a set Z of intervals, k < |Z| and a cost C*

Idea of the algorithm:
@ we sort intervals according to their right endpoints

@ parameters of the dynamic programming:
k' + k, C' + C*, s + left endpoint of the leftmost interval

@ given the parameters, we construct alt subsets T s.t.
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FPT Algorithm in Interval Graphs

Given a set Z of intervals, k < |Z| and a cost C*

Idea of the algorithm:
@ we sort intervals according to their right endpoints
@ parameters of the dynamic programming:
k' + k, C' + C*, s + left endpoint of the leftmost interval
@ given the parameters, we construct al subsets T s.t.

(i) T is connected
(ii) T starts after s (i.e. to the right of s)
(iii) |T| < k" and E(T) < ('
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FPT Algorithm in Interval Graphs

Given a set Z of intervals, k < |Z| and a cost C*

Idea of the algorithm:
@ we sort intervals according to their right endpoints
@ parameters of the dynamic programming:
k' + k, C' + C*, s + left endpoint of the leftmost interval
@ given the parameters, we construct al subsets T s.t.
(i) T is connected
(ii) T starts after s (i.e. to the right of s)
(iii) |T| < k" and E(T) < C'
@ recursive call with :
» k'« k' —|T]|
» C'+ C—E(T)
> s < left endpoint of the rightmost interval after T
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FPT Algorithm in Interval Graphs

Given a set Z of intervals, k < |Z| and a cost C*

Idea of the algorithm:

J

]

we sort intervals according to their right endpoints
parameters of the dynamic programming:
k' + k, C' + C*, s + left endpoint of the leftmost interval
given the parameters, we construct alt subsets T s.t.
(i) T is connected
(ii) T starts after s (i.e. to the right of s)
(i) |T| <k and E(T) < C’
recursive call with :
» k'« k' —|T]|
» C'+ C—E(T)
> s < left endpoint of the rightmost interval after T
= at most k.C*.n different inputs
what about the running time of one call ?
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FPT Algorithm in Interval Graphs

Given a set Z of intervals, k < |Z| and a cost C*

Idea of the algorithm:
@ we sort intervals according to their right endpoints
@ parameters of the dynamic programming:
k' + k, C' + C*, s + left endpoint of the leftmost interval
@ given the parameters, we construct al subsets T s.t.
(i) T is connected
(i) T starts after s (i.e. to the right of s)
(iii) |T| < k" and E(T) < C'
@ recursive call with :
» k'« k' —|T]|
» C'+ C—E(T)
> s < left endpoint of the rightmost interval after T
@ = at most k.C*.n different inputs
what about the running time of one call ?

Let Qs(C’) be the set of all subsets satisfying (), (i) and (iii)
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FPT Algorithm in Interval Graphs

@ given the parameters, we construct alt subsets T s.t.

(i) T is connected
(i) T starts after s (i.e. to the right of s)
(iii) |T| < k'and E(T) < C’

Let Qs(C’) be the set of all subsets satisfying (), (i) and (iii)

Lemma
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FPT Algorithm in Interval Graphs

@ given the parameters, we construct alt subsets T s.t.

(i) T is connected
(i) T starts after s (i.e. to the right of s)
(iii) |T| <k and E(T) < C’

Let Qs(C’) be the set of all subsets satisfying (), (i) and (iii)

Lemma
Qs(C")
Tl \
T> cost \ can be enumerated
. in FPT time
: < Y155 Vi ooy Yo >
T /
I
restructuration |
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FPT Algorithm in Interval Graphs

Restructuration of a connected component T.
We process intervals of T using a cursor S;.
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FPT Algorithm in Interval Graphs

Restructuration of a connected component T.
We process intervals of T using a cursor S;.

Si

leurrent: l€ftmod interval of r crossing S;
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FPT Algorithm in Interval Graphs

Restructuration of a connected component T.
We process intervals of T using a cursor S;.

Si

leurrent: l€ftmod interval of r crossing S;
I ]
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FPT Algorithm in Interval Graphs

Restructuration of a connected component T.
We process intervals of T using a cursor S;.

Si
. leurrent: l€ftmod interval of r crossing S;
I '
! 1
| I 1
|
L, ]
| I 1
|
| | |
1 | 1
[| | [
| | |
|
|
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FPT Algorithm in Interval Graphs

Restructuration of a connected component T.
We process intervals of T using a cursor S;.

Si1
L |
1 ¥
! 1
| I 1
|
I 1
1 1
|
[ | | 1
I ] / I
1 | ‘curre t 1
I | 1
|
|
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FPT Algorithm in Interval Graphs

Restructuration of a connected component T.
We process intervals of T using a cursor S;.

Si1
L |
1 ¥
! 1
| I 1
|
I
I
|
[ | | 1
I ] / I
1 | ‘curre t 1
I | 1
|
|

= we only have to "guess" the number y; of intervals overlapping /.urrent
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FPT Algorithm in Interval Graphs

Any connected component T € '4(C) can be encoded by a vector
< Wiy Yiy ooy Yt >

We now bound the size of I'4(C) :

@ y; = B = there exists a clique of size B in the solution
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FPT Algorithm in Interval Graphs

Any connected component T € '4(C) can be encoded by a vector
< Wiy Yiy ooy Yt >

We now bound the size of I'4(C) :

@ y; = B = there exists a clique of size B in the solution
=y <vV2C+2
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FPT Algorithm in Interval Graphs

Any connected component T € '4(C) can be encoded by a vector
< Wiy Yiy ooy Yt >

We now bound the size of I'4(C) :

@ y; = B = there exists a clique of size B in the solution
=y <vV2C+2

@ each T € T4(C) is a connected component, and each S; crosses a different
interval of T
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FPT Algorithm in Interval Graphs

Any connected component T € '4(C) can be encoded by a vector
< Wiy Yiy ooy Yt >

We now bound the size of I'4(C) :

@ y; = B = there exists a clique of size B in the solution
=y <vV2C+2

@ each T € T4(C) is a connected component, and each S; crosses a different
interval of T

=>t<C+1
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FPT Algorithm in Interval Graphs

Any connected component T € '4(C) can be encoded by a vector
< Wiy Yiy ooy Yt >

We now bound the size of I'4(C) :
@ y; = B = there exists a clique of size B in the solution
=y, <V2C+2

@ each T € T4(C) is a connected component, and each S; crosses a different
interval of T

=>t<C+1
Thus:
Fs(C)] < (V2C +2)“H

and each step of the dynamic programming runs in FPT time.
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FPT Algorithm in Interval Graphs

Any connected component T € '4(C) can be encoded by a vector
< Wiy Yiy ooy Yt >

We now bound the size of I'4(C) :

@ y; = B = there exists a clique of size B in the solution
=y <vV2C+2

@ each T € T4(C) is a connected component, and each S; crosses a different
interval of T

=>t<C+1
Thus:
Fs(C)] < (V2C +2)“H

and each step of the dynamic programming runs in FPT time.

Theorem

Sparsest k-Subgraph in Interval Graphs is FPT parameterized by the cost of the
solution.
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Open problems and Future Work

Perfect
NP-hard

Bipartite
NP-hard
Chordal Tree
NP-hard Poly
Interval
FPT
2-apx
Split Proper|
Pol Int.
e PTAS

\Z /

@ NP-h/Poly in (Proper) Interval graphs 7
@ extend FPT and/or approximation results to Chordal graphs ?

@ polynomial kernel in Interval graphs 7
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Thank you for your attention!
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