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sum-max graph partitioning

Input: a connected graph G = (V ,E ), w : E → N, k ∈ N

Output: a k-partition (V1, ...,Vk) of V

Goal: minimize

k∑

i,j=1
i>j

max
u∈Vi
v∈Vj

w(u, v)
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Unweighted version of the problem

w(e) = 1 ∀e ∈ E Example, k = 4
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Unweighted version of the problem

w(e) = 1 ∀e ∈ E Example, k = 4

Property

For a connected unweighted graph, any optimal solution has a cost of at least
k − 1 (in this case the quotient graph is a tree)
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NP , W [1] hardnesses, inapproximability
Reduction from independent set:
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NP , W [1] hardnesses, inapproximability

Reduction from independent set:
Conclusion:
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Reduction from independent set:
Conclusion:

α(G) ≥ k ⇒ OPT (G ′) ≤ k

α(G) < k ⇒ OPT (G ′) > k

Theorem

sum-max graph partitioning is NP-hard, and even W [1]-hard for the
parameter k

We can also prove a gap preserving reduction :

α(G) ≥ k ⇒ OPT (G ′) ≤ k

α(G) < r .k ⇒ OPT (G ′) > 1
2r

k for all r << 1

Theorem

sum-max graph partitioning is O(n1−ǫ) non-approximable unless P = NP
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Example, k = 3

Algorithm = remove the lightest edge of G until G has k connected components
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Algorithm = remove the lightest edge of G until G has k connected components
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Algorithm:
For i from 1 to k − 1 do:

A1
Ai−1

At
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Algorithm:
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Algorithm:
For i from 1 to k − 1 do:

while G has i connected components do:
remove the lightest edge in G

A1
Ai−1

At
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Algorithm:
For i from 1 to k − 1 do:

while G has i connected components do:
remove the lightest edge in G

end while. // let wi be the weight of the last removed edge
end for

A1
Ai−1

wi
At1

wi

At2

i-1 "unexpected edges"
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Algorithm:
For i from 1 to k − 1 do:

while G has i connected components do:
remove the lightest edge in G

end while. // let wi be the weight of the last removed edge
end for

A1
Ai−1

wi
At1

wi

At2

i-1 "unexpected edges"

At the end:

Solution value =
∑k−1

i=1 wi +
∑

unexpected edges
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Algorithm:
For i from 1 to k − 1 do:

while G has i connected components do:
remove the lightest edge in G

end while. // let wi be the weight of the last removed edge
end for

Lemma 1

At each step i : sum of edges of maximum weight outgoing from each cluster is
smaller than

∑i−1

j=1 wj

Proof by induction over i :
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Proof by induction over i :

Aj

At1

wi

At2w(e)
∑

≤
∑i−1

j=1 wj

w(e) ≤ wi
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end while. // let wi be the weight of the last removed edge
end for

Lemma 1

At each step i : sum of edges of maximum weight outgoing from each cluster is
smaller than
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j=1 wj

Thus: A ≤ k
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Algorithm:
For i from 1 to k − 1 do:

while G has i connected components do:
remove the lightest edge in G

end while. // let wi be the weight of the last removed edge
end for

Lemma 1

At each step i : sum of edges of maximum weight outgoing from each cluster is
smaller than

∑i−1

j=1 wj

Thus: A ≤ k
2

∑k−1

j=1 wj

Lemma 2

k−1∑

j=1

wj ≤ OPT

⇒ A ≤ k
2
OPT

(can be improved using the gap between edge weights)
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Polynomial algorithm for k = 3
Idea of the algorithm:
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Polynomial algorithm for k = 3
Idea of the algorithm:

guess the edges of maximum weight between the 3 clusters (in O(m3) time)
arrange all remaining vertices without increasing the solution value

Extension to all fixed k (unweighted version):

enumerate all "pattern graphs" to match to (≡ quotient graph of an optimal

solution) in O(mk2
) time

arrange all remaining vertices without increasing the solution value

arranging vertices is NP-complete if the quotient graph is C4

(reduction from 3-coloring)

?
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Conclusion, future work
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what about a O(nf (k)) algorithm ? (is the problem in XP ?)

restricted graph classes :
graph class negative result positive result

general graphs O(n1−ǫ) inapprox. k
2
-approx

split graphs NP-complete FPT (k), 2-approx

interval graphs ? O(n2k) exact algorithm
planar graphs ? FPT (linear kernel)
chordal graphs NP-complete ?

links with graph homomorphisms, notion of "compaction" [N. Vikas, P. Hell]
our unweighted problem ≡ compaction to a graph with few edges

applications in software engineering : adding/relaxing constraints
◮ constraints on cluster sizes

◮ number of clusters not fixed
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Thank you for your attention!
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