Sum-Max Graph Partitioning Problem

Rémi Watrigant, Marin Bougeret, Rodolphe Giroudeau and Jean-Claude König

LIRMM, Montpellier, France

International Symposium on Combinatorial Optimization Athens April 17-21 2012

Contents

Description of the problem

2 Hardness

3 Greedy $\frac{k}{2}$ -approximation algorithm

Exact solutions

5 Conclusion, future work

Input: a connected graph G = (V, E), $w : E \to \mathbb{N}$, $k \in \mathbb{N}$ **Output:** a *k*-partition $(V_1, ..., V_k)$ of *V* **Goal:** minimize $\sum_{\substack{i,j=1\\i>j}}^k \max_{\substack{u \in V_i\\v \in V_j}} w(u, v)$

Input: a connected graph G = (V, E), $w : E \to \mathbb{N}$, $k \in \mathbb{N}$ **Output:** a *k*-partition $(V_1, ..., V_k)$ of *V* **Goal:** minimize $\sum_{\substack{i,j=1\\i>j}}^k \max_{v \in V_j} w(u, v)$

In this talk:

Input: a connected graph G = (V, E), $w : E \to \mathbb{N}$, $k \in \mathbb{N}$ **Output:** a *k*-partition $(V_1, ..., V_k)$ of *V* **Goal:** minimize $\sum_{\substack{i,j=1\\v \in V_j}}^k \max_{\substack{u \in V_i\\v \in V_j}} w(u, v)$

In this talk:

hardness : NP-hard, W[1]-hard w.r.t. k, not approximable within O(n^{1-ε}) unless P = NP
(even in the unweighted case)

Input: a connected graph G = (V, E), $w : E \to \mathbb{N}$, $k \in \mathbb{N}$ **Output:** a *k*-partition $(V_1, ..., V_k)$ of *V* **Goal:** minimize $\sum_{\substack{i,j=1\\v \in V_j}}^k \max_{\substack{u \in V_i\\v \in V_j}} w(u, v)$

In this talk:

• hardness : \mathcal{NP} -hard, W[1]-hard w.r.t. k, not approximable within $O(n^{1-\epsilon})$ unless $\mathcal{P} = \mathcal{NP}$

(even in the unweighted case)

• greedy $\frac{k}{2}$ -approximation algorithm

Input: a connected graph G = (V, E), $w : E \to \mathbb{N}$, $k \in \mathbb{N}$ **Output:** a k-partition $(V_1, ..., V_k)$ of V**Goal:** minimize $\sum_{\substack{i,j=1\\i>j}}^k \max_{\substack{u \in V_i\\v \in V_j}} w(u, v)$

In this talk:

• hardness : \mathcal{NP} -hard, W[1]-hard w.r.t. k, not approximable within $O(n^{1-\epsilon})$ unless $\mathcal{P} = \mathcal{NP}$

(even in the unweighted case)

- greedy $\frac{k}{2}$ -approximation algorithm
- exact solutions (k = 3 and extensions)

Input: a connected graph G = (V, E), $w : E \to \mathbb{N}$, $k \in \mathbb{N}$ **Output:** a k-partition $(V_1, ..., V_k)$ of V**Goal:** minimize $\sum_{\substack{i,j=1\\i>j}}^k \max_{\substack{u \in V_i\\v \in V_j}} w(u, v)$

In this talk:

• hardness : \mathcal{NP} -hard, W[1]-hard w.r.t. k, not approximable within $O(n^{1-\epsilon})$ unless $\mathcal{P} = \mathcal{NP}$ (even in the unweighted case)

(even in the unweighted case)

- greedy ^k/₂-approximation algorithm
- exact solutions (k = 3 and extensions)
- partial results and future work

Contents

Description of the problem

2 Hardness

3 Greedy $\frac{k}{2}$ -approximation algorithm

Exact solutions

5 Conclusion, future work

Property

For a connected unweighted graph, any optimal solution has a cost of at least k-1 (in this case the quotient graph is a tree)

NP, W[1] hardnesses, inapproximability Reduction from INDEPENDENT SET:

Reduction from INDEPENDENT SET:

graph ${\it G},\ k\in \mathbb{N}$	\rightarrow	${\it G}\cup\{\omega\}$, $(k+1)$ -partition
$lpha({\sf G})\geq k$?		(k+1)-partition of cost k ?

Reduction from INDEPENDENT SET:

graph $G,\ k\in\mathbb{N}$	<u> </u>
$lpha({\sf G})\geq k$?	

 $G \cup \{\omega\}$, (k + 1)-partition (k + 1)-partition of cost k ?

Reduction from INDEPENDENT SET:

graph $G,\ k\in\mathbb{N}$	\rightarrow
$lpha({\sf G})\geq k$?	

 $G \cup \{\omega\}$, (k + 1)-partition (k + 1)-partition of cost k ?

 $\alpha(G) \ge k \Rightarrow G'$ has a (k + 1)-partition of cost k

Reduction from INDEPENDENT SET:

graph $G,\ k\in\mathbb{N}$	<u> </u>
$lpha({\sf G})\geq k$?	

 $G \cup \{\omega\}$, (k + 1)-partition (k + 1)-partition of cost k ?

Reduction from INDEPENDENT SET:

graph $G,\ k\in\mathbb{N}$	\rightarrow
$lpha({\sf G})\geq {\sf k}$?	

 $G \cup \{\omega\}$, (k + 1)-partition (k + 1)-partition of cost k ?

 $\alpha(G) \ge k \Rightarrow G'$ has a (k + 1)-partition of cost k

Reduction from INDEPENDENT SET:

graph $G, k \in \mathbb{N}$ $G \cup \{\omega\}$, (k+1)-partition \rightarrow $\alpha(G) > k$? (k+1)-partition of cost k? G $\alpha(G) > k \Rightarrow G'$ has a (k + 1)-partition of cost k

Reduction from INDEPENDENT SET:

graph $G,\ k\in\mathbb{N}$	\rightarrow
$lpha({\sf G})\geq k$?	

 $G \cup \{\omega\}$, (k + 1)-partition (k + 1)-partition of cost k ?

Reduction from INDEPENDENT SET:

 $\begin{array}{ccc} \mathsf{graph} \ \mathsf{G}, \ \mathsf{k} \in \mathbb{N} & \to & \mathsf{G} \\ \alpha(\mathsf{G}) \geq \mathsf{k} \ ? & & (\mathsf{k} - \mathsf{G}) \end{array}$

 $G \cup \{\omega\}$, (k + 1)-partition (k + 1)-partition of cost k ?

Reduction from INDEPENDENT SET:

graph $G,\ k\in\mathbb{N}$	
$lpha({\sf G})\geq k$?	

 $G \cup \{\omega\}$, (k + 1)-partition (k + 1)-partition of cost k ?

 \rightarrow

Reduction from INDEPENDENT SET:

graph $G, k \in \mathbb{N}$ $G \cup \{\omega\}$, (k+1)-partition \rightarrow $\alpha(G) > k$? (k+1)-partition of cost k? G

 $\alpha(G) < k \Rightarrow any (k + 1)$ -partition of G' has a cost $\geq k + 1$

Reduction from INDEPENDENT SET:

graph $G,\ k\in\mathbb{N}$	\rightarrow	${\it G}\cup\{\omega\}$, $(k+1)$ -partitior
$lpha({\sf G})\geq k$?		(k+1)-partition of cost k ?

Reduction from INDEPENDENT SET:

graph $G,\ k\in\mathbb{N}$	\rightarrow	${\it G}\cup\{\omega\}$, $(k+1)$ -partition
$lpha({\sf G})\geq k$?		(k+1)-partition of cost k ?

independent set of size k

 $\alpha(G) < k \Rightarrow$ any (k + 1)-partition of G' has a cost $\geq k + 1$

Reduction from INDEPENDENT SET: Conclusion:

- $\alpha(G) \geq k \Rightarrow OPT(G') \leq k$
- $\alpha(G) < k \Rightarrow OPT(G') > k$

Theorem

SUM-MAX GRAPH PARTITIONING is \mathcal{NP} -hard, and even W[1]-hard for the parameter k

Reduction from INDEPENDENT SET: Conclusion:

•
$$\alpha(G) \geq k \Rightarrow OPT(G') \leq k$$

•
$$\alpha(G) < k \Rightarrow OPT(G') > k$$

Theorem

SUM-MAX GRAPH PARTITIONING is \mathcal{NP} -hard, and even W[1]-hard for the parameter k

We can also prove a gap preserving reduction :

•
$$\alpha(G) \ge k \Rightarrow OPT(G') \le k$$

•
$$\alpha(G) < r.k \Rightarrow OPT(G') > \frac{1}{2r}k$$
 for all $r \ll 1$

Theorem

SUM-MAX GRAPH PARTITIONING is $O(n^{1-\epsilon})$ non-approximable unless $\mathcal{P} = \mathcal{NP}$
Contents

Description of the problem

2 Hardness

3 Greedy $\frac{k}{2}$ -approximation algorithm

4 Exact solutions

5 Conclusion, future work

Algorithm: For *i* from 1 to k - 1 do:

Algorithm: For *i* from 1 to k - 1 do: while *G* has *i* connected components do:


```
Algorithm:

For i from 1 to k - 1 do:

while G has i connected components do:

remove the lightest edge in G
```


Algorithm: For *i* from 1 to k - 1 do: while *G* has *i* connected components do: remove the lightest edge in *G* end while. // let w_i be the weight of the last removed edge end for

Algorithm: For *i* from 1 to k - 1 do: while *G* has *i* connected components do: remove the lightest edge in *G* end while. // let w_i be the weight of the last removed edge end for

At the end:

Solution value =
$$\sum_{i=1}^{k-1} w_i + \sum$$
 unexpected edges

For *i* from 1 to k - 1 do:

while G has i connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is smaller than $\sum_{j=1}^{i-1} w_j$

For *i* from 1 to k - 1 do:

while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is smaller than $\sum_{j=1}^{i-1} w_j$

For *i* from 1 to k - 1 do:

while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is smaller than $\sum_{j=1}^{i-1} w_j$

For *i* from 1 to k - 1 do:

while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is smaller than $\sum_{j=1}^{i-1} w_j$

For *i* from 1 to k - 1 do:

while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is smaller than $\sum_{j=1}^{i-1} w_j$

For *i* from 1 to k - 1 do:

while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is smaller than $\sum_{j=1}^{i-1} w_j$

Thus:

$$\mathcal{A} \leq rac{k}{2} \sum_{j=1}^{k-1} \mathit{w}_j$$

For *i* from 1 to k - 1 do:

while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is smaller than $\sum_{j=1}^{i-1} w_j$

Thus: $\mathcal{A} \leq rac{k}{2} \sum_{j=1}^{k-1} w_j$

Lemma 2

$$\sum_{j=1}^{k-1} w_j \le OPT$$

For *i* from 1 to k - 1 do:

while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is smaller than $\sum_{j=1}^{i-1} w_j$

Thus: $\mathcal{A} \leq rac{k}{2} \sum_{j=1}^{k-1} w_j$

Lemma 2

$$\sum_{j=1}^{k-1} w_j \le OPT$$

$$\Rightarrow \mathcal{A} \leq \frac{k}{2} OPT$$

(can be improved using the gap between edge weights)

Contents

Description of the problem

2 Hardness

3 Greedy $\frac{k}{2}$ -approximation algorithm

4 Exact solutions

5 Conclusion, future work

Polynomial algorithm for k = 3Idea of the algorithm:

Idea of the algorithm:

• guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

suppose that $a \le b \le c$

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

suppose that $a \le b \le c$

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

Extension to all fixed k (**unweighted version**):

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

Extension to all fixed *k* (**unweighted version**):

• enumerate all "pattern graphs" to match to (\equiv quotient graph of an optimal solution) in $O(m^{k^2})$ time

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

Extension to all fixed *k* (**unweighted version**):

- enumerate all "pattern graphs" to match to (\equiv quotient graph of an optimal solution) in $O(m^{k^2})$ time
- arrange all remaining vertices without increasing the solution value

Idea of the algorithm:

- guess the edges of maximum weight between the 3 clusters (in $O(m^3)$ time)
- arrange all remaining vertices without increasing the solution value

Extension to all fixed k (**unweighted version**):

- enumerate all "pattern graphs" to match to (\equiv quotient graph of an optimal solution) in $O(m^{k^2})$ time
- arrange all remaining vertices without increasing the solution value

arranging vertices is \mathcal{NP} -complete if the quotient graph is C_4 (reduction from 3-COLORING)

Contents

Description of the problem

2 Hardness

3 Greedy $\frac{k}{2}$ -approximation algorithm

4 Exact solutions

5 Conclusion, future work

About the unweighted version of the problem:

• no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...

About the unweighted version of the problem:

no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ? (is the problem in XP ?)

About the unweighted version of the problem:

- no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ? (is the problem in XP ?)
- restricted graph classes :

About the unweighted version of the problem:

- no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ? (is the problem in XP ?)
- restricted graph classes :

graph class	negative result	positive result
general graphs	$O(n^{1-\epsilon})$ inapprox.	$\frac{k}{2}$ -approx
split graphs	$\mathcal{NP} ext{-complete}$	FPT (k), 2-approx
interval graphs	?	$O(n^{2k})$ exact algorithm
planar graphs	?	FPT (linear kernel)
chordal graphs	$\mathcal{NP} ext{-complete}$?

About the unweighted version of the problem:

- no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ? (is the problem in XP ?)
- restricted graph classes :

graph class	negative result	positive result
general graphs	$O(n^{1-\epsilon})$ inapprox.	$\frac{k}{2}$ -approx
split graphs	$\mathcal{NP} ext{-complete}$	FPT (k), 2-approx
interval graphs	?	$O(n^{2k})$ exact algorithm
planar graphs	?	FPT (linear kernel)
chordal graphs	$\mathcal{NP} ext{-complete}$?

 links with graph homomorphisms, notion of "compaction" [N. Vikas, P. Hell] our unweighted problem ≡ compaction to a graph with few edges

About the unweighted version of the problem:

- no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ? (is the problem in XP ?)
- restricted graph classes :

graph class	negative result	positive result
general graphs	$O(n^{1-\epsilon})$ inapprox.	$\frac{k}{2}$ -approx
split graphs	$\mathcal{NP} ext{-complete}$	FPT (k), 2-approx
interval graphs	?	$O(n^{2k})$ exact algorithm
planar graphs	?	FPT (linear kernel)
chordal graphs	$\mathcal{NP} ext{-complete}$?

- links with graph homomorphisms, notion of "compaction" [N. Vikas, P. Hell] our unweighted problem ≡ compaction to a graph with few edges
- applications in software engineering : adding/relaxing constraints
 - constraints on cluster sizes
 - number of clusters not fixed

Thank you for your attention!