Resiliency problems: algorithms and applications in access control

Rémi Watrigant

Inria Sophia Antipolis Mediterranée*

(* work mainly done when I was at RHUL) Joint work with: Jason Crampton, Gregory Gutin and Martin Koutecký

Royal Holloway University of London, CS Department seminar January 10th, 2017.

Preliminaries

- Resiliency, definition of the problem
- Parameterized complexity

2 Parameterized landscape of the problem

- 3 Generalization to Integer Linear Programs...
- 4 ...and applications to other domains

Contents

Preliminaries

- Resiliency, definition of the problem
- Parameterized complexity

2 Parameterized landscape of the problem

- **3** Generalization to Integer Linear Programs...
- 4 ...and applications to other domains

Resiliency: general idea

Decision problem

 $\frac{\text{Definition of a problem}}{\text{Goal: Given an instance } \mathcal{I}, \text{ is } \mathcal{I} \text{ positive } ?}$

Examples of classical (NP-hard) problems:

Resiliency: general idea

Decision problem

Examples of classical (NP-hard) problems:

- $\bullet \ \mathcal{I}$ is a graph, positive iff it has a hamiltonian cycle
- $\mathcal I$ is a CNF formula, positive iff it is satisfiable
- *I* is a set of subsets of a universe and an integer *k*, positive iff there exists *k* sets whose union is the universe

• ...

Resiliency: general idea

Decision problem

Examples of classical (NP-hard) problems:

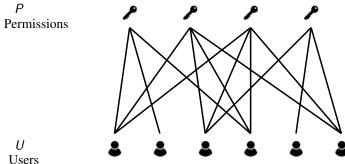
- $\bullet \ \mathcal{I}$ is a graph, positive iff it has a hamiltonian cycle
- $\bullet \ \mathcal{I}$ is a CNF formula, positive iff it is satisfiable
- \mathcal{I} is a set of subsets of a universe and an integer k, positive iff there exists k sets whose union is the universe

• ...

Resiliency problem

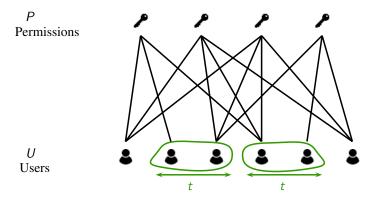
Definition of a problem = set of instances, set of positive instances, and for every instance \mathcal{I} , a set $Pert(\mathcal{I})$ of perturbed instances Goal: Given an instance \mathcal{I} , is \mathcal{I}_p positive for every $\mathcal{I}_p \in Pert(\mathcal{I})$?

Resiliency Checking Problem (RCP) Input: an authorization policy: $UP \subseteq U \times P$ $s, d, t \in \mathbb{N}$



 $\label{eq:constraint} \begin{array}{c} \underline{\mathsf{Input:}} & \text{an authorization policy: } UP \subseteq U \times P \\ \hline s, d, t \in \mathbb{N} \\ \hline \\ \underline{\mathsf{Output:}} & \text{decide whether} \\ \hline d \text{ teams of size} \leq t \end{array}$

one can find a set of

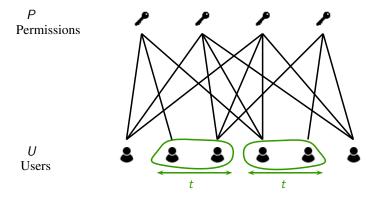


Set of teams: d mutually disjoint sets of $\leq t$ users having collectively all permissions.

Input: an authorization policy: $UP \subseteq U \times P$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of *s* users, one can find a set of *d* teams of size $\leq t$

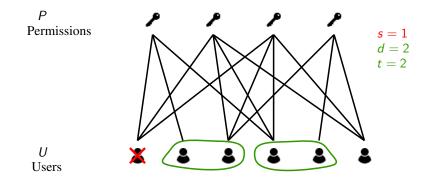


Set of teams: d mutually disjoint sets of $\leq t$ users having collectively all permissions.

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of *s* users, one can find a set of *d* teams of size $\leq t$

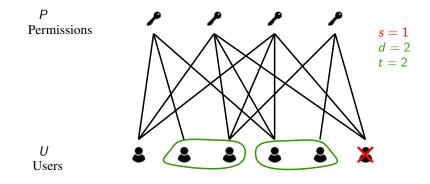


Set of teams: d mutually disjoint sets of $\leq t$ users having collectively all permissions.

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

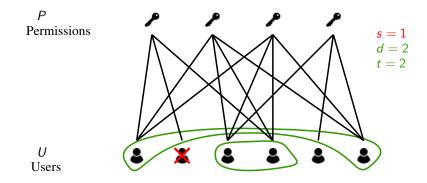
<u>Output:</u> decide whether upon removal of any set of *s* users, one can find a set of *d* teams of size $\leq t$



Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

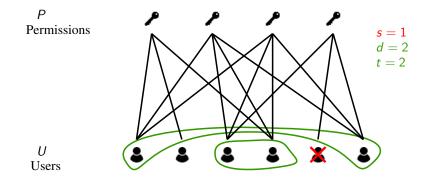
<u>Output:</u> decide whether upon removal of any set of *s* users, one can find a set of *d* teams of size $\leq t$



Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

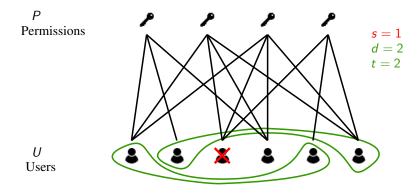
<u>Output:</u> decide whether upon removal of any set of *s* users, one can find a set of *d* teams of size $\leq t$



Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

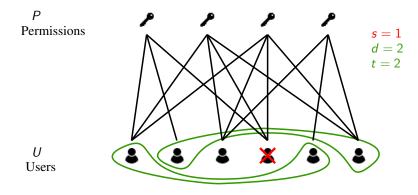
<u>Output:</u> decide whether upon removal of any set of *s* users, one can find a set of *d* teams of size $\leq t$



Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

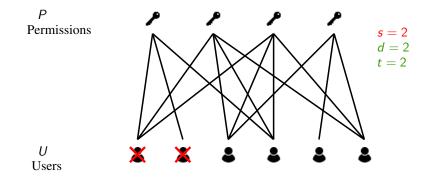
<u>Output:</u> decide whether upon removal of any set of *s* users, one can find a set of *d* teams of size $\leq t$



Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of *s* users, one can find a set of *d* teams of size $\leq t$

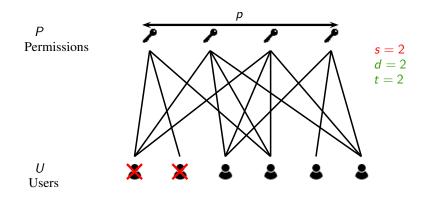


Set of teams: d mutually disjoint sets of $\leq t$ users having collectively all permissions.

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of *s* users, one can find a set of *d* teams of size $\leq t$



Set of teams: d mutually disjoint sets of $\leq t$ users having collectively all permissions.

For a problem instance x coming with its parameter k:

• XP if you can solve it in $O(g(k).|x|^{f(k)})$

For a problem instance x coming with its parameter k:

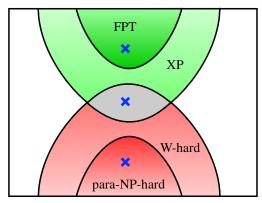
• XP if you can solve it in $O(g(k).|x|^{f(k)})$

• FPT if you can solve it in $O(f(k), |x|^c)$, c does not depend on k, |x|

- XP if you can solve it in $O(g(k).|x|^{f(k)})$
- para-NP-hard: NP-hard when k is fixed to some constant
 - \implies no XP algorithm unless P = NP
- FPT if you can solve it in $O(f(k).|x|^{c})$, c does not depend on k, |x|

- XP if you can solve it in $O(g(k).|x|^{f(k)})$
- para-NP-hard: NP-hard when k is fixed to some constant
 - \implies no XP algorithm unless P = NP
- FPT if you can solve it in $O(f(k), |x|^c)$, c does not depend on k, |x|
- W[1]-hardness: parameter-preserving reduction from a W[1]-hard problem
 - \implies no *FPT* algorithm unless *FPT* = *W*[1]

- XP if you can solve it in $O(g(k).|x|^{f(k)})$
- para-NP-hard: NP-hard when k is fixed to some constant
 - \implies no XP algorithm unless P = NP
- FPT if you can solve it in $O(f(k), |x|^c)$, c does not depend on k, |x|
- W[1]-hardness: parameter-preserving reduction from a W[1]-hard problem
 - \implies no *FPT* algorithm unless *FPT* = *W*[1]



Contents

Preliminaries

- Resiliency, definition of the problem
- Parameterized complexity

2 Parameterized landscape of the problem

- 3 Generalization to Integer Linear Programs...
- 4 ...and applications to other domains

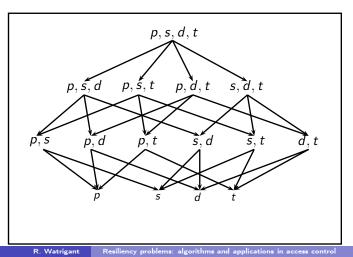
Results

<u>RCP</u>

Input:
$$UP \subseteq U \times P$$
, integers s, d, t (recall that $p = |P|$)

Output: upon removal of any set of *s* users, are there still *d* teams of size *t* ?

Parameterized landscape of RCP:



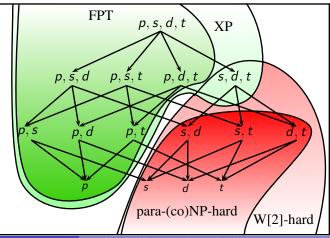
Results

<u>RCP</u>

Input: $UP \subseteq U \times P$, integers s, d, t (recall that p = |P|)

Output: upon removal of any set of s users, are there still d teams of size t?

Parameterized landscape of RCP:



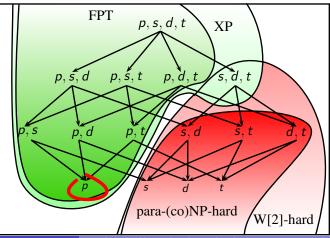
Results

<u>RCP</u>

Input: $UP \subseteq U \times P$, integers s, d, t (recall that p = |P|)

Output: upon removal of any set of s users, are there still d teams of size t?

Parameterized landscape of RCP:



Integer Linear Programs

Example of an ILP:

 $\begin{aligned} -x_1 + x_2 &\leq 1 \\ 3x_1 + 2x_2 &\leq 12 \\ 6x_1 - 3x_2 &\geq 0 \\ x_1, x_2 &\geq 0 \\ x_1, x_2 &\in \mathbb{N} \end{aligned}$

has a solution (ex: $x_1 = 1$, $x_2 = 2$)

Integer Linear Programs

Example of an ILP:

$$-x_1 + x_2 \le 1$$

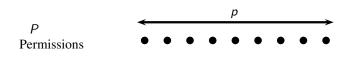
 $3x_1 + 2x_2 \le 12$
 $6x_1 - 3x_2 \ge 0$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \in \mathbb{N}$

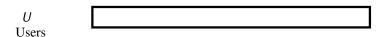
has a solution (ex: $x_1 = 1$, $x_2 = 2$)

Theorem [Lenstra, 1983]+[Kannan, 1987]+[Frank and Tardos, 1987]

Whether a given Integer Linear Program (ILP) has a non-empty solution set can be decided in $O^*(n^{2.5n+o(n)})$ time and polynomial space, where *n* is the number of variables.

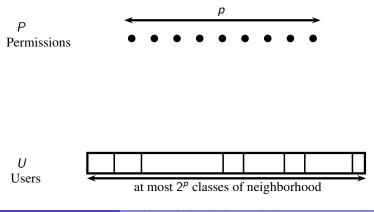
RCP<*s* = 0> is FPT parameterized by *p*





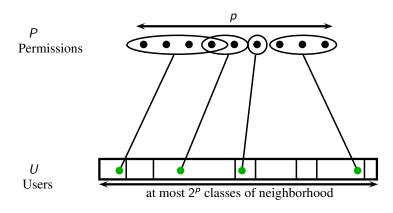
RCP < s = 0 is FPT parameterized by p

• partition U into at most 2^p groups of users of same neighborhood



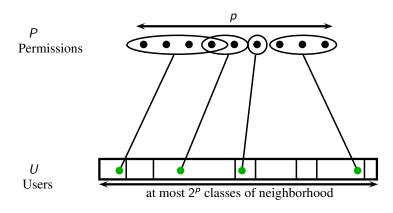
RCP < s = 0 is FPT parameterized by p

- partition U into at most 2^p groups of users of same neighborhood
- a team \equiv a set of $\leq t$ subsets of *P*, called configurations:



RCP < s = 0 is FPT parameterized by p

- partition U into at most 2^p groups of users of same neighborhood
- a team \equiv a set of $\leq t$ subsets of *P*, called configurations:



RCP<*s* = 0> is FPT parameterized by *p*

- partition U into at most 2^p groups of users of same neighborhood
- a team \equiv a set of $\leq t$ subsets of *P*, called configurations:

$$\mathcal{C} = \left\{ \{N_1, \ldots, N_b\} : b \le t, N_i \subseteq P \text{ s.t. } \bigcup_{i=1}^b N_i = P \right\}$$

 variables of the ILP: for c ∈ C, x_c ∈ [0, d] is the number of teams with configuration c

RCP<*s* = 0> is FPT parameterized by *p*

- partition U into at most 2^p groups of users of same neighborhood
- a team \equiv a set of $\leq t$ subsets of *P*, called configurations:

$$\mathcal{C} = \left\{ \{N_1, \ldots, N_b\} : b \le t, N_i \subseteq P \text{ s.t. } \bigcup_{i=1}^b N_i = P \right\}$$

- variables of the ILP: for $c \in C$, $x_c \in [0, d]$ is the number of teams with configuration c
- First constraint:

$$\sum_{c\in\mathcal{C}}x_c\geq d$$

$\mathsf{RCP} < s = 0$ is FPT parameterized by p

- partition U into at most 2^p groups of users of same neighborhood
- a team \equiv a set of $\leq t$ subsets of *P*, called configurations:

$$\mathcal{C} = \left\{ \{N_1, \ldots, N_b\} : b \le t, N_i \subseteq P \text{ s.t. } \bigcup_{i=1}^b N_i = P \right\}$$

- variables of the ILP: for $c \in C$, $x_c \in [0, d]$ is the number of teams with configuration c
- First constraint:

$$\sum_{c\in\mathcal{C}}x_c\geq d$$

Second constraint:

 $\sum_{c \in \mathcal{C}[N]} x_c \le |U[N]| \quad \forall N \subseteq P$

where:

- C[N] are the configurations involving N
- U[N] = users having neighborhood N

To find a set of teams: solve the following ILP:

$$\sum_{c \in C} x_c \ge d \tag{1}$$

$$\sum_{c \in C[N]} x_c \le |U[N]| \quad \forall N \subseteq P \tag{2}$$

(U[N] = users having neighborhood N)

To find a set of teams: solve the following ILP:

$$\sum_{c\in\mathcal{C}}x_c\geq d\tag{1}$$

$$\sum_{c \in \mathcal{C}[N]} x_c \le |U[N]| - z_N \quad \forall N \subseteq P$$
(2)

$$\sum_{N\subseteq P} z_N \le s \tag{3}$$

(U[N] = users having neighborhood N)

To find a set of teams: solve the following ILP:

$$\sum_{c \in \mathcal{C}} x_c \ge d \tag{1}$$

$$\sum_{c \in \mathcal{C}[N]} x_c \le |U[N]| - z_N \quad \forall N \subseteq P$$
(2)

$$\sum_{N\subseteq P} z_N \le s \tag{3}$$

(U[N] = users having neighborhood N)

Unfortunately, the above ILP doesn't solve RCP<> directly

To find a set of teams: solve the following ILP:

$$\sum_{c \in \mathcal{C}} x_c \ge d \tag{1}$$

$$\sum_{c \in \mathcal{C}[N]} x_c \le |U[N]| - z_N \quad \forall N \subseteq P$$
(2)

$$\sum_{N\subseteq P} z_N \le s \tag{3}$$

(U[N] = users having neighborhood N)

Unfortunately, the above ILP doesn't solve RCP<> directly What we need to solve: for every assignment of variables z_N , is there an assignment of variables x_c ?

Contents

Preliminaries

- Resiliency, definition of the problem
- Parameterized complexity

Parameterized landscape of the problem

- 3 Generalization to Integer Linear Programs...
 - 4 ...and applications to other domains

Suppose the set of variables is $X \uplus Z$:

- F_X : conjunction of inequalities involving variables X only
- F_Z : conjunction of inequalities involving variables Z only
- F_{XZ} : conjunction of inequalities involving variables from X and Z

<u>Classical ILP</u>: find an assignment of $X \cup Z$ such that $F_X \wedge F_Z \wedge F_{XZ}$ is satisfied

Suppose the set of variables is $X \uplus Z$:

- F_X : conjunction of inequalities involving variables X only
- F_Z : conjunction of inequalities involving variables Z only
- F_{XZ} : conjunction of inequalities involving variables from X and Z

<u>Classical ILP</u>: find an assignment of $X \cup Z$ such that $F_X \wedge F_Z \wedge F_{XZ}$ is satisfied

<u>Z</u>-resiliency: for any assignment of Z satisfying F_Z , does there exist an assignment of X such that both assignments satify $F_X \wedge F_Z \wedge F_{XZ}$?

Suppose the set of variables is $X \uplus Z$:

- F_X : conjunction of inequalities involving variables X only
- F_Z : conjunction of inequalities involving variables Z only
- F_{XZ} : conjunction of inequalities involving variables from X and Z

<u>Classical ILP</u>: find an assignment of $X \cup Z$ such that $F_X \wedge F_Z \wedge F_{XZ}$ is satisfied

<u>Z-resiliency</u>: for any assignment of Z satisfying F_Z , does there exist an assignment of X such that both assignments satify $F_X \wedge F_Z \wedge F_{XZ}$?

Theorem [Eisenbrand, Shmonin, 2008]

Parametric- $\forall \exists$ -ILP is FPT parameterized by the number of variables, constraints, size of encoding of the matrices of the ILPs.

Our result:

There is a reduction from ILP Resiliency to Parametric- $\forall \exists$ -ILP

Suppose the set of variables is $X \uplus Z$:

- F_X : conjunction of inequalities involving variables X only
- F_Z : conjunction of inequalities involving variables Z only
- F_{XZ} : conjunction of inequalities involving variables from X and Z

<u>Classical ILP</u>: find an assignment of $X \cup Z$ such that $F_X \wedge F_Z \wedge F_{XZ}$ is satisfied

<u>Z-resiliency</u>: for any assignment of Z satisfying F_Z , does there exist an assignment of X such that both assignments satify $F_X \wedge F_Z \wedge F_{XZ}$?

Theorem [Eisenbrand, Shmonin, 2008]

Parametric- $\forall \exists$ -ILP is FPT parameterized by the number of variables, constraints, size of encoding of the matrices of the ILPs.

Our result:

There is a reduction from ILP Resiliency to Parametric- $\forall \exists$ -ILP

<u>Now:</u> how to solve it in FPT time parameterized by the number of variables, constraints, and unary size of encoding of matrices of the ILPs.

Suppose the set of variables is $X \uplus Z$:

- F_X : conjunction of inequalities involving variables X only
- F_Z : conjunction of inequalities involving variables Z only
- F_{XZ} : conjunction of inequalities involving variables from X and Z

<u>Classical ILP</u>: find an assignment of $X \cup Z$ such that $F_X \wedge F_Z \wedge F_{XZ}$ is satisfied

<u>Z</u>-resiliency: for any assignment of Z satisfying F_Z , does there exist an assignment of X such that both assignments satify $F_X \wedge F_Z \wedge F_{XZ}$?

Idea of the algorithm:

• eliminate variables X and obtain an equivalent disjunction of ILPs

$$L_1 \lor \cdots \lor L_r$$

• then: test whether there exists an assignment of variables Z such that

$$\neg L_1 \land \cdots \land \neg L_r$$

is satisfied

Elimination of a variable $x_1 \in X$ of an ILP:

(assume all coefficients of x_1 are a)

Elimination of a variable $x_1 \in X$ of an ILP:

(assume all coefficients of x_1 are a)

• *L* = "lower than" inequalities

$$ax_1 \leq b^{\ell} - \sum_{k=2}^n a_k^{\ell} x_k \quad \forall \ell \in L$$
 (4)

• G = "greater than" inequalities

$$b^{g} - \sum_{k=2}^{n} a_{k}^{g} x_{k} \leq a x_{1} \quad \forall g \in G$$
 (5)

Elimination of a variable $x_1 \in X$ of an ILP:

(assume all coefficients of x_1 are a)

• *L* = "lower than" inequalities

$$ax_1 \leq b^{\ell} - \sum_{k=2}^n a_k^{\ell} x_k \quad \forall \ell \in L$$
 (4)

• G = "greater than" inequalities

$$b^g - \sum_{k=2}^n a^g_k x_k \leq a x_1 \quad \forall g \in G$$
 (5)

Then: replace all inequalities of L and G, by:

$$b^{g} - \sum_{k=2}^{n} a_{k}^{g} x_{k} \leq a x_{1} \leq b^{\ell} - \sum_{k=2}^{n} a_{k}^{\ell} x_{k} \quad \forall \ell \in L, \forall g \in G$$

$$(6)$$

$$b^{g} - \sum_{k=2}^{n} a_{k}^{g} x_{k} \leq a x_{1} \leq b^{\ell} - \sum_{k=2}^{n} a_{k}^{\ell} x_{k} \quad \forall \ell \in L, \forall g \in G$$

$$(7)$$

$$b^{g} - \sum_{k=2}^{n} a_{k}^{g} x_{k} \leq a x_{1} \leq b^{\ell} - \sum_{k=2}^{n} a_{k}^{\ell} x_{k} \quad \forall \ell \in L, \forall g \in G$$

$$b^{g} - \sum_{k=2}^{n} a_{k}^{g} x_{k} \leq b^{\ell} - \sum_{k=2}^{n} a_{k}^{\ell} x_{k} \quad \forall \ell \in L, \forall g \in G$$

$$(8)$$

$$b^{g} - \sum_{k=2}^{n} a_{k}^{g} x_{k} \leq a x_{1} \leq b^{\ell} - \sum_{k=2}^{n} a_{k}^{\ell} x_{k} \quad \forall \ell \in L, \forall g \in G$$

$$b^{g} - \sum_{k=2}^{n} a_{k}^{g} x_{k} \leq b^{\ell} - \sum_{k=2}^{n} a_{k}^{\ell} x_{k} \quad \forall \ell \in L, \forall g \in G$$

$$(8)$$

a multiple of *a* must lie between the left-hand and right-hand side ! $10 \le 6x_1 \le 11$ has a solution in (8) but not in (7)

Solution [Williams, 1076]:

$$b^{g} - \sum_{k=2}^{n} a_{k}^{g} x_{k} \leq a x_{1} \leq b^{\ell} - \sum_{k=2}^{n} a_{k}^{\ell} x_{k} \quad \forall \ell \in L, \forall g \in G$$

$$b^{g} - \sum_{k=2}^{n} a_{k}^{g} x_{k} \leq b^{\ell} - \sum_{k=2}^{n} a_{k}^{\ell} x_{k} \quad \forall \ell \in L, \forall g \in G$$

$$(8)$$

a multiple of a must lie between the left-hand and right-hand side ! $10 \le 6x_1 \le 11$ has a solution in (8) but not in (7)

Solution [Williams, 1076]:

$$\bigvee_{\substack{h \in \{0,\dots,a-1\}}}^{b^g} b^g - \sum_{k=2}^n a_k^g x_k + h \leq b^\ell - \sum_{k=2}^n a_k^\ell x_k \text{ and } \forall \ell \in L, \forall g \in G \quad (9)$$

<u>Z</u>-resiliency: for any assignment of Z satisfying F_Z , does there exist an assignment of X such that both assignments satify $F_X \wedge F_Y \wedge F_{XY}$?

Idea of the algorithm:

• eliminate variables X and obtain an equivalent disjunction of systems of linear inequalities and congruences (SLIC)

 $L_1 \lor \cdots \lor L_r$

• then: test whether there exists an assignment of variables Z such that

$$\neg L_1 \land \cdots \land \neg L_r$$

is satisfied

<u>Z</u>-resiliency: for any assignment of Z satisfying F_Z , does there exist an assignment of X such that both assignments satify $F_X \wedge F_Y \wedge F_{XY}$?

Idea of the algorithm:

• eliminate variables X and obtain an equivalent disjunction of systems of linear inequalities and congruences (SLIC)

 $L_1 \lor \cdots \lor L_r$

• then: test whether there exists an assignment of variables Z such that

 $\neg L_1 \land \cdots \land \neg L_r$

is satisfied

• equivalent to a disjunction of some SLIC

 $L'_1 \vee \cdots \vee L'_{r'}$

<u>Z</u>-resiliency: for any assignment of Z satisfying F_Z , does there exist an assignment of X such that both assignments satify $F_X \wedge F_Y \wedge F_{XY}$?

Idea of the algorithm:

• eliminate variables X and obtain an equivalent disjunction of systems of linear inequalities and congruences (SLIC)

 $L_1 \lor \cdots \lor L_r$

• then: test whether there exists an assignment of variables Z such that

 $\neg L_1 \land \cdots \land \neg L_r$

is satisfied

• equivalent to a disjunction of some SLIC

 $L'_1 \vee \cdots \vee L'_{r'}$

• and then: how to test satisfiability of a "SLIC" ??

<u>Z</u>-resiliency: for any assignment of Z satisfying F_Z , does there exist an assignment of X such that both assignments satify $F_X \wedge F_Y \wedge F_{XY}$?

Idea of the algorithm:

• eliminate variables X and obtain an equivalent disjunction of systems of linear inequalities and congruences (SLIC)

 $L_1 \lor \cdots \lor L_r$

• then: test whether there exists an assignment of variables Z such that

 $\neg L_1 \land \cdots \land \neg L_r$

is satisfied

• equivalent to a disjunction of some SLIC

 $L'_1 \lor \cdots \lor L'_{r'}$

• and then: how to test satisfiability of a "SLIC" ?? \rightarrow eliminate all variables !

Contents

Preliminaries

- Resiliency, definition of the problem
- Parameterized complexity

2 Parameterized landscape of the problem

- 3 Generalization to Integer Linear Programs...
- 4 ...and applications to other domains

Closest String

```
Input: k strings s_1, ..., s_k of length L, d \in \mathbb{N}
Question: is there a string s^* of length L s.t. d(s^*, s_i) \leq d for all i = 1, ..., k?
(such a s is called a d-closest string)
```

Closest String

```
Input: k strings s_1, ..., s_k of length L, d \in \mathbb{N}
Question: is there a string s^* of length L s.t. d(s^*, s_i) \leq d for all i = 1, ..., k?
(such a s is called a d-closest string)
```

Resiliency Closest String

Input: k strings $s_1, ..., s_k$ of length L, $d, M \in \mathbb{N}$ <u>Perturbation</u>: changing at most M symbols in the strings <u>Question</u>: for every set of strings obtained after a perturbation, does there exists a d-closest string ?

Closest String

Input: k strings $s_1, ..., s_k$ of length L, $d \in \mathbb{N}$ Question: is there a string s^* of length L s.t. $d(s^*, s_i) \leq d$ for all i = 1, ..., k? (such a s is called a d-closest string)

Resiliency Closest String

Input: k strings $s_1, ..., s_k$ of length L, $d, M \in \mathbb{N}$ <u>Perturbation</u>: changing at most M symbols in the strings <u>Question</u>: for every set of strings obtained after a perturbation, does there exists a d-closest string ?

Result: Resiliency Closest String is FPT parameterized by k.

- Closest String
- Scheduling: Makespan Minimization on Unrelated Machines
- Computational social choice: Swap Bribery
- ...?

Conclusion

- ILP-resiliency provides a very general framework Other applications?
- The known algorithm is FPT parameterized by:
 - number of variables
 - number of constraints
 - encoding length of the matrices of the ILPs
 - \Rightarrow can we do better?
 - using less parameters?
 - or: prove a lower bound: ILP-resiliency W[.]-hard parameterized by number of variables (and constraints) only ?

Voilà ! Questions ?